Distributed Computing
14 - LOCAL Variants

Mikaél Rabie
Université Paris Cité, IRIF

l l' l I: INSTITUT
DE RECHERCHE
EN INFORMATIQUE
FONDAMENTALE

Sequential Complexity

SLOCAL Model

= Each node is activated one after another, to compute its own output
= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

e

2/18

SLOCAL Model

= Each node is activated one after another, to compute its own output

= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

= Greedy problems can be solved in radius O(1

%V

2/18

SLOCAL Model

= Each node is activated one after another, to compute its own output

= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

= Greedy problems can be solved in radius O(1

%V

2/18

SLOCAL Model

= Each node is activated one after another, to compute its own output

= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

= Greedy problems can be solved in radius O(1

>§¥”

2/18

SLOCAL Model

= Each node is activated one after another, to compute its own output

= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

= Greedy problems can be solved in radius O(1

>§¥”

2/18

SLOCAL Model

= Each node is activated one after another, to compute its own output

= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

= Greedy problems can be solved in radius O(1

>§¥”

2/18

SLOCAL Model

= Each node is activated one after another, to compute its own output

= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

= Greedy problems can be solved in radius O(1

>§Wﬁ

2/18

SLOCAL Model

= Each node is activated one after another, to compute its own output

= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

= Greedy problems can be solved in radius O(1

%W

2/18

SLOCAL Model

= Each node is activated one after another, to compute its own output

= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

= Greedy problems can be solved in radius O(1

%W

2/18

SLOCAL Model

= Each node is activated one after another, to compute its own output

= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

= Greedy problems can be solved in radius O(1

%W

2/18

SLOCAL Model

= Each node is activated one after another, to compute its own output

= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

= Greedy problems can be solved in radius O(1

%W

2/18

SLOCAL Model

= Each node is activated one after another, to compute its own output

= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

= Greedy problems can be solved in radius O(1

%W

2/18

Volume Complexity

CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

3/18

CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (14,2)

D e

3/18

CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (14,2)

D e

3/18

CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (14,2) = (2,4,1)

3/18

CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (14,3)

3/18

CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (14,3) = (8,2,2)

3/18

CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (2,3)

3/18

CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (2,3) = (10,4,3)

3/18

Greedy Problems

Problem A can be solved in time ©(f(n)) in the LOCAL model
= A can be solved in time in the CentLOCAL model

4/18

Greedy Problems

Problem A can be solved in time ©(f(n)) in the LOCAL model
= A can be solved in time Q(f(n)) and O (Af(")) in the CentLOCAL model

4/18

Greedy Problems

Problem A can be solved in time ©(f(n)) in the LOCAL model

= A can be solved in time Q(f(n)) and O (Af(")) in the CentLOCAL model
Even et. a/ (2018)
There is a CentLOCAL algorithm in time O(A x log*n+ A3%) for < A2-coloring a graph.
There is a CentLOCAL algorithm in time O(A x log*n + A3) for orienting a graph where the
longer oriented path is of length < A2
Any greedy problem can be solved in time O(f(A) x log*n).

4/18

Complexity Gap

Rosenbaum and Suomela (2020)
In the CentLOCAL model, if nis not given in advance and identifiers do not require to be

polynomial in n, there is no problem whose time complexity is in w(log*n) N o(n).

5/18

Complexity Gap

Rosenbaum and Suomela (2020)
In the CentLOCAL model, if nis not given in advance and identifiers do not require to be

polynomial in n, there is no problem whose time complexity is in w(log*n) N o(n).

» Take N such that T(N) < N
= Do a distance N-coloring

= Simulate the algorithm with the new identifiers

5/18

Mendability

Mendable Problems

:V — OU{Ll} is a Partial Solution if :

= O is the Output Set,
» Yue V:I*(u) # L = we can complete the labels of the neighbors of wu.

A problem is T-Mendable if, from any partial solution I'* and any v € V such that
™(v) = L, there exists [:

W) £ L
s Vuv, Mu)=LeTM(u) =1
» Yue V, dist(u,v) > T = T"(u) =T*(v)

6/18

4-coloring the Grid

7/18

4-coloring the Grid

7/18

4-coloring the Grid

7/18

4-coloring the Grid

7/18

Mendable into LOCAL

Balliu et. al (2022)
Let Il be a T-mendable LCL problem. I1 can be solved in rounds in the
LOCAL model if we are given a distance- coloring.

8/18

Mendable into LOCAL

Balliu et. al (2022)
Let M be a T-mendable LCL problem. I can be solved in O (TAzT) rounds in the
LOCAL model if we are given a distance-2T + 1 coloring.

