Probabilistic studies in Number Theory and Word Combinatorics: instances of dynamical analysis

Pablo Rotondo

IRIF, Paris 7 Diderot,

Universidad de la República, Uruguay

GREYC, associate

PhD thesis defence, IRIF, September 27, 2018.

Deciphering the title

Probabilistic analysis

 $\begin{array}{l} \mbox{Object/experiment/execution?} \\ \Rightarrow \mbox{Models, averages, distribution?} \end{array}$

Deciphering the title

Probabilistic analysis

 $\begin{array}{l} \mbox{Object/experiment/execution?} \\ \Rightarrow \mbox{Models, averages, distribution?} \end{array}$

Number Theory

Study of *integers*

$$\mathbb{Z}, \{2, 3, 5, 7, 11, \ldots\}, \text{gcd}, \zeta(s)$$

Deciphering the title

Probabilistic analysis

 $\begin{array}{l} \mbox{Object/experiment/execution?} \\ \Rightarrow \mbox{Models, averages, distribution?} \end{array}$

Number Theory

Study of integers

- $\mathbb{Z}, \{2, 3, 5, 7, 11, \ldots\}, \text{gcd}, \zeta(s)$
 - Word Combinatorics

Study of *words* \Rightarrow subwords (factors), frequencies

 $\begin{array}{c} \textbf{Thue-Morse}\\ \sigma\colon 0\mapsto 01,\,1\mapsto 10\\ 01101001\ldots \end{array}$

Some key words

Key objects

Sturmian words

- Lowest complexity, not eventually periodic.
- Recurrence function: how often factors reappear?

Continued Logarithm

- Greatest common divisor algorithm.
- Binary shifts and substractions.

Key objects

Sturmian words

- Lowest complexity, not eventually periodic.
- Recurrence function: how often factors reappear?

Continued Logarithm

- Greatest common divisor algorithm.
- Binary shifts and substractions.

Neither had been studied on average.

Key objects

Sturmian words

- Lowest complexity, not eventually periodic.
- Recurrence function: how often factors reappear?

Continued Logarithm

- Greatest common divisor algorithm.
- Binary shifts and substractions.

Neither had been studied on average.

Dynamical analysis

- Objects/algorithms described by dynamical system.
- Tools from dynamical systems.
- Probabilistic analysis.

This talk

1. General Introduction: continued fractions and dynamical systems

- Continued Fractions
- Euclidean dynamical system
- 2. The recurrence function of a random Sturmian word
 - Sturmian words and recurrence
 - Our models and results
 - Comparison between models and slope families

3. The Continued Logarithm

- Origins and algorithm
- The CL dynamical system [Chan05]
- Extended system and results
- Conclusions and extensions

Section

1. General Introduction: continued fractions and dynamical systems

- Continued Fractions
- Euclidean dynamical system
- 2. The recurrence function of a random Sturmian word
 - Sturmian words and recurrence
 - Our models and results
 - Comparison between models and slope families

3. The Continued Logarithm

- Origins and algorithm
- The CL dynamical system [Chan05]
- Extended system and results
- Conclusions and extensions

Continued Fractions

Every irrational number $\alpha \in (0,1)$ has a unique representation

where $m_1, m_2, \ldots \ge 1$ are integers called the digits or quotients.

Continued Fractions

Every irrational number $\alpha \in (0,1)$ has a unique representation

$$\alpha = \frac{1}{m_1 + \frac{1}{m_2 + \ddots}}$$

where $m_1, m_2, \ldots \ge 1$ are integers called the digits or quotients.

Truncating the expansion at depth k we get a convergent

$$\frac{p_k(\alpha)}{q_k(\alpha)} = \frac{1}{m_1 + \frac{1}{m_2 + \cdot \cdot \cdot \frac{1}{m_k}}}$$

The denominators $q_k(\alpha)$ are called the continuants of α .

Euclidean Algorithm and Continued Fractions

Property Given integers x and y with $0 \le x \le y$

 $gcd(x, y) = gcd(y \mod x, x).$

In conjunction with gcd(0, y) = y, we get the Euclidean Algorithm.

Euclidean Algorithm and Continued Fractions

Property

Given integers x and y with $0 \leq x \leq y$

$$gcd(x, y) = gcd(y \mod x, x).$$

In conjunction with gcd(0, y) = y, we get the Euclidean Algorithm.

This algorithm is equivalent to the continued fraction expansion:

▶ given the integer division y = mx + r,

$$\frac{x}{y} = \frac{1}{m + \frac{r}{x}} \,,$$

and the process continues with $\frac{r}{x}$.

Euclidean Algorithm and Continued Fractions

Property

Given integers x and y with $0 \leq x \leq y$

$$gcd(x, y) = gcd(y \mod x, x).$$

In conjunction with gcd(0, y) = y, we get the Euclidean Algorithm.

This algorithm is equivalent to the continued fraction expansion:

▶ given the integer division y = mx + r,

$$\frac{x}{y} = \frac{1}{m + \frac{r}{x}} \,,$$

and the process continues with $\frac{r}{x}$.

Euclidean dynamical system

To get the digits of the continued fraction expansion observe

$$\alpha = \frac{1}{m_1 + \frac{1}{m_2 + \ddots}}$$

$$\implies m_1 = \left\lfloor \frac{1}{\alpha} \right\rfloor, \qquad \frac{1}{m_2 + \frac{1}{m_3 + \ddots}} = \left\{ \frac{1}{\alpha} \right\}.$$

The map

$$T: (0,1) \to (0,1), \qquad x \mapsto \left\{\frac{1}{x}\right\},$$

is known as the Gauss map.

Gauss map

Gauss map

Question: If $g \in \mathcal{C}^0(\mathcal{I})$ were the density of $x \Longrightarrow$ density of T(x)?

$$\mathbf{I}_{s}[g](x) = \sum_{h \in \mathcal{H}} |h'(x)|^{\circ} g(h(x))$$

Principles of dynamical analysis [Vallée, Flajolet, Baladi,...]:

Generating functions.

•

- H_s describes all executions of depth 1.
- $\mathbf{H}_s^2 = \mathbf{H}_s \circ \mathbf{H}_s$ describes all executions of depth 2.

▶ and
$$(\mathbf{I} - \mathbf{H}_s)^{-1} = \mathbf{I} + \mathbf{H}_s + \mathbf{H}_s^2 + \dots$$
 describes *all* executions.

