Probabilistic studies in
 Number Theory and Word Combinatorics: instances of dynamical analysis

Pablo Rotondo
IRIF, Paris 7 Diderot,
Universidad de la República, Uruguay
GREYC, associate

PhD thesis defence, IRIF, September 27, 2018.

Deciphering the title

- Probabilistic analysis

Object/experiment/execution?
\Rightarrow Models, averages, distribution?

Deciphering the title

- Probabilistic analysis

Object/experiment/execution?
\Rightarrow Models, averages, distribution?

- Number Theory

Study of integers
$\mathbb{Z}, \quad\{2,3,5,7,11, \ldots\}, \quad \operatorname{gcd}, \quad \zeta(s)$

Deciphering the title

- Probabilistic analysis

Object/experiment/execution?
\Rightarrow Models, averages, distribution?

- Number Theory

Study of integers
$\mathbb{Z}, \quad\{2,3,5,7,11, \ldots\}, \quad \operatorname{gcd}, \quad \zeta(s)$

- Word Combinatorics

Study of words
\Rightarrow subwords (factors), frequencies

Thue-Morse
$\sigma: 0 \mapsto 01,1 \mapsto 10$ 01101001...

Some key words

Key objects

Sturmian words

- Lowest complexity, not eventually periodic.
- Recurrence function: how often factors reappear?

Continued Logarithm

- Greatest common divisor algorithm.
- Binary shifts and substractions.

Key objects

Sturmian words

- Lowest complexity, not eventually periodic.
- Recurrence function: how often factors reappear?

Continued Logarithm

- Greatest common divisor algorithm.
- Binary shifts and substractions.

Neither had been studied on average.

Key objects

Sturmian words

- Lowest complexity, not eventually periodic.
- Recurrence function: how often factors reappear?

Continued Logarithm

- Greatest common divisor algorithm.
- Binary shifts and substractions.

Neither had been studied on average.

Dynamical analysis

- Objects/algorithms described by dynamical system.
- Tools from dynamical systems.
- Probabilistic analysis.

This talk

1. General Introduction: continued fractions and dynamical systems

- Continued Fractions
- Euclidean dynamical system

2. The recurrence function of a random Sturmian word

- Sturmian words and recurrence
- Our models and results
- Comparison between models and slope families

3. The Continued Logarithm

- Origins and algorithm
- The CL dynamical system [Chan05]
- Extended system and results
- Conclusions and extensions

Section

1. General Introduction: continued fractions and dynamical systems

- Continued Fractions
- Euclidean dynamical system

2. The recurrence function of a random Sturmian word

- Sturmian words and recurrence
- Our models and results
- Comparison between models and slope families

3. The Continued Logarithm

- Origins and algorithm
- The CL dynamical system [Chan05]
- Extended system and results
- Conclusions and extensions

Continued Fractions

Every irrational number $\alpha \in(0,1)$ has a unique representation

$$
\alpha=\frac{1}{m_{1}+\frac{1}{m_{2}+\ddots}}
$$

where $m_{1}, m_{2}, \ldots \geq 1$ are integers called the digits or quotients.

Continued Fractions

Every irrational number $\alpha \in(0,1)$ has a unique representation

$$
\alpha=\frac{1}{m_{1}+\frac{1}{m_{2}+\ddots}}
$$

where $m_{1}, m_{2}, \ldots \geq 1$ are integers called the digits or quotients.
Truncating the expansion at depth k we get a convergent

$$
\frac{p_{k}(\alpha)}{q_{k}(\alpha)}=\frac{1}{m_{1}+\frac{1}{m_{2}+\ddots \cdot \frac{1}{m_{k}}}}
$$

The denominators $q_{k}(\alpha)$ are called the continuants of α.

Euclidean Algorithm and Continued Fractions

Property
Given integers x and y with $0 \leq x \leq y$

$$
\operatorname{gcd}(x, y)=\operatorname{gcd}(y \bmod x, x)
$$

In conjunction with $\operatorname{gcd}(0, y)=y$, we get the Euclidean Algorithm.

Euclidean Algorithm and Continued Fractions

Property
Given integers x and y with $0 \leq x \leq y$

$$
\operatorname{gcd}(x, y)=\operatorname{gcd}(y \bmod x, x)
$$

In conjunction with $\operatorname{gcd}(0, y)=y$, we get the Euclidean Algorithm.
This algorithm is equivalent to the continued fraction expansion:

- given the integer division $y=m x+r$,

$$
\frac{x}{y}=\frac{1}{m+\frac{r}{x}},
$$

and the process continues with $\frac{r}{x}$.

Euclidean Algorithm and Continued Fractions

Property
Given integers x and y with $0 \leq x \leq y$

$$
\operatorname{gcd}(x, y)=\operatorname{gcd}(y \bmod x, x)
$$

In conjunction with $\operatorname{gcd}(0, y)=y$, we get the Euclidean Algorithm.
This algorithm is equivalent to the continued fraction expansion:

- given the integer division $y=m x+r$,

$$
\frac{x}{y}=\frac{1}{m+\frac{r}{x}},
$$

and the process continues with $\frac{r}{x}$.

Euclidean dynamical system

To get the digits of the continued fraction expansion observe

$$
\begin{gathered}
\alpha=\frac{1}{m_{1}+\frac{1}{m_{2}+\ddots}} \\
\Longrightarrow m_{1}=\left\lfloor\frac{1}{\alpha}\right\rfloor, \quad \frac{1}{m_{2}+\frac{1}{m_{3}+\ddots}}=\left\{\frac{1}{\alpha}\right\} .
\end{gathered}
$$

The map

$$
T:(0,1) \rightarrow(0,1), \quad x \mapsto\left\{\frac{1}{x}\right\}
$$

is known as the Gauss map.

Gauss map

Gauss map

Property. Let $h:=h_{m_{1}} \circ \cdots h_{m_{k}}$, if $h(0)=\frac{p}{q} \Longrightarrow\left|h^{\prime}(0)\right|=\frac{1}{q^{2}}$.

Density transformer

Question: If $g \in \mathcal{C}^{0}(\mathcal{I})$ were the density of $x \Longrightarrow$ density of $T(x)$?

Density transformer

Question: If $g \in \mathcal{C}^{0}(\mathcal{I})$ were the density of $x \Longrightarrow$ density of $T(x)$? $T(x)$

Density transformer

Question: If $g \in \mathcal{C}^{0}(\mathcal{I})$ were the density of $x \Longrightarrow$ density of $T(x)$? $T(x)$

Answer: The density is

$$
\begin{aligned}
\mathbf{H}[g](x) & =\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right| g(h(x)) \\
& =\sum_{m \geq 0} \frac{1}{(m+x)^{2}} g\left(\frac{1}{m+x}\right) .
\end{aligned}
$$

Density transformer

Question: If $g \in \mathcal{C}^{0}(\mathcal{I})$ were the density of $x \Longrightarrow$ density of $T(x)$? $T(x)$

Answer: The density is

$$
\begin{aligned}
\mathbf{H}[g](x) & =\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right| g(h(x)) \\
& =\sum_{m \geq 0} \frac{1}{(m+x)^{2}} g\left(\frac{1}{m+x}\right) .
\end{aligned}
$$

\Longrightarrow Transfer operator H_{s} extends \mathbf{H}, introducing a variable s

$$
\mathbf{H}_{s}[g](x)=\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right|^{s} g(h(x)) .
$$

Principles of dynamical analysis [Vallée,Flajolet,Baladi,. . .]:

Generating functions.

