Distributed Computing 14 - LOCAL Variants

Mikä̈l Rabie

Université Paris Cité, IRIF

Sequential Complexity

SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes

SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$

SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$

SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$

SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$

SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$

SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$

SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$

SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$

SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$

SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$

SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$

Volume Complexity

CentLOCAL Model

- In parallel, each node v :
- Knows its own $I d_{v}$ and degree $d_{l d_{v}}$
- At each step, they send a request $\left(I d_{u}, k\right)$, with $k \leq d_{l d_{u}}$
- They get $\left(I d_{w}, d_{l d_{w}}, k^{\prime}\right)$ such that $(u, v) \in E$ are connected by port k from u and k^{\prime} from w
- Complexity : maximal number of requests from a node

CentLOCAL Model

- In parallel, each node v :
- Knows its own $I d_{v}$ and degree $d_{l d_{v}}$
- At each step, they send a request $\left(I d_{u}, k\right)$, with $k \leq d_{I d_{u}}$
- They get $\left(I d_{w}, d_{l d_{w}}, k^{\prime}\right)$ such that $(u, v) \in E$ are connected by port k from u and k^{\prime} from w
- Complexity : maximal number of requests from a node

$$
\text { Request : }(14,2)
$$

CentLOCAL Model

- In parallel, each node v :
- Knows its own $I d_{v}$ and degree $d_{l d_{v}}$
- At each step, they send a request $\left(I d_{u}, k\right)$, with $k \leq d_{l d_{u}}$
- They get $\left(I d_{w}, d_{l d_{w}}, k^{\prime}\right)$ such that $(u, v) \in E$ are connected by port k from u and k^{\prime} from w
- Complexity : maximal number of requests from a node

$$
\text { Request : }(14,2)
$$

CentLOCAL Model

- In parallel, each node v :
- Knows its own $I d_{v}$ and degree $d_{l d_{v}}$
- At each step, they send a request $\left(I d_{u}, k\right)$, with $k \leq d_{I d_{u}}$
- They get $\left(I d_{w}, d_{l d_{w}}, k^{\prime}\right)$ such that $(u, v) \in E$ are connected by port k from u and k^{\prime} from w
- Complexity : maximal number of requests from a node

$$
\text { Request : }(14,2) \Rightarrow(2,4,1)
$$

CentLOCAL Model

- In parallel, each node v :
- Knows its own $I d_{v}$ and degree $d_{l d_{v}}$
- At each step, they send a request $\left(I d_{u}, k\right)$, with $k \leq d_{I d_{u}}$
- They get $\left(I d_{w}, d_{l d_{w}}, k^{\prime}\right)$ such that $(u, v) \in E$ are connected by port k from u and k^{\prime} from w
- Complexity : maximal number of requests from a node

Request: $(14,3)$

CentLOCAL Model

- In parallel, each node v :
- Knows its own $I d_{v}$ and degree $d_{l d_{v}}$
- At each step, they send a request $\left(I d_{u}, k\right)$, with $k \leq d_{I d_{u}}$
- They get $\left(I d_{w}, d_{l d_{w}}, k^{\prime}\right)$ such that $(u, v) \in E$ are connected by port k from u and k^{\prime} from w
- Complexity : maximal number of requests from a node

$$
\text { Request : }(14,3) \Rightarrow(8,2,2)
$$

CentLOCAL Model

- In parallel, each node v :
- Knows its own $I d_{v}$ and degree $d_{l d_{v}}$
- At each step, they send a request $\left(I d_{u}, k\right)$, with $k \leq d_{l d_{u}}$
- They get $\left(I d_{w}, d_{l d_{w}}, k^{\prime}\right)$ such that $(u, v) \in E$ are connected by port k from u and k^{\prime} from w
- Complexity : maximal number of requests from a node

$$
\text { Request : }(2,3)
$$

CentLOCAL Model

- In parallel, each node v :
- Knows its own $I d_{v}$ and degree $d_{l d_{v}}$
- At each step, they send a request $\left(I d_{u}, k\right)$, with $k \leq d_{I d_{u}}$
- They get $\left(I d_{w}, d_{l d_{w}}, k^{\prime}\right)$ such that $(u, v) \in E$ are connected by port k from u and k^{\prime} from w
- Complexity : maximal number of requests from a node

$$
\text { Request : }(2,3) \Rightarrow(10,4,3)
$$

Greedy Problems

Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model
$\Rightarrow A$ can be solved in time
in the CentLOCAL model

