
Distributed Computing
14 - LOCAL Variants

Mikaël Rabie
Université Paris Cité, IRIF



Sequential Complexity



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes

• Greedy problems can be solved in radius O(1)

2 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

2 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

2 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

2 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

2 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

2 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

2 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

2 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

2 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

2 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

2 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

2 / 18



Volume Complexity



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (14,2)

142
3

1

3 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (14,2)

142
3

1

3 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (14,2)

142
3

1

3 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (14,2) ⇒ (2,4,1)

2 143
2

4

1 2
3

1

3 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (14,3)

2 143
2

4

1 2
3

1

3 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (14,3) ⇒ (8,2,2)

2 14

8

3
2

4

1 2

2

3

1

1

3 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (2,3)

2 14

8

3
2

4

1 2

2

3

1

1

3 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (2,3) ⇒ (10,4,3)

10 2 14

8

3 3

1

2

4

2

4

1 2

2

3

1

1

3 / 18



Greedy Problems

Problem A can be solved in time Θ(f (n)) in the LOCAL model
⇒ A can be solved in time

Ω(f (n)) and O
(
∆f (n)

)

in the CentLOCAL model

Even et. al (2018)
There is a CentLOCAL algorithm in time O(∆ × log∗n + ∆3) for ≤ ∆2-coloring a graph.
There is a CentLOCAL algorithm in time O(∆ × log∗n + ∆3) for orienting a graph where the
longer oriented path is of length ≤ ∆2.
Any greedy problem can be solved in time O(f (∆) × log∗n).

4 / 18



Greedy Problems

Problem A can be solved in time Θ(f (n)) in the LOCAL model
⇒ A can be solved in time Ω(f (n)) and O

(
∆f (n)

)
in the CentLOCAL model

Even et. al (2018)
There is a CentLOCAL algorithm in time O(∆ × log∗n + ∆3) for ≤ ∆2-coloring a graph.
There is a CentLOCAL algorithm in time O(∆ × log∗n + ∆3) for orienting a graph where the
longer oriented path is of length ≤ ∆2.
Any greedy problem can be solved in time O(f (∆) × log∗n).

4 / 18



Greedy Problems

Problem A can be solved in time Θ(f (n)) in the LOCAL model
⇒ A can be solved in time Ω(f (n)) and O

(
∆f (n)

)
in the CentLOCAL model

Even et. al (2018)
There is a CentLOCAL algorithm in time O(∆ × log∗n + ∆3) for ≤ ∆2-coloring a graph.
There is a CentLOCAL algorithm in time O(∆ × log∗n + ∆3) for orienting a graph where the
longer oriented path is of length ≤ ∆2.
Any greedy problem can be solved in time O(f (∆) × log∗n).

4 / 18



Complexity Gap

Rosenbaum and Suomela (2020)
In the CentLOCAL model, if n is not given in advance and identifiers do not require to be
polynomial in n, there is no problem whose time complexity is in ω(log∗n) ∩ o(n).

• Take N such that T (N) ≪ N
• Do a distance N-coloring
• Simulate the algorithm with the new identifiers

5 / 18



Complexity Gap

Rosenbaum and Suomela (2020)
In the CentLOCAL model, if n is not given in advance and identifiers do not require to be
polynomial in n, there is no problem whose time complexity is in ω(log∗n) ∩ o(n).

• Take N such that T (N) ≪ N
• Do a distance N-coloring
• Simulate the algorithm with the new identifiers

5 / 18



Mendability



Mendable Problems

Γ∗ : V → O ∪ {⊥} is a Partial Solution if :

• O is the Output Set,
• ∀u ∈ V : Γ∗(u) ̸= ⊥ ⇒ we can complete the labels of the neighbors of u.

