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Deciphering the title

» Probabilistic analysis

Object/experiment/execution?

= Models, averages, distribution?
» Number Theory

Study of integers

Z, {2,3,5,7,11,...}, gecd, ((s)

» Word Combinatorics

Study of words Thue-Morse
= subwords (factors), frequencies 0:0~01,1~ 10
01101001...
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Key objects

Sturmian words Continued Logarithm
> Lowest complexity, not » Greatest common divisor
eventually periodic. algorithm.
» Recurrence function: » Binary shifts and
how often factors reappear? substractions.

Neither had been studied on average.

Dynamical analysis

> Objects/algorithms described
by dynamical system.

» Tools from dynamical systems.

> Probabilistic analysis.




This talk

1. General Introduction: continued fractions and dynamical systems
o Continued Fractions
o Euclidean dynamical system

2. The recurrence function of a random Sturmian word
e Sturmian words and recurrence
e Our models and results
o Comparison between models and slope families

3. The Continued Logarithm
e Origins and algorithm
e The CL dynamical system [Chan05]
o Extended system and results
e Conclusions and extensions
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o Euclidean dynamical system



Continued Fractions

Every irrational number o € (0, 1) has a unique representation

1
o =
1
my +

mo + -

where m1,mo,... > 1 are integers called the digits or quotients.



Continued Fractions

Every a € (0,1) has a unique representation
1
o =
1
m1 +
mo + -
where m1,mo,... > 1 are integers called the digits or quotients.

Truncating the expansion at depth k£ we get a convergent

pr(c) 1

qr () 1
my +

o1
ma + e

The denominators g («) are called the continuants of a.
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Given integers x and y with 0 <z <y

ged(x,y) = ged(y mod z, z) .

In conjunction with ged(0,y) = y, we get the Euclidean Algorithm.
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Euclidean Algorithm and Continued Fractions

Property
Given integers x and y with 0 <z <y

ged(x,y) = ged(y mod z, z) .

In conjunction with ged(0,y) = y, we get the Euclidean Algorithm.

This algorithm is equivalent to the continued fraction expansion:
» given the integer division y = mx + r,
T 1
y m+y’

and the process continues with ~.



Euclidean dynamical system

To get the digits of the continued fraction expansion observe

1
o =
1
my1 +
ma +
3 )
= mi=|—|, _— ==
1 a
mo +
ms+
The map
1
T:(0,1) — (0,1), xr—>{},
x

is known as the Gauss map.
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Branches
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Inverse branches

1
m+az’

and at depth &

hn(z) =

H = {hm :m € N},

HE := {hpy 0+ 0 hyny, 11, ..., my, € N}
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Gauss map

Branches

1 1 1

Inverse branches

1
m+az’

and at depth &

hm(x) == H = {hm :m € N},

HE := {hpy 0+ 0 hyny, 11, ..., my, € N}

0.2

L L z
02 0.4 0.6 0.8 1

Property. Let h = hpm, 0, if K(0) = £ = [1/(0)] =

Qe
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Density transformer
Question: If g € C°(Z) were the density of z = density of T'(z)?
T(x)

1

Answer: The density is

Hlg)(x) = ) [W(2)] g (h(x))

heH

=3 et ()

m>0

x




Density transformer
Question: If g € C°(T) were the density of 2 = density of T'(z)?
T(@)

1

Answer: The density is
= > |W(2)] g(h(x))
v heH
B Z 1 1
= m+x)2g m+x)

== Transfer operator extends H, introducing a variable s

= W@ g(h@).

heH




Principles of dynamical analysis [Vallée, Flajolet,Baladi,. . .]:

Generating functions.

» H, describes all executions of depth 1.

» H2 = H, o H, describes all executions of depth 2.

>

» and (I-H,) ' =T+ H, +H?2 ... describes all executions.

