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ABSTRACT
Proof-labeling schemes, introduced by Korman, Kutten and Peleg
[PODC 2005], are a mechanism to certify that a network config-
uration satisfies a given boolean predicate. Such mechanisms find
applications in many contexts, e.g., the design of fault-tolerant dis-
tributed algorithms. In a proof-labeling scheme, predicate verifi-
cation consists of neighbors exchanging labels, whose contents de-
pends on the predicate. In this paper, we introduce the notion of
randomized proof-labeling schemes where messages are random-
ized and correctness is probabilistic. We show that randomization
reduces label size exponentially while guaranteeing probability of
correctness arbitrarily close to one. In addition, we present a novel
label-size lower bound technique that applies to both determinis-
tic and randomized proof-labeling schemes. Using this technique,
we establish several tight bounds on the verification complexity of
MST, acyclicity, connectivity, and longest cycle size.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems; G.2.2 [Discrete Mathemat-
ics]: Graph Theory; B.8.1 [Performance and Reliability]: Relia-
bility, Testing, and Fault-Tolerance
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1. INTRODUCTION

Context and Objective.
Deciding the validity of a predicate over a distributed system

(e.g., whether the nodes are properly colored, or whether the nodes
have reached consensus), in a decentralized fashion, has received
much attention over the years due to its applications to various
domains, including checking the results obtained from the execu-
tion of a distributed program [7, 15, 30], establishing lower bounds
on the time required for distributed approximation [10], estimating
the complexity of logics required for distributed run-time verifica-
tion [16], and general distributed complexity theory [14]. In the
context of local computing in networks, a distributed decision is
typically performed by letting each node inspect its state and the
state of its neighbors, and return either TRUE or FALSE depend-
ing on whether this local configuration is consistent with a legal
(global) state of the network. The decision is correct if all nodes
return TRUE on legal states, and if at least one node returns FALSE
on every illegal state. (A node returning FALSE could, e.g., launch
a recovery procedure). For instance, deciding the correctness of the
predicate asserting that the nodes are properly colored is straight-
forward: every node collects the colors of its neighbors, and returns
TRUE if and only if none of these colors is the same as its own color.

Not all distributed network predicates can be decided locally di-
rectly. Consider, for example, deciding whether a set of edges
constitute a spanning tree: locally, nodes cannot even distinguish
between a path and a cycle [14]. To overcome this difficulty, sys-
tem state is sometimes augmented with some additional informa-
tion that allows nodes to decide locally the correctness of a global
predicate. This is typically the case when checking the correctness
of the output of a distributed program: in addition to its required
output, each node can compute a local label used to verify the cor-
rectness of the global output. For instance, in an algorithm com-
puting a spanning tree (i.e., the output at each node v is the identity
of its parent in the tree), it is sufficient that every node additionally
computes the identity of the root r(v) and the distance from v to
r(v) in the tree [7, 22].

The notion of distributed verification as outlined above is formal-
ized by the concept of proof-labeling scheme, introduced in [30]. A
proof-labeling scheme for a predicate P consists of a prover and a
verifier. The prover is an oracle which, for every legal state of the
network, assigns a label `(v) to every node v. The verifier is a dis-
tributed algorithm whose input, at each node v, consists of the local
state of v, its label `(v), and the label `(w) of each of its neighbors
w. The output of the verifier, at each node, is a a boolean value.
The proof-labeling scheme is called correct for predicate P if the
following two conditions hold: (1) For every legal state, the prover
assigns labels to the nodes such that the verifier returns TRUE at ev-



ery node; (2) For every illegal state, and for every label assignment
to the nodes, the verifier returns FALSE in at least one node.

The complexity measure used in evaluating the quality of a proof-
labeling scheme is the label size. This measure captures the ongo-
ing communication complexity of the scheme: In order to verify
that the predicate holds, it is assumed that periodically, nodes trans-
mit their labels to their neighbors, and each node runs the local ver-
ification procedure on the complete neighborhood’s label set. Some
predicates can be verified using labels whose sizes are of the same
order of magnitude as the size of a node ID, like, e.g., O(logn)-bit
labels for spanning tree in n-node networks. However, some predi-
cates require labels whose sizes are significantly larger than the size
of an ID, like, e.g., Ω(log2 n) bits for minimum-weight spanning
tree (MST) [28], and even Ω(n2) bits for Symmetry (i.e., the ex-
istence of a non-trivial automorphism) [20]. Such a high overhead
may be considered prohibitively expensive.

The main objective of the paper is to study the effect of ran-
domization on the communication complexity of verification. For
this purpose, we present and investigate randomized proof-labeling
schemes. The idea is as follows. Every node v has a label `(v).
Using `(v) and some coin tosses, node v computes a randomized
certificate for each of its neighbors and sends it over. Given the cer-
tificates received from all neighbors, and its local label `(v), node
v executes a local deterministic verification procedure that returns
TRUE or FALSE such that the following holds, for some arbitrarily
small constant ε ∈ (0, 1

2
) fixed a priori: (1) For every legal state,

the prover assigns labels to the nodes such that the probability that
the verifier returns TRUE at all nodes is at least 1 − ε, and (2) For
every illegal state, and for every label assignment to the nodes, the
probability that the verifier returns FALSE in at least one node is at
least 1− ε. We also consider the stronger 1-sided error scenario, in
which the scheme is not allowed to err on legal instances, that is, in
one-sided error schemes (2) remains the same, but we replace (1)
with the requirement that for every legal state, the prover assigns
labels to the nodes such that the verifier returns TRUE at all nodes
with probability 1. We note that schemes with one-sided error may
be preferable to those with two-sided errors if false alarms (i.e., a
detection of error in a perfectly legal state) have very high cost.
(All schemes we present in this paper have one-sided error.)

Intuitively, in the framework of checking the validity of outputs
produced by an algorithm that is not completely trustworthy, or
whose outputs may be corrupted somehow, a randomized proof-
labeling scheme can be used to make sure that if the output is in-
correct, then collectively, the nodes will be able to detect it. For
that purpose, in addition to the output required by some problem
specification (e.g., select an edge subset which forms an MST),
the algorithms must also produce a label at each node, from which
certificates are generated randomly. After exchanging the certifi-
cates between all pairs of neighbors, the randomized proof-labeling
scheme is guaranteed (probabilistically) to return TRUE everywhere
if and only if the outputs are correct w.r.t. the predicate describing
the problem specification. This guarantee holds even in the face of
adversarial labels in the following sense: if the outputs are incor-
rect, then there is no label assignment that guarantees (probabilisti-
cally) that the certificates will be accepted everywhere, while if the
outputs are correct, and the labels are according to the specification,
then with good probability, all local verification procedures will ac-
cept. If some node v returns FALSE (which occurs with small—0 in
the one-sided case—probability on a legal instance, but with high
probability on an illegal instance), then v may launch a recovery
procedure or restart the algorithm.