- \mathbf{H}_{s} describes all executions of depth 1 .
- $\mathbf{H}_{s}^{2}=\mathbf{H}_{s} \circ \mathbf{H}_{s}$ describes all executions of depth 2 .
-
- and $\left(\mathbf{I}-\mathbf{H}_{s}\right)^{-1}=\mathbf{I}+\mathbf{H}_{s}+\mathbf{H}_{s}^{2}+\ldots$ describes all executions.

Principles of dynamical analysis [Vallée,Flajolet,Baladi,. . .]:

Generating functions.

- \mathbf{H}_{s} describes all executions of depth 1 .
- $\mathbf{H}_{s}^{2}=\mathbf{H}_{s} \circ \mathbf{H}_{s}$ describes all executions of depth 2 .
-
- and $\left(\mathbf{I}-\mathbf{H}_{s}\right)^{-1}=\mathbf{I}+\mathbf{H}_{s}+\mathbf{H}_{s}^{2}+\ldots$ describes all executions.

Section

1. General Introduction: continued fractions and dynamical systems

- Continued Fractions
- Euclidean dynamical system

2. The recurrence function of a random Sturmian word

- Sturmian words and recurrence
- Our models and results
- Comparison between models and slope families

3. The Continued Logarithm

- Origins and algorithm
- The CL dynamical system [Chan05]
- Extended system and results
- Conclusions and extensions

Definition of Sturmian words

Definition
Complexity function of an infinite word $\boldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$

$$
p_{\boldsymbol{u}}: \mathbb{N} \rightarrow \mathbb{N}, \quad p_{\boldsymbol{u}}(n)=\#\{\text { factors of length } n \text { in } \boldsymbol{u}\}
$$

Definition of Sturmian words

Definition
Complexity function of an infinite word $\boldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$

$$
p_{\boldsymbol{u}}: \mathbb{N} \rightarrow \mathbb{N}, \quad p_{\boldsymbol{u}}(n)=\#\{\text { factors of length } n \text { in } \boldsymbol{u}\}
$$

Important property
$\boldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$ is not eventually periodic
$\Longleftrightarrow p_{\boldsymbol{u}}(n+1)>p_{\boldsymbol{u}}(n)$ for all $n \in \mathbb{N}$

Definition of Sturmian words

Definition
Complexity function of an infinite word $\boldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$

$$
p_{\boldsymbol{u}}: \mathbb{N} \rightarrow \mathbb{N}, \quad p_{\boldsymbol{u}}(n)=\#\{\text { factors of length } n \text { in } \boldsymbol{u}\}
$$

Important property

$$
\begin{aligned}
& \boldsymbol{u} \in \mathcal{A}^{\mathbb{N}} \text { is not eventually periodic } \\
& \Longleftrightarrow p_{\boldsymbol{u}}(n+1)>p_{\boldsymbol{u}}(n) \text { for all } n \in \mathbb{N} \\
& \Longrightarrow p_{\boldsymbol{u}}(n) \geq n+1
\end{aligned}
$$

Sturmian words are the "simplest" that are not eventually periodic.

Definition of Sturmian words

Definition

Complexity function of an infinite word $\boldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$

$$
p_{\boldsymbol{u}}: \mathbb{N} \rightarrow \mathbb{N}, \quad p_{\boldsymbol{u}}(n)=\#\{\text { factors of length } n \text { in } \boldsymbol{u}\}
$$

Important property

$$
\begin{aligned}
& \boldsymbol{u} \in \mathcal{A}^{\mathbb{N}} \text { is not eventually periodic } \\
& \Longleftrightarrow p_{\boldsymbol{u}}(n+1)>p_{\boldsymbol{u}}(n) \text { for all } n \in \mathbb{N} \\
& \Longrightarrow p_{\boldsymbol{u}}(n) \geq n+1
\end{aligned}
$$

Sturmian words are the "simplest" that are not eventually periodic.
Definition
$\boldsymbol{u} \in\{0,1\}^{\mathbb{N}}$ is Sturmian $\Longleftrightarrow p_{\boldsymbol{u}}(n)=n+1$ for each $n \geq 0$.

Sturmian words and digital lines

Sturmian words correspond to discrete codings of lines, from below or above, by horizontal lines and diagonals.

Figure : Coding of the line $y=\alpha x+\beta$.

Sturmian words and digital lines

Sturmian words correspond to discrete codings of lines, from below or above, by horizontal lines and diagonals.

Figure: Coding of the line $y=\alpha x+\beta$.

The slope α plays a key role: the finite factors are determined exclusively by α.

Recurrence of Sturmian words

Definition (Recurrence function)
Consider an infinite word \boldsymbol{u}. Its recurrence function is:

$$
R_{u}(n)=\inf \{m \in \mathbb{N}: \text { every factor of length } m
$$ contains all the factors of length $n\}$.

Recurrence of Sturmian words

Definition (Recurrence function)

Consider an infinite word \boldsymbol{u}. Its recurrence function is:

$$
\begin{aligned}
R_{\boldsymbol{u}}(n)=\inf \{m \in \mathbb{N}: & \text { every factor of length } m \\
& \text { contains all the factors of length } n\} .
\end{aligned}
$$

- Cost we have to pay to discover the factors if we start from an arbitrary point in $\boldsymbol{u}=u_{1} u_{2} \ldots$

Recurrence of Sturmian words

Definition (Recurrence function)

Consider an infinite word \boldsymbol{u}. Its recurrence function is:

$$
\begin{aligned}
R_{\boldsymbol{u}}(n)=\inf \{m \in \mathbb{N}: & \text { every factor of length } m \\
& \text { contains all the factors of length } n\} .
\end{aligned}
$$

- Cost we have to pay to discover the factors if we start from an arbitrary point in $\boldsymbol{u}=u_{1} u_{2} \ldots$

Theorem (Morse, Hedlund, 1940)
The recurrence function is piecewise affine and satisfies

$$
R_{\alpha}(n)=n-1+q_{k-1}(\alpha)+q_{k}(\alpha), \quad \text { for } q_{k-1}(\alpha) \leq n<q_{k}(\alpha)
$$

Recurrence quotient and its parameters

$$
S(\alpha, n):=\frac{R_{\alpha}(n)+1}{n}=1+\frac{q_{k-1}(\alpha)+q_{k}(\alpha)}{n}, \quad q_{k-1}(\alpha) \leq n<q_{k}(\alpha) .
$$

Recurrence quotient and its parameters

$$
S(\alpha, n):=\frac{R_{\alpha}(n)+1}{n}=1+\frac{q_{k-1}(\alpha)+q_{k}(\alpha)}{n}, \quad q_{k-1}(\alpha) \leq n<q_{k}(\alpha) .
$$

Recurrence quotient $\alpha=e^{-1}$.

Recurrence quotient and its parameters

$$
S(\alpha, n):=\frac{R_{\alpha}(n)+1}{n}=1+\frac{q_{k-1}(\alpha)+q_{k}(\alpha)}{n}, \quad q_{k-1}(\alpha) \leq n<q_{k}(\alpha) .
$$

Recurrence quotient $\alpha=e^{-1}$.

Size of $S(\alpha, n)$ dictated by

- the relative position of n within the interval

$$
\mu(\alpha, n)
$$

- the quotient between the ends of the interval

$$
\rho(\alpha, n)=\frac{q_{k-1}(\alpha)}{q_{k}(\alpha)} .
$$

Studies of the recurrence function

Classical results concern the worst case scenarios for fixed α :
$\forall \epsilon>0$, for a.e. α

$$
\limsup _{n \rightarrow \infty} \frac{S(\alpha, n)}{\log n}=\infty, \quad \lim _{n \rightarrow \infty} \frac{S(\alpha, n)}{(\log n)^{1+\epsilon}}=0
$$

Studies of the recurrence function

Classical results concern the worst case scenarios for fixed α :

$$
\forall \epsilon>0, \text { for a.e. } \alpha
$$

$$
\limsup _{n \rightarrow \infty} \frac{S(\alpha, n)}{\log n}=\infty, \quad \lim _{n \rightarrow \infty} \frac{S(\alpha, n)}{(\log n)^{1+\epsilon}}=0
$$

(Morse\&Hedlund '40)
We define two probabilistic models in both cases α is drawn uniformly at random

1) fix the length $n \Rightarrow$ random variables $S_{n}(\alpha):=S(\alpha, n)$. in distribution and expectation as $n \rightarrow \infty$.