Problem

———> Dynamical System —— > Transfer operator
T:X-X H,

Generating function
in terms of
(1d-H,)*



Principles of dynamical analysis [Vallée,Flajolet,Baladi,. . .]:
Generating functions.
» H, describes all executions of depth 1.

» H2 = H, o H, describes all executions of depth 2.

>

» and (I—H,) ' =I+H, +H?2 + ... describes all executions.

Problem |——> Dynamical System ——— > Transfer operator
T:X-X H

s

Asymptotics!|<«———— Generating function
Singularity in terms of
Analysis (1d-H,)!
s

Dominant Spectral properties

Behaviour at dominant singularity
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e Sturmian words and recurrence
e Our models and results
o Comparison between models and slope families
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Definition of Sturmian words

Definition

Complexity function of an infinite word u € AN

Pu: N—= N, pu(n) = #{factors of length n in u} .

Important property
u € AV is not eventually periodic
<= pu(n+1)>py(n) for alln € N
= pu(n)>n+1.

Sturmian words are the “simplest” that are not eventually periodic.
Definition
u € {0,131 is Sturmian <= py(n) = n + 1 for each n > 0. J




Sturmian words and digital lines

Sturmian words correspond to discrete codings of lines, from below
or above, by horizontal lines and diagonals.

Figure : Coding of the line y = ax + 5.



Sturmian words and digital lines

Sturmian words correspond to discrete codings of lines, from below
or above, by horizontal lines and diagonals.

Figure : Coding of the line y = ax + 5.

The slope « plays a key role:
the finite factors are determined exclusively by .
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Recurrence of Sturmian words
Definition (Recurrence function)
Consider an infinite word w. Its recurrence function is:

Ry (n) = inf {m € N : every factor of length m
contains all the factors of length n} .

» Cost we have to pay to discover the factors if we start from an
arbitrary point in u = ujus . ..

Theorem (Morse, Hedlund, 1940)

The recurrence function is piecewise affine and satisfies

Ra(n) =n—1+q1(a) + (),  forgu—1(e) < n < gy(a).




Recurrence quotient and its parameters

Ro(n) +1 H_Qk—l(a) + ax(@) v qe—1(a) <n < gpla).

S(a,n) =
n n




Recurrence quotient and its parameters

: 1+Qk1(a)n+ @) ) << ala).

Recurrence quotient o = e~ *.



Recurrence quotient and its parameters

. 1+Qk1(04)n+ @) 6) <n < gila).

Size of S(cv,n) dictated by

\\ > the relative position of n

within the interval

i : 3 | | ,u(a,n) ’

> the quotient between the
ends of the interval

° . ;‘ . a 6 g 10 . 12 14 " p(a7n) — qk*l(a) .

. _ qr\&
Recurrence quotient o = e~ *. (o)



Studies of the recurrence function

Classical results concern the worst case scenarios for fixed «:

Ve > 0, for a.e. «
S(a,n) . S(a,n)

li = 1 A
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Studies of the recurrence function

Classical results concern the worst case scenarios for fixed «:

Ve > 0, for a.e. «
S(a,n) _ S(a,n)

li = 1 A
s Tlogn 7 ntse (logn)

(Morse&Hedlund '40)

We define two probabilistic models
in both cases « is drawn uniformly at random

1) fix the length n = random variables S, (a) := S(a, n).
in distribution and expectation as n — oo.

2) fix index k of interval [gx—1 (), ¢x(«)) and
the relative position ;1 = sequence (ng(a))g.

n

qr—1 n=1/3 qx
@ L ]

Figure : Sequence of indices (ny(a))x for p=1/3.



Results

Model: fixed n. [RV17]
» Limit distribution for 5,, and
more general class.
» Convergence of histograms
to limit density.
» Conditional expectations
E[Su|ptn > €(n)] ~ |loge(n)|. )

Figure : Limit density of S,,.