Principles of dynamical analysis [Vallée, Flajolet, Baladi, ...]:

Generating functions.

•

- \mathbf{H}_s describes all executions of depth 1.
- $\mathbf{H}_s^2 = \mathbf{H}_s \circ \mathbf{H}_s$ describes all executions of depth 2.

▶ and
$$(\mathbf{I} - \mathbf{H}_s)^{-1} = \mathbf{I} + \mathbf{H}_s + \mathbf{H}_s^2 + \dots$$
 describes *all* executions.

Section

1. General Introduction: continued fractions and dynamical systems

- Continued Fractions
- Euclidean dynamical system

2. The recurrence function of a random Sturmian word

- Sturmian words and recurrence
- Our models and results
- Comparison between models and slope families

3. The Continued Logarithm

- Origins and algorithm
- The CL dynamical system [Chan05]
- Extended system and results
- Conclusions and extensions

Definition

Complexity function of an infinite word $oldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$

 $p_{\boldsymbol{u}} \colon \mathbb{N} \to \mathbb{N}\,, \qquad p_{\boldsymbol{u}}(n) = \#\{\text{factors of length } n \text{ in } \boldsymbol{u}\}\,.$

Definition

Complexity function of an infinite word $oldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$

 $p_{\boldsymbol{u}} \colon \mathbb{N} \to \mathbb{N} \,, \qquad p_{\boldsymbol{u}}(n) = \#\{ \text{factors of length } n \text{ in } \boldsymbol{u} \} \,.$

Important property

•

$$u \in \mathcal{A}^{\mathbb{N}}$$
 is not eventually periodic
 $\iff p_u(n+1) > p_u(n)$ for all $n \in \mathbb{N}$

Definition

Complexity function of an infinite word $oldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$

 $p_{\boldsymbol{u}} \colon \mathbb{N} \to \mathbb{N}\,, \qquad p_{\boldsymbol{u}}(n) = \#\{\text{factors of length } n \text{ in } \boldsymbol{u}\}\,.$

Important property

$$u \in \mathcal{A}^{\mathbb{N}}$$
 is not eventually periodic
 $\iff p_u(n+1) > p_u(n)$ for all $n \in \mathbb{N}$
 $\implies p_u(n) \ge n+1$.

Sturmian words are the "simplest" that are not eventually periodic.

Definition

Complexity function of an infinite word $oldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$

 $p_{\boldsymbol{u}} \colon \mathbb{N} \to \mathbb{N}\,, \qquad p_{\boldsymbol{u}}(n) = \#\{\text{factors of length } n \text{ in } \boldsymbol{u}\}\,.$

Important property

$$u \in \mathcal{A}^{\mathbb{N}}$$
 is not eventually periodic
 $\iff p_u(n+1) > p_u(n)$ for all $n \in \mathbb{N}$
 $\implies p_u(n) \ge n+1$.

Sturmian words are the "simplest" that are not eventually periodic.

Definition

 $\boldsymbol{u} \in \{0,1\}^{\mathbb{N}}$ is Sturmian $\iff p_{\boldsymbol{u}}(n) = n+1$ for each $n \ge 0$.

Sturmian words and digital lines

Sturmian words correspond to discrete codings of lines, from below or above, by horizontal lines and diagonals.

Figure : Coding of the line $y = \alpha x + \beta$.

Sturmian words and digital lines

Sturmian words correspond to discrete codings of lines, from below or above, by horizontal lines and diagonals.

Figure : Coding of the line $y = \alpha x + \beta$.

The *slope* α plays a key role: the finite factors are determined exclusively by α .

Recurrence of Sturmian words

Definition (Recurrence function)

Consider an infinite word u. Its recurrence function is:

 $R_{\boldsymbol{u}}(n) = \inf \ \{m \in \mathbb{N} : \text{every factor of length } m \$

contains all the factors of length n.

Recurrence of Sturmian words

Definition (Recurrence function)

Consider an infinite word u. Its recurrence function is:

 $R_{\boldsymbol{u}}(n) = \inf \{ m \in \mathbb{N} : \text{ every factor of length } m \\ \text{ contains all the factors of length } n \}.$

• Cost we have to pay to discover the factors if we start from an arbitrary point in $u = u_1 u_2 \dots$

Recurrence of Sturmian words

Definition (Recurrence function)

Consider an infinite word u. Its recurrence function is:

 $R_{\boldsymbol{u}}(n) = \inf \{ m \in \mathbb{N} : \text{ every factor of length } m \\ \text{ contains all the factors of length } n \}.$

► Cost we have to pay to discover the factors if we start from an arbitrary point in u = u₁u₂...

Theorem (Morse, Hedlund, 1940)

The recurrence function is piecewise affine and satisfies

 $R_{\alpha}(n) = n - 1 + q_{k-1}(\alpha) + q_k(\alpha)$, for $q_{k-1}(\alpha) \le n < q_k(\alpha)$.

Recurrence quotient and its parameters

$$S(lpha,n) := rac{R_lpha(n)+1}{n} = 1 + rac{q_{k-1}(lpha)+q_k(lpha)}{n}\,,\quad q_{k-1}(lpha) \leq n < q_k(lpha)\,.$$

Recurrence quotient and its parameters

Recurrence quotient and its parameters

Studies of the recurrence function

Classical results concern the worst case scenarios for *fixed* α :

 $\forall \epsilon > 0 \text{, for a.e. } \alpha$

$$\limsup_{n \to \infty} \frac{S(\alpha, n)}{\log n} = \infty, \quad \lim_{n \to \infty} \frac{S(\alpha, n)}{(\log n)^{1+\epsilon}} = 0.$$
(Morse&Hedlund '40)

Studies of the recurrence function

 $\forall \epsilon > 0$, for a.e. α

Classical results concern the worst case scenarios for fixed α :

 $\limsup_{n \to \infty} \frac{S(\alpha, n)}{\log n} = \infty \,, \quad \lim_{n \to \infty} \frac{S(\alpha, n)}{(\log n)^{1+\epsilon}} = 0 \,. \tag{Morse&Hedlund '40}$

We define two probabilistic models

in both cases α is drawn uniformly at random

1) fix the length $n \Rightarrow$ random variables $S_n(\alpha) := S(\alpha, n)$. in distribution and expectation as $n \to \infty$.