Let us make a few remarks before summarizing our main re-
sults. First, observe that a randomized proof-labeling scheme does

not exchange the labels between the nodes, but only the random-
ized certificates. It is thus expected that the communication com-
plexity of randomized proof-labeling schemes be significantly re-
duced compared to the communication complexity of deterministic
ones. Second, the exact value of the probability parameter ε is typ-
ically not very important. In particular, the correctness of all the
schemes in this paper is oblivious to ε, in the sense that ε can be
chosen as close to 0 as desired by straightforward adjustments of
our schemes. In term of complexity, when ε is constant, the depen-
dence on ε is confined to constant factors hidden by our asymptotic
notation. Therefore, for the sake of concreteness, we present our
schemes with success guarantee at least 2

3
(i.e., for ε = 1

3
).

Our Contributions.
In this paper we introduce and formalize the concept of random-

ized proof-labeling as outlined above. For this model we give the
following universal result. Consider an n-node system, where each
node has a k-bit state (a node state includes its identity, input, out-
put and maybe more). We show that every predicate over such
system has 1-sided error randomized proof-labeling scheme with
certificates of O(logn + log k) bits. Hence, assuming that states
of nodes require poly(n) bits to describe, our scheme insures that
by exchanging only O(logn) bits, every (sequentially decidable)
property can be probabilistically verified with success probability
at least 2

3
. (In contrast, there are natural properties that require the

exchange of ω(logn) bits to be verified deterministically). Our
universal logarithmic bound is tight, as we show by exhibiting a
property for which any randomized proof-labeling scheme requires
certificates of Ω(logn + log k) bits to verify. Our next generic
constructions provides, by using randomization, an exponential im-
provement over deterministic schemes. More precisely, we prove
that for any property that can be verified by a deterministic proof-
labeling scheme using κ-bit messages, there is a randomized proof-
labeling scheme using only O(log κ)-bit messages. A nice corol-
lary of this result is that there exists a randomized proof-labeling
scheme for MST using O(log log n)-bit certificates.

In addition, we provide a general lower bound technique for the
certificate size of a proof-labeling scheme. This technique is based
on the novel notion called graph crosses. It applies to both de-
terministic and probabilistic schemes, generalizing known lower
bounds for specific proof-labeling schemes. The probabilistic ver-
sion applies to any 1-sided error randomized proof-labeling scheme.
It also applies to 2-sided error schemes, under some additional
constraints regarding the way the certificates are randomly gen-
erated by the nodes. Under these assumptions, the upper bound
O(log logn) bits on the certificate size for MST is tight.

Finally, we consider a few natural problems and properties and
provide randomized proof-labeling schemes for them, with optimal
or close-to-optimal certificate sizes. In particular, we show that the
randomized verification complexity of acyclicity (and hence also
a lower bound for MST), as well as the verification complexity
of biconnectivity, is Θ(log log n). We also consider the random-
ized verification complexity of two versions of the longest cycle
problem. For the question of deciding whether there is a cycle
of length at least c, we give an upper bound of O(log logn) and
a lower bound of Ω(log log c). For the complementary question
(“yes” if all cycles are smaller than c), we show that Ω(log n

c
) and

of Ω(log log n
c

) bits are required for certificates in deterministic
and randomized proof-labeling schemes, respectively.

Related Work.
Labeling schemes were studied extensively in the past, in two di-

rections: informative labeling schemes, and proof-labeling schemes.



In the framework of informative labeling schemes, one is given a
function f on pairs (or sets) of nodes, and (M,D) is an f -labeling
scheme for a graph family F if M, the marker, is an algorithm
that, given a graph G = (V,E) in F , assigns a label `(v) to
every v ∈ V , and D, the decoder, is an algorithm that satisfies
D(`(u), `(v)) = f(u, v) for every pair of nodes in G. The main
performance criterion is the size of the labels, which should be as
small as possible. Since the seminal work of Kannan, Naor, and
Rudich [23] on adjacency-labeling, there have been quite a lot of
investigations, for a large set of functions f , including the follow-
ing: adjacency [4, 23], distance [2, 9, 18, 17, 19, 24, 26, 34, 36],
connectivity and flow [25, 27], nearest common ancestor [3, 35],
etc. In particular, the notion of universal f -matrices for several
functions f was introduced in [31], and used to construct upper and
lower bounds on the sizes of the corresponding f -labeling schemes.
Most investigations related to the design of compact routing tables
can also be placed in the framework of informative labeling. This
includes, e.g., the papers [11, 12, 37] on routing in trees.

Proof-labeling schemes are not dealing with computing a func-
tion, but with verifying a proof that the given instance satisfies some
given boolean predicate. This proof is distributed among the nodes
under the form of labels assigned to the node by a prover which
assigns a label to every node. The verifier is a distributed algorithm
in charge of verifying the distributed proof. As for informative la-
beling scheme, the main performance criterion is the size of the
labels. This concept was introduced by Korman, Kutten, and Peleg
in [30]. Among the results that were presented in this paper, it is
worth mentioning the Θ(logn) bit bound on the verification com-
plexity of acyclicity and the upper boundO(log2 n+logn logW )
bits for MST, where W is the maximal possible weight of an edge.
This bound was improved to O(logn logW ) bits in [28], where
a matching lower bound of Ω(logn logW ) bits is established for
W > logn. It is worth noticing that proof-labeling schemes are
closely related to self stabilizing algorithms, that is, algorithms
which have to periodically verify the correctness of the system
state. See, e.g., [1] where the notion of local detection was in-
troduced and used for designing a self stabilizing protocol con-
structing a spanning tree, and [29] for another example of using
distributed local verification of proofs for the design of self stabi-
lizing algorithms. The reader interested in the tight connections
between proof-labeling schemes and self-stabilization is referred
to the recent paper [8]. Proof-labeling schemes, where nodes may
communicate at distance greater than 1, i.e., may take their indi-
vidual decision based on the labels of the nodes in their vicinity at
distance t > 1, was recently studied in [20]. Finally, distributed
decision and verification processes in which the global interpreta-
tion of the collection of individual outputs is not restricted to be the
logical conjunction of these outputs has been studied in [5, 6].

To our knowledge, there are very few papers dealing with ran-
domization in the framework of informative labeling schemes, or
proof-labeling schemes. Randomized informative schemes for trees,
including randomized schemes for adjacency and ancestry, were
presented in [13]. The crucial difference between our work and
this latter work is the following. In our approach, a label is stored
at every node, based on which each node produces a random certifi-
cate, and we are interested in minimizing the size of the certificates.
Instead, the approach in [13] is more restrictive, as each node label
is randomly computed and stored at each node, and the measure is
the size of these labels. More recently, [14] provided a framework
that could be used for setting up a complexity theory for local dis-
tributed computing. This framework includes several complexity
classes, including NLD (for non-deterministic local decision) and
BPNLD (for bounded probability NLD). The former is a general-

ization of proof-labeling schemes (with slight differences, includ-
ing the fact that certificates should be independent of the IDs), and
the latter is a randomized version of the former. Nevertheless, in
both cases, the emphasis was put on the existence of a proof, and
not on its size. In fact, it is proved that all (decidable) languages
are in BPNLD, but the proof of this result involves labels as large as
poly(n) bits. In contrast, the randomized proof-labeling schemes
described in this paper involve labels of poly-logarithmic size.

The conceptual difference between our approach and the ap-
proach of [13, 14] is significant. In [13, 14], the prover is random-
ized, while the verifier is deterministic, and the measure is space
complexity (the size of the labels). Instead, in this paper, the ran-
domization part is also delegated to the verifier, and the measure is
communication complexity (the size of the exchanged certificates).