A problem is T -Mendable if, from any partial solution Γ∗ and any v ∈ V such that
Γ∗(v) = ⊥, there exists Γ′ :

• Γ′(v) ̸= ⊥
• ∀u ̸= v , Γ′(u) = ⊥ ⇔ Γ∗(u) = ⊥
• ∀u ∈ V , dist(u, v) > T ⇒ Γ′(u) = Γ∗(u)

6 / 18



4-coloring the Grid

3

2

1

2

1

2

3

4

3

4

2

4

2

3

1

1

2

3

4

1

4

4

1

2

3

2

1

3

2

4

1

4

3

2

1

2

3

2

1

1

4

3

1

4

2

7 / 18



4-coloring the Grid

3

2

1

2

1

2

3

4

3

4

2

4

2

3

1

1

2

3

4

1

4

4

1

2

3

2

1

3

2

4

1

4

3

2

1

2

3

2

1

1

4

3

1

4

2

7 / 18



4-coloring the Grid

3

2

1

2

1

2

3

4

3

4

2

4

2

3

1

1

2

3

4

4

1

2

2

1

3

2

4

1

4

3

2

1

2

3

2

1

1

4

3

1

4

2

7 / 18



4-coloring the Grid

3

2

1

2

1

2

3

4

3

4

2

4

2

3

1

1

2

3

1

2

4

4

1

2

3

1

2

1

3

2

4

1

4

3

2

1

2

3

2

1

1

4

3

1

4

2

7 / 18



Mendable into LOCAL

Balliu et. al (2022)
Let Π be a T -mendable LCL problem. Π can be solved in

O
(
T∆2T

)

rounds in the
LOCAL model if we are given a distance-

2T + 1

coloring.

Balliu et. al (2022)
Let Π be a O(1)-mendable LCL problem. Π can be solved in O (log∗ n) rounds in the
LOCAL model on bounded degree graphs.

8 / 18



Mendable into LOCAL

Balliu et. al (2022)
Let Π be a T -mendable LCL problem. Π can be solved in O

(
T∆2T

)
rounds in the

LOCAL model if we are given a distance-2T + 1 coloring.

Balliu et. al (2022)
Let Π be a O(1)-mendable LCL problem. Π can be solved in O (log∗ n) rounds in the
LOCAL model on bounded degree graphs.

8 / 18



Mendable into LOCAL

Balliu et. al (2022)
Let Π be a T -mendable LCL problem. Π can be solved in O

(
T∆2T

)
rounds in the

LOCAL model if we are given a distance-2T + 1 coloring.

Balliu et. al (2022)
Let Π be a O(1)-mendable LCL problem. Π can be solved in O (log∗ n) rounds in the
LOCAL model on bounded degree graphs.

8 / 18



From log∗ n to Mendability

On paths and cycles, are all O(log∗ n) problems mendable ?

No : 3-color with {1, 2, 3} or 2-color with {A, B}.

Balliu et. al (2022)
Suppose Π is an LCL problem on directed cycles with no input. If Π is O(log∗ n)-solvable, we
can define a new LCL problem Π′ with the same round complexity, such that a solution for
Π′ is also a solution for Π, and Π′ is O(1)-mendable.

9 / 18



From log∗ n to Mendability

On paths and cycles, are all O(log∗ n) problems mendable ?

No : 3-color with {1, 2, 3} or 2-color with {A, B}.

Balliu et. al (2022)
Suppose Π is an LCL problem on directed cycles with no input. If Π is O(log∗ n)-solvable, we
can define a new LCL problem Π′ with the same round complexity, such that a solution for
Π′ is also a solution for Π, and Π′ is O(1)-mendable.

9 / 18



From log∗ n to Mendability

On paths and cycles, are all O(log∗ n) problems mendable ?

No : 3-color with {1, 2, 3} or 2-color with {A, B}.

Balliu et. al (2022)
Suppose Π is an LCL problem on directed cycles with no input. If Π is O(log∗ n)-solvable, we
can define a new LCL problem Π′ with the same round complexity, such that a solution for
Π′ is also a solution for Π, and Π′ is O(1)-mendable.

