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Abstract

We study the emergence of cooperation in large spatial public goods games. Without

employing severe social-pressure against “defectors”, or alternatively, significantly reward-

ing “cooperators”, theoretical models typically predict a system collapse in a way that is

reminiscent of the “tragedy-of-the-commons” metaphor. Drawing on a dynamic network

model, this paper demonstrates how cooperation can emerge when the social-pressure is

mild. This is achieved with the aid of an additional behavior called “hypocritical”, which

appears to be cooperative from the external observer’s perspective but in fact hardly con-

tributes to the social-welfare. Our model assumes that social-pressure is induced over both

defectors and hypocritical players, but the extent of which may differ. Our main result

indicates that the emergence of cooperation highly depends on the extent of social-pressure

applied against hypocritical players. Setting it to be at some intermediate range below the

one employed against defectors allows a system composed almost exclusively of defectors

to transform into a fully cooperative one quickly. Conversely, when the social-pressure

against hypocritical players is either too low or too high, the system remains locked in a

degenerate configuration.

Introduction

The “tragedy-of-the-commons” metaphor, popularized by Hardin in 1968 [1], aims to capture situations in

public goods systems where self-interested individuals behave contrary to the common good by depleting

or spoiling the shared resource. In the 21st century, this metaphor finds relevance in several of our global

environmental challenges [2, 3], where the shared resource can be considered, depending on the context, as

an aspect of the ecosystem. For example, excessive beef consumption by a substantial number of individuals

induces vast livestock production that degrades air and water quality and causes a considerable increase in

greenhouse gas emissions [4]. Conversely, our environment would significantly benefit if a large portion of

individuals in the population would self-restraint the amount of beef they consume. Therefore, improving our

understanding of the emergence of cooperation in public goods systems goes beyond the purely theoretical

interest and may prove to be of practical importance.

Theoretical studies on the emergence of cooperation typically assume that players act according to few

stereotyped behaviors, the most common being “defector”, and “cooperator” [5, 6, 7, 8, 9]. A cooperator

pays an energetic cost to produce a benefit b for others, whereas a defector does not contribute anything but

also does not pay any energetic cost. In recent years, significant attention has been devoted to study the

impact of the populations’ structure on the emergence of cooperation [10, 5, 11, 12]. These works assume
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that players are organized over a fixed network, with the vertices representing the players and the edges

representing reciprocal relations between neighbors. Naturally, the dynamics of the system strongly depend

on the mutual relations between neighboring players.

For example, several of the works on cooperation in structured populations assume that the benefit b

produced by a cooperative player is shared equally by its neighbors. For such a model, Ohtsuki et al. showed

that cooperation emerges when the ratio between the benefit per per neighbor and the cost of producing it

exceeds a certain threshold [5]. However, large public goods games, especially those on the scale that affects

the environment, exhibit a very different framework of reciprocity [13, 14, 15, 16, 17]. Rather than being

shared by immediate neighbors, the benefit b is shared by all individuals, practically making the marginal

per-capita return gain (MPCR) negligible compared to the cost of cooperating. This violates the condition

for the evolution of cooperation based on reciprocity [5, 6, 7, 8, 9] suggesting that cooperation in large public

goods games might be difficult to achieve without considering other factors, such as rewards or punishments.

It is well-known that global cooperation can emerge when players severely punish their neighboring

defectors (or, alternatively, significantly reward their cooperating neighbors) [18, 6, 19, 20, 14, 21]. However,

inducing severe punishments on others may be costly, and hence reaching high levels of social-pressure is

by itself a non-trivial problem, often referred to in the literature as the second-order free riders problem

[22, 23, 13, 24, 25, 26, 27, 28, 29, 30, 17]. A crucial parameter in the second-order problem is the cost of

punishing, which may be correlated to the extent of punishment [31]. Clearly, when the cost exceeds a certain

threshold, people would avoid punishing non-cooperators. However, when the cost is low, other factors, such

as reputation considerations, can subsume the cost, ultimately making punishing beneficial [32, 33, 34]. It

is therefore of interest to study the emergence of cooperation in the presence of moderate punishments or

mild social-pressure.

Specifically, we are interested in a regime of social-pressure that is high enough to maintain an already

cooperative system, but is insufficient to transform a system that initially includes a large number of defectors

into a cooperative one. To illustrate this, let us consider the context of recycling and an imaginary person

named Joe. When almost all of Joe’s neighbors are recycling (i.e., cooperating), the social-pressure cost they

induce on him can accumulate to overshadow the burden cost of recycling and incentivize him to also recycle.

Conversely, when almost all of Joe’s neighbors are not recycling (i.e., defecting), the burden of recycling may

exceed the overall social-pressure, effectively driving Joe to defect. This raises a natural question:

How can a system that utilizes mild social-pressure

escape the tragedy-of-the-commons when it is

initially composed mostly of defectors?

