
Probabilistic studies in
Number Theory and Word Combinatorics:

instances of dynamical analysis

Pablo Rotondo
IRIF, Paris 7 Diderot,

Universidad de la República, Uruguay

GREYC, associate

PhD thesis defence, IRIF, September 27, 2018.



Deciphering the title
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Thue-Morse

σ : 0 7→ 01, 1 7→ 10
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Deciphering the title

I Probabilistic analysis

Object/experiment/execution?

⇒ Models, averages, distribution?

-4 -2 2 4

0.1

0.2

0.3

0.4

I Number Theory

Study of integers

Z, {2, 3, 5, 7, 11, . . .}, gcd, ζ(s)

I Word Combinatorics

Study of words
⇒ subwords (factors), frequencies

Thue-Morse

σ : 0 7→ 01, 1 7→ 10
01101001 . . .



Deciphering the title

I Probabilistic analysis

Object/experiment/execution?

⇒ Models, averages, distribution?

-4 -2 2 4

0.1

0.2

0.3

0.4

I Number Theory

Study of integers

Z, {2, 3, 5, 7, 11, . . .}, gcd, ζ(s)

I Word Combinatorics

Study of words
⇒ subwords (factors), frequencies

Thue-Morse

σ : 0 7→ 01, 1 7→ 10
01101001 . . .



Some key words



Key objects

Sturmian words
I Lowest complexity, not

eventually periodic.

I Recurrence function:
how often factors reappear?

Continued Logarithm

I Greatest common divisor
algorithm.

I Binary shifts and
substractions.

Neither had been studied on average.

Dynamical analysis

I Objects/algorithms described

by dynamical system.

I Tools from dynamical systems.

I Probabilistic analysis.
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Continued Fractions
Euclidean dynamical system
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3. The Continued Logarithm
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The CL dynamical system [Chan05]
Extended system and results
Conclusions and extensions
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Continued Fractions

Every irrational number α ∈ (0, 1) has a unique representation

α =
1

m1 +
1

m2 +
. . .

where m1,m2, . . . ≥ 1 are integers called the digits or quotients.

Truncating the expansion at depth k we get a convergent

pk(α)

qk(α)
=

1

m1 +
1

m2 +
. . . 1

mk

.

The denominators qk(α) are called the continuants of α.
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Euclidean Algorithm and Continued Fractions

Property

Given integers x and y with 0 ≤ x ≤ y

gcd(x, y) = gcd(y mod x, x) .

In conjunction with gcd(0, y) = y, we get the Euclidean Algorithm.

This algorithm is equivalent to the continued fraction expansion:

I given the integer division y = mx+ r,

x

y
=

1

m+ r
x

,

and the process continues with r
x .
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Euclidean dynamical system

To get the digits of the continued fraction expansion observe

α =
1

m1 +
1

m2 +
. . .

=⇒ m1 =

⌊
1

α

⌋
,

1

m2 +
1

m3 +
. . .

=

{
1

α

}
.

The map

T : (0, 1)→ (0, 1) , x 7→
{
1

x

}
,

is known as the Gauss map.



Gauss map
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T(x)

Branches

Tm(x) :=
1
x −m, x ∈

(
1

m+1 ,
1

m+0

]
.

Inverse branches

hm(x) :=
1

m+ x
, H := {hm : m ∈ N} ,

and at depth k

Hk := {hm1 ◦ · · · ◦ hmk : m1, . . . ,mk ∈ N} .

Property. Let h := hm1 ◦ · · ·hmk , if h(0) = p
q =⇒ |h′(0)| = 1

q2
.
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Density transformer

Question: If g ∈ C0(I) were the density of x =⇒ density of T (x)?

1
x

1

T(x)

|dh0(y)||dh1(y)||dh2(y)||dh3(y)|

dy

Answer: The density is

H[g](x) =
∑
h∈H

∣∣h′(x)∣∣ g (h(x))
=
∑
m≥0

1

(m+ x)2
g

(
1

m+ x

)
.

=⇒ Transfer operator Hs extends H, introducing a variable s

Hs[g](x) =
∑
h∈H

∣∣h′(x)∣∣s g (h(x)) .
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Principles of dynamical analysis [Vallée,Flajolet,Baladi,. . .]:

Generating functions.

I Hs describes all executions of depth 1.

I H2
s = Hs ◦Hs describes all executions of depth 2.

I
...