9 / 18



The Case of Trees

Balliu et. al (2022)
In trees, there are exactly three classes : O(1)-mendable, Θ(log n)-mendable, and
Θ(n)-mendable problems.

3-coloring the rooted tree is

O(n)-mendable.
There exists a O(1)-mendable problem Π′ that projects its solutions to a 3-coloring :

• A node is monochromatic if both its children have the same color.
• Otherwise, the node is mixed.
• Π′ only accept connected components of mixed nodes of height ≤ k.

10 / 18



The Case of Trees

Balliu et. al (2022)
In trees, there are exactly three classes : O(1)-mendable, Θ(log n)-mendable, and
Θ(n)-mendable problems.

3-coloring the rooted tree is O(n)-mendable.
There exists a O(1)-mendable problem Π′ that projects its solutions to a 3-coloring :

• A node is monochromatic if both its children have the same color.
• Otherwise, the node is mixed.
• Π′ only accept connected components of mixed nodes of height ≤ k.

10 / 18



Waking Up Complexity



Sleeping LOCAL Model

• At each round, a node decides if it is active or not
• A communicates only with its active neighbors
• Complexity : maximal number of active rounds for a single node

11 / 18



Sleeping LOCAL Model

• At each round, a node decides if it is active or not
• A communicates only with its active neighbors
• Complexity : maximal number of active rounds for a single node

11 / 18



Sleeping LOCAL Model

• At each round, a node decides if it is active or not
• A communicates only with its active neighbors
• Complexity : maximal number of active rounds for a single node

11 / 18



A Link with SLOCAL

∆ + 1-coloring can be solved in O(∆) rounds

:

• Round 1 : all nodes are activated. Know their identifiers and their neighbours’.
• Node of Identifier Id wakes up at round Id + 1 to know their neighbours’ colors.
• Neighbours of node of identifier Id also wakes up at that round.

Drawback : The round complexity is O(M), M being the maximal identifier.

Problem A can be solved in time f (n) in the SLOCAL model
⇒ A can be solved in time

O
(
f (n)∆f (n)

)

in the Sleeping LOCAL model.

12 / 18



A Link with SLOCAL

∆ + 1-coloring can be solved in O(∆) rounds :

• Round 1 : all nodes are activated. Know their identifiers and their neighbours’.
• Node of Identifier Id wakes up at round Id + 1 to know their neighbours’ colors.
• Neighbours of node of identifier Id also wakes up at that round.

Drawback : The round complexity is O(M), M being the maximal identifier.

Problem A can be solved in time f (n) in the SLOCAL model
⇒ A can be solved in time

O
(
f (n)∆f (n)

)

in the Sleeping LOCAL model.

12 / 18



A Link with SLOCAL

∆ + 1-coloring can be solved in O(∆) rounds :

• Round 1 : all nodes are activated. Know their identifiers and their neighbours’.
• Node of Identifier Id wakes up at round Id + 1 to know their neighbours’ colors.
• Neighbours of node of identifier Id also wakes up at that round.

Drawback : The round complexity is O(M), M being the maximal identifier.

Problem A can be solved in time f (n) in the SLOCAL model
⇒ A can be solved in time

O
(
f (n)∆f (n)

)

in the Sleeping LOCAL model.

12 / 18



A Link with SLOCAL

∆ + 1-coloring can be solved in O(∆) rounds :

• Round 1 : all nodes are activated. Know their identifiers and their neighbours’.
• Node of Identifier Id wakes up at round Id + 1 to know their neighbours’ colors.
• Neighbours of node of identifier Id also wakes up at that round.

Drawback : The round complexity is O(M), M being the maximal identifier.

Problem A can be solved in time f (n) in the SLOCAL model
⇒ A can be solved in time O

(
f (n)∆f (n)

)
in the Sleeping LOCAL model.