2. MODEL AND DEFINITIONS

2.1 Computational Framework
A network is modeled as a connected graphG = (V,E), without

self-loops or multiple edges. Recall that two graphsG1 = (V1, E1)
and G2 = (V2, E2) are isomorphic if there exists a bijection σ :
V1 → V2 such that: {u, v} ∈ E1 ⇐⇒ {σ(u), σ(v)} ∈ E2.
We assume that the edges incident to a node v are numbered in se-
quence 1, . . . , deg(v), where deg(v) is the degree of v. The num-
ber of e at v is the port number of e at v. An edge may have
different port numbers on its two endpoints.

In a configuration Gs, we are given a graph G = (V,E), a state
space S, and a state assignment function s : V → S. The state of
a node v, denoted s(v), includes all local input to v. In particular,
the state may include the node identity Id(v) (if the network is not
anonymous) and weights of its incident edges (for edge-weighted
networks). The state of v may also include other data like, e.g., the
result of an algorithm.

Mechanisms such as proof-labeling schemes involve simple dis-
tributed algorithms, acting in one synchronous communication round
and computation, in which every node sends a value to each of its
neighbors, and, upon reception of the values from all its neighbors,
every node computes an output. In the context of proof-labeling
schemes, this output is either TRUE or FALSE.

Unless specified otherwise, we always assume non-anonymous
networks, i.e., every node v is provided with an identity Id(v),
that is part of the state of v. All identities in the same network
are pairwise distinct. Nevertheless, the definition of proof-labeling
schemes does not need the presence of identities.

2.2 Deterministic and Randomized Proof-
Labeling Schemes

We first recall the definition of deterministic proof-labeling schemes
(abbreviated PLS henceforth), as introduced in [30]. Given a fam-
ily F of configurations, and a boolean predicate P over F , a PLS
for (F ,P) is a mechanism for deciding P(Gs) for every Gs ∈ F .
A PLS consists of two components: a prover p, and a verifier v.
The prover is an oracle which, given any configuration Gs ∈ F ,
assigns a bit string `(v) to every node v, called the label of v. The
verifier is a decentralized algorithm running concurrently at every
node. At each node v, it takes as input the state s(v) of v, its
label `(v) and the labels of all its neighbors, i.e., the ordered set
{`(wi) | i = 1, . . . , deg(v)} where wi is the neighbor reachable
from v through the edge with port number i. The verifier v at each
node outputs a boolean. If the outputs are TRUE at all nodes, v
is said to accept the configuration, and otherwise (i.e., v outputs
FALSE in at least one node) v is said to reject the configuration. For



correctness, a proof-labeling scheme (p, v) for (F ,P) must satisfy
the following requirements, for every Gs ∈ F :
• If P(Gs) = TRUE then, using the labels assigned by p, the

verifier v accepts Gs.
• If P(Gs) = FALSE then, for every label assignment, the

verifier v rejects Gs.
The verification complexity of a deterministic proof-labeling scheme
(p, v), denoted by κ, is the maximal length of the labels assigned by
the prover p on a legal configuration Gs ∈ F (i.e., a configuration
satisfying P).

In this paper we extend the above definition to randomized proof
labeling schemes (RPLS). The idea is to allow randomization in the
verification part of the scheme. Specifically, an RPLS is defined as
follows. The goal and the prover in an RPLS remain exactly as
defined for PLS. However, in an RPLS the verifier v has access
to a source of independent random bits at each node. At node v,
using the label `(v) and the private random bits available at v, the
verifier produces a random bit string, called certificate, for each
of its neighbors. The random certificate of v for wi, the neighbor
reachable through port i, is denoted by ci(v). In an RPLS, only
the certificates are communicated for verification. More precisely,
the input of the verifier at node v consists of its state s(v), its label
`(v), and all the certificates received from its neighbors, i.e., the
collection {cpi(wi), i = 1, . . . , deg(v)} where wi is the neighbor
reachable from v through the edge ei with port number i at v, and
pi is the port number of ei at wi. A randomized scheme (p, v) for
(F ,P) must satisfy the following requirements, for everyGs ∈ F :
• If P(Gs) = TRUE then, using the labels assigned by p,

Pr[v accepts Gs] ≥ paccept.
• If P(Gs) = FALSE then, for every label assignment,

Pr[v rejects Gs] ≥ preject.
Following the sequential complexity classes RP and BPP (see, e.g.,
[33]), we define two flavors of RPLSs: in one-sided error RPLS,
we have paccept = 1 and preject = 1

2
; and in two-sided error RPLS,

we have paccept = preject = 2
3

.1 Unless explicitly stated otherwise,
in this paper we refer by RPLS to two-sided RPLS.

Clearly, RPLSs give weaker guarantees than deterministic PLSs.
The main reason to prefer an RPLS over a PLS is the possible sav-
ing in verification complexity, defined next.

DEFINITION 2.1. The verification complexity of a randomized
proof-labeling scheme (p, v), denoted by κ, is the maximal length
of the (random) certificates generated by the (randomized) veri-
fier v based on the labels assigned to the nodes by the prover p on
a legal configuration Gs ∈ F (i.e., a configuration satisfying P).

3. UNIVERSAL SCHEMES
In this section we show that in RPLS, one can save exponentially

in the verification complexity w.r.t. PLS. Using this result, we de-
rive a universal RPLS and prove that there is no better one. We start
with a reduction from RPLS to PLS.

THEOREM 3.1. Let F be a family of configurations, and let
P be a boolean predicate over F . If there is a PLS for (F ,P)
with verification complexity κ, then there is a one-sided RPLS for
(F ,P) with verification complexity O(log κ).

The proof of this theorem uses a result about (2-party) commu-
nication complexity. In a 2-party communication complexity prob-
lem there are two players, Alice and Bob. Alice receives as input
1The choice of 1/2 and 2/3 is somewhat arbitrary. The idea is that
we can boost the probability of correctness to 1 − δ by repeating
the verification procedure O(log(1/δ)) times independently and
outputting the majority of outcomes.

a λ-bit string x and Bob receives another λ-bit string y. The goal
is for Alice and Bob to compute a certain function f(x, y) by ex-
changing the smallest possible number of bits. For any two λ-bit
strings x and y, let EQ(x, y) denote the equality predicate. The
following fact is well known (see [32]).

LEMMA 3.2. The randomized communication complexity of de-
ciding EQ over λ-bit strings is Θ(log λ).

This lemma implies the following upper bound.

LEMMA 3.3 (BASED ON [32]). There exists a 2-party random-
ized protocol π for EQ over λ-bit strings, in which one side sends
O(log λ) bits, and the other side then decides the outcome, such
that for any input strings a, b we have that Pr[π(a, b)=TRUE | a=
b ] = 1 and Pr[π(a, b)=FALSE | a6=b ] > 2/3.