Studies of the recurrence function

 $\forall \epsilon > 0$, for a.e. α

Classical results concern the worst case scenarios for fixed α :

 $\limsup_{n \to \infty} \frac{S(\alpha, n)}{\log n} = \infty \,, \quad \lim_{n \to \infty} \frac{S(\alpha, n)}{(\log n)^{1+\epsilon}} = 0 \,. \tag{Morse&Hedlund '40}$

We define two probabilistic models

in both cases α is drawn uniformly at random

- 1) fix the length $n \Rightarrow$ random variables $S_n(\alpha) := S(\alpha, n)$. in distribution and expectation as $n \to \infty$.
- 2) fix index k of interval $[q_{k-1}(\alpha), q_k(\alpha))$ and the relative position $\mu \Rightarrow$ sequence $(n_k(\alpha))_k$.

Figure : Sequence of indices $(n_k(\alpha))_k$ for $\mu = 1/3$.

Results

Model: fixed n. [RV17]

- ► Limit distribution for *S_n* and more general class.
- Convergence of histograms to limit density.
- Conditional expectations $\mathbb{E}[S_n | \mu_n \ge \epsilon(n)] \sim |\log \epsilon(n)|.$

Figure : Limit density of S_n .

Results

Model: fixed n. [RV17]

- ► Limit distribution for *S_n* and more general class.
- Convergence of histograms to limit density.
- Conditional expectations $\mathbb{E}[S_n | \mu_n \ge \epsilon(n)] \sim \left| \log \epsilon(n) \right|.$

Model: fixed μ . [BCRVV15]

• Limit distribution of $S^{\langle k \rangle}_{\mu}(\alpha) := S(\alpha, n_k)$

depending on μ .

• Study of
$$\mathbb{E}[S_{\mu}^{\langle k
angle}(lpha)]$$
 as

$$\mu:=\mu_k\to 0\,.$$

Figure : Limit density of S_n .

$$\begin{split} & \text{For } q_{k-1}(\alpha) \leq n < q_k(\alpha) \\ & S_n(\alpha) = f(x,y) := 1 + x + y \,, \qquad x = \frac{q_{k-1}(\alpha)}{n} \,, \quad y = \frac{q_k(\alpha)}{n} \,. \end{split}$$

$$\begin{split} & \operatorname{For}\, q_{k-1}(\alpha) \leq n < q_k(\alpha) \\ & S_n(\alpha) = f(x,y) := 1+x+y\,, \qquad x = \frac{q_{k-1}(\alpha)}{n}\,, \quad y = \frac{q_k(\alpha)}{n}\,. \end{split}$$

Distribution is a coprime Riemann sum

$$\mathbb{P}\left(S_n \le \lambda\right) = \frac{1}{n^2} \sum_{(a,b) \in \mathbb{N}^2: (a,b)=1} \omega\left(\frac{a}{n}, \frac{b}{n}\right) \left[\left(\frac{a}{n}, \frac{b}{n}\right) \in \Delta_f(\lambda)\right],$$

with $\omega(x, y) = \frac{2}{y(x+y)}$, $\Delta_f(\lambda) = \{(x, y) : 0 < x \le 1 < y, f(x, y) \le \lambda\}$.

$$\begin{array}{l} \text{For } q_{k-1}(\alpha) \leq n < q_k(\alpha) \\ \\ S_n(\alpha) = f(x,y) := 1 + x + y \,, \qquad x = \frac{q_{k-1}(\alpha)}{n} \,, \quad y = \frac{q_k(\alpha)}{n} \,. \end{array}$$

Distribution is a coprime Riemann sum

$$\mathbb{P}\left(S_n \le \lambda\right) = \frac{1}{n^2} \sum_{(a,b) \in \mathbb{N}^2: (a,b)=1} \omega\left(\frac{a}{n}, \frac{b}{n}\right) \left[\left(\frac{a}{n}, \frac{b}{n}\right) \in \Delta_f(\lambda)\right],$$

with $\omega(x, y) = \frac{2}{y(x+y)}$, $\Delta_f(\lambda) = \{(x, y) : 0 < x \le 1 < y, f(x, y) \le \lambda\}$.

A constant \cdot the integral

$$\lim_{n \to \infty} \mathbb{P} \left(S_n \le \lambda \right)$$
$$= \frac{6}{\pi^2} \iint_{\Delta_f(\lambda)} \omega(x, y) dx dy$$

$$\begin{array}{l} \text{For } q_{k-1}(\alpha) \leq n < q_k(\alpha) \\ \\ S_n(\alpha) = f(x,y) := 1+x+y \,, \qquad x = \frac{q_{k-1}(\alpha)}{n} \,, \quad y = \frac{q_k(\alpha)}{n} \,. \end{array}$$

Distribution is a coprime Riemann sum

$$\mathbb{P}\left(S_n \le \lambda\right) = \frac{1}{n^2} \sum_{(a,b) \in \mathbb{N}^2: (a,b)=1} \omega\left(\frac{a}{n}, \frac{b}{n}\right) \left[\left(\frac{a}{n}, \frac{b}{n}\right) \in \Delta_f(\lambda)\right],$$

with $\omega(x, y) = \frac{2}{y(x+y)}$, $\Delta_f(\lambda) = \{(x, y) : 0 < x \le 1 < y, f(x, y) \le \lambda\}$.

A constant · the integral

$$\lim_{n \to \infty} \mathbb{P} \left(S_n \le \lambda \right)$$
$$= \frac{6}{\pi^2} \iint_{\Delta_f(\lambda)} \omega(x, y) dx dy$$

Note. Generalizes to other fs.

The model $n \rightarrow \infty$ is related to the quasi-inverse, how?

The model $n \rightarrow \infty$ is related to the quasi-inverse, how?

• Harmonic sum in t := 1/n with frequencies (q_k)

$$\Pr(S_n \le \lambda) = \frac{1}{n^2} \sum_k \sum_{m_1, \dots, m_k \ge 1} g_\lambda\left(\frac{q_{k-1}}{q_k}, \frac{q_k}{n}\right) ,$$

for a certain g_{λ} .

The model $n \to \infty$ is related to the quasi-inverse, how?