The aforementioned recycling abstraction includes two extreme behaviors: defector and cooperative.

Another type of generic behavior is hypocritical [35, 36, 26, 27, 28, 24], which was also experimentally

studied in [37, 38]. In our interpretation, a hypocritical individual pretends to be cooperative in order to

reduce the social-pressure that it might experience as a defector, and, at the same time, avoids the high

energetic cost incurred by a cooperator. To pretend to be a cooperator, a hypocritical individual must invest

a small amount of energy in contributing to the social welfare, as well as mimic the behavior of cooperators

towards their peers. This means that such players, similarly to cooperators, also induce mild social-pressure.

It was previously suggested that hypocritical behavior can incentivize global cooperation [28, 29]. However,

in these works, similarly to many other papers on the emergence or evolution of cooperation based on

reciprocity [5, 6, 7, 8, 9], the dynamics heavily relies on the assumption that players gain substantially from

the presence of nearby cooperators. As mentioned, this assumption is hardly justifiable in large-scale public

goods scenarios such as the ones we consider.
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Results

We consider public goods games played iteratively over a fixed connected network. The vertices of the

network represent the players and the edges represent neighboring connections [10, 5, 11, 12]. The dynamics

evolves over discrete rounds. In each round, each player chooses a behavior that minimizes its cost, where

the player’s cost is affected by its own behavior and the behaviors of its neighbors.

Our main model includes three behavior types, namely, defector, hypocritical, and cooperator, in which

those who hardly contribute to the social welfare, i.e., defector and hypocritical players, face the risk of

being caught and punished by their non-defector neighbors. The level of risk together with the extent of

punishment is captured by a notion that we call “social-pressure”. The main result is that adjusting the level

of social-pressure employed against hypocritical players compared to the one employed against defectors can

have a dramatic impact on the dynamics of the system. Specifically, letting the former level of social-pressure

be within a certain range below the latter level, allows the system to quickly transform from being composed

almost exclusively of defectors to being fully cooperative. Conversely, setting the level to be either too low

or too high locks the system in a degenerate configuration.

As mentioned, our main model assumes that non-defector players induce mild social-pressure on their

defector neighbors. This implicitly assumes that inducing the corresponding social-pressure is beneficial

(e.g., allows for a social-upgrade), although other explanations have also been proposed [21]. To remove this

implicit assumption we also consider a generalized model, called the two-order model, which includes costly

punishments. Consistent with previous work on the second-order problem, e.g., [22, 24, 25, 27, 28, 29], this

model distinguishes between first-order cooperation, that corresponds to actions that directly contribute to

the social welfare, and second-order cooperation, that corresponds to applying (costly) social-pressure, or

punishments, on others. Similarly to the main model, the level of punishment employed against first-order

defectors may differ from that employed against second-order defectors. We identify a simple criteria for the

emergence of cooperation: For networks with minimal degree ∆, cooperation emerges when two conditions

hold. The first condition states that the cost α2 of employing punishments against second-order defectors

should be smaller than the corresponding punishment β2 itself, i.e., α2 < β2. The second condition states that

the cost α1 of employing punishments against first-order defectors should be smaller than the corresponding

punishment β1 times the minimal number of neighbors, i.e., α1 < β1 · ∆. The second condition is also a

necessary condition for the emergence of cooperation in the two-order model.

The main model

The model considers two extreme behaviors, namely, cooperative (c) and defector (d), and an additional

intermediate behavior, called hypocritical (h). The system starts in a configuration in which almost all

players, e.g., 99%, are defectors (see Methods). Execution proceeds in discrete rounds. The cost of a player

depends on its own behavior and on the behavior of its neighbors. All costs are evaluated at the beginning

of each round, and then, before the next round starts, each player chooses a behavior that minimizes its cost

(breaking ties randomly), given the current behavior of its neighbors. In contrast to many previous works

on cooperation in networks [5, 6, 7, 8, 9], we assume that benefits from altruistic acts are negligible (i.e., the

MPCR is zero), so that a player does not gain anything when others cooperate.

The cost of a player u with a behavior type i ∈ {d, h, c} is composed of two components: the energetic

cost Ei associated with the contribution to the social welfare, and the social-pressure cost Si(u) it faces, that

is:

Ci(u) = Ei + Si(u).
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We assume that the energetic cost of a defector is 0, and the energetic cost of a cooperator is 1, where the

value of 1 is chosen for normalization:

Ed = 0 and Ec = 1.

A hypocritical player produces the minimal social welfare required to pretend to be cooperative. Hence, we

assume that

0 < Eh < 1,

thinking of Eh as closer to 0 than to 1.