Proof of Theorem 3.1: Let (p, v) be a proof-labeling scheme for
(F ,P) with verification complexity κ. We construct a randomized
proof-labeling scheme (p′, v′) for (F ,P) as follows. Let Gs ∈ F
be a configuration satisfying predicate P . For every node v, the
prover p′ sets the label of v as the vector of labels

`′(v) =
(
`(v), `(w1), . . . , `(wd)

)
where w1, . . . , wd are the d = deg(v) neighbors of v in G ordered
by port number, and `(·) is the label assignment forGs as provided
by p. Next, let π be the protocol for EQ from Lemma 3.3. Re-
call that in π, there is a sender and a decider. The certificate sent
by node v to each of its neighbors under (p′, v′) is defined to be
exactly the message sent by the “sender” under π on input `(v).
The decision of the local verifier v′ is as follows. If the format of
the local label is not as expected, the local verifier outputs FALSE
immediately. Otherwise, given the received certificates, the local
verifier runs the “decider” part of π for each neighbor. If any of
these instances of π returns FALSE, then the local verifier returns
FALSE. Otherwise, the complete label `′(v) (which is a vector) is
fed into the local deterministic verifier v (assumed to be given),
and the output of v′ will be in this case the output of v(`′(v)). This
concludes the construction of (p′, v′).

The logarithmic verification complexity of (p′, v′) follows di-
rectly from the construction and from Lemma 3.3. We now show
correctness of the scheme. Suppose first that Gs satisfies the pred-
icate. Then, with the labels assigned by p′, we have that, for every
node v, `′(v) =

(
`(v), `(w1), . . . , `(wd)

)
, with the labels `(·) as-

signed by p. Therefore, by Lemma 3.3 and by construction, π re-
turns TRUE with probability 1 in all d instances run by v. It follows
that v′ applies v at node v on `′(v), for which v returns TRUE at v.
Hence, v′ returns TRUE at v as well.

Suppose now that Gs does not satisfy the predicate. If any node
v has a label that does not comply with the expected format, the
verifier v′ returns FALSE at v and we are done. So assume that every
node v has a label of the form

(
`v0 , `

v
1 , . . . , `

v
d

)
where d = deg(v).

We first note that if the labels are consistent in the sense that, for
every node v and its ith neighbor w, `vi = `w0 , then v′ returns
the value returned by v, which must be FALSE at some node by
correctness of v. If the labels are not consistent in the above sense,
then there is at least one pair of adjacent nodes {v, w} such that w
is the ith neighbor of v, and `vi 6= `w0 . In this case, by Lemma 3.3,
the local verifier at v outputs FALSE with probability at least 2/3,
as required.

Next, we note the existence of a universal PLS construction,
where the label of every node is a representation of the graph con-
figuration, summarized in the following lemma.
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Figure 1: Crossing two edges under an isomorphism σ. Solid
edges are the edges of G, and dashed edged are the edges of
σ1(G).

LEMMA 3.4 ([20, 30]). Let F be a family of configurations
with states in S, and let P be a boolean predicate over F . Assume
that every state in S can be represented using k = k(n) bits in
n-node networks. There exists a PLS for (F ,P) with verification
complexity O(nk+ min{n2,m logn}), where m is the number of
edges in the network.

Combining Theorem 3.1 and Lemma 3.4 we obtain the following
universal result for RPLSs.

COROLLARY 3.5. LetF be a family of configurations with states
in S, and let P be a boolean predicate over F . Assume that ev-
ery state in S can be represented using k = k(n) bits in n-node
networks. There exists a randomized proof-labeling scheme for
(F ,P) with verification complexity O(logn+ log k).

The upper bound in Corollary 3.5 is tight, as stated below.

THEOREM 3.6. For any function k(n), there exist a family F
of configurations with states on k = k(n) bits in n-node graphs,
and a predicate P over F such that any randomized proof-labeling
scheme for (F ,P) has verification complexity Ω(logn+ log k).

The proof, which is omitted from this extended abstract, is by
reduction from 2-party EQ. The idea is that for any function k(n),
we can show a family F of configurations with states on k = k(n)
bits in n-node graphs, and a predicate P over F such that the fol-
lowing holds. Any randomized proof-labeling scheme for (F ,P),
with verification complexity κ, can be used to construct a 2-party
communication protocol for EQ of n-bit strings and of k-bit strings,
with error probability of at most 1/3, using κ bits of communica-
tion. Then, from Lemma 3.2, we get the desired lower bound.

4. GENERIC LOWER BOUNDS
In this section we formalize a general tool that can be used to

prove lower bounds for both deterministic and randomized proof-
labeling schemes. The general idea was used many times in the
past, most relevantly in [30].

4.1 A General Tool: Edge Crossing
We start with a technical definition, and then define our main

concept.

DEFINITION 4.1. Let G = (V,E) be a graph and let H1 =
(V1, E1) and H2 = (V2, E2) be two subgraphs of G. H1 and H2

are independent if and only if V1∩V2 = ∅ andE∩ (V1×V2) = ∅.
The following definition is illustrated in Figure 1.

DEFINITION 4.2 (CROSSING). Let G = (V,E) be a graph,
and let H1 = (V1, E1) and H2 = (V2, E2) be two independent
isomorphic subgraphs of G with isomorphism σ : V1 → V2. The
crossing of G induced by σ, denoted by σ1(G), is the graph ob-
tained from G by replacing every pair of edges {u, v} ∈ E1 and
{σ(u), σ(v)} ∈ E2, by the pair {u, σ(v)} and {σ(u), v}.

Crossing can be very useful in proving lower bounds on the ver-
ification complexity of both deterministic and randomized proof
labeling schemes. We start by showing the simpler case of deter-
ministic PLSs.

PROPOSITION 4.3. Let (p, v) be a deterministic PLS for (F ,P)
with verification complexity κ. Suppose that there is a configura-
tion Gs ∈ F where G contains r pairwise independent isomorphic
subgraphs H1, . . . , Hr with s edges each, and let σi : H1 → Hi
be a port-preserving isomorphism for i ∈ {1, . . . , r}. If κ < log r

2s
,

then there are 1 ≤ i < j ≤ r such that Gs is accepted by (p, v) if
and only if (σj ◦ σ−1

i )
1

(G)s is accepted by (p, v) .

Proof: Let Gs be a configuration as described in the statement.
Assume that κ < log r

2s
, and consider a collection {σi : V (H1) →

V (Hi), i = 1, . . . , r} of r port-preserving isomorphisms. Order
the nodes of H1 arbitrarily. This order induces an order on the
nodes of Hi thanks to σi. For every i, consider the bit-string Li
constructed by concatenating the labels given by p to the nodes of
Hi, in the order induced by σi. We have |Li| < log r for every
i because |V (Hi)| ≤ 2s, and thus there are less than r possible
distinct Li’s in total. Therefore, by the pigeonhole principle, there
are i 6= j such that Li = Lj . Define σ = σj ◦ σ−1

i , and consider
the output of the verifier v in Gs and in σ1(G)s.

Suppose Gs is accepted by (p, v), i.e., with the labels provided
by p, the verifier v outputs TRUE at all nodes of G. Therefore, all
nodes outside Hi and Hj also output TRUE in σ1(G)s. Now, let
v be a node in Hi. Each neighbor w of v from Hi is replaced in
σ1(G)s by the node σ(w) from Hj . Since w and σ(w) have the
same label, the verifier acts the same at v in both Gs and σ1(G)s.
Therefore v outputs TRUE at every node of Hi in σ1(G)s. For the
same reason, the verifier acts the same at every node v of Hj , in
both Gs and σ1(G)s. Therefore, the verifier also outputs TRUE
at all nodes in σ1(G)s, which implies that σ1(G)s is accepted by
(p, v).