Studies of the recurrence function

Classical results concern the worst case scenarios for fixed α :
$\forall \epsilon>0$, for a.e. α

$$
\limsup _{n \rightarrow \infty} \frac{S(\alpha, n)}{\log n}=\infty, \quad \lim _{n \rightarrow \infty} \frac{S(\alpha, n)}{(\log n)^{1+\epsilon}}=0
$$

(Morse\&Hedlund '40)
We define two probabilistic models in both cases α is drawn uniformly at random

1) fix the length $n \Rightarrow$ random variables $S_{n}(\alpha):=S(\alpha, n)$. in distribution and expectation as $n \rightarrow \infty$.
2) fix index k of interval $\left[q_{k-1}(\alpha), q_{k}(\alpha)\right)$ and the relative position $\mu \Rightarrow$ sequence $\left(n_{k}(\alpha)\right)_{k}$.

Figure: Sequence of indices $\left(n_{k}(\alpha)\right)_{k}$ for $\mu=1 / 3$.

Results

Model: fixed n. [RV17]

- Limit distribution for S_{n} and more general class.
- Convergence of histograms to limit density.
- Conditional expectations

$$
\mathbb{E}\left[S_{n} \mid \mu_{n} \geq \epsilon(n)\right] \sim|\log \epsilon(n)|
$$

Figure : Limit density of S_{n}.

Results

Model: fixed n. [RV17]

- Limit distribution for S_{n} and more general class.
- Convergence of histograms to limit density.
- Conditional expectations

$$
\mathbb{E}\left[S_{n} \mid \mu_{n} \geq \epsilon(n)\right] \sim|\log \epsilon(n)| .
$$

Figure: Limit density of S_{n}.

Model: fixed μ. [BCRVV15]

- Limit distribution of

$$
S_{\mu}^{\langle k\rangle}(\alpha):=S\left(\alpha, n_{k}\right)
$$

depending on μ.

- Study of $\mathbb{E}\left[S_{\mu}^{\langle k\rangle}(\alpha)\right]$ as

$$
\mu:=\mu_{k} \rightarrow 0 .
$$

Figure: Limit of $\mathbb{E}\left[S_{\mu}^{\langle k\rangle}\right]$ versus μ.

Coprime Riemann sums: fixed $n \rightarrow \infty$

For $q_{k-1}(\alpha) \leq n<q_{k}(\alpha)$

$$
S_{n}(\alpha)=f(x, y):=1+x+y, \quad x=\frac{q_{k-1}(\alpha)}{n}, \quad y=\frac{q_{k}(\alpha)}{n}
$$

Coprime Riemann sums: fixed $n \rightarrow \infty$

For $q_{k-1}(\alpha) \leq n<q_{k}(\alpha)$

$$
S_{n}(\alpha)=f(x, y):=1+x+y, \quad x=\frac{q_{k-1}(\alpha)}{n}, \quad y=\frac{q_{k}(\alpha)}{n}
$$

Distribution is a coprime Riemann sum

$$
\mathbb{P}\left(S_{n} \leq \lambda\right)=\frac{1}{n^{2}} \sum_{(a, b) \in \mathbb{N}^{2}:(a, b)=1} \omega\left(\frac{a}{n}, \frac{b}{n}\right) \llbracket\left(\frac{a}{n}, \frac{b}{n}\right) \in \Delta_{f}(\lambda) \rrbracket,
$$

with $\omega(x, y)=\frac{2}{y(x+y)}, \Delta_{f}(\lambda)=\{(x, y): 0<x \leq 1<y, f(x, y) \leq \lambda\}$.

Coprime Riemann sums: fixed $n \rightarrow \infty$

For $q_{k-1}(\alpha) \leq n<q_{k}(\alpha)$

$$
S_{n}(\alpha)=f(x, y):=1+x+y, \quad x=\frac{q_{k-1}(\alpha)}{n}, \quad y=\frac{q_{k}(\alpha)}{n}
$$

Distribution is a coprime Riemann sum

$$
\mathbb{P}\left(S_{n} \leq \lambda\right)=\frac{1}{n^{2}} \sum_{(a, b) \in \mathbb{N}^{2}:(a, b)=1} \omega\left(\frac{a}{n}, \frac{b}{n}\right) \llbracket\left(\frac{a}{n}, \frac{b}{n}\right) \in \Delta_{f}(\lambda) \rrbracket,
$$

$$
\text { with } \omega(x, y)=\frac{2}{y(x+y)}, \Delta_{f}(\lambda)=\{(x, y): 0<x \leq 1<y, f(x, y) \leq \lambda\} .
$$

A constant - the integral

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{P} & \left(S_{n} \leq \lambda\right) \\
& =\frac{6}{\pi^{2}} \iint_{\Delta_{f}(\lambda)} \omega(x, y) d x d y
\end{aligned}
$$

Coprime Riemann sums: fixed $n \rightarrow \infty$

For $q_{k-1}(\alpha) \leq n<q_{k}(\alpha)$

$$
S_{n}(\alpha)=f(x, y):=1+x+y, \quad x=\frac{q_{k-1}(\alpha)}{n}, \quad y=\frac{q_{k}(\alpha)}{n}
$$

Distribution is a coprime Riemann sum

$$
\mathbb{P}\left(S_{n} \leq \lambda\right)=\frac{1}{n^{2}} \sum_{(a, b) \in \mathbb{N}^{2}:(a, b)=1} \omega\left(\frac{a}{n}, \frac{b}{n}\right) \llbracket\left(\frac{a}{n}, \frac{b}{n}\right) \in \Delta_{f}(\lambda) \rrbracket,
$$

$$
\text { with } \omega(x, y)=\frac{2}{y(x+y)}, \Delta_{f}(\lambda)=\{(x, y): 0<x \leq 1<y, f(x, y) \leq \lambda\} .
$$

A constant the integral

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{P} & \left(S_{n} \leq \lambda\right) \\
& =\frac{6}{\pi^{2}} \iint_{\Delta_{f}(\lambda)} \omega(x, y) d x d y
\end{aligned}
$$

Note. Generalizes to other f s.

Via the Transfer operator

The model $n \rightarrow \infty$ is related to the quasi-inverse, how?

Via the Transfer operator

The model $n \rightarrow \infty$ is related to the quasi-inverse, how?

- Harmonic sum in $t:=1 / n$ with frequencies $\left(q_{k}\right)$

$$
\operatorname{Pr}\left(S_{n} \leq \lambda\right)=\frac{1}{n^{2}} \sum_{k} \sum_{m_{1}, \ldots, m_{k} \geq 1} g_{\lambda}\left(\frac{q_{k-1}}{q_{k}}, \frac{q_{k}}{n}\right)
$$

for a certain g_{λ}.

Via the Transfer operator

The model $n \rightarrow \infty$ is related to the quasi-inverse, how?

- Harmonic sum in $t:=1 / n$ with frequencies $\left(q_{k}\right)$

$$
\operatorname{Pr}\left(S_{n} \leq \lambda\right)=\frac{1}{n^{2}} \sum_{k} \sum_{m_{1}, \ldots, m_{k} \geq 1} g_{\lambda}\left(\frac{q_{k-1}}{q_{k}}, \frac{q_{k}}{n}\right)
$$

for a certain g_{λ}.