I and (I−Hs)
−1

= I+Hs +H2
s + . . . describes all executions.



Principles of dynamical analysis [Vallée,Flajolet,Baladi,. . .]:

Generating functions.

I Hs describes all executions of depth 1.

I H2
s = Hs ◦Hs describes all executions of depth 2.

I
...

I and (I−Hs)
−1

= I+Hs +H2
s + . . . describes all executions.



Section

1. General Introduction: continued fractions and dynamical systems
Continued Fractions
Euclidean dynamical system

2. The recurrence function of a random Sturmian word
Sturmian words and recurrence
Our models and results
Comparison between models and slope families

3. The Continued Logarithm
Origins and algorithm
The CL dynamical system [Chan05]
Extended system and results
Conclusions and extensions



Definition of Sturmian words

Definition

Complexity function of an infinite word u ∈ AN

pu : N→ N , pu(n) = #{factors of length n in u} .

Important property

u ∈ AN is not eventually periodic

⇐⇒ pu(n+ 1)>pu(n) for all n ∈ N
.

Sturmian words are the “simplest” that are not eventually periodic.

Definition

u ∈ {0, 1}N is Sturmian ⇐⇒ pu(n) = n+ 1 for each n ≥ 0.
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Sturmian words and digital lines

Sturmian words correspond to discrete codings of lines, from below
or above, by horizontal lines and diagonals.

0 0 1 0 0 1 0 1 0 0

Figure : Coding of the line y = αx+ β.

The slope α plays a key role:
the finite factors are determined exclusively by α.
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Recurrence of Sturmian words

Definition (Recurrence function)

Consider an infinite word u. Its recurrence function is:

Ru(n) = inf {m ∈ N : every factor of length m

contains all the factors of length n} .

I Cost we have to pay to discover the factors if we start from an
arbitrary point in u = u1u2 . . .

Theorem (Morse, Hedlund, 1940)

The recurrence function is piecewise affine and satisfies

Rα(n) = n− 1 + qk−1(α) + qk(α) , for qk−1(α) ≤ n < qk(α).
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Recurrence quotient and its parameters

S(α, n) :=
Rα(n) + 1

n
= 1+

qk−1(α) + qk(α)

n
, qk−1(α) ≤ n < qk(α) .

2 4 6 8 10 12 14
n0

1

2

3

4

Rα(n)
n

Recurrence quotient α = e−1.

Size of S(α, n) dictated by

I the relative position of n
within the interval

µ(α, n) ,

I the quotient between the
ends of the interval

ρ(α, n) =
qk−1(α)

qk(α)
.
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Studies of the recurrence function
Classical results concern the worst case scenarios for fixed α:

∀ε > 0, for a.e. α

lim sup
n→∞

S(α, n)

log n
=∞ , lim

n→∞

S(α, n)

(log n)1+ε
= 0 .

(Morse&Hedlund ’40)

We define two probabilistic models
in both cases α is drawn uniformly at random

1) fix the length n ⇒ random variables Sn(α) := S(α, n).
in distribution and expectation as n→∞.

2) fix index k of interval [qk−1(α), qk(α)) and
the relative position µ ⇒ sequence (nk(α))k.

nk

µ = 1/3qk−1 qk

Figure : Sequence of indices (nk(α))k for µ = 1/3.
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Results

Model: fixed n. [RV17]

I Limit distribution for Sn and
more general class.

I Convergence of histograms
to limit density.

I Conditional expectations

E[Sn|µn ≥ ε(n)] ∼
∣∣ log ε(n)∣∣ .
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0.1

0.2

0.3

0.4

Figure : Limit density of Sn.

Model: fixed µ. [BCRVV15]

I Limit distribution of

S
〈k〉
µ (α) := S(α, nk)

depending on µ.

I Study of E[S〈k〉µ (α)] as

µ := µk → 0 .
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k
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S
〈
µ
〉

k

]

Figure : Limit of E[S〈k〉µ ] versus µ.
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Coprime Riemann sums: fixed n→∞
For qk−1(α) ≤ n < qk(α)

Sn(α) = f(x, y) := 1 + x+ y , x =
qk−1(α)

n , y = qk(α)
n .

Distribution is a coprime Riemann sum

P (Sn ≤ λ) =
1

n2

∑
(a,b)∈N2:(a,b)=1

ω
(
a
n ,

b
n

)
[[
(
a
n ,

b
n

)
∈ ∆f (λ)]] ,

with ω(x, y) = 2
y(x+y) , ∆f (λ) = {(x, y) : 0 < x ≤ 1 < y, f(x, y) ≤ λ} .