As mentioned above, we focus on relatively mild social-pressure induced by cooperative players, aiming

to improve their social status. Since hypocritical players aim to appear similar to cooperators from the

perspective of an external observer, we assume that they too induce social-pressure on their neighbors.

Defectors, on the other hand, do not induce any social-pressure since such an enhancement of the social

status is not justified for them. In principle, cooperators and hypocritical players might induce different

levels of social-pressure, yet, for the sake of simplicity, we assume that they induce the same extent of social-

pressure. This assumption is further justified by the fact that a player u cannot distinguish its hypocritical

neighbors from its cooperative neighbors, hence, u’s calculation of the social-pressure is evaluated assuming

all of its non-defector neighbors are cooperators.

Formally, we assume that the possible social-upgrade gain associated with cooperators or hypocritical

players as a result of applying social-pressure is already taken into account when calculating the energetic

costs Ec and Eh. Since we assume that this gain is small, it hardly perturbs the cost, keeping the energy

consumption as the dominant component.

Implicitly, we think of the social-pressure cost incurred by a player u as the product of two factors:

(1) the risk of being caught, which is assumed to be proportional to the number of u’s neighbors inducing

social-pressure, and (2) a fixed penalty paid when caught, which depends on u’s behavior. The product of

the risk and penalty represents the expected punishment in the next round, if behaviors remain the same.

Cooperators are assumed to pay zero penalty, and are hence effectively immune to social-pressure:

Sc(u) = 0.

Conversely, the social-pressure induced over defectors and hypocritical players is non-zero. For a given round,

let ∆d̄(u) denote the number of neighbors of u which are non-defectors at that round. The social-pressure

cost induced over a defector, and respectively, a hypocritical, player u is:

Sd(u) = ρd ·∆d̄(u), respectively, Sh(u) = ρh ·∆d̄(u),

where ρd > 0, respectively ρh > 0, represents the social-pressure induced over a defector, respectively a

hypocritical, from one neighboring non-defector. We focus on the regime where ρh < ρd, since otherwise,

becoming a defector is always more beneficial than becoming a hypocritical.

To sum up, at a given round, the total cost incurred by a player u is:

C(u) =


1 if u is a cooperator,

ρd ·∆d̄(u) if u is a defector,

Eh + ρh ·∆d̄(u) if u is hypocritical.

Before stating our main result, we recall few standard definitions in graph-theory [39]. The diameter of a

network G, denoted diam(G), is the maximal distance between any pair of players (see Methods). A network

is ∆-regular, if every player has precisely ∆ neighbors. Theorem 1 below assumes that the underlying network

is ∆-regular. However, this theorem can be generalized to arbitrary networks with minimal degree ∆ (see

SI, Theorem 6).
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Theorem 1. Consider a ∆-regular network G with n players. Assume that

(1− Eh)/∆ < ρh < ρd − Eh. (1)

Then, with probability at least 1− 1
cn , for some constant c > 1, in at most 3 ·diam(G) + 1 rounds, the system

will be in a configuration in which all players are cooperative, and will remain in this configuration forever.

Figure 1: The two stages of the dynamics. The direction of the red and blue arrows indicates the

direction of the social-pressure applied on the player occupying the central vertex. Cooperative players pay

an energetic cost of Ec = 1 and are immune to social-pressure. A defector player pays a social-pressure cost

of ρd = 0.5 per non-defector neighbor. A hypocritical player pays social-pressure cost of ρh = 0.25 per non-

defector neighbor, and an energetic cost of Eh = 0.2. (a) First stage: defectors become hypocritical players.

A defector player (central vertex on the left) has one non-defector neighbor (in this case, a cooperator),

implying that its social-pressure cost is ρd = 0.5. Therefore, that player would prefer to be hypocritical

(right), paying only 0.25 + 0.2 = 0.45. (b) Second stage: hypocritical players become cooperators. Here, a

hypocritical player (central vertex on the left) is surrounded by four non-defector neighbors. In this case,

the social-pressure accumulates to favor cooperation (right).

The formal proof of Theorem 1 appears in the SI, Section B. Intuitively, the main idea behind it is as

follows. When the extent of social-pressure against hypocritical players is moderate, that is, when ρh satisfies

Eq. (1), the transition process can be divided into two stages. At the first stage, since the punishments of

hypocritical players are sufficiently lower than those of defectors, specifically, ρh < ρd − Eh, or equivalently

ρh+Eh < ρd, the presence of at least one neighboring non-defector u makes a hypocritical player pay less than

a defector. In this case, u’s neighbors would become non-defectors at the next round (Figure 1a). Although

this does not necessarily imply that u itself remains a non-defector in the next round, it is nevertheless

possible to show that the proportion of hypocritical players gradually increases on the expense of defectors.