12 / 18



log ∆-coloring

Barenboim and Maimon (2021)
Given a ∆k -coloring of the graph, we can compute a (∆ + 1)-coloring in O(log ∆) awaken
rounds and O(∆k) rounds in the Sleeping LOCAL model.

13 / 18



log ∆-coloring

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

13 / 18



log ∆-coloring

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

13 / 18



log ∆-coloring

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

13 / 18



log ∆-coloring

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

13 / 18



log ∆-coloring

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

13 / 18



log ∆-coloring

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

13 / 18



log ∆-coloring

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

13 / 18



Full Knowledge of the Graph

Barenboim and Maimon (2021)
Any graph problem can be solved in O(log n) rounds in the Sleeping LOCAL model.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

• Each vertex has a label
• The label of a vertex is bigger than its parent’s
• Each vertex knows the label of its neighbours in the tree

Constant Coordination
Broadcast and Convergecast can be done in O(1) rounds in a DLT.

14 / 18



Full Knowledge of the Graph

Barenboim and Maimon (2021)
Any graph problem can be solved in O(log n) rounds in the Sleeping LOCAL model.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

• Each vertex has a label
• The label of a vertex is bigger than its parent’s
• Each vertex knows the label of its neighbours in the tree

Constant Coordination
Broadcast and Convergecast can be done in O(1) rounds in a DLT.

14 / 18



Full Knowledge of the Graph

Barenboim and Maimon (2021)
Any graph problem can be solved in O(log n) rounds in the Sleeping LOCAL model.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

• Each vertex has a label
• The label of a vertex is bigger than its parent’s
• Each vertex knows the label of its neighbours in the tree

Constant Coordination
Broadcast and Convergecast can be done in O(1) rounds in a DLT.

14 / 18



Building a DLT

Barenboim and Maimon (2021)
A DLT can be built in O(log n) awaken rounds in the Sleeping LOCAL model.

15 / 18



Building a DLT

Tree Idu1

u1

(Idu1 , 0)

u
(Idu1 , du)

• Labels are of the form (a, b), ordered lexicographically.
• At the beginning, all nodes have label (Id(u), 0).
• At the beginning of each expand step, all nodes of a subtree T are of the form (L(T ), b).

15 / 18



Building a DLT

Tree Idu1

u1

(Idu1 , 0)

u
(Idu1 , du)

Tree Idu2

u2

(Idu2 , 0)

v
(Idu2 , dv )

Idu1 > Idu2

• Repeat log n times :

1. Select a neighbour Tree T ′ with smaller label (Idu1 > Idu2).

15 / 18



Building a DLT

Tree Idu1

u1

(Idu1 , du)

u
(Idu1 , 0)

Tree Idu2

u2

(Idu2 , 0)

v
(Idu2 , dv )

Idu1 > Idu2

• Repeat log n times :

2. Merge T and T ′, using an edge (u, v).

15 / 18



Building a DLT

Tree Idu1

u1

(Idu1 , 0)

u
(Idu1 , du)

Tree Idu2

u2

(Idu2 , 0)

v
(Idu2 , dv )

Idu1 < Idu2

• Repeat log n times :

3. If T could not choose a neighbour and was not selected
T chooses a tree T ′ to join using an edge (u, v).
This forms a star of trees around T ′ ⇒ O(1) merge rounds.

15 / 18



Building a DLT

Tree Idu1

u1

(Idu1 , 0)

u
(Idu1 , du)

u2

(Idu1 , du + dv + 1)

v
(Idu1 , du + 1)

• Repeat log n times :

4. All nodes learn their new neighbours in the tree.
5. Convergecast to gather the new structure of the component C to the root r .
6. Broadcast a new labelling (L(r), dist(r)).

15 / 18



Sleeping Lower Bound

Augustine et. al (2022)
Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires
Ω(log n) awake time.

v u

• After k rounds, a node knows about some segment that includes itself
• No node v on the left of u in the path can know more than u on its right

Question : What are the compexity classes on paths and rings ?