• Harmonic sum in t := 1/n with frequencies (q_k)

$$\Pr(S_n \le \lambda) = \frac{1}{n^2} \sum_k \sum_{m_1, \dots, m_k \ge 1} g_\lambda\left(\frac{q_{k-1}}{q_k}, \frac{q_k}{n}\right) ,$$

for a certain g_{λ} .

Mellin transform turns it into a quasi-inverse

$$(\mathbf{I} - \mathbf{H}_{s/2+1})^{-1} [G_s](0),$$

for appropriate G_s that is an integral of g_{λ} .

The model $n \to \infty$ is related to the quasi-inverse, how?

• Harmonic sum in t := 1/n with frequencies (q_k)

$$\Pr(S_n \le \lambda) = \frac{1}{n^2} \sum_k \sum_{m_1, \dots, m_k \ge 1} g_\lambda\left(\frac{q_{k-1}}{q_k}, \frac{q_k}{n}\right) ,$$

for a certain g_{λ} .

Mellin transform turns it into a quasi-inverse

$$(\mathbf{I} - \mathbf{H}_{s/2+1})^{-1} [G_s](0),$$

for appropriate G_s that is an integral of g_{λ} .

▶ Requires precise analysis for a vertical strip around ℜs = 0
 ⇒ Dolgopyat-Baladi-Vallée estimates.

The model $n \to \infty$ is related to the quasi-inverse, how?

• Harmonic sum in t := 1/n with frequencies (q_k)

$$\Pr(S_n \le \lambda) = \frac{1}{n^2} \sum_k \sum_{m_1, \dots, m_k \ge 1} g_\lambda\left(\frac{q_{k-1}}{q_k}, \frac{q_k}{n}\right) ,$$

for a certain g_{λ} .

Mellin transform turns it into a quasi-inverse

$$(\mathbf{I} - \mathbf{H}_{s/2+1})^{-1} [G_s](0),$$

for appropriate G_s that is an integral of g_{λ} .

▶ Requires precise analysis for a vertical strip around ℜs = 0
 ⇒ Dolgopyat-Baladi-Vallée estimates.

Important subfamilies

• Slope α rational:

periodic, Christoffel words.

Slope α quadratic irrational:

come up naturally as fixed points of substitution.

Important subfamilies

• Slope α rational:

periodic, Christoffel words.

Slope α quadratic irrational:

come up naturally as fixed points of substitution.

We expect unified solution with the real case:

- similar results under appropriate models.
- methods involve Dirichlet series.

Section

1. General Introduction: continued fractions and dynamical systems

- Continued Fractions
- Euclidean dynamical system
- 2. The recurrence function of a random Sturmian word
 - Sturmian words and recurrence
 - Our models and results
 - Comparison between models and slope families

3. The Continued Logarithm

- Origins and algorithm
- The CL dynamical system [Chan05]
- Extended system and results
- Conclusions and extensions

The origins

Introduced by Gosper as a mutation of continued fractions:

- ▶ gives rise to a gcd algorithm akin to Euclid's.
- quotients are powers of two:
 - \circ small information parcel.
 - \circ employs only shifts and subtractions.
- appears to be simple and efficient.

The origins

Introduced by Gosper as a mutation of continued fractions:

- ▶ gives rise to a gcd algorithm akin to Euclid's.
- quotients are powers of two:
 - \circ small information parcel.
 - \circ employs only shifts and subtractions.
- appears to be simple and efficient.

More recently:

- ▷ Shallit studied its worst-case performance in 2016.
- ▷ We consider its average performance!

A sequence of binary "divisions" beginning from (p,q):

$$q = 2^{a}p + r$$
, $0 \le r < 2^{a}p$.

A sequence of binary "divisions" beginning from (p, q):

$$q = 2^a p + r$$
, $0 \le r < 2^a p$.

Note. $a = \max\{k \ge 0 : 2^k p \le q\}$

A sequence of binary "divisions" beginning from (p,q):

$$q = \mathbf{2}^{\mathbf{a}} p + r \,, \qquad 0 \le r < 2^{a} p \,.$$

Note. $a = \max\{k \ge 0 : 2^k p \le q\}$

Continue with the new pair

$$(p,q)\mapsto (p',q')=(r,2^ap)\,,$$

until the remainder r equals 0.

A sequence of binary "divisions" beginning from (p,q):

$$q = 2^a p + r$$
, $0 \le r < 2^a p$.

Note. $a = \max\{k \ge 0 : 2^k p \le q\}$

Continue with the new pair

$$(p,q)\mapsto (p',q')=(r,2^ap)\,,$$

until the remainder r equals 0.

Example. Let us find gcd(13, 31).

a	p	q	r	$2^a p$
1	13	31	5	26
2	5	26	6	20
1	6	20	8	12
0	8	12	4	8
1	4	8	0	8

A sequence of binary "divisions" beginning from (p,q):

$$q = 2^a p + r$$
, $0 \le r < 2^a p$.

Note. $a = \max\{k \ge 0 : 2^k p \le q\}$

Continue with the new pair

$$(p,q)\mapsto (p',q')=(r,2^ap)\,,$$

until the remainder r equals 0.

Example. Let us find gcd(13, 31).

a	p	q	r	$2^a p$
1	13	31	5	26
2	5	26	6	20
1	6	20	8	12
0	8	12	4	8
1	4	8	0	8

► Ended with (0,8), what is the gcd?
⇒ odd gcd × parasitic powers of 2.

$$\Omega_N = \{ (p,q) \in \mathbb{N} \times \mathbb{N} : p \le q \le N \} \,.$$

Worst-case studied by Shallit (2016): $2 \log_2 N + O(1)$ steps.

$$\Omega_N = \{ (p,q) \in \mathbb{N} \times \mathbb{N} : p \le q \le N \} \,.$$

Worst-case studied by Shallit (2016): $2\log_2 N + O(1)$ steps. \circ Family $(p,q) = (1, 2^n - 1)$ gives the bound asymptotically.

$$\Omega_N = \{ (p,q) \in \mathbb{N} \times \mathbb{N} : p \le q \le N \} \,.$$

Worst-case studied by Shallit (2016): $2\log_2 N + O(1)$ steps. \circ Family $(p,q) = (1, 2^n - 1)$ gives the bound asymptotically.