Note that at this point, the social welfare may still remain low, since hypocritical players hardly contribute

to it. However, the abundance of non-defectors increases the overall social-pressure in the system. In

particular, since the social-pressure on hypocritical players is also not too mild, specifically (1−Eh)/∆ < ρh,

or equivalently 1 < ρh∆ + Eh, the presence of many neighboring non-defectors can magnify it up to the

point that the total cost incurred by a hypocritical player surpasses the energetic cost of being a cooperator
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(Figure 1b). At this second stage, cooperators prevail over both defectors and hypocritical players, and so

the system converges to a cooperative configuration.

Conversely, severely punishing hypocritical players diminishes the prevalence of such players, preventing

the system from escaping the initial degenerate configuration. Contrariwise, incurring too mild social-

pressure towards hypocritical players would prevent the second stage of the dynamics. In particular, if

ρh < (1−Eh)/∆, or equivalently, if Eh +ρh∆ < 1, then a player would always prefer to be hypocritical over

being cooperative (even when all its neighbors induce social-pressure). In this case, the system would remain

degenerative since the population would consist of a combination of defectors and hypocritical players.

To illustrate the dynamics we conducted simulations over two types of networks: A two-dimensional

torus grid, and random 10-regular networks. Figures 2a (grid) and 2b (random 10-regular networks) show

how the population evolves over time, where the parameters taken satisfy Eq. (1). The role of hypocritical

behavior as a transitory state, essential to achieving cooperation, is well illustrated by the initial peak of

hypocritical players, preceding the rise of cooperative players. Moreover, if hypocritical behavior is disabled

(see Methods), then the system is unable to escape the defective state (insets).

Figures 2c (grid) and 2d (random 10-regular networks) show the steady-state configuration, when hypo-

critical players experience different levels of energetic cost (Eh) and social-pressure (ρh). For small values of

ρh and Eh, hypocritical behavior is, unsurprisingly, dominant: punishments deter defectors, but are insuffi-

cient to incentivize cooperation. For moderate values of Eh, this phenomenon changes when ρh enters the

range specified in Theorem 1. Then, when ρh increases further, the system remain defective.

As it turns out, the convergences we see in Figures 2c and 2d are very strong, in the sense that almost

all players have the same behavior at steady-state. This unrealistic outcome is a consequence of several

simplifying assumptions, including the fact that players behave in a fully greedy fashion while having perfect

knowledge regarding their costs. Indeed, we also simulated a more noisy variant of our model, in which each

player chooses the behavior that minimizes its cost with probability 0.95, and otherwise chooses a behavior

uniformly at random. This relaxed model yields more mixed populations at steady-state (Figures 2e and 2f).

Observe that the necessity of the condition ρh > (1−Eh)/∆ to the emergence of cooperation is still respected.

However, the other condition, namely, ρh < ρd − Eh appears to be more sensitive to randomness. Indeed,

for random ∆-regular graphs, cooperation emerges also for larger values of ρh.

A Generalized Model with Costly Punishments

We next describe a different, more general model, termed the two-order model, that includes costly pun-

ishments. We then show how the second-order problem is solved in this model for a certain regime of

parameters.

In the two-order model, similarly to the main model, players are organized over a connected network

G. A behavior for Player u is defined as a couple of indicator functions (χ1(u), χ2(u)), with the convention

that χ1(u) = 1 if u cooperates on the first-order (and 0 if it defects), and χ2(u) = 1 if u cooperates on the

second-order (and 0 if it defects).

The cost incurred by a player is divided into two components. We denote by α1 > 0 the cost associated

with first-order cooperation (this is analogues to the energetic cost in the main model), while α2 > 0

refers to the cost of second-order cooperation, that is, the cost of incurring punishments. A player u such

that χ2(u) = 1 induces a social-pressure cost on each of its neighbors, whenever these fail to cooperate, at

any order. Similarly to the main model, the extent of this social-pressure may differ depending on whether

it is applied against first-order defectors or second-order defectors. Specifically, we denote by β1 the social-

pressure cost paid by a first-order defector, and by β2 the social-pressure cost paid by a second-order defector

6



(a) Time evolution on a 50× 50 grid (b) Time evolution on a 10-regular network

(c) Cooperation level on a 50× 50 grid (d) Cooperation level on 10-regular networks

(e) Relaxed model on a 50× 50 grid (f) Relaxed model on 10-regular networks

Figure 2: Emergence of cooperation in grids and random 10-regular networks. Figures (a), (c)

and (e) correspond to a 50× 50 grid network, and Figures (b), (d) and (f) correspond to random 10-regular

networks with 1000 vertices. All simulations start with a configuration in which 99% of players are defectors.