- Mellin transform turns it into a quasi-inverse

$$
\left(\mathbf{I}-\mathbf{H}_{s / 2+1}\right)^{-1}\left[G_{s}\right](0),
$$

for appropriate G_{s} that is an integral of g_{λ}.

Via the Transfer operator

The model $n \rightarrow \infty$ is related to the quasi-inverse, how?

- Harmonic sum in $t:=1 / n$ with frequencies $\left(q_{k}\right)$

$$
\operatorname{Pr}\left(S_{n} \leq \lambda\right)=\frac{1}{n^{2}} \sum_{k} \sum_{m_{1}, \ldots, m_{k} \geq 1} g_{\lambda}\left(\frac{q_{k-1}}{q_{k}}, \frac{q_{k}}{n}\right)
$$

for a certain g_{λ}.

- Mellin transform turns it into a quasi-inverse

$$
\left(\mathbf{I}-\mathbf{H}_{s / 2+1}\right)^{-1}\left[G_{s}\right](0),
$$

for appropriate G_{s} that is an integral of g_{λ}.

- Requires precise analysis for a vertical strip around $\Re s=0$ \Longrightarrow Dolgopyat-Baladi-Vallée estimates.

Via the Transfer operator

The model $n \rightarrow \infty$ is related to the quasi-inverse, how?

- Harmonic sum in $t:=1 / n$ with frequencies $\left(q_{k}\right)$

$$
\operatorname{Pr}\left(S_{n} \leq \lambda\right)=\frac{1}{n^{2}} \sum_{k} \sum_{m_{1}, \ldots, m_{k} \geq 1} g_{\lambda}\left(\frac{q_{k-1}}{q_{k}}, \frac{q_{k}}{n}\right)
$$

for a certain g_{λ}.

- Mellin transform turns it into a quasi-inverse

$$
\left(\mathbf{I}-\mathbf{H}_{s / 2+1}\right)^{-1}\left[G_{s}\right](0),
$$

for appropriate G_{s} that is an integral of g_{λ}.

- Requires precise analysis for a vertical strip around $\Re s=0$ \Longrightarrow Dolgopyat-Baladi-Vallée estimates.

Important subfamilies

- Slope α rational: periodic, Christoffel words.

- Slope α quadratic irrational:
come up naturally as fixed points of substitution.

Important subfamilies

- Slope α rational: periodic, Christoffel words.

- Slope α quadratic irrational: come up naturally as fixed points of substitution.

We expect unified solution with the real case:

- similar results under appropriate models.
- methods involve Dirichlet series.

Section

1. General Introduction: continued fractions and dynamical systems

- Continued Fractions
- Euclidean dynamical system

2. The recurrence function of a random Sturmian word

- Sturmian words and recurrence
- Our models and results
- Comparison between models and slope families

3. The Continued Logarithm

- Origins and algorithm
- The CL dynamical system [Chan05]
- Extended system and results
- Conclusions and extensions

The origins

Introduced by Gosper as a mutation of continued fractions:

- gives rise to a gcd algorithm akin to Euclid's.
- quotients are powers of two:
- small information parcel.
- employs only shifts and subtractions.
- appears to be simple and efficient.

The origins

Introduced by Gosper as a mutation of continued fractions:

- gives rise to a gcd algorithm akin to Euclid's.
- quotients are powers of two:
- small information parcel.
- employs only shifts and subtractions.
- appears to be simple and efficient.

More recently:
\triangleright Shallit studied its worst-case performance in 2016.
\triangleright We consider its average performance!

Continued Logarithm Algorithm

A sequence of binary "divisions" beginning from (p, q) :

$$
q=2^{a} p+r, \quad 0 \leq r<2^{a} p
$$

Continued Logarithm Algorithm

A sequence of binary "divisions" beginning from (p, q) :

$$
q=2^{a} p+r, \quad 0 \leq r<2^{a} p
$$

Note. $a=\max \left\{k \geq 0: 2^{k} p \leq q\right\}$

Continued Logarithm Algorithm

A sequence of binary "divisions" beginning from (p, q) :

$$
q=2^{a} p+r, \quad 0 \leq r<2^{a} p
$$

Note. $a=\max \left\{k \geq 0: 2^{k} p \leq q\right\}$
Continue with the new pair

$$
(p, q) \mapsto\left(p^{\prime}, q^{\prime}\right)=\left(r, 2^{a} p\right)
$$

until the remainder r equals 0 .

Continued Logarithm Algorithm

A sequence of binary "divisions" beginning from (p, q) :

$$
q=2^{a} p+r, \quad 0 \leq r<2^{a} p
$$

Note. $a=\max \left\{k \geq 0: 2^{k} p \leq q\right\}$
Continue with the new pair

$$
(p, q) \mapsto\left(p^{\prime}, q^{\prime}\right)=\left(r, 2^{a} p\right)
$$

until the remainder r equals 0 .
Example. Let us find $\operatorname{gcd}(13,31)$.

a	p	q	r	$2^{a} p$
1	13	31	5	26
2	5	26	6	20
1	6	20	8	12
0	8	12	4	8
1	4	8	0	8

Continued Logarithm Algorithm

A sequence of binary "divisions" beginning from (p, q) :

$$
q=2^{a} p+r, \quad 0 \leq r<2^{a} p
$$

Note. $a=\max \left\{k \geq 0: 2^{k} p \leq q\right\}$
Continue with the new pair

$$
(p, q) \mapsto\left(p^{\prime}, q^{\prime}\right)=\left(r, 2^{a} p\right)
$$

until the remainder r equals 0 .
Example. Let us find $\operatorname{gcd}(13,31)$.

a	p	q	r	$2^{a} p$
1	13	31	5	26
2	5	26	6	20
1	6	20	8	12
0	8	12	4	8
1	4	8	0	8

- Ended with $(0,8)$, what is the gcd? \Rightarrow odd gcd \times parasitic powers of 2 .

Consider

$$
\Omega_{N}=\{(p, q) \in \mathbb{N} \times \mathbb{N}: p \leq q \leq N\}
$$

Worst-case studied by Shallit (2016): $2 \log _{2} N+O(1)$ steps.

Consider

$$
\Omega_{N}=\{(p, q) \in \mathbb{N} \times \mathbb{N}: p \leq q \leq N\}
$$

Worst-case studied by Shallit (2016): $2 \log _{2} N+O(1)$ steps.

- Family $(p, q)=\left(1,2^{n}-1\right)$ gives the bound asymptotically.

Consider

$$
\Omega_{N}=\{(p, q) \in \mathbb{N} \times \mathbb{N}: p \leq q \leq N\}
$$

Worst-case studied by Shallit (2016): $2 \log _{2} N+O(1)$ steps.

- Family $(p, q)=\left(1,2^{n}-1\right)$ gives the bound asymptotically.

We studied the average number of steps over Ω_{N}, posed by Shallit.

Consider

$$
\Omega_{N}=\{(p, q) \in \mathbb{N} \times \mathbb{N}: p \leq q \leq N\}
$$

Worst-case studied by Shallit (2016): $2 \log _{2} N+O(1)$ steps.

- Family $(p, q)=\left(1,2^{n}-1\right)$ gives the bound asymptotically.