Similarly, ifGs is rejected by (p, v) then, for any label-assignment
to the nodes, the verifier v outputs FALSE in at least one node v
of G. If this node v is not in Hi or Hj , then v also outputs FALSE
at v in σ1(G)s. If this node v belongs to one of the two subgraph
Hi or Hj , then, since the verifier acts the same at v in both Gs
and σ1(G)s, v also outputs FALSE at this node in σ1(G)s, which
implies that σ1(G)s is rejected by (p, v). The proposition follows.

Proposition 4.3 has the following useful consequence.

THEOREM 4.4. Let F be a family of configurations, and let P
be a boolean predicate over F . Suppose that there is a configura-
tionGs ∈ F satisfying that (1)G contains as subgraphs r pairwise
independent isomorphic copiesH1, . . . , Hr with s edges each, and
(2) there exist r port-preserving isomorphisms σi : V (H1) →
V (Hi) such that for every i 6= j, the isomorphism σij = σj ◦ σ−1

i

satisfies P(Gs) 6= P(σij1(G)s). Then the verification complexity
of any proof-labeling scheme for (F ,P) is Ω( log r

s
).

Remark: Note that Theorem 4.4 cannot yield lower bounds greater
than Ω(logn), because r = O(n).

4.2 Generic Lower Bounds for Randomized
Proof-Labeling Schemes

We now proceed with a generalization of Theorem 4.4 to ran-
domized proof-labeling schemes. First we define edge-independent
RPLSs.



DEFINITION 4.5. An RPLS (p, v) is called edge-independent
if the verifier v uses independent random bits for each certificate
ci(v), for all edges ei incident to v, i = 1, . . . , deg(v).

We can prove the following result for edge-independent two-
sided error RPLSs.

PROPOSITION 4.6. Let (p, v) be an edge-independent RPLS for
(F ,P) with verification complexity κ. Assume that there is a con-
figuration Gs ∈ F with P(Gs) = TRUE such that G contains
r pairwise independent isomorphic subgraphs H1, . . . , Hr with s
edges each, and let σi : H1 → Hi be a port-preserving isomor-
phism for each i ∈ {1, . . . , r}. If κ < ( 1

2s
− o(1)) log log r, then

there are 1 ≤ i < j ≤ r such that Gs is accepted by (p, v) if and
only if (σj ◦ σ−1

i )
1

(G)s is accepted by (p, v).

Proof: We start the proof by a collection of technical preliminary
results. Given a real number x and 0 < ε ≤ 1, we denote by bxcε
the value of x rounded down to the closest integer multiple of ε,
i.e., bxcε

def
=
⌊
x
ε

⌋
ε. Given a real function f : X → R over a

set X , and ε > 0, we define the ε-rounded fε : X → R of f by
fε(x)

def
= bf(x)cε for every x ∈ X .

We shall consider ε-rounded probability distributions. Note that
an ε-rounded probability distribution is not necessarily a probabil-
ity distribution, because it may not sum up to 1. However, it has
the following probabilistic interpretation. Let X be a set, and let
Pr and Pr′ be two probability distributions over X . Then

Prε = Pr′ε ⇒ ∀Y ⊆ X,
∣∣Pr[Y ]− Pr′[Y ]

∣∣ ≤ ε|X| . (1)

Indeed, if Prε[x] = Pr′ε[x] for every x ∈ X , then we have that∣∣Pr[x]− Pr′[x]
∣∣ < ε for every x. Using the triangle inequality we

thus get
∣∣Pr[Y ] − Pr ′[Y ]

∣∣ ≤ ∑x∈Y

∣∣Pr[x] − Pr ′[x]
∣∣ < ε|Y | ≤

ε|X|.
The advantage of ε-rounded distributions is that there are not too

many. Indeed, let X be a finite set, and let D be the set of all
probability distributions over X . The number of distinct ε-rounded
distributions over X is at most 2|X|ε−|X|, that is,

|{Prε | Pr ∈ D}| ≤ (2/ε)|X|. (2)

This is because the set of ε-rounded distributions is a subset of the
functions from X to {εi, i = 0, 1 . . . , b1/εc}, which implies that
their number is at most (1 + 1

ε
)|X| ≤ 2|X|ε−|X|.

We now have all the ingredients we need to prove the proposi-
tion. Let Gs be a configuration and {σi}ri=1 be the isomorphisms
as described in the proposition. Note that for any i 6= j, if Gs is
labeled by p and the crossing with σ = σj ◦ σ−1

i satisfies∣∣∣Pr[v accepts Gs]− Pr[v accepts σ1(G)s]
∣∣∣ < 1

3
, (3)

then Gs is accepted by (p, v) if and only if σ1(G)s is accepted by
(p, v). We prove that if κ < ( 1

2s
− o(1)) log log r, then there exist

i 6= j that satisfy Eq. (3). We use a counting argument. Order the
edges of H1 arbitrarily, and obtain, using σi, an ordering for each
Hi. Assume w.l.o.g. that all certificates are exactly κ bits long.
Then, using the order we defined, there is a 1-1 correspondence be-
tween each 2κs bit string and each particular choice of certificates
communicated in anyHi. LetD denote the set of distributions over
2κs-long bit strings, and define

ε = 1/(12s · 22sκ) .

Consider the set of distributions inD, ε-rounded. Since there are at
most 22sκ bit strings of length 2κs, from Eq. (2) we conclude that
there are no more than (2/ε)(2

2sκ) such ε-rounded distributions.

Let us now make the following technical observation. Let α ≥ 1,
β ≥ 1 and γ ≥ 2 be such that log(β + logα) = o(log log γ).
Then

β < (1− o(1)) log log γ ⇒ γ > (α2β)(2
β).

This follows from the fact that

β < log log γ − log(β + logα) ⇐⇒ 2β(β + logα) < log γ

⇐⇒ (α2β)(2
β) < γ.

By setting α = 24s and β = 2sκ we obtain that the number of
ε-rounded distributions satisfies

(2/ε)(2
2sκ) =

(
24s · 22sκ)(22sκ) < r.

Therefore, by the pigeonhole principle, it must be the case that
among H1, . . . , Hr there are Hi and Hj , where i 6= j, with iden-
tical ε-rounded distributions over the certificates.

Now, let σ = σj ◦ σ−1
i . For any u ∈ Hi, we say that u and

σ(u) ∈ Hj are siblings. Consider running v onGs and on σ1(G)s,
where, in both cases, we assume that the correct labels are given to
the nodes by prover p applied to Gs. This means that in both Gs
and σ1(G)s, the distributions of certificates sent by sibling nodes
are the same. However, the distributions of certificates received by
sibling nodes may have changed (albeit only slightly, as we show
next), due to crossing Hi with Hj .