Figures (a) and (b) show how the population evolves over time (number of rounds). The chosen parameters

satisfy the assumption in Eq. (1) (see Methods). The insets show the population’s evolution when hypocritical

behavior is not available to the agents. Figures (c) and (d) depict the steady-state behavior, for different

levels of ρh, which is the parameter quantifying the social-pressure towards hypocrisy. Figures (e) and (f)

are similar to Figures (c) and (d), except that we relaxed the greediness assumption in the decision making

process, allowing for some “irrationality”. See Methods for more details.
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(fully defecting individuals pay both). Formally, denoting by ∆2(u) the number of neighbors of u which are

cooperating on the second-order, that is, ∆2(u) = |{v is a neighbor of u, χ2(v) = 1}|, the total cost paid

by u equals:

C(u) = χ1(u)α1 + χ2(u)α2 + (1− χ1(u))∆2(u)β1 + (1− χ2(u))∆2(u)β2. (2)

Let us name each of the four behaviors, and recap their cost:

• a cooperator (χ1(u) = 1, χ2(u) = 1) pays α1 + α2,

• a defector (χ1(u) = 0, χ2(u) = 0) pays ∆2(u)(β1 + β2),

• a hypocritical (χ1(u) = 0, χ2(u) = 1) pays α2 + ∆2(u)β1,

• a private cooperator (χ1(u) = 1, χ2(u) = 0) pays α1 + ∆2(u)β2.

Similarly to the main model, the system starts in a configuration in which almost all players, e.g., 99%, are

defectors (see Methods). The execution proceeds in discrete synchronous rounds. The costs of each player

are evaluated at the beginning of each round, and then, before the next round starts, each player chooses a

behavior that minimizes its cost (breaking ties randomly), given the current behavior of its neighbors.

The theorem below assumes that the underlying network is ∆-regular. However, as in the case of Theorem

1, the theorem can be generalized to arbitrary networks with minimal degree ∆ (SI, Theorem 13).

Theorem 2. Consider a ∆-regular network G with n players undergoing the two-order model. Assume that

the following two conditions hold.

• Condition (i) α2 < β2, and

• Condition (ii) α1 < ∆β1.

Then, with probability at least 1− 1
cn , for some constant c > 1, in at most 3 ·diam(G) + 1 rounds, the system

will be in a configuration in which all players are cooperative, and will remain in this configuration forever.

Discussion

This paper proposes a simple idealized network model that demonstrates how cooperation can emerge, even

when the MPCR is zero, and even when the extent of social-pressure is low. Our results highlight the possible

social role that might be played by hypocritical behavior in escaping the tragedy-of-the-commons. The main

finding is that setting the level of social-pressure towards this behavior to be at a specific intermediate range

allows to quickly transform an almost completely defective system into a fully cooperative one. Our model,

like any model, neglects many of the real-life complexity parameters. Nevertheless, the insight we discovered

sheds new light on the possibility of emergent cooperation. In particular, our results suggest that individuals

who wish to influence others in the context of environmental preservation should rethink their relation to

their hypocritical acquaintants.

Methods

For two players u and v in G, let dG(u, v) denote the distance between u and v, that is, the number edges on

the shortest path linking u to v in G. The maximal distance between any pair of players, i.e., the diameter,

is denoted by diam(G) = maxu,v∈G dG(u, v).
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The initial configuration is governed by a given fixed 0 < ε < 1, which is independent from the underlying

graph. In the main model, each player is initially set to be a defector with probability 1− ε, a hypocritical

with probability ε/2, and a cooperative with probability ε/2. Similarly, in the two-order model, each player

is initially chosen to be a defector, with probability 1− ε, and, otherwise, with probability ε it chooses one

of the three remaining behaviors with equal probability, i.e., ε/3. We think of ε as very small; for example,

in each of our simulations we take ε = 0.01, which means that initially, 99% of the population are defectors,

0.5% are hypocritical, and 0.5% are cooperators.

We simulated the dynamics of the main model using the C++ language. Figured were obtained using

the Python library “Matplotlib”. In Figures 2a and 2c we used a 50×50, 4-regular, torus grid. In Figures 2b

and 2d we used random 10-regular networks with 1000 vertices. To sample such a network, we gradually

increased the number of edges, by pairing the vertices of degree less than 10 uniformly at random, until it

became not possible anymore; then we discarded the few “left-overs” if necessary. As a consequence, the

sampled networks have sometimes slightly less than 1000 vertices, but are always 10-regular by construction.

When running the time-simulations on the grid in Figure 2a, we took Eh = 0.1, ρd = 0.45, and ρh = 0.23.