Greedy Problems

Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model
$\Rightarrow A$ can be solved in time $\Omega(f(n))$ and $O\left(\Delta^{f(n)}\right)$ in the CentLOCAL model

Greedy Problems

Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model $\Rightarrow A$ can be solved in time $\Omega(f(n))$ and $O\left(\Delta^{f(n)}\right)$ in the CentLOCAL model
Even et. al (2018)
There is a CentLOCAL algorithm in time $O\left(\Delta \times \log ^{*} n+\Delta^{3}\right)$ for $\leq \Delta^{2}$-coloring a graph. There is a CentLOCAL algorithm in time $O\left(\Delta \times \log ^{*} n+\Delta^{3}\right)$ for orienting a graph where the longer oriented path is of length $\leq \Delta^{2}$.
Any greedy problem can be solved in time $O\left(f(\Delta) \times \log ^{*} n\right)$.

Complexity Gap

Rosenbaum and Suomela (2020)
In the CentLOCAL model, if n is not given in advance and identifiers do not require to be polynomial in n, there is no problem whose time complexity is in $\omega\left(\log ^{*} n\right) \cap o(n)$.

Complexity Gap

Rosenbaum and Suomela (2020)
In the CentLOCAL model, if n is not given in advance and identifiers do not require to be polynomial in n, there is no problem whose time complexity is in $\omega\left(\log ^{*} n\right) \cap o(n)$.

- Take N such that $T(N) \ll N$
- Do a distance N-coloring
- Simulate the algorithm with the new identifiers

Mendability

Mendable Problems

$\Gamma^{*}: V \rightarrow \mathcal{O} \cup\{\perp\}$ is a Partial Solution if :

- \mathcal{O} is the Output Set,
- $\forall u \in V: \Gamma^{*}(u) \neq \perp \Rightarrow$ we can complete the labels of the neighbors of u.

A problem is T-Mendable if, from any partial solution Γ^{*} and any $v \in V$ such that $\Gamma^{*}(v)=\perp$, there exists Γ^{\prime} :

- $\Gamma^{\prime}(v) \neq \perp$
- $\forall u \neq v, \Gamma^{\prime}(u)=\perp \Leftrightarrow \Gamma^{*}(u)=\perp$
- $\forall u \in V, \operatorname{dist}(u, v)>T \Rightarrow \Gamma^{\prime}(u)=\Gamma^{*}(u)$

4-coloring the Grid

4-coloring the Grid

4-coloring the Grid

4-coloring the Grid

Mendable into LOCAL

Balliu et. al (2022)
Let Π be a T-mendable LCL problem. Π can be solved in rounds in the LOCAL model if we are given a distance- coloring.

Mendable into LOCAL

Balliu et. al (2022)

Let Π be a T-mendable LCL problem. Π can be solved in $O\left(T \Delta^{2 T}\right)$ rounds in the LOCAL model if we are given a distance- $2 T+1$ coloring.

Mendable into LOCAL

Balliu et. al (2022)

Let Π be a T-mendable LCL problem. Π can be solved in $O\left(T \Delta^{2 T}\right)$ rounds in the LOCAL model if we are given a distance- $2 T+1$ coloring.

Balliu et. al (2022)
Let Π be a $O(1)$-mendable LCL problem. Π can be solved in $O\left(\log ^{*} n\right)$ rounds in the LOCAL model on bounded degree graphs.

From $\log ^{*} n$ to Mendability

On paths and cycles, are all $O\left(\log ^{*} n\right)$ problems mendable ?

From $\log ^{*} n$ to Mendability

On paths and cycles, are all $O\left(\log ^{*} n\right)$ problems mendable?
No: 3-color with $\{1,2,3\}$ or 2 -color with $\{A, B\}$.

From $\log ^{*} n$ to Mendability

On paths and cycles, are all $O\left(\log ^{*} n\right)$ problems mendable?
No: 3-color with $\{1,2,3\}$ or 2-color with $\{A, B\}$.

Balliu et. al (2022)

Suppose Π is an LCL problem on directed cycles with no input. If Π is $O\left(\log ^{*} n\right)$-solvable, we can define a new LCL problem Π^{\prime} with the same round complexity, such that a solution for Π^{\prime} is also a solution for Π, and Π^{\prime} is $O(1)$-mendable.

The Case of Trees

Balliu et. al (2022)
In trees, there are exactly three classes: $O(1)$-mendable, $\Theta(\log n)$-mendable, and $\Theta(n)$-mendable problems.