We studied the average number of steps over Ω_N , posed by Shallit.

$$\Omega_N = \{ (p,q) \in \mathbb{N} \times \mathbb{N} : p \le q \le N \} \,.$$

Worst-case studied by Shallit (2016): $2\log_2 N + O(1)$ steps. \circ Family $(p,q) = (1, 2^n - 1)$ gives the bound asymptotically.

We studied the average number of steps over Ω_N , posed by Shallit.

Main result [RV18].

Mean number of steps $E_N[K]$ and shifts $E_N[S]$ are $\Theta(\log N)$. More precisely

 $E_N[K] \sim k \log N$, $E_N[S] \sim \frac{\log 3 - \log 2}{2 \log 2 - \log 3} E_N[K]$

for an *explicit constant* $k \doteq 1.49283...$ given by

$$k = \frac{2}{H}$$
, $H =$ entropy of appropriate DS

$$\Omega_N = \{ (p,q) \in \mathbb{N} \times \mathbb{N} : p \le q \le N \} \,.$$

Worst-case studied by Shallit (2016): $2\log_2 N + O(1)$ steps. \circ Family $(p,q) = (1, 2^n - 1)$ gives the bound asymptotically.

We studied the average number of steps over Ω_N , posed by Shallit.

Main result [RV18].

Mean number of steps $E_N[K]$ and shifts $E_N[S]$ are $\Theta(\log N)$. More precisely

$$E_N[K] \sim k \log N$$
, $E_N[S] \sim \frac{\log 3 - \log 2}{2 \log 2 - \log 3} E_N[K]$

for an *explicit constant* $k \doteq 1.49283...$ given by

$$k = \frac{2}{H}, \quad H = \frac{1}{\log(4/3)} \left(\frac{\pi^2}{6} + 2\sum_{j} \frac{(-1)^j}{2^j j^2} - (\log 2) \frac{\log 27}{\log 16}\right)$$

CL dynamical system (\mathcal{I}, T)

The map for the CL algorithm. The map for Euclid's algorithm.

The CL dynamical system [Chan05]

Branches

For
$$x \in \mathcal{I}_a := [2^{-a-1}, 2^{-a}]$$

 $x \mapsto T_a(x) := \frac{2^{-a}}{x} - 1.$

where $a(x) := \lfloor \log_2(1/x) \rfloor$.

Inverse branches

$$h_a(x) := \frac{2^{-a}}{1+x}, \quad \mathcal{H} := \left\{ h_a : a \in \mathbb{N} \right\},$$

and at depth k

$$\mathcal{H}^k := \left\{ h_{a_1} \circ \cdots \circ h_{a_k} : a_1, \dots, a_k \in \mathbb{N} \right\}.$$

Reduced denominators and inverse branches

Reduced denominators and inverse branches

Reduced denominators and inverse branches

Problem: Denominator retrieved is engorged by powers of two.

Recording the dyadic behaviour

Solution: Dyadic numbers \mathbb{Q}_2 !

Dyadic topology = Divisibility by 2 constraints,

using the dyadic norm $|\cdot|_2$.
Solution: Dyadic numbers \mathbb{Q}_2 !

Dyadic topology = Divisibility by 2 constraints,

using the dyadic norm $|\cdot|_2$.

Introduce dyadic component

• Mixed dynamical system $(x, y) \in \underline{\mathcal{I}} := \mathcal{I} \times \mathbb{Q}_2$,

Solution: Dyadic numbers \mathbb{Q}_2 !

Dyadic topology = Divisibility by 2 constraints,

using the dyadic norm $|\cdot|_2$.

Introduce dyadic component

• Mixed dynamical system $(x, y) \in \underline{\mathcal{I}} := \mathcal{I} \times \mathbb{Q}_2$,

$$\underline{T} \colon \underline{\mathcal{I}} \to \underline{\mathcal{I}} \,, \quad \underline{T}(x, y) = \left(\underline{T_a}(x), \underline{T_a}(y) \right) ,$$

for $x \in \mathcal{I}_a = [2^{-a-1}, 2^{-a}]$ and any $y \in \mathbb{Q}_2$.

Solution: Dyadic numbers \mathbb{Q}_2 !

Dyadic topology = Divisibility by 2 constraints,

using the dyadic norm $|\cdot|_2$.

Introduce dyadic component

• Mixed dynamical system $(x, y) \in \underline{\mathcal{I}} := \mathcal{I} \times \mathbb{Q}_2$,

$$\underline{T} \colon \underline{\mathcal{I}} \to \underline{\mathcal{I}} \,, \quad \underline{T}(x, y) = \left(\underline{T_a}(x), \underline{T_a}(y) \right) ,$$

for $x \in \mathcal{I}_a = [2^{-a-1}, 2^{-a}]$ and any $y \in \mathbb{Q}_2$.

• Evolution led by the real component, which determines *a*.

Solution: Dyadic numbers \mathbb{Q}_2 !

Dyadic topology = Divisibility by 2 constraints,

using the dyadic norm $|\cdot|_2$.

Introduce dyadic component

• Mixed dynamical system $(x, y) \in \underline{\mathcal{I}} := \mathcal{I} \times \mathbb{Q}_2$,

$$\underline{T} \colon \underline{\mathcal{I}} \to \underline{\mathcal{I}} \,, \quad \underline{T}(x,y) = \left(\underline{T_a}(x), \underline{T_a}(y) \right) ,$$

for $x \in \mathcal{I}_a = [2^{-a-1}, 2^{-a}]$ and any $y \in \mathbb{Q}_2$.

• Evolution led by the real component, which determines *a*.

Dyadics \mathbb{Q}_2 have change of variables rule \Rightarrow Transfer Operator $\underline{\mathbf{H}}_s$!

Functional space ${\cal F}$ for the extended operator $\underline{{f H}}_s$

Real component directs the dynamical system:

- sections F_y fixing $y \in \mathbb{Q}_2$ asked to be $C^1(\mathcal{I})$.
- the dyadic component follows, demanding only integrability.

Functional space ${\cal F}$ for the extended operator $\underline{{f H}}_s$

Real component directs the dynamical system:

- sections F_y fixing $y \in \mathbb{Q}_2$ asked to be $C^1(\mathcal{I})$.
- ► the dyadic component follows, demanding only integrability.

Ensuing space \mathcal{F} makes $\underline{\mathbf{H}}_{s}$

have a dominant eigenvalue and spectral gap relying strongly on the real component.