In Figure 2b, the time-simulation was executed on a single random 10-regular network, using the parameters

Eh = 0.1, ρd = 0.22, and ρh = 0.11. For both cases these parameters satisfy the constraints in Eq. (1). The

insets show the evolution of the population when hypocritical behavior is disabled. This means that each

player must choose between cooperating and defecting only, and that in the initial configuration, each player

is a defector with probability 1 − ε, and a cooperator with probability ε. The setting remains otherwise

unchanged.

In both Figure 2c and Figure 2d, the results of the simulations are presented for 150 values of Eh and 150

values of ρh, with Eh ∈ [0, 1] and ρh ∈ [0, ρd]. For each couple (Eh, ρh), a pixel is drawn at the appropriate

location, whose RGB color code corresponds to the proportions of defectors (red), cooperators (green), and

hypocritical players (blue) in steady-state – that is, after T rounds. These proportions have been averaged

over N repetitions, with each time a new starting configuration, and, in the case of 10-regular networks

(Figure 2d), a new network. For the grid, we set T = 20, N = 10, whereas for the 10-regular networks, we

took T = 10, N = 100.

Figure 2e and Figure 2f are obtained in the same way as Figures 2c and 2d, respectively, except that

players do not choose greedily their behavior for the next round. Instead, at each round, each player chooses

a behavior that minimizes its cost (breaking ties randomly) with probability 0.95, and otherwise chooses a

behavior uniformly at random.

All the experiments mentioned in this paper are numerical simulations. Specifically, they do not involve

any real participant.
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Supplementary Information

A Preliminaries

A.1 Definitions

Let G be a connected, undirected network. In the context of our models, we often refer to the vertices of G

as players. Given a player u, we write N(u) the set of neighbors of u. Similarly, given a subset A of players,

we write N(A) the set of neighbors of A, that is

N(A) =
⋃
u∈A

N(u).

The degree of a player u is the number of its neighbors, that is |N(u)|. We say that G has minimal degree ∆

if every player has degree at least ∆. A network is called ∆-regular if all the vertices have degree precisely ∆.

For two players u and v in G, let dG(u, v) denote the distance between u and v, that is, the number

edges on the shortest path linking u to v in G. Similarly, given a subset A of players, we write dG(u,A) the

distance between u and A, that is

dG(u,A) = min
v∈A

dG(u, v).

The diameter of G, is

diam(G) = max
u,v∈G

dG(u, v).

A bipartite network is a network G whose set of vertices can be divided into two disjoint sets U and V ,

such that every edge connects a player in U to a player in V . It is a well-known fact that a network is

bipartite network if and only if it does not contain any odd-length cycles [39].

A.2 A result in graph theory

The following lemma (mentioned also in [40]) appears to be a basic result in graph theory, however, we could

not find a formal proof for it. We therefore provide a proof here for the sake of completeness.

Lemma 3. The shortest odd-length cycle of any non-bipartite network G is of length at most 2diam(G) + 1.

Proof. Consider a non-bipartite network G. Such a network necessarily has an odd-length cycle. Let 2k+ 1

be the shortest length among the odd-length cycles in G, where k is an integer, and let C = (u1, . . . , u2k+1)

be such a cycle.

Claim 4. For every i, j ∈ {1, . . . , 2k + 1} such that dC(ui, uj) ≥ 2, there exist ` 6= i, j and a shortest path

P between ui and uj such that P contains u`.

Proof of Claim 4. Assume by way of contradiction that we can find i < j such that no shortest path between

ui and uj has any intermediate vertex among {u1, . . . , u2k+1}. Up to re-indexing the vertices of the cycle,

we can assume that j − i ≤ k. Let (ui = v1, v2, . . . , vs, vs+1 = uj) be a shortest path between ui and uj . By

assumption, {v2, . . . , vs} ∩ {u1, . . . , u2k+1} = ∅, and s < j − i (otherwise (ui, ui+1, . . . , uj−1, uj) is a shortest

path). Consider two cases:

• If s and j − i have different parities, then s+ j − i is odd. Moreover, s+ j − i ≤ 2(j − i) ≤ 2k, so

(v1 = ui, ui+1, . . . , uj−1, uj = vs+1, vs, . . . , v2)

is an odd-length cycle shorter than C, which is a contradiction.
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• If s and j−i have the same parity, then 2k+1+s−(j−i) is odd. Moreover, 2k+1+s−(j−i) < 2k+1,

so

(ui = v1, v2, . . . , vs, vs+1 = uj , uj+1, . . . , u2k+1, u1, . . . , ui−1)

is again an odd-length cycle shorter than C, which is a contradiction.

This concludes the proof of Claim 4.

Claim 5. For every i, j ∈ {1, . . . , 2k + 1}, there exist a shortest path P between ui and uj such that P

contains only vertices of C – in other words, dC(ui, uj) = dG(ui, uj).

Proof of Claim 5. We prove the claim by induction on dC(ui, uj), the distance between ui and uj in C.