16 / 18



Sleeping Lower Bound

Augustine et. al (2022)
Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires
Ω(log n) awake time.

v u

• After k rounds, a node knows about some segment that includes itself
• No node v on the left of u in the path can know more than u on its right

Question : What are the compexity classes on paths and rings ?

16 / 18



Sleeping Lower Bound

13k

13k+1

By induction : For any k, for any segment I of 13k nodes, there exists, with probability
P > 1/2, a node u ∈ I who knows less than I after k rounds.

• Probability that it is true on 5 of the 13 subsegments is at least 5/6
• Probability that B, C or D wakes up before A and E is at least 1/2

Question : What are the compexity classes on paths and rings ?

16 / 18



Sleeping Lower Bound

A B C D E

By induction : For any k, for any segment I of 13k nodes, there exists, with probability
P > 1/2, a node u ∈ I who knows less than I after k rounds.

• Probability that it is true on 5 of the 13 subsegments is at least 5/6
• Probability that B, C or D wakes up before A and E is at least 1/2

Question : What are the compexity classes on paths and rings ?

16 / 18



Sleeping Lower Bound

A B C D E

By induction : For any k, for any segment I of 13k nodes, there exists, with probability
P > 1/2, a node u ∈ I who knows less than I after k rounds.

• Probability that it is true on 5 of the 13 subsegments is at least 5/6
• Probability that B, C or D wakes up before A and E is at least 1/2

Question : What are the compexity classes on paths and rings ?
16 / 18



Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.

(∆ + 1)-coloring :

Awaken rounds Rounds
O(∆) O(M)

O(log n) Ω(M)
O(log∗ n + log ∆) O(log∗ n + poly ∆)

Dufoulon, Moses, Pandurangan (2023)
Maximal Independent Set :

Sleeping-Rand-MIS-1 Sleeping-Rand-MIS-2
Node-averaged awake complexity O(1) O(1)

Worst-case awake complexity O(log log n) O((log log n) log∗ n)
Total round complexity O(poly n) O((log3 n)(log log n) log∗ n)

17 / 18



Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.

(∆ + 1)-coloring :

Awaken rounds Rounds
O(∆) O(M)

O(log n) Ω(M)
O(log∗ n + log ∆) O(log∗ n + poly ∆)

Dufoulon, Moses, Pandurangan (2023)
Maximal Independent Set :

Sleeping-Rand-MIS-1 Sleeping-Rand-MIS-2
Node-averaged awake complexity O(1) O(1)

Worst-case awake complexity O(log log n) O((log log n) log∗ n)
Total round complexity O(poly n) O((log3 n)(log log n) log∗ n)

17 / 18



Bibliography

• John Augustine, William K. Moses Jr., Gopal Pandurangan. Distributed MST
Computation in the Sleeping Model : Awake-Optimal Algorithms and Lower
Bounds. In PODC 2022 (BA).

• Alkida Balliu, Juho Hirvonen, Darya Melnyk, Dennis Olivetti, Joel Rybicki, Jukka
Suomela. Local Mending. In SIROCCO 2022.

• Leonid Barenboim, Tzalik Maimon. Deterministic Logarithmic Completeness in the
Distributed Sleeping Model. In DISC 2021.

• Fabien Dufoulon, William K. Moses Jr., Gopal Pandurangan, Distributed MIS in
O(log log n) Awake Complexity. In PODC 2023.

• Guy Even, Moti Medina, Dana Ron. Best of two local models : Centralized local
and distributed local algorithms In Inf. Comput. 262, 2018.

• Mohsen Ghaffari, Fabian Kuhn, Yannic Maus. On the complexity of local distributed
graph problems. In STOC 2017.

• Will Rosenbaum, Jukka Suomela. Seeing far vs. seeing wide In PODC 2020. 18 / 18


	Sequential Complexity
	Volume Complexity
	Mendability
	Waking Up Complexity