We studied the average number of steps over Ω_{N}, posed by Shallit.
Main result [RV18].
Mean number of steps $E_{N}[K]$ and shifts $E_{N}[S]$ are $\Theta(\log N)$. More precisely

$$
E_{N}[K] \sim k \log N, \quad E_{N}[S] \sim \frac{\log 3-\log 2}{2 \log 2-\log 3} E_{N}[K]
$$

for an explicit constant $k \doteq 1.49283 \ldots$ given by

$$
k=\frac{2}{H}, \quad H=\text { entropy of appropriate DS }
$$

Consider

$$
\Omega_{N}=\{(p, q) \in \mathbb{N} \times \mathbb{N}: p \leq q \leq N\}
$$

Worst-case studied by Shallit (2016): $2 \log _{2} N+O(1)$ steps.

- Family $(p, q)=\left(1,2^{n}-1\right)$ gives the bound asymptotically.

We studied the average number of steps over Ω_{N}, posed by Shallit.
Main result [RV18].
Mean number of steps $E_{N}[K]$ and shifts $E_{N}[S]$ are $\Theta(\log N)$.
More precisely

$$
E_{N}[K] \sim k \log N, \quad E_{N}[S] \sim \frac{\log 3-\log 2}{2 \log 2-\log 3} E_{N}[K]
$$

for an explicit constant $k \doteq 1.49283 \ldots$ given by

$$
k=\frac{2}{H}, \quad H=\frac{1}{\log (4 / 3)}\left(\frac{\pi^{2}}{6}+2 \sum_{j} \frac{(-1)^{j}}{2^{j} j^{2}}-(\log 2) \frac{\log 27}{\log 16}\right)
$$

CL dynamical system (\mathcal{I}, T)

The map for the CL algorithm. The map for Euclid's algorithm.

The CL dynamical system [Chan05]

The $\operatorname{map} T: \mathcal{I} \rightarrow \mathcal{I}$

Branches
For $x \in \mathcal{I}_{a}:=\left[2^{-a-1}, 2^{-a}\right]$

$$
x \mapsto T_{a}(x):=\frac{2^{-a}}{x}-1 .
$$

where $a(x):=\left\lfloor\log _{2}(1 / x)\right\rfloor$.

Inverse branches

$$
h_{a}(x):=\frac{2^{-a}}{1+x}, \quad \mathcal{H}:=\left\{h_{a}: a \in \mathbb{N}\right\},
$$

and at depth k

$$
\mathcal{H}^{k}:=\left\{h_{a_{1}} \circ \cdots \circ h_{a_{k}}: a_{1}, \ldots, a_{k} \in \mathbb{N}\right\} .
$$

Reduced denominators and inverse branches

Euclidean algorithm:

- Homographies

$$
h_{m}(x)=\frac{1}{m+x}
$$

with $\operatorname{det} h_{m}=-1$.

- For $h=h_{m_{1}} \circ \cdot \circ \circ h_{m_{k}}$

$$
h(0)=\frac{p}{q} \Rightarrow\left|h^{\prime}(0)\right|=\frac{1}{q^{2}},
$$

p / q reduced.

Reduced denominators and inverse branches

Euclidean algorithm:

- Homographies

$$
h_{m}(x)=\frac{1}{m+x},
$$

with $\operatorname{det} h_{m}=-1$.

- For $h=h_{m_{1}} \circ \cdot \circ \circ h_{m_{k}}$

$$
h(0)=\frac{p}{q} \Rightarrow\left|h^{\prime}(0)\right|=\frac{1}{q^{2}},
$$

p / q reduced.

CL algorithm:

- Homographies

$$
h_{a}(x)=\frac{1}{2^{a}(1+x)},
$$

with $\operatorname{det} h_{a}=-2^{a}$.

- For $h=h_{m_{1}} \circ \cdot . \circ h_{m_{k}}$
$h(0)=\frac{p}{q} \Rightarrow\left|h^{\prime}(0)\right|$ vs. $\frac{1}{q^{2}} ?$
p / q reduced.

Reduced denominators and inverse branches

Euclidean algorithm:

- Homographies

$$
h_{m}(x)=\frac{1}{m+x},
$$

with $\operatorname{det} h_{m}=-1$.

- For $h=h_{m_{1}} \circ \cdot \circ \circ h_{m_{k}}$

$$
h(0)=\frac{p}{q} \Rightarrow\left|h^{\prime}(0)\right|=\frac{1}{q^{2}},
$$

p / q reduced.

CL algorithm:

- Homographies

$$
h_{a}(x)=\frac{1}{2^{a}(1+x)},
$$

with $\operatorname{det} h_{a}=-2^{a}$.

- For $h=h_{m_{1}} \circ \cdot . \circ h_{m_{k}}$
$h(0)=\frac{p}{q} \Rightarrow\left|h^{\prime}(0)\right|$ vs. $\frac{1}{q^{2}} ?$
p / q reduced.

Problem: Denominator retrieved is engorged by powers of two.

Recording the dyadic behaviour

Solution: Dyadic numbers \mathbb{Q}_{2} !
Dyadic topology $=$ Divisibility by 2 constraints,
using the dyadic norm $|\cdot|_{2}$.

Recording the dyadic behaviour

Solution: Dyadic numbers \mathbb{Q}_{2} !

$$
\text { Dyadic topology }=\text { Divisibility by } 2 \text { constraints, }
$$

using the dyadic norm $|\cdot|_{2}$.
Introduce dyadic component

- Mixed dynamical system $(x, y) \in \underline{\mathcal{I}}:=\mathcal{I} \times \mathbb{Q}_{2}$,

Recording the dyadic behaviour

Solution: Dyadic numbers \mathbb{Q}_{2} !
Dyadic topology $=$ Divisibility by 2 constraints, using the dyadic norm $|\cdot|_{2}$.

Introduce dyadic component

- Mixed dynamical system $(x, y) \in \underline{\mathcal{I}}:=\mathcal{I} \times \mathbb{Q}_{2}$,

$$
\underline{T}: \underline{\mathcal{I}} \rightarrow \underline{\mathcal{I}}, \quad \underline{T}(x, y)=\left(T_{a}(x), T_{a}(y)\right),
$$

for $x \in \mathcal{I}_{a}=\left[2^{-a-1}, 2^{-a}\right]$ and any $y \in \mathbb{Q}_{2}$.

Recording the dyadic behaviour

Solution: Dyadic numbers \mathbb{Q}_{2} !

$$
\text { Dyadic topology }=\text { Divisibility by } 2 \text { constraints, }
$$

using the dyadic norm $|\cdot|_{2}$.
Introduce dyadic component

- Mixed dynamical system $(x, y) \in \underline{\mathcal{I}}:=\mathcal{I} \times \mathbb{Q}_{2}$,

$$
\underline{T}: \underline{\mathcal{I}} \rightarrow \underline{\mathcal{I}}, \quad \underline{T}(x, y)=\left(T_{a}(x), T_{a}(y)\right),
$$

for $x \in \mathcal{I}_{a}=\left[2^{-a-1}, 2^{-a}\right]$ and any $y \in \mathbb{Q}_{2}$.

- Evolution led by the real component, which determines a.

Recording the dyadic behaviour

Solution: Dyadic numbers \mathbb{Q}_{2} !

$$
\text { Dyadic topology }=\text { Divisibility by } 2 \text { constraints, }
$$

using the dyadic norm $|\cdot|_{2}$.
Introduce dyadic component

- Mixed dynamical system $(x, y) \in \underline{\mathcal{I}}:=\mathcal{I} \times \mathbb{Q}_{2}$,

$$
\underline{T}: \underline{\mathcal{I}} \rightarrow \underline{\mathcal{I}}, \quad \underline{T}(x, y)=\left(T_{a}(x), T_{a}(y)\right),
$$

for $x \in \mathcal{I}_{a}=\left[2^{-a-1}, 2^{-a}\right]$ and any $y \in \mathbb{Q}_{2}$.

- Evolution led by the real component, which determines a.