When dC(ui, uj) = 1, (ui, uj) is a path of length 1 between ui and uj containing only vertices of C. Next, let

us assume that the claim holds for every pair of vertices whose distance in C is at most 1 ≤ d ≤ k. Consider

i and j such that dC(ui, uj) = d + 1. By Claim 4, we can find ` and a shortest path P between ui and uj

such that P contains u`. By the induction hypothesis, we can find shortest paths P1 between ui and u`, and

P2 between u` and uj , such that P1 and P2 contain only vertices of C. By merging P1 and P2, we obtain

a shortest path between ui and uj containing only vertices of C, which establishes the induction step. This

concludes the proof of Claim 5.

By Claim 5, k = dC(u1, uk+1) = dG(u1, uk+1) ≤ diam(G), where the last inequality is by the definition

of diameter. Hence, 2k + 1 ≤ 2diam(G) + 1. This concludes the proof of Lemma 3.

B Proof of Theorem 1

The goal of this section is to prove Theorem 1. In fact, we prove the more general theorem below.

Theorem 6. Consider a network G with n players and minimal degree ∆. Assume that the following

conditions hold.

• Condition (i) Eh + ρh < ρd, and

• Condition (ii) Eh + ρh ·∆ > 1.

Then, for some constant c > 1 (that depends only on ε and not on G) the following holds.

• If G is not bipartite then with probability at least 1− 1
cn , in at most 3 · diam(G) + 1 rounds, the system

will be in a configuration in which all players are cooperative, and will remain in this configuration

forever.

• If G is bipartite and ∆-regular then with probability at least 1 − 1
cn , in at most diam(G) + 1 rounds,

the system will be in a configuration in which all players are cooperative, and will remain in this

configuration forever.

• If G is bipartite then with probability at least 1− 1
c∆ , in at most diam(G) + 1 rounds, the system will

be in a configuration in which all players are cooperative, and will remain in this configuration forever.

Before we prove Theorem 6 we note that in the third item, the probability bound of 1 − 1
c∆ is tight for

bipartite graphs, up to replacing c with another constant. Indeed, consider the bipartite graph which is

constructed by having ∆ players in U , each of which is connected to each of the remaining n − ∆ players

in V . Then, with probability 1
c∆ , for some constant c, all players in U are defectors initially. In this case,
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it is possible to show that, regardless of the relationships between ρd, ρh and Eh, but as long as being a

defector is the best choice when all neighbors are defectors, the system keeps alternating forever, so that on

even rounds all players in U are defectors, and on odd rounds all players in V are defectors.

Proof of Theorem 6. We start with defining D̄t as the set of non-defector players at round t. The following

lemma describes the propagation of the non-defector state in the network. It says that a player u is a

non-defector at round t+ 1 if and only if at least one of its neighbors v is a non-defector in round t. Note,

however, that this does not imply that the neighbor v remains a non-defector in the next round as well.

Lemma 7. Under Condition (i), D̄t+1 = N(D̄t).

Proof. First, we prove that N(D̄t) ⊆ D̄t+1. Let u ∈ N(D̄t). By definition, there exists a neighbor v of u

such that v is a non-defector at round t. We claim that for u, being a hypocritical in round t+ 1 is strictly

more beneficial than being a defector. Indeed, as a hypocritical it will pay Eh+ρh ·∆d̄(u), and as a defector

it will pay ρd ·∆d̄(u). Since v is non-defector then ∆d̄(u) ≥ 1, and hence:

Eh + ρh ·∆d̄(u) ≤ (Eh + ρh) ·∆d̄(u) < ρd ·∆d̄(u),

where we used Condition (i) in the last inequality. Therefore, the cost of u as a defector is strictly higher

than its cost as a hypocritical. This implies that in the next round u will be either a hypocritical or a

cooperative player, i.e., u ∈ D̄t+1.

To prove the other inclusion, D̄t+1 ⊆ N(D̄t), consider a player u /∈ N(D̄t), i.e., having only defectors

as neighbors at round t, or in other words, at round t, we have ∆d̄(u) = 0. If u chooses to be a defector

at round t + 1, then it would pay ∆d̄(u)ρd = 0, which is less than what it would pay as a hypocritical

(Eh + ∆d̄(u)ρh = Eh) or cooperator (1). Hence, u /∈ D̄t+1.

Lemma 8. Assume that Conditions (i) and (ii) hold, and assume that for some round t0 all players are

non-defectors. Then, at round t0 + 1, all players will be cooperative, and will remain cooperative forever.

Proof. Assume that at round t0 all players are non-defectors. By Lemma 7, we know that every player will

remain non-defector for every round after t0. It therefore remains to show, that at the end of round t, for

any t ≥ t0, being a cooperative is strictly more beneficial than being a hypocritical.