0.0 1 2
0.0

1

2

∆f (λ)

A constant · the integral

lim
n→∞

P (Sn ≤ λ)

=
6

π2

∫∫
∆f (λ)

ω(x, y)dxdy

Note. Generalizes to other fs.
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Via the Transfer operator

The model n→∞ is related to the quasi-inverse, how?

I Harmonic sum in t := 1/n with frequencies (qk)

Pr(Sn ≤ λ) =
1

n2

∑
k

∑
m1,...,mk≥1

gλ

(
qk−1

qk
, qkn

)
,

for a certain gλ.

I Mellin transform turns it into a quasi-inverse

(I−Hs/2+1)
−1[Gs](0) ,

for appropriate Gs that is an integral of gλ.

I Requires precise analysis for a vertical strip around <s = 0
=⇒ Dolgopyat-Baladi-Vallée estimates.
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Important subfamilies

I Slope α rational:
periodic, Christoffel words.

0 0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0 0

I Slope α quadratic irrational:
come up naturally as fixed points of substitution.

We expect unified solution with the real case:

I similar results under appropriate models.

I methods involve Dirichlet series.
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The origins

Introduced by Gosper as a mutation of continued fractions:

I gives rise to a gcd algorithm akin to Euclid’s.

I quotients are powers of two:
◦ small information parcel.
◦ employs only shifts and subtractions.

I appears to be simple and efficient.

More recently:

B Shallit studied its worst-case performance in 2016.

B We consider its average performance!
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Continued Logarithm Algorithm
A sequence of binary “divisions” beginning from (p, q):

q = 2ap+ r , 0 ≤ r < 2ap .

Note. a = max{k ≥ 0 : 2kp ≤ q}
Continue with the new pair

(p, q) 7→ (p′, q′) = (r, 2ap) ,

until the remainder r equals 0.

Example. Let us find gcd(13, 31).

a p q r 2ap

1 13 31 5 26
2 5 26 6 20
1 6 20 8 12
0 8 12 4 8
1 4 8 0 8

I Ended with (0, 8), what is the gcd?
⇒ odd gcd × parasitic powers of 2.
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Consider
ΩN = {(p, q) ∈ N× N : p ≤ q ≤ N} .

Worst-case studied by Shallit (2016): 2 log2N +O(1) steps.

◦ Family (p, q) = (1, 2n − 1) gives the bound asymptotically.

We studied the average number of steps over ΩN , posed by Shallit.

Main result [RV18].

Mean number of steps EN [K] and shifts EN [S] are Θ(logN).

More precisely

EN [K] ∼ k logN , EN [S] ∼ log 3−log 2
2 log 2−log 3 EN [K]

for an explicit constant k
.
= 1.49283 . . . given by

k =
2

H
, H =
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CL dynamical system (I, T )
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The map for the CL algorithm.
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The CL dynamical system [Chan05]

1
x

1

T(x)

The map T : I → I

Branches

For x ∈ Ia := [2−a−1, 2−a]

x 7→ Ta(x) :=
2−a

x
− 1 .

where a(x) := blog2(1/x)c .

Inverse branches

ha(x) :=
2−a

1 + x
, H := {ha : a ∈ N} ,

and at depth k

Hk := {ha1 ◦ · · · ◦ hak : a1, . . . , ak ∈ N} .



Reduced denominators and inverse branches

Euclidean algorithm:

I Homographies

hm(x) =
1

m+ x
,

with dethm = −1.

I For h = hm1 ◦
. . . ◦ hmk

h(0) =
p

q
⇒ |h′(0)| = 1

q2
,

p/q reduced.

CL algorithm:

I Homographies

ha(x) =
1

2a(1 + x)
,

with detha = −2a.

I For h = hm1 ◦
. . . ◦ hmk

h(0) =
p

q
⇒ |h′(0)| vs.

1

q2
?

p/q reduced.

Problem: Denominator retrieved is engorged by powers of two.
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Recording the dyadic behaviour

Solution: Dyadic numbers Q2 !

Dyadic topology = Divisibility by 2 constraints ,

using the dyadic norm | · |2.