Results

Model: fixed n. [RV17] Model: fixed 1. [BCRVV15]
» Limit distribution for S,, and > Limit distribution of
more general class. R
S o) = S(ayng)

» Convergence of histograms )
depending on .

to limit density.

k
» Conditional expectations > Study of E[Sﬁ >(04)] as
E[Sy|pn > €(n)] ~ }loge(n)| . woi= i — 0.
el
as 4

i (k)
Figure - Limit density of S,,. Figure : Limit of E[S,;"’] versus p.



Coprime Riemann sums: fixed n — oo

For gx—1(a) < n < gx(a)

Spla) = flz,y) =14z +y, o=%=1)

n




Coprime Riemann sums: fixed n — oo

For gi—1(a) < n < gi(a)
S’n(a):f(x,y):zl—i-x-Fy’ x:‘ﬂv;l(a), y:qk(a).

n n

Distribution is a coprime Riemann sum
1 a
PSn<N =5 D> w(ma)lEa)eaml,
(a,b)EN2:(a,b)=1
with w(z,y) = y(:Hy) AN ={(z,y): 0<x <1<y, flz,y) <A}.
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Coprime Riemann sums: fixed n — oo

For gi—1(a) < n < gi(a)
Sn(oz):f(x,y)::1+x+y’ x:q/v;l(a), y:qk(a).

n n

Distribution is a coprime Riemann sum

PN = X w(h (L) €400,

(a,b)EN2:(a,b)=1
with w(z,y) = y(:Hy) AN ={(z,y): 0<x <1<y, flz,y) <A}.

A constant - the integral

lim ]P’(S <)

n—oo

= )dzd
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Coprime Riemann sums: fixed n — oo

For gi—1(a) < n < gi(a)
Sn(oz):f(x,y)::1+x+y’ x:q/v;l(a), y:qk(a).

n n

Distribution is a coprime Riemann sum

PEasN=m Y w(G 5L e A0,

(a,b)EN2:(a,b)=1
with w(z,y) = y(:Hy) AN ={(z,y): 0<x <1<y, flz,y) <A}.

A constant - the integral

lim P (S, < A)

n—oo

= )dzd
T =2,

Note. Generalizes to other fs.

[ui

P
P
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The model n — oo is related to the quasi-inverse, how?

» Harmonic sum in ¢ := 1/n with frequencies (g;)
1 Qo1 i
Pr(S, <N ==Y > (%%,

for a certain gj.

> turns it into a quasi-inverse

(I- Hs/2+1)_1 (G (0),

for appropriate G that is an integral of g,.

» Requires precise analysis for a vertical strip around Rs = 0
—> Dolgopyat-Baladi-Vallée estimates.



Important subfamilies

» Slope « rational:
periodic, Christoffel words.

1001001000

0010010010

» Slope « quadratic irrational:
come up naturally as fixed points of substitution.



Important subfamilies

» Slope :
periodic, Christoffel words.

1001001000

0010010010

» Slope « quadratic irrational:
come up naturally as fixed points of substitution.

We expect unified solution with the real case:
> similar results under appropriate models.

» methods involve Dirichlet series.
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The origins

Introduced by Gosper as a mutation of continued fractions:
> gives rise to a ged algorithm akin to Euclid’s.

» quotients are powers of two:
o small information parcel.
o employs only shifts and subtractions.

> appears to be simple and efficient.



The origins

Introduced by Gosper as a mutation of continued fractions:
> gives rise to a ged algorithm akin to Euclid’s.

» quotients are powers of two:
o small information parcel.
o employs only shifts and subtractions.

> appears to be simple and efficient.

More recently:
>> Shallit studied its worst-case performance in 2016.

> We consider its performance!
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A sequence of binary “divisions” beginning from (p, q):

q=2%+r, 0<r<2%.
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Continued Logarithm Algorithm
A sequence of binary “divisions” beginning from (p, q):
q=2%+r, 0<r<2%.
Note. a = max{k > 0:2"p < ¢}
Continue with the new pair
(pq) = (¢'.d") = (r,2p),

until the remainder r equals 0.