To analyze v on Gs and σ1(G)s, we change the certificates sent
inGs to those sent in σ1(G)s inductively, and show that each such
modification results only in a small change in the probability of
acceptance. We view G = (V,E) as a symmetric directed graph,
i.e., each edge e = {u, v} ∈ E is viewed as two symmetric arcs
(u, v) and (v, u). Let us order these arcs in G arbitrarily, and let
C denote the set of certificate vectors ~c for which the verifier v
accepts Gs, with coordinates ordered according to the fixed order
of the arcs. Consider a node v in Hi, and one of its incoming arcs
(u, v) inHi. Let u′ and v′ inHj be the respective siblings of u and
v. Assume, w.l.o.g., that (u, v) = e1. Let ~c ∈ C. The certificate
sent to v by u along e1 is therefore c1. Let ~c−1 be the vector ~c with
the first coordinate c1 omitted, i.e., ~c−1 is one dimension less than
~c. Denote by A the event where V sends ~c−1 on E \ {e1}. Using
the above notations, we have:

Pr[v accepts Gs]

=
∑
~c∈C

Pr[nodes in V send ~c on E] (4)

=
∑
~c∈C

(
Pr[u sends c1 on e1] · Pr[A]

)
(5)

>
∑
~c∈C

((
Pr[u′ sends c1 on (u′, v′)]− ε

)
· Pr[A]

)
(6)

Eq. (4) is by definitions. Eq. (5) follows from the independence of
c1 from ~c−1 by our assumption of edge independence of v. Eq. (6)
follows from Eq. (1) since u and u′ have the same ε-rounded dis-
tribution over their certificates. Let G′s be the virtual labeled con-
figuration consisting of Gs labeled by p but where the certificate
distribution sent by u along e1 is changed to the distribution of cer-
tificates sent by u′ along (u′, v′) in Gs. We get that

Pr[v accepts Gs] >Pr[v accepts G′s]− ε
∑
~c∈C

Pr[A] (7)

≥Pr[v accepts G′s]− ε 2κ (8)

Eq. (7) is by definition ofG′s, and Eq. (8) follows from the observa-
tion that the second sum in Eq. (7) is at most 2κ since the number



of distinct c1 values is at most 2κ, and, for any fixed certificate
value γ, ∑

~c∈C,c1=γ

Pr[V sends ~c−1 on E \ {e1}] ≤ 1.

We repeat the same process for the certificate sent along another
arc (a, b) of Hi, resulting in a virtual configuration G′′s in which
we replace the distribution of the certificates sent by a to b by the
distribution of the certificates sent by a′ to b′, where a′ and b′ are
the respective siblings of a and b in Hj . Again, we get

Pr[v accepts G′s] > Pr[v accepts G′′s ]− ε2κ.

By repeating the process 4s times, once for every arc in Hi and in
Hj , we eventually get

Pr[v accepts Gs] > Pr[v accepts σ1(G)s]− 4εs2κ.

Moreover, by switching the roles ofGs and σ1(G)s in the analysis,
we also get that,

Pr[v accepts σ1(G)s] > Pr[v accepts Gs]− 4εs2κ.

I.e., Pr[v accepts σ1(G)s] and Pr[v accepts Gs] differ by less than
±4εs2κ. By the choice of ε, we conclude that∣∣∣Pr[v accepts Gs]− Pr[v accepts σ1(G)s]

∣∣∣ < 1

3
,

which completes the proof.

The following corollary of Proposition 4.6 is the way we use to
bound the verification complexity of two-sided error, edge indepen-
dent RPLSs.

THEOREM 4.7. Let F be a family of configurations, and let P
be a boolean predicate over F . If there is a configuration Gs ∈ F
satisfying that (1) G contains r pairwise independent isomorphic
subgraphs H1, . . . , Hr with s edges each, and (2) there exist r
port-preserving isomorphisms σi : V (H1) → V (Hi) such that
P(Gs) 6= P(σ1(G)s) for every isomorphism σ = σj ◦ σ−1

i be-
tween Hi and Hj , for 1 ≤ i 6= j ≤ r, then the verification com-
plexity of any edge-independent RPLS for (F ,P) is Ω( log log r

s
).

Again, we note that since r = O(n), Theorem 4.7 cannot be
used to prove lower bounds greater than Ω(log log n).

Lower bounds for one-sided RPLSs.
We can replace the assumption of edge-independent RPLS in

Theorem 4.7 by the requirement that the RPLS is one sided and
obtain essentially the same lower bound. Recall that in one-sided
RPLS we insist that if P(Gs) = TRUE, then the verifier v must
accept always, i.e., with probability 1. For this case we have the
following proposition, whose proof is much simpler.

PROPOSITION 4.8. Let (p, v) be a one-sided RPLS for (F ,P)
with verification complexity κ. Assume that there is a configuration
Gs ∈ F with P(Gs) = TRUE such that G contains r pairwise
independent isomorphic subgraphs H1, . . . , Hr with s edges each,
and let σi : H1 → Hi be a port-preserving isomorphism for each
1 ≤ i ≤ r. If for any isomorphism σij = σj ◦ σ−1

i we have that
P(σ1(G)s) = FALSE, then κ ≥ 1

2s
log log r.

Proof: Fix Gs as in the statement, and let (p, v) be a one-sided
RPLS for (F ,P). Assume w.l.o.g. that all certificates under (p, v)
have length exactly κ. For each edge e = {u, v}, let x(u, v) denote
the support of the certificates sent over e by u, i.e., all bit strings
of length κ with positive probability to be sent from u to v under

Gs and (p, v). Since there are κ bits in each certificate, the num-
ber of distinct certificates is at most 2κ, and hence the number of
distinct supports is 2(2κ). Ordering the nodes of H1 somehow and
using the order induced by the port-preserving isomorphisms, we
can represent each specific setting of the 2s certificates sent over
the edges of Hi as a 2sκ-long bit string. Now, if κ < 1

2s
log log r,

then 2(22sκ) < r, and hence, by the pigeonhole principle, there are
1 ≤ i < j ≤ r such that the supports of all the 2s respective (di-
rected) edges in Hi and Hj are identical. Define σ = σj ◦ σ−1

i ,
and let u′ = σ(u) for some node u in Hi. Let v be a neighbor of u
in Hi and let v′ = σ(v).

Fix an arbitrary global certificate c assignment (assigning a cer-
tificate to each direction of each edge of G) that can be gener-
ated in Gs by (p, v) with positive probability. Note that since
P(Gs) = TRUE and the RPLS is one sided, and since the prob-
ability of generating c is strictly positive, it must be the case that
under c, the verifier accepts at all nodes (deterministically). Now,
let c1 denote the coordinate of (u, v) in c, i.e., the certificate sent
by u to v in c. Similarly let c2 denote the certificate sent by u′ to v′

in c. Let c′ denote the global certificate obtained from c by switch-
ing c1 and c2, i.e., under c′, u sends c1 to v′ and u′ sends c2 to v′

(cf. Figure 1).
We claim that the verifier v accepts at all nodes under c′. To see

that, note that since P(Gs) = TRUE, it must be the case (by the
independence of certificates received at a node, given the labels)
that any certificate in x(u′, v′) sent to v′ results in the verifier v at
v′ outputting TRUE: otherwise, there will be a non-zero probability
that v rejects at v′, resulting in rejecting a “yes” instance. There-
fore, the fact that x(u, v) = x(u′, v′) (by our choice) necessarily
implies that if v′ receives c1 ∈ x(u, v) = x(u′, v′), the verifier v
at v′ outputs TRUE. Similarly for v accepting c2.