Dyadics \mathbb{Q}_{2} have change of variables rule \Rightarrow Transfer Operator $\underline{\mathbf{H}}_{s}$!

Functional space \mathcal{F} for the extended operator $\underline{\mathbf{H}}_{s}$

Real component directs the dynamical system:

- sections F_{y} fixing $y \in \mathbb{Q}_{2}$ asked to be $C^{1}(\mathcal{I})$.
- the dyadic component follows, demanding only integrability.

Functional space \mathcal{F} for the extended operator $\underline{\mathbf{H}}_{s}$

Real component directs the dynamical system:

- sections F_{y} fixing $y \in \mathbb{Q}_{2}$ asked to be $C^{1}(\mathcal{I})$.
- the dyadic component follows, demanding only integrability.

Ensuing space \mathcal{F} makes $\underline{\mathbf{H}}_{s}$

- have a dominant eigenvalue and spectral gap relying strongly on the real component.

Functional space \mathcal{F} for the extended operator $\underline{\mathbf{H}}_{s}$

Real component directs the dynamical system:

- sections F_{y} fixing $y \in \mathbb{Q}_{2}$ asked to be $C^{1}(\mathcal{I})$.
- the dyadic component follows, demanding only integrability.

Ensuing space \mathcal{F} makes $\underline{\mathbf{H}}_{s}$

- have a dominant eigenvalue and spectral gap relying strongly on the real component.

We can finish the dynamical analysis!

Conclusion and further questions

- We have studied the average number of shifts and subtractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Conclusion and further questions

- We have studied the average number of shifts and subtractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

1. Comparison to other binary algorithms: binary GCD, LSB.

Conclusion and further questions

- We have studied the average number of shifts and subtractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

1. Comparison to other binary algorithms: binary GCD, LSB.
2. Conjecture: The successive pairs $\left(p_{i}, q_{i}\right)$ given by the algorithm satisfy

$$
\lim _{i \rightarrow \infty} \frac{1}{i} \log _{2} \operatorname{gcd}\left(p_{i}, q_{i}\right)=1 / 2
$$

Conclusion and further questions

- We have studied the average number of shifts and subtractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

1. Comparison to other binary algorithms: binary GCD, LSB.
2. Conjecture: The successive pairs $\left(p_{i}, q_{i}\right)$ given by the algorithm satisfy

$$
\lim _{i \rightarrow \infty} \frac{1}{i} \log _{2} \operatorname{gcd}\left(p_{i}, q_{i}\right)=1 / 2
$$

In what sense

- in expected value for rationals.
- almost everywhere for real numbers.

Conclusion and further questions

- We have studied the average number of shifts and subtractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

1. Comparison to other binary algorithms: binary GCD, LSB.
2. Conjecture: The successive pairs $\left(p_{i}, q_{i}\right)$ given by the algorithm satisfy

$$
\lim _{i \rightarrow \infty} \frac{1}{i} \log _{2} \operatorname{gcd}\left(p_{i}, q_{i}\right)=1 / 2
$$

In what sense

- in expected value for rationals. Limit exists! value?
- almost everywhere for real numbers.

Conclusion and further questions

- We have studied the average number of shifts and subtractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

1. Comparison to other binary algorithms: binary GCD, LSB.
2. Conjecture: The successive pairs $\left(p_{i}, q_{i}\right)$ given by the algorithm satisfy

$$
\lim _{i \rightarrow \infty} \frac{1}{i} \log _{2} \operatorname{gcd}\left(p_{i}, q_{i}\right)=1 / 2
$$

In what sense

- in expected value for rationals. Limit exists! value?
- almost everywhere for real numbers. Different problem.

Other research directions and topics

For the first part

- Independence between p_{k} / q_{k} and q_{k-1} / q_{k}.
- Slope subfamilies \Rightarrow work in progress, partial results.
- Multidimensional analogs? Brun?

Other research directions and topics

For the first part

- Independence between p_{k} / q_{k} and q_{k-1} / q_{k}.
- Slope subfamilies \Rightarrow work in progress, partial results.
- Multidimensional analogs? Brun?

For the second part

- More natural gcd algorithm $(p, q) \mapsto \operatorname{sort}(r, p)$. Competitive?
- Explain

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \log _{2} \operatorname{gcd}\left(p_{k}, q_{k}\right)=\frac{1}{2}
$$

Other research directions and topics

For the first part

- Independence between p_{k} / q_{k} and q_{k-1} / q_{k}.
- Slope subfamilies \Rightarrow work in progress, partial results.
- Multidimensional analogs? Brun?

For the second part

- More natural gcd algorithm $(p, q) \mapsto \operatorname{sort}(r, p)$. Competitive?
- Explain

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \log _{2} \operatorname{gcd}\left(p_{k}, q_{k}\right)=\frac{1}{2}
$$

Leftout topics

- Random variable generation

Other research directions and topics

For the first part

- Independence between p_{k} / q_{k} and q_{k-1} / q_{k}.
- Slope subfamilies \Rightarrow work in progress, partial results.
- Multidimensional analogs? Brun?

For the second part

- More natural gcd algorithm $(p, q) \mapsto \operatorname{sort}(r, p)$. Competitive?
- Explain

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \log _{2} \operatorname{gcd}\left(p_{k}, q_{k}\right)=\frac{1}{2}
$$

Leftout topics

- Random variable generation

Questions?

Conditional expectations

We seek to characterise the $\log n$ behaviour of $S(\alpha, n)$.
To do this we exclude the cases in which μ is small.

Conditional expectations

We seek to characterise the $\log n$ behaviour of $S(\alpha, n)$.
To do this we exclude the cases in which μ is small.

Theorem
The conditional expectation of S_{n} with respect to $\mu_{n} \geq \frac{1}{n}$ satisfies

$$
\mathbb{E}\left[S_{n} \left\lvert\, \mu_{n} \geq \frac{1}{n}\right.\right]=\frac{12}{\pi^{2}} \log n+O(1)
$$

Independence of p_{k} / q_{k} and q_{k-1} / q_{k}

Intuitive [dynamical proof and generalization?]

- Mirror tells us that

$$
\begin{aligned}
& p_{k} / q_{k}=\left[m_{1}, \ldots, m_{k}\right], \quad q_{k-1} / q_{k}=\left[m_{k}, m_{k-1}, \ldots, m_{1}\right] . \\
& \Rightarrow \text { Result determined by first digits } \\
& \quad \text { and digits have stationary behaviour. }
\end{aligned}
$$

Independence of p_{k} / q_{k} and q_{k-1} / q_{k}

Intuitive [dynamical proof and generalization?]

- Mirror tells us that

$$
\begin{aligned}
& p_{k} / q_{k}=\left[m_{1}, \ldots, m_{k}\right], \quad q_{k-1} / q_{k}=\left[m_{k}, m_{k-1}, \ldots, m_{1}\right] . \\
& \Rightarrow \text { Result determined by first digits } \\
& \quad \text { and digits have stationary behaviour. }
\end{aligned}
$$

Useful

- Limits in fixed n model are independent from distribution of $\alpha \in[0,1]$ as long as it has a density w.r.t. Lebesgue.

Independence of p_{k} / q_{k} and q_{k-1} / q_{k}

Intuitive [dynamical proof and generalization?]

