Distributed Computing 14 - LOCAL Variants

Mikaël Rabie Université Paris Cité, IRIF

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

Sequential Complexity

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity : maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

Volume Complexity

- In parallel, each node v :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

- In parallel, each node v :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

Request : (14,2)

- In parallel, each node v :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

Request : (14,2)

- In parallel, each node v :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

 $\mathsf{Request}:(14,2) \Rightarrow (2,4,1)$

- In parallel, each node v :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

Request : (14,3)

- In parallel, each node v :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

 $\mathsf{Request}:(14,3) \Rightarrow (8,2,2)$

- In parallel, each node v :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

Request : (2,3)

- In parallel, each node v :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

 $\mathsf{Request}:(2,3) \Rightarrow (10,4,3)$

Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model \Rightarrow A can be solved in time in the CentLOCAL model

Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model \Rightarrow A can be solved in time $\Omega(f(n))$ and $O(\Delta^{f(n)})$ in the CentLOCAL model

Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model

 \Rightarrow A can be solved in time $\Omega(f(n))$ and $O\left(\Delta^{f(n)}\right)$ in the CentLOCAL model

Even et. al (2018)

There is a CentLOCAL algorithm in time $O(\Delta \times \log^* n + \Delta^3)$ for $\leq \Delta^2$ -coloring a graph. There is a CentLOCAL algorithm in time $O(\Delta \times \log^* n + \Delta^3)$ for orienting a graph where the longer oriented path is of length $\leq \Delta^2$.

Any greedy problem can be solved in time $O(f(\Delta) \times \log^* n)$.

Rosenbaum and Suomela (2020)

In the CentLOCAL model, if n is not given in advance and identifiers do not require to be polynomial in n, there is no problem whose time complexity is in $\omega(\log^* n) \cap o(n)$.

Rosenbaum and Suomela (2020)

In the CentLOCAL model, if n is not given in advance and identifiers do not require to be polynomial in n, there is no problem whose time complexity is in $\omega(\log^* n) \cap o(n)$.

- Take N such that $T(N) \ll N$
- Do a distance *N*-coloring
- Simulate the algorithm with the new identifiers

Mendability

 $\Gamma^*: V \to \mathcal{O} \cup \{\bot\}$ is a Partial Solution if :

- \mathcal{O} is the Output Set,
- $\forall u \in V : \Gamma^*(u) \neq \bot \Rightarrow$ we can complete the labels of the neighbors of u.

A problem is T-**Mendable** if, from any partial solution Γ^* and any $v \in V$ such that $\Gamma^*(v) = \bot$, there exists Γ' :

- $\Gamma'(v) \neq \bot$
- $\forall u \neq v$, $\Gamma'(u) = \bot \Leftrightarrow \Gamma^*(u) = \bot$
- $\forall u \in V, dist(u, v) > T \Rightarrow \Gamma'(u) = \Gamma^*(u)$

Balliu et. al (2022)

Let Π be a *T*-mendable LCL problem. Π can be solved in LOCAL model if we are given a distance- coloring.

rounds in the

Balliu et. al (2022)

Let Π be a *T*-mendable LCL problem. Π can be solved in $O(T\Delta^{2T})$ rounds in the LOCAL model if we are given a distance-2T + 1 coloring.
Balliu et. al (2022)

Let Π be a *T*-mendable LCL problem. Π can be solved in $O(T\Delta^{2T})$ rounds in the LOCAL model if we are given a distance-2T + 1 coloring.

Balliu *et. al* (2022) Let Π be a O(1)-mendable LCL problem. Π can be solved in $O(\log^* n)$ rounds in the LOCAL model on bounded degree graphs. On paths and cycles, are all $O(\log^* n)$ problems mendable?

On paths and cycles, are all $O(\log^* n)$ problems mendable?

No : 3-color with $\{1, 2, 3\}$ or 2-color with $\{A, B\}$.

On paths and cycles, are all $O(\log^* n)$ problems mendable?

```
No : 3-color with \{1, 2, 3\} or 2-color with \{A, B\}.
```

Balliu et. al (2022)

Suppose Π is an LCL problem on directed cycles with no input. If Π is $O(\log^* n)$ -solvable, we can define a new LCL problem Π' with the same round complexity, such that a solution for Π' is also a solution for Π , and Π' is O(1)-mendable.