Continuing inductively in this fashion we switch the certificates
edge by edge, and arrive at the conclusion that the verifier v ac-
cepts σ1(G)s. Moreover, since we can apply the switching pro-
cedure described above to any legal certificate assignment c for
Gs, we have that if κ < 1

2s
log log r, then σ1(G)s is accepted

by the RPLS with probability 1, contradicting our assumption that
P(σ1(G)s) = FALSE and the requirement that a one-sided RPLS
rejects a “no” instance with probability at least 1

2
.

We note that all the upper bounds we derive in Section 5 are both
edge-independent and one-sided.

5. VERIFICATION COMPLEXITY OF
SOME SPECIFIC PREDICATES

We now bound, from above and from below, the deterministic
and randomized verification complexity of a few specific problems
using the tools developed in Sections 3 and 4. We study three im-
portant problems of independent interest. Each of these problems
has received attention in the framework of (deterministic) proof-
labeling schemes, as well as in other frameworks like distributed
algorithm design, property testing, etc. We note that all RPLSs
constructed in this section are edge-independent and one-sided, and
that all lower bounds here are for RPLSs which are either edge in-
dependent or one-sided.

In the following, let Fcon be the family of all connected graphs,
and let Ge{x, y} denote the graph over the set of nodes {x, y} and
an edge connecting x and y.

5.1 Minimum-Weight Spanning Tree (MST)
Recall that a Minimum-weight Spanning Tree (MST) of a weighted

n-node graph G is a spanning tree of G whose sum of all its edge-
weights is minimum among all spanning trees of G. In this setting,



we assume that every node is aware of the weights of its incident
edges (i.e., these weights, indexed by port numbers, are part of its
state).

THEOREM 5.1. The randomized verification complexity of
(Fcon,MST) is Θ(log log n).

Proof: The upper bound follows from combining Theorem 3.1 with
the proof-labeling scheme for MST in [30], whose verification com-
plexity is O(log2 n) (assuming polynomial edge weights). For the
lower bound, we will show that any randomized proof-labeling
scheme for the much simpler predicate of acyclicity has verifica-
tion complexities as stated. Let F be the family of graphs that
consist of lines and cycles, i.e., if G ∈ F then G is a line or G is
a cycle, where all edges have weight 1. Let P = (u1, u2, . . . , un)
be the n-node path, with port numbers consistently ordered. We
define H1, . . . , Hr , for r =

⌊
n
3

⌋
− 1, as follows. Let H1 =

Ge{u1, u2}. For i = 2, . . . ,
⌊
n
3

⌋
− 1, let Hi = Ge{u3i, u3i+1},

and σi : V (H1)→ V (Hi) satisfying σi(u1) = u3i and σi(u2) =
u3i+1. For any 1 ≤ i < j ≤

⌊
n
3

⌋
− 1, let σij = σj ◦ σ−1

i .
We get that σij1(P ) consists of removing edges {u3i, u3i+1} and
{u3j , u3j+1} from P , and replacing them by {u3i, u3j+1} and
{u3j , u3i+1}, creating the cycleC = (u3i+1, u3i+2, . . . , u3j−1, u3j).
Note that σij1(P ) /∈ F , butC is a connected component of σij1(P )
and C ∈ F . Moreover, C is a cycle, i.e., not satisfying the pred-
icate. Therefore, by Theorem 4.7, the verification complexity of
(F , acyclicity) is Ω(log logn). Hence, since F ⊂ Fcon, the ver-
ification complexity of (Fcon,MST) is Ω(log logn).

5.2 Vertex Bi-Connectivity
A connected graphG is called vertex-biconnected if the result of

removing any node from G is a connected graph.
In [30], the authors proved a Θ(logn) bound on the determin-

istic verification complexity of the s-t connectivity problem. In
this problem, given a connected graph G = (V,E) and two spec-
ified nodes s, t ∈ V , the goal is for all nodes to agree on a natural
number k, where k is the vertex connectivity between s and t in
G. Note that this is not a decision problem as it was presented.
Slightly modified, where k is a parameter of the problem, we ob-
tain the problem s-t k-connectivity, where the goal is to decide
whether the vertex connectivity between s and t is exactly k, and
the Θ(logn) bound still holds. This problem is closely related to
vertex-biconnectivity, with the main differences that in the latter we
consider the connectivity between all pairs of nodes and we only
check whether it is at least 2. Let v2con denote the predicate of
vertex-biconnectivity. We have the following result.

THEOREM 5.2. The deterministic verification complexity of
(Fcon, v2con) is Θ(logn), and its randomized verification com-
plexity is Θ(log logn).

Proof: The upper bounds follow from the observation that we can
encode all relevant information used in the biconnectivity algorithm
of Tarjan [21] using O(logn) bits. For the lower bounds, let G be
a graph that consists of an n-node cycle, with port numbers con-
sistently ordered, and additional edges from one node to all other
nodes. (See Figure 2a for illustration). That is,
G = ({v0, . . . , vn−1}, Ec ∪ E0) where

Ec =
{
{vi, v(i+1) mod n} | i = 0, . . . , n− 1

}
and

E0 =
{
{v0, vj} | j = 2, . . . , n− 2

}
.

We have v2con(G) = TRUE. Now, let H1 = Ge{v1, v2}. For
i = 2, . . . ,

⌊
n
3

⌋
−1, letHi = Ge{v3i, v3i+1}, and σi : V (H1)→

v0

(a)

v0

(b)

1

Figure 2: (a): The graph G in the proof of Theorem 5.2, and
restricted to nodes {v0, . . . , vc−1} in the proof of Theorem 5.4.
Dashed edges are E0. (b): The graph σij1(G).

V (Hi) satisfying σi(v1) = v3i and σi(v2) = v3i+1. For any 1 ≤
i < j ≤

⌊
n
3

⌋
−1, let σij = σj◦σ−1

i . We get that σij1(G) consists
of two disjoint cycles with some edges inE0 between them, and v0
is an articulation point. Therefore, v2con(σij1(G)) = FALSE.
Hence, the conditions of Theorems 4.4 and 4.7 are satisfied, and
the lower bounds follow.

Another result in [30] regarding connectivity is an upper bound
of O(k logn) on the deterministic verification complexity of the
k-flow problem. In this problem, the goal is to decide whether the
value of the maximum flow between s and t is exactly k. Using
Theorem 3.1 on that result, we get an upper bound of O(log k +
log logn) on the randomized verification complexity of the k-flow
problem.

5.3 Longest Cycle Size
For any positive integer c, we define the predicate “cycle-at-most-c”

over graphs, which is true for G if and only if all simples cy-
cle in G contain at most c nodes. We also define the predicate
“cycle-at-least-c” over graphs, which is true for G if and only if
there is a simple cycle in G with at least c nodes. Note that due
to the asymmetry between acceptance and rejection in verifica-
tion schemes, these are different questions despite their comple-
mentary nature. Similarly, note that for c = n, cycle-at-least-c is
NP-complete and cycle-at-most-c is coNP-complete. We have the
following upper bounds for cycle-at-least-c.