Introduce dyadic component

I Mixed dynamical system (x, y) ∈ I := I ×Q2,

T : I → I , T (x, y) = (Ta(x), Ta(y)) ,

for x ∈ Ia = [2−a−1, 2−a] and any y ∈ Q2.

I Evolution led by the real component, which determines a.

Dyadics Q2 have change of variables rule ⇒ Transfer Operator Hs!
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Functional space F for the extended operator Hs

Real component directs the dynamical system:

I sections Fy fixing y ∈ Q2 asked to be C1(I).
I the dyadic component follows, demanding only integrability.

Ensuing space F makes Hs

I have a dominant eigenvalue and spectral gap
relying strongly on the real component.

We can finish the dynamical analysis!
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Conclusion and further questions

I We have studied the average number of shifts and
subtractions for the CL algorithm.

I Study makes an interesting use of the dyadics in the
framework of dynamical analysis.

Questions:

1. Comparison to other binary algorithms: binary GCD, LSB.

2. Conjecture: The successive pairs (pi, qi) given by the
algorithm satisfy

lim
i→∞

1
i log2 gcd(pi, qi) = 1/2 .

In what sense
I in expected value for rationals.
I almost everywhere for real numbers.
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Other research directions and topics

For the first part

I Independence between pk/qk and qk−1/qk.

I Slope subfamilies ⇒ work in progress, partial results.

I Multidimensional analogs? Brun?

For the second part

I More natural gcd algorithm (p, q) 7→ sort(r, p). Competitive?

I Explain

lim
k→∞

1

k
log2 gcd(pk, qk) =

1
2 .

Leftout topics

I Random variable generation

Questions?
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Conditional expectations

We seek to characterise the log n behaviour of S(α, n).
To do this we exclude the cases in which µ is small.

nµ ≤ 1/n

qk−1 qk

Theorem

The conditional expectation of Sn with respect to µn ≥ 1
n satisfies

E
[
Sn

∣∣∣µn ≥ 1

n

]
=

12

π2
log n+O(1) .
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Independence of pk/qk and qk−1/qk

Intuitive [dynamical proof and generalization?]

I Mirror tells us that

pk/qk = [m1, . . . ,mk] , qk−1/qk = [mk,mk−1, . . . ,m1] .

⇒ Result determined by first digits
and digits have stationary behaviour.

Useful

I Limits in fixed n model are independent from distribution of
α ∈ [0, 1] as long as it has a density w.r.t. Lebesgue.

I Could be used (??) for other expansions like CL

Pk/Qk = 〈a1, . . . , ak〉 , 2akQk−1/Qk = 〈1, ak, ak−1, . . . , a2〉 ,

⇒ 2akQk−1/Qk distributed with Gauss-density on [1/2, 1].
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Independence of pk/qk and qk−1/qk
Recall (classical)

pk−1qk − pkqk−1 = (−1)k ⇒ pk =
(
(−1)k+1q−1k−1

)
mod qk .

⇒ qk−1 and pk are almost modular inverses.

Notice
Fractions have two developments, with different parities
=⇒ Enough to solve the case in which pk = q−1k−1(mod.qk).

Theorem (see e.g. Shparlinski)

Let q ∈ Z>0 and let [a1, b1], [a2, b2] ⊂ [0, 1], then for any ε > 0

1

ϕ(q)

∑
1≤a≤q ,

gcd(a,q)=1

1(a
q
,a

−1 mod q
q

)
∈[a1,b1]×[a2,b2]

= (b1 − a1) (b2 − a2) +O(q−1/2+ε) .

=⇒ a
q and a−1 mod q

q behave as if they were independent!
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Theorem (see e.g. Shparlinski)

Let q ∈ Z>0 and let [a1, b1], [a2, b2] ⊂ [0, 1], then for any ε > 0

1

ϕ(q)

∑
1≤a≤q ,

gcd(a,q)=1

1(a
q
,a

−1 mod q
q

)
∈[a1,b1]×[a2,b2]

= (b1 − a1) (b2 − a2) +O(q−1/2+ε) .

=⇒ a
q and a−1 mod q

q behave as if they were independent!
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Important subfamilies

I Slope α rational:
periodic, Christoffel words.

I Slope α quadratic irrational:
come up naturally as fixed points of substitution.

Two elements

I key prefix (m1, . . . ,mk) with k such that qk−1(α) ≤ n < qk(α).

I completion (mk+1, . . . ,mp) of the “period”.