Balliu et. al (2022)

In trees, there are exactly three classes : O(1)-mendable, $\Theta(\log n)$ -mendable, and $\Theta(n)$ -mendable problems.

3-coloring the rooted tree is

Balliu et. al (2022)

In trees, there are exactly three classes : O(1)-mendable, $\Theta(\log n)$ -mendable, and $\Theta(n)$ -mendable problems.

3-coloring the rooted tree is O(n)-mendable.

There exists a O(1)-mendable problem Π' that projects its solutions to a 3-coloring :

- A node is **monochromatic** if both its children have the same color.
- Otherwise, the node is **mixed**.
- Π' only accept connected components of mixed nodes of height $\leq k$.

Waking Up Complexity

Sleeping LOCAL Model

- At each round, a node decides if it is active or not
- A communicates only with its active neighbors
- Complexity : maximal number of active rounds for a single node

Sleeping LOCAL Model

- At each round, a node decides if it is active or not
- A communicates only with its active neighbors
- Complexity : maximal number of active rounds for a single node

Sleeping LOCAL Model

- At each round, a node decides if it is active or not
- A communicates only with its active neighbors
- Complexity : maximal number of active rounds for a single node

 Δ + 1-coloring can be solved in $O(\Delta)$ rounds

 $\Delta+1\text{-coloring}$ can be solved in $\mathit{O}(\Delta)$ rounds :

- Round 1 : all nodes are activated. Know their identifiers and their neighbours'.
- Node of Identifier Id wakes up at round Id + 1 to know their neighbours' colors.
- Neighbours of node of identifier *Id* also wakes up at that round.

Drawback : The round complexity is O(M), M being the maximal identifier.

 $\Delta+1\text{-coloring}$ can be solved in $\mathit{O}(\Delta)$ rounds :

- Round 1 : all nodes are activated. Know their identifiers and their neighbours'.
- Node of Identifier Id wakes up at round Id + 1 to know their neighbours' colors.
- Neighbours of node of identifier *Id* also wakes up at that round.

Drawback : The round complexity is O(M), M being the maximal identifier.

Problem A can be solved in time f(n) in the SLOCAL model \Rightarrow A can be solved in time in the Sleeping LOCAL model. $\Delta+1\text{-coloring}$ can be solved in $\mathit{O}(\Delta)$ rounds :

- Round 1 : all nodes are activated. Know their identifiers and their neighbours'.
- Node of Identifier Id wakes up at round Id + 1 to know their neighbours' colors.
- Neighbours of node of identifier *Id* also wakes up at that round.

Drawback : The round complexity is O(M), M being the maximal identifier.

Problem A can be solved in time f(n) in the SLOCAL model \Rightarrow A can be solved in time $O(f(n)\Delta^{f(n)})$ in the Sleeping LOCAL model.

Barenboim and Maimon (2021)

Given a Δ^k -coloring of the graph, we can compute a $(\Delta + 1)$ -coloring in $O(\log \Delta)$ awaken rounds and $O(\Delta^k)$ rounds in the Sleeping LOCAL model.

Barenboim and Maimon (2021) Any graph problem can be solved in $O(\log n)$ rounds in the Sleeping LOCAL model.

Barenboim and Maimon (2021)

Any graph problem can be solved in $O(\log n)$ rounds in the Sleeping LOCAL model.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

- Each vertex has a label
- The label of a vertex is bigger than its parent's
- Each vertex knows the label of its neighbours in the tree

Barenboim and Maimon (2021)

Any graph problem can be solved in $O(\log n)$ rounds in the Sleeping LOCAL model.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

- Each vertex has a label
- The label of a vertex is bigger than its parent's
- Each vertex knows the label of its neighbours in the tree

Constant Coordination

Broadcast and Convergecast can be done in O(1) rounds in a DLT.

Barenboim and Maimon (2021) A DLT can be built in $O(\log n)$ awaken rounds in the Sleeping LOCAL model.