8/18

Mendable into LOCAL

Balliu et. al (2022)
Let M be a T-mendable LCL problem. I can be solved in O (TAzT) rounds in the

LOCAL model if we are given a distance-2T + 1 coloring.

Balliu et. a/ (2022)
Let I be a O(1)-mendable LCL problem. I1 can be solved in O (log™ n) rounds in the

LOCAL model on bounded degree graphs.

8/18

From log™ n to Mendability

On paths and cycles, are all O(log™ n) problems mendable ?

9/18

From log™ n to Mendability

On paths and cycles, are all O(log™ n) problems mendable ?

No : 3-color with {1,2,3} or 2-color with {A, B}.

9/18

From log™ n to Mendability

On paths and cycles, are all O(log™ n) problems mendable ?

No : 3-color with {1,2,3} or 2-color with {A, B}.

Balliu et. al (2022)
Suppose I is an LCL problem on directed cycles with no input. If [T is O(log™ n)-solvable, we

can define a new LCL problem MM’ with the same round complexity, such that a solution for
N’ is also a solution for I, and M is O(1)-mendable.

9/18

The Case of Trees

Balliu et. al (2022)
In trees, there are exactly three classes : O(1)-mendable, ©(log n)-mendable, and

©(n)-mendable problems.

3-coloring the rooted tree is

10/18

The Case of Trees

Balliu et. al (2022)
In trees, there are exactly three classes : O(1)-mendable, ©(log n)-mendable, and

©(n)-mendable problems.

3-coloring the rooted tree is O(n)-mendable.
There exists a O(1)-mendable problem N’ that projects its solutions to a 3-coloring :

= A node is monochromatic if both its children have the same color.
= Otherwise, the node is mixed.

» 1" only accept connected components of mixed nodes of height < k.

10/18

Waking Up Complexity

Sleeping LOCAL Model

= At each round, a node decides if it is active or not
= A communicates only with its active neighbors

= Complexity : maximal number of active rounds for a single node

e

11/18

Sleeping LOCAL Model

= At each round, a node decides if it is active or not
= A communicates only with its active neighbors

= Complexity : maximal number of active rounds for a single node

o

11/18

Sleeping LOCAL Model

= At each round, a node decides if it is active or not
= A communicates only with its active neighbors

= Complexity : maximal number of active rounds for a single node

=S

11/18

A Link with SLOCAL

A + 1-coloring can be solved in O(A) rounds

12/18

A Link with SLOCAL

A + 1-coloring can be solved in O(A) rounds :

= Round 1 : all nodes are activated. Know their identifiers and their neighbours’.
= Node of Identifier /d wakes up at round /d + 1 to know their neighbours’ colors.

= Neighbours of node of identifier /d also wakes up at that round.

Drawback : The round complexity is O(M), M being the maximal identifier.

12/18

A Link with SLOCAL

A + 1-coloring can be solved in O(A) rounds :

= Round 1 : all nodes are activated. Know their identifiers and their neighbours’.
= Node of Identifier /d wakes up at round /d + 1 to know their neighbours’ colors.

= Neighbours of node of identifier /d also wakes up at that round.

Drawback : The round complexity is O(M), M being the maximal identifier.

Problem A can be solved in time f(n) in the SLOCAL model
= A can be solved in time in the Sleeping LOCAL model.

12/18

A Link with SLOCAL

A + 1-coloring can be solved in O(A) rounds :

= Round 1 : all nodes are activated. Know their identifiers and their neighbours’.
= Node of Identifier /d wakes up at round /d + 1 to know their neighbours’ colors.

= Neighbours of node of identifier /d also wakes up at that round.

Drawback : The round complexity is O(M), M being the maximal identifier.

Problem A can be solved in time f(n) in the SLOCAL model
= A can be solved in time O (f(n)Af(”)> in the Sleeping LOCAL model.

12/18

log A-coloring

Barenboim and Maimon (2021)
Given a A¥-coloring of the graph, we can compute a (A + 1)-coloring in O(log A) awaken

rounds and O(A¥) rounds in the Sleeping LOCAL model.

13/18

log A-coloring

log A-coloring

log A-coloring

log A-coloring

log A-coloring

log A-coloring

log A-coloring

Full Knowledge of the Graph

Barenboim and Maimon (2021)
Any graph problem can be solved in O(log n) rounds in the Sleeping LOCAL model.

14/18

Full Knowledge of the Graph

Barenboim and Maimon (2021)
Any graph problem can be solved in O(log n) rounds in the Sleeping LOCAL model.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

= Each vertex has a label
= The label of a vertex is bigger than its parent's

= Each vertex knows the label of its neighbours in the tree

14/18

Full Knowledge of the Graph

Barenboim and Maimon (2021)
Any graph problem can be solved in O(log n) rounds in the Sleeping LOCAL model.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

= Each vertex has a label
= The label of a vertex is bigger than its parent's

= Each vertex knows the label of its neighbours in the tree

Constant Coordination
Broadcast and Convergecast can be done in O(1) rounds in a DLT.