Generating functions are now Dirichlet series.

⇒ Quasi-inverse (I−Hs)
−1

applied to another one similar to the previous slide.

We expect unified solution with the real case
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Slope subfamilies

Models.

I For rational α = hm(0) : size(α) = q
here q = |h′m(0)|−1/2 is the reduced denominator.

I For quadratic irrational α = hm(α) : size(α) := v(α)−1

here v(α)−1 = |h′m(α)|−1/2 is the analog of q.

Bound the size by D and pick random α with size(α) ≤ D.
⇒ study PD(Sn(α) ≤ λ) as D,n→∞ in some way ?
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Slope subfamilies: quadratic irrationals

Write α = hw(α) = [w,w, . . .] for some w ∈ Z+
>0 and fix n.

To compute S(α, n) we only require

v = (w1, . . . , wk)

with qk−1(α) ≤ n < qk(α). Write

v = w`v′ , ε 6= v′ � w ,

the index ` = `(α, n) is known as the number of turns.

Number of turns is key

I Case ` = 0 is the simplest, and closely related to the rationals.

I Case ` > 0 is more complicated, seems to simplify as `→∞.
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Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective

I the averages (a1(x) + . . .+ aM (x))/M .

I the exponential growth of “natural continuants” Qk(x).

Results concerning almost every x ∈ I
=⇒ truncate the expansion a1(x), a2(x), . . . at depth k.

Adapting our methods to this context is work in progress:

I behaviour of continuants Qk differs from rational case.

I we conjecture − 1
kE[log2 |Qk|2] ∼ 1/2

→ we have proved the limit exists
... explicit invariant density Ψ(x, y) ?

→ related to growth of gcd(p, q) in the algorithm!
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Mirrors
The conjecure

log2 gcd (pi, qi) ∼ i/2 .
leads us to mirrors.

I The successive pairs (pi, qi) correspond to convergents

〈ak, . . . , ap〉 , k = 1, . . . , p .

I Moreover

Q(ak, ak+1, . . . , ap) = 2akQ(1, ap, ap−1 . . . , ak+1) .

⇒ related to convergents of the mirror expansion

〈ap, ap−1, . . . , a1〉 .

I Average properties of mirror strongly associated with a
“mirrored” transfer operator

H1,1−w,w,1−w .



Mirrors
The conjecure

log2 gcd (pi, qi) ∼ i/2 .
leads us to mirrors.

I The successive pairs (pi, qi) correspond to convergents

〈ak, . . . , ap〉 , k = 1, . . . , p .

I Moreover

Q(ak, ak+1, . . . , ap) = 2akQ(1, ap, ap−1 . . . , ak+1) .

⇒ related to convergents of the mirror expansion

〈ap, ap−1, . . . , a1〉 .

I Average properties of mirror strongly associated with a
“mirrored” transfer operator

H1,1−w,w,1−w .



Mirrors
The conjecure

log2 gcd (pi, qi) ∼ i/2 .
leads us to mirrors.

I The successive pairs (pi, qi) correspond to convergents

〈ak, . . . , ap〉 , k = 1, . . . , p .

I Moreover

Q(ak, ak+1, . . . , ap) = 2akQ(1, ap, ap−1 . . . , ak+1) .

⇒ related to convergents of the mirror expansion

〈ap, ap−1, . . . , a1〉 .

I Average properties of mirror strongly associated with a
“mirrored” transfer operator

H1,1−w,w,1−w .



Mirrors
The conjecure

log2 gcd (pi, qi) ∼ i/2 .
leads us to mirrors.

I The successive pairs (pi, qi) correspond to convergents

〈ak, . . . , ap〉 , k = 1, . . . , p .

I Moreover

Q(ak, ak+1, . . . , ap) = 2akQ(1, ap, ap−1 . . . , ak+1) .

⇒ related to convergents of the mirror expansion

〈ap, ap−1, . . . , a1〉 .

I Average properties of mirror strongly associated with a
“mirrored” transfer operator

H1,1−w,w,1−w .



Binary gcd algorithms

Other well-known binary algorithms include

I The binary GCD

I The LSB (least significant bits) algorithm
– Informally “the Tortoise and the Hare”.

The dyadics play different roles in the dynamical analysis

I For the binary GCD: dyadics are drawn
probabilistically and independently.

I For the LSB: dyadics play the main role!

Unify the analysis to better understand the role of the dyadics?
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