Let us find ged(13,31).

a ‘ p q ‘ r 2%
1113 31|5 26
215 26|16 20
116 20|8 12
0| 8 124 8
114 8|0 8

» Ended with (0,8), what is the ged?
= odd gcd X parasitic powers of 2.
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Consider
Oy ={(p,g) eNxN:p<g<N}.

Worst-case studied by Shallit (2016): 2logy N + O(1) steps.
o Family (p,q) = (1,2"™ — 1) gives the bound asymptotically.

We studied the number of steps over {2, posed by Shallit.

Main result [RV18].

Mean number of steps and shifts are O(log N).
More precisely

log 3—log 2
~ k log N, N%EN[K]

for an explicit constant k = 1.49283 ... given by

2
k= I H = entropy of appropriate DS




Consider

v ={(p,q) eNxN:p<qg<N}.
Worst-case studied by Shallit (2016): 2logy N + O(1) steps.
o Family (p,q) = (1,2™ — 1) gives the bound asymptotically.

We studied the number of steps over {2y, posed by Shallit.

Main result [RV18].

Mean number of steps and shifts are O(log N).
More precisely

log 3—log 2
~ klog N, 2?§g2 ?fg:«;EN[K]

for an explicit constant k = 1.49283 ... given by

2 log 27
kzﬁv H = log(4/3( +2Z 277 2 - 10g2)12§16)




CL dynamical system (Z,T')

1)

= 3

02 04 06

The map for the CL algorithm. The map for Euclid’s algorithm.



The CL dynamical system [Chan05]

T(z)

x

ThemapT:7T—1

Branches 1 Inverse branches
Forx € 7, :=[27%71,279] 9-a
ha(x) := , H:={hg:a €N},
9—a 1+
v To() = z L. and at depth &

where a(x) — Uogg(l/ﬂ?)J ] = {hag, 0---0hg, 1 a1,...,a; € N}.



Reduced denominators and inverse branches

Euclidean algorithm:

» Homographies

1
hm(m):m—kx’

with det h,,, = —1.
» For h = hy,, 0 .0 hy,

b / 1
h(0) === |h'(0)| = -,
(0) . |h'(0)] 7

p/q reduced.




Reduced denominators and inverse branches

Euclidean algorithm:

» Homographies

1
hm<m):m+x’

with det h,,, = —1.
» For h = hy,, 0 .0 hy,

1

h(0) = § = W(O)| = .

p/q reduced.

CL algorithm:

» Homographies

1

ha(z) = 21 t2)’

with det h, = —2%.

» For h = hy,, o ™

-0 by,
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p/q reduced.
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Reduced denominators and inverse branches

Euclidean algorithm:

» Homographies

1
hm<m):m+x’

with det h,,, = —1.

» For h = hy,, 0 .0 hy,

1

h(0) = § = W(O)| = .

p/q reduced.

CL algorithm:

» Homographies

1

ha(z) = 21 t2)’

with det h, = —2%.

» For h = hy,, o ™

-0 by,
D /
(o) = £ = 1/(0)] vs.

p/q reduced.

1
q2

Problem: Denominator retrieved is engorged by powers of two.
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Recording the dyadic behaviour

Solution: Dyadic numbers Qg !
Dyadic topology = Divisibility by 2 constraints,
using the dyadic norm | - |s.

Introduce dyadic component
» Mixed dynamical system (z,y) € Z := 7 X Qq,

T:2—Z, T(ry)=(Talz),Ta(y)),

forx € I, = [27%71,279] and any y € Q>.
> Evolution led by the real component, which determines a.

Dyadics Q2 have change of variables rule =
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Real component directs the dynamical system:
» sections F, fixing y € Qo asked to be C''(7).

» the dyadic component follows, demanding only integrability.
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Functional space F for the extended operator H,

Real component directs the dynamical system:

» sections F, fixing y € Qo asked to be C''(7).

» the dyadic component follows, demanding only integrability.
Ensuing space F makes H,

» have a dominant eigenvalue and spectral gap
relying strongly on the real component.