- Mirror tells us that

$$
\begin{aligned}
& p_{k} / q_{k}=\left[m_{1}, \ldots, m_{k}\right], \quad q_{k-1} / q_{k}=\left[m_{k}, m_{k-1}, \ldots, m_{1}\right] . \\
& \Rightarrow \text { Result determined by first digits } \\
& \quad \text { and digits have stationary behaviour. }
\end{aligned}
$$

Useful

- Limits in fixed n model are independent from distribution of $\alpha \in[0,1]$ as long as it has a density w.r.t. Lebesgue.
- Could be used (??) for other expansions like CL
$P_{k} / Q_{k}=\left\langle a_{1}, \ldots, a_{k}\right\rangle, \quad 2^{a_{k}} Q_{k-1} / Q_{k}=\left\langle 1, a_{k}, a_{k-1}, \ldots, a_{2}\right\rangle$,
$\Rightarrow 2^{a_{k}} Q_{k-1} / Q_{k}$ distributed with Gauss-density on $[1 / 2,1]$.

Independence of p_{k} / q_{k} and q_{k-1} / q_{k}
Recall (classical)

$$
p_{k-1} q_{k}-p_{k} q_{k-1}=(-1)^{k} \Rightarrow p_{k}=\left((-1)^{k+1} q_{k-1}^{-1}\right) \bmod q_{k}
$$

Independence of p_{k} / q_{k} and q_{k-1} / q_{k}

Recall (classical)

$$
p_{k-1} q_{k}-p_{k} q_{k-1}=(-1)^{k} \Rightarrow p_{k}=\left((-1)^{k+1} q_{k-1}^{-1}\right) \bmod q_{k}
$$

$\Rightarrow q_{k-1}$ and p_{k} are almost modular inverses.
Notice
Fractions have two developments, with different parities
\Longrightarrow Enough to solve the case in which $p_{k}=q_{k-1}^{-1}\left(\bmod . q_{k}\right)$.

Independence of p_{k} / q_{k} and q_{k-1} / q_{k}

Recall (classical)

$$
p_{k-1} q_{k}-p_{k} q_{k-1}=(-1)^{k} \Rightarrow p_{k}=\left((-1)^{k+1} q_{k-1}^{-1}\right) \bmod q_{k}
$$

$\Rightarrow q_{k-1}$ and p_{k} are almost modular inverses.
Notice
Fractions have two developments, with different parities
\Longrightarrow Enough to solve the case in which $p_{k}=q_{k-1}^{-1}\left(\bmod . q_{k}\right)$.
Theorem (see e.g. Shparlinski)
Let $q \in \mathbb{Z}_{>0}$ and let $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right] \subset[0,1]$, then for any $\epsilon>0$

$$
\begin{aligned}
& \frac{1}{\varphi(q)} \sum_{\substack{1 \leq a \leq q, \operatorname{gcd}(a, q)=1}} \mathbf{1}_{\left(\frac{a}{q}, \frac{a^{-1} \bmod q}{q}\right) \in\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]} \\
&=\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)+O\left(q^{-1 / 2+\epsilon}\right) .
\end{aligned}
$$

Independence of p_{k} / q_{k} and q_{k-1} / q_{k}

Recall (classical)

$$
p_{k-1} q_{k}-p_{k} q_{k-1}=(-1)^{k} \Rightarrow p_{k}=\left((-1)^{k+1} q_{k-1}^{-1}\right) \bmod q_{k}
$$

$\Rightarrow q_{k-1}$ and p_{k} are almost modular inverses.
Notice
Fractions have two developments, with different parities
\Longrightarrow Enough to solve the case in which $p_{k}=q_{k-1}^{-1}\left(\bmod . q_{k}\right)$.
Theorem (see e.g. Shparlinski)
Let $q \in \mathbb{Z}_{>0}$ and let $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right] \subset[0,1]$, then for any $\epsilon>0$

$$
\begin{aligned}
& \frac{1}{\varphi(q)} \sum_{\substack{1 \leq a \leq q, \operatorname{gcd}(a, q)=1}} \mathbf{1}_{\left(\frac{a}{q}, \frac{a^{-1} \bmod q}{q}\right) \in\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]} \\
&=\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)+O\left(q^{-1 / 2+\epsilon}\right) .
\end{aligned}
$$

$\Longrightarrow \frac{a}{q}$ and $\frac{a^{-1} \bmod q}{q}$ behave as if they were independent!

Important subfamilies

- Slope α rational: periodic, Christoffel words.
- Slope α quadratic irrational:
come up naturally as fixed points of substitution.

Important subfamilies

- Slope α rational: periodic, Christoffel words.
- Slope α quadratic irrational:
come up naturally as fixed points of substitution.
Two elements
- key prefix $\left(m_{1}, \ldots, m_{k}\right)$ with k such that $q_{k-1}(\alpha) \leq n<q_{k}(\alpha)$.
- completion $\left(m_{k+1}, \ldots, m_{p}\right)$ of the "period".

Important subfamilies

- Slope α rational: periodic, Christoffel words.
- Slope α quadratic irrational:
come up naturally as fixed points of substitution.
Two elements
- key prefix $\left(m_{1}, \ldots, m_{k}\right)$ with k such that $q_{k-1}(\alpha) \leq n<q_{k}(\alpha)$.
- completion (m_{k+1}, \ldots, m_{p}) of the "period".

Generating functions are now Dirichlet series.
\Rightarrow Quasi-inverse $\left(\mathbf{I}-\mathbf{H}_{s}\right)^{-1}$ applied to another one similar to the previous slide.

Important subfamilies

- Slope α rational: periodic, Christoffel words.
- Slope α quadratic irrational:
come up naturally as fixed points of substitution.
Two elements
- key prefix $\left(m_{1}, \ldots, m_{k}\right)$ with k such that $q_{k-1}(\alpha) \leq n<q_{k}(\alpha)$.
- completion (m_{k+1}, \ldots, m_{p}) of the "period".

Generating functions are now Dirichlet series.
\Rightarrow Quasi-inverse $\left(\mathbf{I}-\mathbf{H}_{s}\right)^{-1}$
applied to another one similar to the previous slide.
We expect unified solution with the real case

Slope subfamilies

Models.

- For rational $\alpha=h_{\boldsymbol{m}}(0)$: $\operatorname{size}(\alpha)=q$
here $q=\left|h_{\boldsymbol{m}}^{\prime}(0)\right|^{-1 / 2}$ is the reduced denominator.
- For quadratic irrational $\alpha=h_{\boldsymbol{m}}(\alpha)$: size $(\alpha):=v(\alpha)^{-1}$ here $v(\alpha)^{-1}=\left|h_{\boldsymbol{m}}^{\prime}(\alpha)\right|^{-1 / 2}$ is the analog of q.

Slope subfamilies

Models.

- For rational $\alpha=h_{\boldsymbol{m}}(0)$: size $(\alpha)=q$
here $q=\left|h_{\boldsymbol{m}}^{\prime}(0)\right|^{-1 / 2}$ is the reduced denominator.
- For quadratic irrational $\alpha=h_{\boldsymbol{m}}(\alpha)$: size $(\alpha):=v(\alpha)^{-1}$ here $v(\alpha)^{-1}=\left|h_{m}^{\prime}(\alpha)\right|^{-1 / 2}$ is the analog of q.

Bound the size by D and pick random α with size $(\alpha) \leq D$. \Rightarrow study $\mathbb{P}_{D}\left(S_{n}(\alpha) \leq \lambda\right)$ as $D, n \rightarrow \infty$ in some way ?

Slope subfamilies: quadratic irrationals

Write $\alpha=h_{\boldsymbol{w}}(\alpha)=[\boldsymbol{w}, \boldsymbol{w}, \ldots]$ for some $\boldsymbol{w} \in \mathbb{Z}_{>0}^{+}$and fix n.
To compute $S(\alpha, n)$ we only require

$$
v=\left(w_{1}, \ldots, w_{k}\right)
$$

with $q_{k-1}(\alpha) \leq n<q_{k}(\alpha)$. Write

$$
v=w^{\ell} v^{\prime}, \quad \epsilon \neq v^{\prime} \preceq w,
$$

the index $\ell=\ell(\alpha, n)$ is known as the number of turns.