Functional space ${\cal F}$ for the extended operator $\underline{{f H}}_s$

Real component directs the dynamical system:

- sections F_y fixing $y \in \mathbb{Q}_2$ asked to be $C^1(\mathcal{I})$.
- ► the dyadic component follows, demanding only integrability.

Ensuing space \mathcal{F} makes $\underline{\mathbf{H}}_{s}$

have a dominant eigenvalue and spectral gap relying strongly on the real component.

We can finish the dynamical analysis!

- We have studied the average number of shifts and subtractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

- We have studied the average number of shifts and subtractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

1. Comparison to other binary algorithms: binary GCD, LSB.

- We have studied the average number of shifts and subtractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

- 1. Comparison to other binary algorithms: binary GCD, LSB.
- 2. Conjecture: The successive pairs (p_i, q_i) given by the algorithm satisfy

$$\lim_{i \to \infty} \frac{1}{i} \log_2 \gcd(p_i, q_i) = 1/2.$$

- We have studied the average number of shifts and subtractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

- 1. Comparison to other binary algorithms: binary GCD, LSB.
- 2. Conjecture: The successive pairs (p_i, q_i) given by the algorithm satisfy

$$\lim_{i \to \infty} \frac{1}{i} \log_2 \gcd(p_i, q_i) = 1/2.$$

In what sense

- in expected value for rationals.
- almost everywhere for real numbers.

- We have studied the average number of shifts and subtractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

- 1. Comparison to other binary algorithms: binary GCD, LSB.
- 2. Conjecture: The successive pairs (p_i, q_i) given by the algorithm satisfy

$$\lim_{i \to \infty} \frac{1}{i} \log_2 \gcd(p_i, q_i) = 1/2.$$

In what sense

- in expected value for rationals. Limit exists! value?
- almost everywhere for real numbers.

- We have studied the average number of shifts and subtractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

- 1. Comparison to other binary algorithms: binary GCD, LSB.
- 2. Conjecture: The successive pairs (p_i, q_i) given by the algorithm satisfy

$$\lim_{i \to \infty} \frac{1}{i} \log_2 \gcd(p_i, q_i) = 1/2.$$

In what sense

- in expected value for rationals. Limit exists! value?
- almost everywhere for real numbers. Different problem.

For the first part

- Independence between p_k/q_k and q_{k-1}/q_k .
- Slope subfamilies \Rightarrow work in progress, partial results.
- Multidimensional analogs? Brun?

For the first part

- Independence between p_k/q_k and q_{k-1}/q_k .
- Slope subfamilies \Rightarrow work in progress, partial results.
- Multidimensional analogs? Brun?

For the second part

- ▶ More natural gcd algorithm $(p,q) \mapsto \operatorname{sort}(r,p)$. Competitive?
- Explain

$$\lim_{k \to \infty} \frac{1}{k} \log_2 \gcd(p_k, q_k) = \frac{1}{2}.$$

For the first part

- Independence between p_k/q_k and q_{k-1}/q_k .
- Slope subfamilies \Rightarrow work in progress, partial results.
- Multidimensional analogs? Brun?

For the second part

- ▶ More natural gcd algorithm $(p,q) \mapsto \operatorname{sort}(r,p)$. Competitive?
- Explain

$$\lim_{k \to \infty} \frac{1}{k} \log_2 \gcd(p_k, q_k) = \frac{1}{2}.$$

Leftout topics

Random variable generation

For the first part

- Independence between p_k/q_k and q_{k-1}/q_k .
- Slope subfamilies \Rightarrow work in progress, partial results.
- Multidimensional analogs? Brun?

For the second part

▶ More natural gcd algorithm $(p,q) \mapsto \operatorname{sort}(r,p)$. Competitive?

Explain

$$\lim_{k \to \infty} \frac{1}{k} \log_2 \gcd(p_k, q_k) = \frac{1}{2}.$$

Leftout topics

Random variable generation

Questions?

Conditional expectations

We seek to characterise the $\log n$ behaviour of $S(\alpha, n)$.

To do this we exclude the cases in which μ is small.

Conditional expectations

We seek to characterise the $\log n$ behaviour of $S(\alpha, n)$.

To do this we exclude the cases in which μ is small.

Theorem

The conditional expectation of S_n with respect to $\mu_n \geq \frac{1}{n}$ satisfies

$$\mathbb{E}\left[S_n \middle| \mu_n \ge \frac{1}{n}\right] = \frac{12}{\pi^2} \log n + O(1) \,.$$

Independence of p_k/q_k and q_{k-1}/q_k

Intuitive [dynamical proof and generalization?]

Mirror tells us that

 $p_k/q_k = [m_1, \dots, m_k], \qquad q_{k-1}/q_k = [m_k, m_{k-1}, \dots, m_1].$

⇒ Result determined by first digits and digits have stationary behaviour.

Independence of p_k/q_k and q_{k-1}/q_k

Intuitive [dynamical proof and generalization?]

Mirror tells us that

 $p_k/q_k = [m_1, \dots, m_k], \qquad q_{k-1}/q_k = [m_k, m_{k-1}, \dots, m_1].$

 $\Rightarrow \mbox{Result determined by first digits} \\ \mbox{and digits have stationary behaviour.} \end{cases}$

Useful

• Limits in fixed n model are independent from distribution of $\alpha \in [0, 1]$ as long as it has a density w.r.t. Lebesgue.

Independence of p_k/q_k and q_{k-1}/q_k

Intuitive [dynamical proof and generalization?]

Mirror tells us that

 $p_k/q_k = [m_1, \dots, m_k], \qquad q_{k-1}/q_k = [m_k, m_{k-1}, \dots, m_1].$

 $\Rightarrow \mbox{Result determined by first digits} \\ \mbox{and digits have stationary behaviour.} \end{cases}$

Useful

- Limits in fixed n model are independent from distribution of $\alpha \in [0, 1]$ as long as it has a density w.r.t. Lebesgue.
- ► Could be used (??) for other expansions like CL

$$P_k/Q_k = \langle a_1, \dots, a_k \rangle, \quad 2^{a_k}Q_{k-1}/Q_k = \langle 1, a_k, a_{k-1}, \dots, a_2 \rangle,$$

 $\Rightarrow 2^{a_k}Q_{k-1}/Q_k$ distributed with Gauss-density on [1/2, 1].

$$p_{k-1}q_k - p_kq_{k-1} = (-1)^k \Rightarrow p_k = \left((-1)^{k+1}q_{k-1}^{-1}\right) \mod q_k$$

$$p_{k-1}q_k - p_kq_{k-1} = (-1)^k \Rightarrow p_k = \left((-1)^{k+1}q_{k-1}^{-1}\right) \mod q_k.$$

 $\Rightarrow q_{k-1}$ and p_k are almost modular inverses.