We can finish the dynamical analysis!

Problem |——> Dynamical System —— > Transfer operator

T:X=X H,
Asymptotics!|««——— Generating function

Singularity in terms of

Analysis (1d-H,)!

Dominant Spectral properties

Behaviour at dominant singularity
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Conclusion and further questions

» We have studied the average number of shifts and
subtractions for the CL algorithm.

» Study makes an interesting use of the dyadics in the
framework of

Questions:
1. Comparison to other binary algorithms: binary GCD, LSB.

2. Conjecture: The successive pairs (p;, ¢;) given by the
algorithm satisfy

lim 7 log ged(pi, ¢i) = 1/2.
1— 00
In what sense

> in expected value for rationals. Limit exists! value?
> almost everywhere for real numbers. Different problem.
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Other research directions and topics

For the first part
» Independence between py/qr and qx—1/qx-
» Slope subfamilies = work in progress, partial results.

» Multidimensional analogs? Brun?

For the second part
» More natural ged algorithm (p, ¢) — sort(r, p). Competitive?
» Explain

1
pe 1 _1
ki{{.lo A 0go ng(pka qk) 2

Leftout topics

» Random variable generation

Questions?
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Conditional expectations

We seek to characterise the logn behaviour of S(a,n).
To do this we exclude the cases in which 1 is small.

qk—1 qk
o L J

pn<1l/n n

Theorem

The conditional expectation of S,, with respect to i, > % satisfies

s,

1 12
> ﬁ] = ﬁlogn—i- 0(1).
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Independence of pi/qr and qi—1/qx

Intuitive [dynamical proof and generalization?]

» Mirror tells us that
Pr/qk = [ma,...,mg), Qk—1/qr = [Mk, Mp—1, ..., m1].

= Result determined by first digits
and digits have stationary behaviour.

Useful

» Limits in fixed n model are independent from distribution of
a € [0,1] as long as it has a density w.r.t. Lebesgue.

» Could be used (?77?) for other expansions like CL
Pk/Qk = <a17 ce 7ak> ) zakafl/Qk = <17 Ak, Qfg—15 -« - - 7a'2> )

= 2% Qy_1/Qy, distributed with Gauss-density on [1/2,1].
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= qi_1 and p; are almost modular inverses.

Notice
Fractions have two developments, with different parities
—> Enough to solve the case in which p = qk__ll(mod.qk).

Theorem (see e.g. Shparlinski)
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Independence of pi/qr and qi—1/qx

Recall (classical)

Pho1Gk — Prgr—1 = (=1)* = pp. = ((—1)k+1q,;11> mod gy, .

= qi_1 and p; are almost modular inverses.

Notice
Fractions have two developments, with different parities
—> Enough to solve the case in which p = qk__ll(mod.qk).

Theorem (see e.g. Shparlinski)
Let g € Z~¢ and let [a1,b1], [az, b2] C [0, 1], then for any € > 0

1
() Z 1(9 %)E[ahbﬂx[azbz}

ela) = (&

ged(a,q)=1

= (bl — al) (bQ — ag) + O(q_1/2+5) .

-1 . .
— ¢ and %m‘)dq behave as if they were independent!
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Important subfamilies

> Slope « :
periodic, Christoffel words.

» Slope «a quadratic irrational:
come up naturally as fixed points of substitution.

Two elements
> key prefix (mq,...,my) with k such that ¢,._1(a) <n < g(a).

» completion (M1, ..., mp) of the “period”.

Generating functions are now
= Quasi-inverse (I — Hy) ™!
applied to another one similar to the previous slide.

We expect unified solution with the real case
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Slope subfamilies

Models.
» For a = hm(0) :
here ¢ = |h.,,(0)|~1/2 is the reduced denominator.
» For quadratic irrational a = hm() : size(a) == v(a) !
here v(a)~! = |k, (a)|~'/? is the analog of q.