Slope subfamilies: quadratic irrationals

Write $\alpha=h_{\boldsymbol{w}}(\alpha)=[\boldsymbol{w}, \boldsymbol{w}, \ldots]$ for some $\boldsymbol{w} \in \mathbb{Z}_{>0}^{+}$and fix n.
To compute $S(\alpha, n)$ we only require

$$
v=\left(w_{1}, \ldots, w_{k}\right)
$$

with $q_{k-1}(\alpha) \leq n<q_{k}(\alpha)$. Write

$$
v=w^{\ell} v^{\prime}, \quad \epsilon \neq v^{\prime} \preceq w,
$$

the index $\ell=\ell(\alpha, n)$ is known as the number of turns.
Number of turns is key

- Case $\ell=0$ is the simplest, and closely related to the rationals.
- Case $\ell>0$ is more complicated, seems to simplify as $\ell \rightarrow \infty$.

Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective

- the averages $\left(a_{1}(x)+\ldots+a_{M}(x)\right) / M$.
- the exponential growth of "natural continuants" $Q_{k}(x)$.

Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective

- the averages $\left(a_{1}(x)+\ldots+a_{M}(x)\right) / M$.
- the exponential growth of "natural continuants" $Q_{k}(x)$.

Results concerning almost every $x \in \mathcal{I}$
\Longrightarrow truncate the expansion $a_{1}(x), a_{2}(x), \ldots$ at depth k.

Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective

- the averages $\left(a_{1}(x)+\ldots+a_{M}(x)\right) / M$.
- the exponential growth of "natural continuants" $Q_{k}(x)$.

Results concerning almost every $x \in \mathcal{I}$
\Longrightarrow truncate the expansion $a_{1}(x), a_{2}(x), \ldots$ at depth k.
Adapting our methods to this context is work in progress:

- behaviour of continuants Q_{k} differs from rational case.

Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective

- the averages $\left(a_{1}(x)+\ldots+a_{M}(x)\right) / M$.
- the exponential growth of "natural continuants" $Q_{k}(x)$.

Results concerning almost every $x \in \mathcal{I}$
\Longrightarrow truncate the expansion $a_{1}(x), a_{2}(x), \ldots$ at depth k.
Adapting our methods to this context is work in progress:

- behaviour of continuants Q_{k} differs from rational case.
- we conjecture $-\frac{1}{k} \mathbb{E}\left[\log _{2}\left|Q_{k}\right|_{2}\right] \sim 1 / 2$

Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective

- the averages $\left(a_{1}(x)+\ldots+a_{M}(x)\right) / M$.
- the exponential growth of "natural continuants" $Q_{k}(x)$.

Results concerning almost every $x \in \mathcal{I}$
\Longrightarrow truncate the expansion $a_{1}(x), a_{2}(x), \ldots$ at depth k.
Adapting our methods to this context is work in progress:

- behaviour of continuants Q_{k} differs from rational case.
- we conjecture $-\frac{1}{k} \mathbb{E}\left[\log _{2}\left|Q_{k}\right|_{2}\right] \sim 1 / 2$
\rightarrow we have proved the limit exists

Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective

- the averages $\left(a_{1}(x)+\ldots+a_{M}(x)\right) / M$.
- the exponential growth of "natural continuants" $Q_{k}(x)$.

Results concerning almost every $x \in \mathcal{I}$
\Longrightarrow truncate the expansion $a_{1}(x), a_{2}(x), \ldots$ at depth k.
Adapting our methods to this context is work in progress:

- behaviour of continuants Q_{k} differs from rational case.
- we conjecture $-\frac{1}{k} \mathbb{E}\left[\log _{2}\left|Q_{k}\right|_{2}\right] \sim 1 / 2$
\rightarrow we have proved the limit exists
... explicit invariant density $\Psi(x, y)$?

Continued Logarithm expansion over the reals: intro

Chan studied from an Ergodic perspective

- the averages $\left(a_{1}(x)+\ldots+a_{M}(x)\right) / M$.
- the exponential growth of "natural continuants" $Q_{k}(x)$.

Results concerning almost every $x \in \mathcal{I}$
\Longrightarrow truncate the expansion $a_{1}(x), a_{2}(x), \ldots$ at depth k.
Adapting our methods to this context is work in progress:

- behaviour of continuants Q_{k} differs from rational case.
- we conjecture $-\frac{1}{k} \mathbb{E}\left[\log _{2}\left|Q_{k}\right|_{2}\right] \sim 1 / 2$
\rightarrow we have proved the limit exists
... explicit invariant density $\Psi(x, y)$?
\rightarrow related to growth of $\operatorname{gcd}(p, q)$ in the algorithm!

Mirrors

The conjecure

$$
\log _{2} \operatorname{gcd}\left(p_{i}, q_{i}\right) \sim i / 2
$$

leads us to mirrors.

Mirrors

The conjecure

$$
\log _{2} \operatorname{gcd}\left(p_{i}, q_{i}\right) \sim i / 2
$$

leads us to mirrors.

- The successive pairs $\left(p_{i}, q_{i}\right)$ correspond to convergents

$$
\left\langle a_{k}, \ldots, a_{p}\right\rangle, \quad k=1, \ldots, p
$$

Mirrors

The conjecure

$$
\log _{2} \operatorname{gcd}\left(p_{i}, q_{i}\right) \sim i / 2
$$

leads us to mirrors.

- The successive pairs $\left(p_{i}, q_{i}\right)$ correspond to convergents

$$
\left\langle a_{k}, \ldots, a_{p}\right\rangle, \quad k=1, \ldots, p
$$

- Moreover

$$
Q\left(a_{k}, a_{k+1}, \ldots, a_{p}\right)=2^{a_{k}} Q\left(1, a_{p}, a_{p-1} \ldots, a_{k+1}\right)
$$

\Rightarrow related to convergents of the mirror expansion

Mirrors

The conjecure

$$
\log _{2} \operatorname{gcd}\left(p_{i}, q_{i}\right) \sim i / 2
$$

leads us to mirrors.

- The successive pairs $\left(p_{i}, q_{i}\right)$ correspond to convergents

$$
\left\langle a_{k}, \ldots, a_{p}\right\rangle, \quad k=1, \ldots, p
$$

- Moreover

$$
Q\left(a_{k}, a_{k+1}, \ldots, a_{p}\right)=2^{a_{k}} Q\left(1, a_{p}, a_{p-1} \ldots, a_{k+1}\right) .
$$

\Rightarrow related to convergents of the mirror expansion

$$
\left\langle a_{p}, a_{p-1}, \ldots, a_{1}\right\rangle
$$

- Average properties of mirror strongly associated with a "mirrored" transfer operator

$$
\underline{\mathbf{H}}_{1,1-w, w, 1-w} .
$$

Binary gcd algorithms

Other well-known binary algorithms include

- The binary GCD
- The LSB (least significant bits) algorithm - Informally "the Tortoise and the Hare".

Binary gcd algorithms

Other well-known binary algorithms include

- The binary GCD
- The LSB (least significant bits) algorithm - Informally "the Tortoise and the Hare".

The dyadics play different roles in the dynamical analysis

- For the binary GCD: dyadics are drawn probabilistically and independently.
- For the LSB: dyadics play the main role!

Binary gcd algorithms

Other well-known binary algorithms include

- The binary GCD
- The LSB (least significant bits) algorithm
- Informally "the Tortoise and the Hare".

The dyadics play different roles in the dynamical analysis

- For the binary GCD: dyadics are drawn probabilistically and independently.
- For the LSB: dyadics play the main role!

Unify the analysis to better understand the role of the dyadics?