Notice

Fractions have two developments, with different parities \implies Enough to solve the case in which $p_k = q_{k-1}^{-1} \pmod{q_k}$.

$$p_{k-1}q_k - p_k q_{k-1} = (-1)^k \Rightarrow p_k = \left((-1)^{k+1} q_{k-1}^{-1}\right) \mod q_k$$

 $\Rightarrow q_{k-1}$ and p_k are almost modular inverses.

Notice

Fractions have two developments, with different parities \implies Enough to solve the case in which $p_k = q_{k-1}^{-1} \pmod{q_k}$.

Theorem (see e.g. Shparlinski) Let $q \in \mathbb{Z}_{>0}$ and let $[a_1, b_1], [a_2, b_2] \subset [0, 1]$, then for any $\epsilon > 0$

$$\frac{1}{\varphi(q)} \sum_{\substack{1 \le a \le q, \\ \gcd(a,q)=1}} \mathbf{1}_{\left(\frac{a}{q}, \frac{a^{-1} \mod q}{q}\right) \in [a_1, b_1] \times [a_2, b_2]} = (b_1 - a_1) (b_2 - a_2) + O(q^{-1/2 + \epsilon}).$$

$$p_{k-1}q_k - p_k q_{k-1} = (-1)^k \Rightarrow p_k = \left((-1)^{k+1}q_{k-1}^{-1}\right) \mod q_k$$

 $\Rightarrow q_{k-1}$ and p_k are almost modular inverses.

Notice

Fractions have two developments, with different parities \implies Enough to solve the case in which $p_k = q_{k-1}^{-1} \pmod{q_k}$.

Theorem (see e.g. Shparlinski) Let $q \in \mathbb{Z}_{>0}$ and let $[a_1, b_1], [a_2, b_2] \subset [0, 1]$, then for any $\epsilon > 0$

$$\frac{1}{\varphi(q)} \sum_{\substack{1 \le a \le q, \\ \gcd(a,q)=1}} \mathbf{1}_{\left(\frac{a}{q}, \frac{a^{-1} \mod q}{q}\right) \in [a_1, b_1] \times [a_2, b_2]} = (b_1 - a_1) (b_2 - a_2) + O(q^{-1/2 + \epsilon}).$$

 $\implies \frac{a}{q}$ and $\frac{a^{-1} \mod q}{q}$ behave as if they were independent!

 Slope α rational: periodic, Christoffel words.

Slope α quadratic irrational:

come up naturally as fixed points of substitution.

- Slope α rational: periodic, Christoffel words.
- Slope α quadratic irrational: come up naturally as fixed points of substitution.

Two elements

- ▶ key prefix $(m_1, ..., m_k)$ with k such that $q_{k-1}(\alpha) \le n < q_k(\alpha)$.
- completion (m_{k+1}, \ldots, m_p) of the "period".

 Slope α rational: periodic, Christoffel words.

 Slope α quadratic irrational: come up naturally as fixed points of substitution.

Two elements

- ▶ key prefix $(m_1, ..., m_k)$ with k such that $q_{k-1}(\alpha) \le n < q_k(\alpha)$.
- completion (m_{k+1}, \ldots, m_p) of the "period".

Generating functions are now Dirichlet series.

 \Rightarrow Quasi-inverse $(\mathbf{I} - \mathbf{H}_s)^{-1}$

applied to another one similar to the previous slide.

 Slope α rational: periodic, Christoffel words.

Slope α quadratic irrational:
come up naturally as fixed points of substitution.

Two elements

- ▶ key prefix $(m_1, ..., m_k)$ with k such that $q_{k-1}(\alpha) \le n < q_k(\alpha)$.
- completion (m_{k+1}, \ldots, m_p) of the "period".

Generating functions are now Dirichlet series.

 \Rightarrow Quasi-inverse $(\mathbf{I} - \mathbf{H}_s)^{-1}$

applied to another one similar to the previous slide.

We expect unified solution with the real case

Slope subfamilies

Models.

- For rational α = h_m(0) : size(α) = q here q = |h'_m(0)|^{-1/2} is the reduced denominator.
- For quadratic irrational α = h_m(α) : size(α) := v(α)⁻¹ here v(α)⁻¹ = |h'_m(α)|^{-1/2} is the analog of q.

Slope subfamilies

Models.

- For rational α = h_m(0) : size(α) = q here q = |h'_m(0)|^{-1/2} is the reduced denominator.
- For quadratic irrational α = h_m(α) : size(α) := v(α)⁻¹ here v(α)⁻¹ = |h'_m(α)|^{-1/2} is the analog of q.

Bound the size by D and pick random α with size $(\alpha) \leq D$. \Rightarrow study $\mathbb{P}_D(S_n(\alpha) \leq \lambda)$ as $D, n \to \infty$ in some way ? Slope subfamilies: quadratic irrationals

Write $\alpha = h_w(\alpha) = [w, w, ...]$ for some $w \in \mathbb{Z}_{>0}^+$ and fix n. To compute $S(\alpha, n)$ we only require

$$v = (w_1, \ldots, w_k)$$

with $q_{k-1}(\alpha) \leq n < q_k(\alpha)$. Write

$$v = w^{\ell} v', \qquad \epsilon \neq v' \preceq w,$$

the index $\ell = \ell(\alpha, n)$ is known as the number of turns.

Slope subfamilies: quadratic irrationals

Write $\alpha = h_{w}(\alpha) = [w, w, ...]$ for some $w \in \mathbb{Z}_{>0}^+$ and fix n. To compute $S(\alpha, n)$ we only require

$$v = (w_1, \ldots, w_k)$$

with $q_{k-1}(\alpha) \leq n < q_k(\alpha)$. Write

$$v = w^{\ell} v', \qquad \epsilon \neq v' \preceq w,$$

the index $\ell = \ell(\alpha, n)$ is known as the number of turns.