3-coloring the rooted tree is

The Case of Trees

Balliu et. al (2022)
In trees, there are exactly three classes: $O(1)$-mendable, $\Theta(\log n)$-mendable, and $\Theta(n)$-mendable problems.

3 -coloring the rooted tree is $O(n)$-mendable.
There exists a $O(1)$-mendable problem Π^{\prime} that projects its solutions to a 3-coloring :

- A node is monochromatic if both its children have the same color.
- Otherwise, the node is mixed.
- Π^{\prime} only accept connected components of mixed nodes of height $\leq k$.

Waking Up Complexity

Sleeping LOCAL Model

- At each round, a node decides if it is active or not
- A communicates only with its active neighbors
- Complexity : maximal number of active rounds for a single node

Sleeping LOCAL Model

- At each round, a node decides if it is active or not
- A communicates only with its active neighbors
- Complexity : maximal number of active rounds for a single node

Sleeping LOCAL Model

- At each round, a node decides if it is active or not
- A communicates only with its active neighbors
- Complexity : maximal number of active rounds for a single node

A Link with SLOCAL

$\Delta+1$-coloring can be solved in $O(\Delta)$ rounds

A Link with SLOCAL

$\Delta+1$-coloring can be solved in $O(\Delta)$ rounds :

- Round 1: all nodes are activated. Know their identifiers and their neighbours'.
- Node of Identifier Id wakes up at round Id +1 to know their neighbours' colors.
- Neighbours of node of identifier Id also wakes up at that round.

Drawback: The round complexity is $O(M), M$ being the maximal identifier.

A Link with SLOCAL

$\Delta+1$-coloring can be solved in $O(\Delta)$ rounds :

- Round 1: all nodes are activated. Know their identifiers and their neighbours'.
- Node of Identifier Id wakes up at round $I d+1$ to know their neighbours' colors.
- Neighbours of node of identifier Id also wakes up at that round.

Drawback: The round complexity is $O(M), M$ being the maximal identifier.

Problem A can be solved in time $f(n)$ in the SLOCAL model $\Rightarrow A$ can be solved in time

A Link with SLOCAL

$\Delta+1$-coloring can be solved in $O(\Delta)$ rounds :

- Round 1: all nodes are activated. Know their identifiers and their neighbours'.
- Node of Identifier Id wakes up at round Id +1 to know their neighbours' colors.
- Neighbours of node of identifier Id also wakes up at that round.

Drawback: The round complexity is $O(M), M$ being the maximal identifier.

Problem A can be solved in time $f(n)$ in the SLOCAL model $\Rightarrow A$ can be solved in time $O\left(f(n) \Delta^{f(n)}\right)$ in the Sleeping LOCAL model.

$\log \Delta$-coloring

Barenboim and Maimon (2021)

Given a Δ^{k}-coloring of the graph, we can compute a $(\Delta+1)$-coloring in $O(\log \Delta)$ awaken rounds and $O\left(\Delta^{k}\right)$ rounds in the Sleeping LOCAL model.

$\log \Delta$-coloring

Full Knowledge of the Graph

Barenboim and Maimon (2021)

Any graph problem can be solved in $O(\log n)$ rounds in the Sleeping LOCAL model.

Full Knowledge of the Graph

Barenboim and Maimon (2021)

Any graph problem can be solved in $O(\log n)$ rounds in the Sleeping LOCAL model.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

- Each vertex has a label
- The label of a vertex is bigger than its parent's
- Each vertex knows the label of its neighbours in the tree

Full Knowledge of the Graph

Barenboim and Maimon (2021)

Any graph problem can be solved in $O(\log n)$ rounds in the Sleeping LOCAL model.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

- Each vertex has a label
- The label of a vertex is bigger than its parent's
- Each vertex knows the label of its neighbours in the tree

Constant Coordination

Broadcast and Convergecast can be done in $O(1)$ rounds in a DLT.

Building a DLT

Barenboim and Maimon (2021)
A DLT can be built in $O(\log n)$ awaken rounds in the Sleeping LOCAL model.

Building a DLT

- Labels are of the form (a, b), ordered lexicographically.
- At the beginning, all nodes have label (Id $(u), 0)$.
- At the beginning of each expand step, all nodes of a subtree T are of the form $(L(T), b)$.