THEOREM 5.3. The deterministic verification complexity of
(Fcon, cycle-at-least-c) is O(logn), and its randomized verifica-
tion complexity is O(log logn).

The upper bounds follow by marking the cycle nodes usingO(logn)
bits (details omitted). The following theorem states lower bounds
for cycle-at-least-c.

THEOREM 5.4. The deterministic verification complexity of
(Fcon, cycle-at-least-c) is Ω(log c), and its randomized verifica-
tion complexity is Ω(log log c).

Proof: Let G be a graph that consists of a c-node cycle, with port
numbers consistently ordered, and additional edges from one to all
other nodes of the graph (see Figure 2). Formally,

G = ({v0, . . . , vn−1}, Ec ∪ E0) , where

Ec =
{
{vi, v(i+1) mod c} | i = 0, . . . , c− 1

}
, and

E0 =
{
{v0, vj} | j = 2, . . . , n− 1 , j 6= c− 1

}
.

Clearly, cycle-at-least-c(G) = TRUE. Let H1 = Ge{v0, v1}. For
i = 2, . . . ,

⌊
c
3

⌋
− 1, let Hi = Ge{v3i, v3i+1}, and σi : V (H1)→

V (Hi) satisfying σi(v0) = v3i and σi(v1) = v3i+1. For any
1 ≤ i < j ≤

⌊
c
3

⌋
− 1, let σij = σj ◦ σ−1

i . We get that



σij1(G) consists of two disjoint cycles of size strictly less than
c − 1 each, with some edges in E0 between them. The size of
every simple cycle in σij1(G) is strictly less than c, and there-
fore, cycle-at-least-c(σij1(G)) = FALSE. Hence, the conditions
of Theorems 4.4 and 4.7 are satisfied, and the lower bounds follow.

The lower bound in Theorem 5.4 shows the hardness of distin-
guishing between graphs which contain a cycle of length c and ones
which contain only cycles of length up to c−1. We now present an
alternative technique, which shows that this lower bound holds also
in the case where the question is to distinguish between graphs with
a cycle of size n and graphs where all cycles are strictly smaller
than c. Formally, let F = F1 ∪ F2, where F1 is the family of all
connected graphs over n ≥ c nodes that contains an n-node cycle,
and F2 is the family of all connected graphs over n ≥ c nodes
where all cycles have size at most c− 1.

THEOREM 5.5. The deterministic verification complexity of
(F , cycle-at-least-c) is Ω(log c).

Proof: Let G be as described in the lower bound part of the proof
of Theorem 5.2 (see Figure 2a), where n ≥ c. This graph sat-
isfies G ∈ F and cycle-at-least-c(G) = TRUE. Let (p,v) be a
proof-labeling scheme for cycle-at-least-c over F . Assume, for
the purpose of contradiction, that the verification complexity of
that scheme is less than 1

2
log(

⌊
c−1
3

⌋
). Let {H1, . . . , Hr}, for

r =
⌊
c−1
3

⌋
, be a set of pairwise independent subgraphs, each con-

sists of exactly one cycle edge and its two endpoints. This set exists
since n ≥ c−1. For each edge, there are less than log(

⌊
c−1
3

⌋
) bits

in the sequence of both labels of the extremities of the edge. Hence,
there are less than

⌊
c−1
3

⌋
possible sequences. Therefore, by the pi-

geonhole principle, there are two independent cycle edges, say e1
and e2, that have exactly the same labels. Recall that the port num-
bers of the cycle edges are consistently ordered. Hence, for the cor-
responding isomorphism, σ1(G) consists of two disjoint cycles of
size strictly less than n each, with only edges in E0 between them.
Note that possibly σ1(G) /∈ F . We apply this crossing inductively
as long as there is a cycle of size at least c − 1. This process ter-
minates when we eventually get at a graph G′ which consists of a
set C of disjoint cycles, all of size less than c − 1, with only edges
in E0 connecting them (see Figure 2b). Note that at most two E0

edges can participate in any simple cycle in G′. Since there are no
other connections between the cycles in C, both edges in E0 have
to be connected to the same cycle in C. Therefore, a simple cycle of
maximum length in G′ is a simple cycle of maximum length in C,
with two edges from E0 instead of just one, and its size is strictly
less than c. Hence, G′ ∈ F and cycle-at-least-c(G′) = FALSE.
On the other hand, the verifier accepts G′, a contradiction. This
concludes the proof of the theorem.

Finally, consider now the problem of deciding the predicate
cycle-at-most-c. We note that it is co-NP hard, because for c =
n − 1, cycle-at-most-c is the complement of Hamiltonian Cycle.
Observe that a proof-labeling scheme for (Fcon, cycle-at-most-c),
with polynomial verification complexity and polynomial computa-
tion at each node can be translated into a sequential verifiable proof
of polynomial size, and hence the existence of such a PLS would
imply that NP = co-NP. Therefore, we do not expect to find an effi-
cient PLS (let alone RPLS) for this problem. The universal scheme,
in which the computation complexity at each node is unbounded,
is the best scheme we know for this problem from the viewpoint
of verification complexity. A lower bound on the verification com-
plexity is presented in the following theorem.

e1e2

(a)

e1e2

(b)

Figure 3: (a) the graph G in the proof of Theorem 5.6 for c = 8.
(b) σ1(G).

THEOREM 5.6. The deterministic verification complexity of
(Fcon, cycle-at-most-c) is Ω(log n

c
), and its randomized verifica-

tion complexity is Ω(log log n
c

).

Proof: LetG be a chain of
⌈
n
c

⌉
disjoint cycles of c nodes each (ex-

cept one of at most c nodes), where every two neighboring cycles
are connected by an edge (see Figure 3a). It obviously holds that
cycle-at-most-c(G) = TRUE. Let {H1, . . . , Hr}, for r =

⌈
n
c

⌉
, be

a set of pairwise independent subgraphs, each consists of an edge
from different cycle and its two endpoints. This set exists since
there are

⌈
n
c

⌉
cycles. For every two independent edges from dif-

ferent cycles, say e1 = {u, v} from cycle i and e2 = {u′, v′} from
cycle j, where i 6= j, we have that cycle-at-most-c(σ1(G)) =
FALSE for any isomorphism σ (see Figure 3). Therefore, the con-
ditions of Theorems 4.4 and 4.7 are satisfied, and the lower bounds
follow.

6. CONCLUSION
In this paper we introduced the concept of randomized proof-

labeling schemes (RPLS) and derived a few fundamental results
and a few concrete results. The main message of the paper is that
randomizing proof-labeling schemes reduces communication com-
plexity exponentially. We also formalized the crossing technique
which allows one to obtain lower bounds on the communication
complexity of proof labeling schemes, both deterministic and ran-
domized. Many interesting questions remain open. We list a few
below.
• What is the relation between one-sided and two-sided RPLSs?
• Can the crossing technique (Theorem 4.7) be extended to

show lower bounds on the verification complexity of two-
sided RPLSs which are not edge independent? Can it be
extended to the case where nodes have access to shared ran-
domness?
• What are the relations between RPLS and the different com-

plexity classes in [14], including LD, BPLD, NLD, and BPNLD?
• Can the complexity of the prover p be also accounted for in

proof-labeling scheme? In particular, what is the effect of
randomization on the prover complexity?
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