Number of turns is key

- Case $\ell = 0$ is the simplest, and closely related to the rationals.
- Case $\ell > 0$ is more complicated, seems to simplify as $\ell \to \infty$.

Continued Logarithm expansion over the reals: intro

Chan studied from an *Ergodic perspective*

- the averages $(a_1(x) + \ldots + a_M(x))/M$.
- the exponential growth of "natural continuants" $Q_k(x)$.

Continued Logarithm expansion over the reals: intro

Chan studied from an *Ergodic perspective*

- the averages $(a_1(x) + \ldots + a_M(x))/M$.
- the exponential growth of "natural continuants" $Q_k(x)$.

Results concerning almost every $x \in \mathcal{I}$

 \implies truncate the expansion $a_1(x), a_2(x), \ldots$ at depth k.
Chan studied from an *Ergodic perspective*

- the averages $(a_1(x) + \ldots + a_M(x))/M$.
- the exponential growth of "natural continuants" $Q_k(x)$.

Results concerning almost every $x \in \mathcal{I}$

 \implies truncate the expansion $a_1(x), a_2(x), \ldots$ at depth k.

Adapting our methods to this context is work in progress:

• behaviour of continuants Q_k differs from rational case.

Chan studied from an *Ergodic perspective*

- the averages $(a_1(x) + \ldots + a_M(x))/M$.
- the exponential growth of "natural continuants" $Q_k(x)$.

Results concerning almost every $x \in \mathcal{I}$

 \implies truncate the expansion $a_1(x), a_2(x), \ldots$ at depth k.

Adapting our methods to this context is work in progress:

- ▶ behaviour of continuants Q_k differs from rational case.
- we conjecture $-\frac{1}{k}\mathbb{E}[\log_2 |Q_k|_2] \sim 1/2$

Chan studied from an *Ergodic perspective*

- the averages $(a_1(x) + \ldots + a_M(x))/M$.
- the exponential growth of "natural continuants" $Q_k(x)$.

Results concerning almost every $x \in \mathcal{I}$

 \implies truncate the expansion $a_1(x), a_2(x), \ldots$ at depth k.

Adapting our methods to this context is work in progress:

- ▶ behaviour of continuants Q_k differs from rational case.
- we conjecture $-\frac{1}{k}\mathbb{E}[\log_2 |Q_k|_2] \sim 1/2$ \rightarrow we have proved the limit exists

Chan studied from an *Ergodic perspective*

- the averages $(a_1(x) + \ldots + a_M(x))/M$.
- the exponential growth of "natural continuants" $Q_k(x)$.

Results concerning almost every $x \in \mathcal{I}$

 \implies truncate the expansion $a_1(x), a_2(x), \ldots$ at depth k.

Adapting our methods to this context is work in progress:

behaviour of continuants Q_k differs from rational case.

• we conjecture
$$-\frac{1}{k}\mathbb{E}[\log_2 |Q_k|_2] \sim 1/2$$

 \rightarrow we have proved the limit exists

... explicit invariant density $\varPsi(x,y)$?

Chan studied from an *Ergodic perspective*

- the averages $(a_1(x) + \ldots + a_M(x))/M$.
- the exponential growth of "natural continuants" $Q_k(x)$.

Results concerning almost every $x \in \mathcal{I}$

 \implies truncate the expansion $a_1(x), a_2(x), \ldots$ at depth k.

Adapting our methods to this context is work in progress:

- behaviour of continuants Q_k differs from rational case.
- we conjecture ¹/_k E[log₂ |Q_k|₂] ~ 1/2 → we have proved the limit exists ... explicit invariant density Ψ(x, y) ? → related to growth of gcd(p, q) in the algorithm!

The conjecure

 $\log_2 \gcd\left(p_i, q_i\right) \sim i/2.$

leads us to mirrors.

The conjecure

$$\log_2 \gcd\left(p_i, q_i\right) \sim i/2 \,.$$

leads us to mirrors.

• The successive pairs (p_i, q_i) correspond to convergents

$$\langle a_k, \ldots, a_p \rangle, \qquad k = 1, \ldots, p.$$

The conjecure

$$\log_2 \gcd\left(p_i, q_i\right) \sim i/2 \,.$$

leads us to mirrors.

• The successive pairs (p_i, q_i) correspond to convergents

$$\langle a_k, \ldots, a_p \rangle$$
, $k = 1, \ldots, p$.

Moreover

$$Q(a_k, a_{k+1}, \dots, a_p) = 2^{a_k} Q(1, a_p, a_{p-1}, \dots, a_{k+1}).$$

 \Rightarrow related to convergents of the mirror expansion

The conjecure

$$\log_2 \gcd\left(p_i, q_i\right) \sim i/2 \,.$$

leads us to mirrors.

• The successive pairs (p_i, q_i) correspond to convergents

$$\langle a_k, \ldots, a_p \rangle$$
, $k = 1, \ldots, p$.

Moreover

$$Q(a_k, a_{k+1}, \dots, a_p) = 2^{a_k} Q(1, a_p, a_{p-1}, \dots, a_{k+1}).$$

 \Rightarrow related to convergents of the mirror expansion

$$\langle a_p, a_{p-1}, \ldots, a_1 \rangle$$
.

Average properties of mirror strongly associated with a "mirrored" transfer operator

$$\underline{\mathbf{H}}_{1,1-w,w,1-w}$$
.

Binary \gcd algorithms

Other well-known binary algorithms include

- ► The binary GCD
- ► The LSB (least significant bits) algorithm
 - Informally "the Tortoise and the Hare".

Binary \gcd algorithms

Other well-known binary algorithms include

- The binary GCD
- The LSB (least significant bits) algorithm
 Informally "the Tortoise and the Hare".

The dyadics play different roles in the dynamical analysis

- For the binary GCD: dyadics are drawn probabilistically and independently.
- For the LSB: dyadics play the main role!

Binary \gcd algorithms

Other well-known binary algorithms include

- The binary GCD
- ► The LSB (least significant bits) algorithm

- Informally "the Tortoise and the Hare".

The dyadics play different roles in the dynamical analysis

- For the binary GCD: dyadics are drawn probabilistically and independently.
- ► For the LSB: dyadics play the main role!

Unify the analysis to better understand the role of the dyadics?