- Labels are of the form (a, b), ordered lexicographically.
- At the beginning, all nodes have label (Id(u), 0).
- At the beginning of each expand step, all nodes of a subtree T are of the form (L(T), b).

- Repeat log *n* times :
- 1. Select a neighbour Tree T' with smaller label $(Id_{u_1} > Id_{u_2})$.

- Repeat log *n* times :
- 2. Merge T and T', using an edge (u, v).

- Repeat log *n* times :
- 3. If T could not choose a neighbour and was not selected

T chooses a tree T' to join using an edge (u, v). This forms a star of trees around $T' \Rightarrow O(1)$ merge rounds.

- Repeat log *n* times :
- 4. All nodes learn their new neighbours in the tree.
- 5. Convergecast to gather the new structure of the component C to the root r.
- 6. Broadcast a new labelling (L(r), dist(r)).

Augustine et. al (2022)

Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires $\Omega(\log n)$ awake time.

Augustine et. al (2022)

Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires $\Omega(\log n)$ awake time.

- After k rounds, a node knows about some segment that includes itself
- No node v on the left of u in the path can know more than u on its right

By induction : For any k, for any segment I of 13^k nodes, there exists, with probability $\mathcal{P} > 1/2$, a node $u \in I$ who knows less than I after k rounds.

By induction : For any k, for any segment I of 13^k nodes, there exists, with probability $\mathcal{P} > 1/2$, a node $u \in I$ who knows less than I after k rounds.

- Probability that it is true on 5 of the 13 subsegments is at least 5/6
- Probability that *B*, *C* or *D* wakes up before *A* and *E* is at least 1/2

By induction : For any k, for any segment I of 13^k nodes, there exists, with probability $\mathcal{P} > 1/2$, a node $u \in I$ who knows less than I after k rounds.

- Probability that it is true on 5 of the 13 subsegments is at least 5/6
- Probability that *B*, *C* or *D* wakes up before *A* and *E* is at least 1/2

Question : What are the compexity classes on paths and rings?
Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta+1)\text{-coloring}:$

Awaken rounds	Rounds	
$O(\Delta)$	O(M)	
$O(\log n)$	$\Omega(M)$	
$O(\log^* n + \log \Delta)$	$O(\log^* n + \operatorname{poly} \Delta)$	

Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta+1)\text{-coloring}:$

Awaken rounds	Rounds
$O(\Delta)$	O(M)
$O(\log n)$	$\Omega(M)$
$O(\log^* n + \log \Delta)$	$O(\log^* n + \operatorname{poly} \Delta)$

Dufoulon, Moses, Pandurangan (2023) Maximal Independent Set :

	Sleeping-Rand-MIS-1	Sleeping-Rand-MIS-2
Node-averaged awake complexity	O(1)	O(1)
Worst-case awake complexity	$O(\log \log n)$	$O((\log \log n) \log^* n)$
Total round complexity	O(poly n)	$O((\log^3 n)(\log \log n) \log^* n)$

Bibliography

- John Augustine, William K. Moses Jr., Gopal Pandurangan. Distributed MST Computation in the Sleeping Model : Awake-Optimal Algorithms and Lower Bounds. In PODC 2022 (BA).
- Alkida Balliu, Juho Hirvonen, Darya Melnyk, Dennis Olivetti, Joel Rybicki, Jukka Suomela. Local Mending. In SIROCCO 2022.
- Leonid Barenboim, Tzalik Maimon. Deterministic Logarithmic Completeness in the Distributed Sleeping Model. In DISC 2021.
- Fabien Dufoulon, William K. Moses Jr., Gopal Pandurangan, Distributed MIS in O(log log n) Awake Complexity. In PODC 2023.
- Guy Even, Moti Medina, Dana Ron. Best of two local models : Centralized local and distributed local algorithms In Inf. Comput. 262, 2018.
- Mohsen Ghaffari, Fabian Kuhn, Yannic Maus. On the complexity of local distributed graph problems. In STOC 2017.
- Will Rosenbaum, Jukka Suomela. Seeing far vs. seeing wide In PODC 2020. 18/18