Building a DLT

- Repeat $\log n$ times :

1. Select a neighbour Tree T^{\prime} with smaller label $\left(I d_{u_{1}}>I d_{u 2}\right)$.

Building a DLT

- Repeat $\log n$ times :

2. Merge T and T^{\prime}, using an edge (u, v).

Building a DLT

- Repeat $\log n$ times:

3. If T could not choose a neighbour and was not selected
T chooses a tree T^{\prime} to join using an edge (u, v).
This forms a star of trees around $T^{\prime} \Rightarrow O(1)$ merge rounds.

Building a DLT

- Repeat $\log n$ times:

4. All nodes learn their new neighbours in the tree.
5. Convergecast to gather the new structure of the component C to the root r.
6. Broadcast a new labelling $(L(r), \operatorname{dist}(r))$.

Sleeping Lower Bound

Augustine et. al (2022)
Any algorithm to solve 2-coloring with probability exceeding $1 / 8$ on a ring network requires $\Omega(\log n)$ awake time.

Sleeping Lower Bound

Augustine et. al (2022)
Any algorithm to solve 2-coloring with probability exceeding $1 / 8$ on a ring network requires $\Omega(\log n)$ awake time.
......

- After k rounds, a node knows about some segment that includes itself
- No node v on the left of u in the path can know more than u on its right

Sleeping Lower Bound

By induction: For any k, for any segment I of 13^{k} nodes, there exists, with probability $\mathcal{P}>1 / 2$, a node $u \in I$ who knows less than I after k rounds.

Sleeping Lower Bound

By induction: For any k, for any segment I of 13^{k} nodes, there exists, with probability $\mathcal{P}>1 / 2$, a node $u \in I$ who knows less than I after k rounds.

- Probability that it is true on 5 of the 13 subsegments is at least $5 / 6$
- Probability that B, C or D wakes up before A and E is at least $1 / 2$

Sleeping Lower Bound

By induction: For any k, for any segment I of 13^{k} nodes, there exists, with probability $\mathcal{P}>1 / 2$, a node $u \in I$ who knows less than I after k rounds.

- Probability that it is true on 5 of the 13 subsegments is at least $5 / 6$
- Probability that B, C or D wakes up before A and E is at least $1 / 2$

Question : What are the compexity classes on paths and rings?

Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta+1)$-coloring :

Awaken rounds	Rounds
$O(\Delta)$	$O(M)$
$O(\log n)$	$\Omega(M)$
$O\left(\log ^{*} n+\log \Delta\right)$	$O\left(\log ^{*} n+\right.$ poly $\left.\Delta\right)$

Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.
$(\Delta+1)$-coloring :

Awaken rounds	Rounds
$O(\Delta)$	$O(M)$
$O(\log n)$	$\Omega(M)$
$O\left(\log ^{*} n+\log \Delta\right)$	$O\left(\log ^{*} n+\right.$ poly $\left.\Delta\right)$

Dufoulon, Moses, Pandurangan (2023)
Maximal Independent Set :

	Sleeping-Rand-MIS-1	Sleeping-Rand-MIS-2
Node-averaged awake complexity	$O(1)$	$O(1)$
Worst-case awake complexity	$O(\log \log n)$	$O\left((\log \log n) \log ^{*} n\right)$
Total round complexity	$O($ poly $n)$	$O\left(\left(\log { }^{3} n\right)(\log \log n) \log ^{*} n\right)$

Bibliography

- John Augustine, William K. Moses Jr., Gopal Pandurangan. Distributed MST Computation in the Sleeping Model : Awake-Optimal Algorithms and Lower Bounds. In PODC 2022 (BA).
- Alkida Balliu, Juho Hirvonen, Darya Melnyk, Dennis Olivetti, Joel Rybicki, Jukka Suomela. Local Mending. In SIROCCO 2022.
- Leonid Barenboim, Tzalik Maimon. Deterministic Logarithmic Completeness in the Distributed Sleeping Model. In DISC 2021.
- Fabien Dufoulon, William K. Moses Jr., Gopal Pandurangan, Distributed MIS in O(log log n) Awake Complexity. In PODC 2023.
- Guy Even, Moti Medina, Dana Ron. Best of two local models : Centralized local and distributed local algorithms In Inf. Comput. 262, 2018.
- Mohsen Ghaffari, Fabian Kuhn, Yannic Maus. On the complexity of local distributed graph problems. In STOC 2017.
- Will Rosenbaum, Jukka Suomela. Seeing far vs. seeing wide In PODC 2020.