14/18

Building a DLT

Barenboim and Maimon (2021)
A DLT can be built in O(log n) awaken rounds in the Sleeping LOCAL model.

15/18

Building a DLT

Tree Id,,

= Labels are of the form (a, b), ordered lexicographically.
= At the beginning, all nodes have label (/d(u),0).
= At the beginning of each expand step, all nodes of a subtree T are of the form (L(T), b).

15/18

Building a DLT

Tree Id,, Id,, > Id,, Tree Ild,,

= Repeat log n times :

1. Select a neighbour Tree T’ with smaller label (/d,, > Id,;7).

15/18

Building a DLT

Tree Id,, Id,, > Id,, Tree Ild,,

= Repeat log n times :

2. Merge T and T’, using an edge (u, v).

15/18

Building a DLT

Tree Id,, Id,, < Id,, Tree Id,

= Repeat log n times :

3. If T could not choose a neighbour and was not selected
T chooses a tree T’ to join using an edge (u, v).
This forms a star of trees around T’ = O(1) merge rounds.

15/18

Building a DLT

Tree Id,,

= Repeat log n times :

4. All nodes learn their new neighbours in the tree.
5. Convergecast to gather the new structure of the component C to the root r.

6. Broadcast a new labelling (L(r), dist(r)).
15/18

Sleeping Lower Bound

Augustine et. al (2022)
Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires

Q(log n) awake time.

16 /18

Sleeping Lower Bound

Augustine et. al (2022)
Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires

Q(log n) awake time.

...... @ @

= After k rounds, a node knows about some segment that includes itself

= No node v on the left of u in the path can know more than u on its right

16 /18

Sleeping Lower Bound

13k
>

13k+1

By induction : For any k, for any segment / of 13X nodes, there exists, with probability
P >1/2, a node u € | who knows less than [after k rounds.

16/18

Sleeping Lower Bound

By induction : For any k, for any segment / of 13X nodes, there exists, with probability
P >1/2, a node u € | who knows less than [after k rounds.

= Probability that it is true on 5 of the 13 subsegments is at least 5/6
= Probability that B, C or D wakes up before A and E is at least 1/2

16 /18

Sleeping Lower Bound

By induction : For any k, for any segment / of 13X nodes, there exists, with probability
P >1/2, a node u € | who knows less than [after k rounds.

= Probability that it is true on 5 of the 13 subsegments is at least 5/6

= Probability that B, C or D wakes up before A and E is at least 1/2

Question : What are the compexity classes on paths and rings ?
16/18

Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.

(A + 1)-coloring :

Awaken rounds Rounds
o(A) O(M)
O(log n) Q(M)
O(log" n+log A) | O(log™ n + poly A)

17/18

Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.

(A + 1)-coloring :

Awaken rounds Rounds
o(A) O(M)
O(log n) Q(M)
O(log" n+log A) | O(log™ n + poly A)

Dufoulon, Moses, Pandurangan (2023)
Maximal Independent Set :

Sleeping-Rand-MIS-1 Sleeping-Rand-MIS-2
Node-averaged awake complexity 0(1) 0O(1)
Worst-case awake complexity O(log log n) O((log log n) log™ n)
Total round complexity O(poly n) O((log® n)(log log n) log* n)

17/18

Bibliography

= John Augustine, William K. Moses Jr., Gopal Pandurangan. Distributed MST
Computation in the Sleeping Model : Awake-Optimal Algorithms and Lower
Bounds. In PODC 2022 (BA).

= Alkida Balliu, Juho Hirvonen, Darya Melnyk, Dennis Olivetti, Joel Rybicki, Jukka
Suomela. Local Mending. In SIROCCO 2022.

= Leonid Barenboim, Tzalik Maimon. Deterministic Logarithmic Completeness in the
Distributed Sleeping Model. In DISC 2021.

= Fabien Dufoulon, William K. Moses Jr., Gopal Pandurangan, Distributed MIS in
O(log log n) Awake Complexity. In PODC 2023.

= Guy Even, Moti Medina, Dana Ron. Best of two local models : Centralized local
and distributed local algorithms In Inf. Comput. 262, 2018.

= Mohsen Ghaffari, Fabian Kuhn, Yannic Maus. On the complexity of local distributed
graph problems. In STOC 2017.

= Will Rosenbaum, Jukka Suomela. Seeing far vs. seeing wide In PODC 2020. 18/18

	Sequential Complexity
	Volume Complexity
	Mendability
	Waking Up Complexity