Bound the size by D and pick random « with size(«) < D.
= study Pp(Sn(a) < A) as D,n — oo in some way ?
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Slope subfamilies: quadratic irrationals

Write o = hyy (@) = [w, w, .. .] for some w € Z;FO and fix n.
To compute S(a,n) we only require
v=(wy,...,wg)
with gx—1(a) < n < gi(a). Write
v =w"', e£v 2w,

the index ¢ = /(c, n) is known as the number of turns.

Number of turns is key
> Case £ = 0 is the simplest, and closely related to the rationals.

» Case £ > 0 is more complicated, seems to simplify as £ — oc.



Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective
> the averages (ai(z) + ...+ an(z))/M.
» the exponential growth of “natural continuants” Qg(z).



Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective
> the averages (ai(x) + ...+ apm(x))/M.
» the exponential growth of “natural continuants” Qg(z).

Results concerning almost every x € 7
= truncate the expansion a1(z), az(x), ... at depth k.



Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective
> the averages (a1(z) + ... +apm(x))/M.
» the exponential growth of “natural continuants” Qg(z).

Results concerning almost every x € 7
= truncate the expansion a1(z), az(x), ... at depth k.

Adapting our methods to this context is work in progress:

» behaviour of continuants () differs from rational case.



Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective
> the averages (a1(z) + ... +apm(x))/M.
» the exponential growth of “natural continuants” Qg(z).

Results concerning almost every x € 7
= truncate the expansion a1(z), az(x), ... at depth k.

Adapting our methods to this context is work in progress:
» behaviour of continuants () differs from rational case.

> we conjectur —%E[logg |Qkl2] ~1/2



Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective
> the averages (a1(z) + ... +apm(x))/M.
» the exponential growth of “natural continuants” Qg(z).

Results concerning almost every x € 7
= truncate the expansion a1(z), az(x), ... at depth k.

Adapting our methods to this context is work in progress:
» behaviour of continuants () differs from rational case.

» we conjecture — 1 E[logy |Qgl2] ~ 1/2
— we have proved the limit exists



Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective
> the averages (a1(z) + ... +apm(x))/M.
» the exponential growth of “natural continuants” Qg(z).

Results concerning almost every x € 7
= truncate the expansion a1(z), az(x), ... at depth k.

Adapting our methods to this context is work in progress:
» behaviour of continuants () differs from rational case.

» we conjecture — 1 E[logy |Qgl2] ~ 1/2
— we have proved the limit exists
. explicit invariant density ¥ (z,y) ?



Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective
> the averages (a1(z) + ... +apm(x))/M.
» the exponential growth of “natural continuants” Qg(z).

Results concerning almost every x € 7
= truncate the expansion a1(z), az(x), ... at depth k.

Adapting our methods to this context is work in progress:
» behaviour of continuants () differs from rational case.
» we conjecture — 1 E[logy |Qgl2] ~ 1/2
— we have proved the limit exists
. explicit invariant density ¥ (z,y) ?
— related to growth of ged(p, ¢) in the algorithm!
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Mirrors
The conjecure
log, ged (piy gi) ~ /2.
leads us to mirrors.

» The successive pairs (p;, ¢;) correspond to convergents

(ak,...,ap), k=1,...,p.

» Moreover

Q(ak7 Af41y - - - 70’]7) = 2%&@(17 Ap, Ap—1 - - - 7ak+1) .

= related to convergents of the mirror expansion
(ap,ap—1,...,a1).
» Average properties of mirror strongly associated with a
“mirrored” transfer operator

H1,17w,w,17w .
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Binary gcd algorithms

Other well-known binary algorithms include
» The binary GCD

» The LSB (least significant bits) algorithm
— Informally “the Tortoise and the Hare".

The dyadics play different roles in the dynamical analysis

» For the binary GCD: dyadics are drawn
probabilistically and independently.

» For the LSB: dyadics play the main role!

Unify the analysis to better understand the role of the dyadics?
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