Observe that since each player has at least ∆ neighbors, and since all neighbors are non-defectors at

round t, then for every player u, we have ∆d̄(u) ≥ ∆ at round t. Therefore, being a hypocritical costs

Eh + ρh ·∆d̄(u) ≥ Eh + ρh ·∆. By Condition (ii), this quantity is strictly greater than 1, hence more than

what a cooperative player would pay. It follows that, at the end of round t, being a cooperative is strictly

more beneficial than being a hypocritical, implying that all players would be cooperators at round t + 1.

This completes the proof of Lemma 8.

Lemma 9. Assume that Conditions (i) and (ii) hold, and assume that for some round t0, we have D̄t0 ∩
N(D̄t0) 6= ∅, that is, there are at least two neighboring non-defectors. Then in at most diam(G) + 1 rounds

as of round t0, the system will be in the configuration in which all players are cooperative, and will remain

in this configuration forever.

Proof. By assumption, there exists two neighbors u0, u
′
0 ∈ D̄t0 . We define inductively a sequence of sets

{Uj}j≥0, setting U0 = {u0, u
′
0}, and for every j, defining Uj+1 = N(Uj).
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Claim 10. For every integer j ≥ 0,

Uj ⊆ N(Uj) (3)

(each player in Uj has at least one neighbor in Uj), and

Uj ⊆ D̄t0+j (4)

(each player in Uj is non-defector at round t0 + j).

Proof of Claim 10. The proof proceeds by induction. The base of the induction, corresponding to j = 0,

is true by the assumption on u0 and u′0. Next, let us assume that the claim holds for some integer j ≥ 0.

By the induction hypothesis with respect to Eq. (3), Uj ⊆ N(Uj), so N(Uj) ⊆ N(N(Uj)), and hence, by

definition, Uj+1 ⊆ N(Uj+1). In other words, we have proved that Eq. (3) holds at round j+ 1. Next, by the

induction hypothesis with respect to Eq. (4), we have Uj ⊆ D̄t0+j , so N(Uj) ⊆ N(D̄t0+j). By definition of

Uj+1, and by Lemma 7, we can rewrite this as Uj+1 ⊆ D̄t0+j+1, establishing Eq. (4) at round j + 1. This

completes the induction step and concludes the proof of Claim 10.

A direct consequence of Eq. (3) in Claim 10 and the definition of the sequence {Uj}j is that Uj+1 =

Uj ∪N(Uj), and so, Uj+1 is equal to Uj together with all the neighbors of players in Uj . As a consequence,

for every j ≥ diam(G), the set Uj contains all players. By Eq. (4) of Claim 10, this implies that from round

t0 + diam(G) onward, all players are non-defectors.

By Lemma 8, we conclude that from round t0 + diam(G) + 1 onward, all players are cooperative. This

completes the proof of Lemma 9.

Lemma 11. Assume that Conditions (i) and (ii) hold, and that G is not bipartite. If D̄0 6= ∅, i.e., if initially

there is at least one non-defector player, then in at most 3 · diam(G) + 1 rounds, the system will be in the

configuration in which all players are cooperative, and will remain in this configuration forever.

Proof. By assumption, G is not bipartite, or equivalently, G contains at least one odd-length cycle. Let

(u1, . . . , u2k+1) be a shortest odd-length cycle of G. Given s = dG(u1, D̄0), let (v0 ∈ D̄0, v1, . . . , vs−1, vs = u1)

be a shortest path from D̄0 to u1. By Lemma 7, it follows by induction that for every t ∈ {0, . . . , s}, vt ∈ D̄t,

and hence, u1 ∈ D̄s (note that, although vt−1 ∈ D̄t−1, it could be that vt−1 /∈ D̄t). Similarly, for every

t ∈ {1, . . . , k}, u1+t ∈ D̄s+t and u2k+2−t ∈ D̄s+t. Hence, uk+1 ∈ D̄s+k and uk+2 ∈ D̄s+k. In other words, we

have just showed that in round s+ k, we have two non-defector neighbors.

By the definition of diameter, s ≤ diam(G). By Lemma 3, we also have k ≤ diam(G). By Lemma 9, the

system needs at most diam(G) + 1 rounds after round s+ k to reach full cooperation. We conclude that it

reaches cooperation in at most 3 · diam(G) + 1 rounds, as stated.

Lemma 12. Assume that Conditions (i) and (ii) hold, and that G is bipartite. The set of players can be

partitioned into U and V such that U ∩N(U) = V ∩N(V ) = ∅. If D̄0 ∩ U 6= ∅ and D̄0 ∩ V 6= ∅, then in at

most T = diam(G) + 1 rounds, the system will be in the configuration in which all players are cooperative,

and will remain in this configuration forever.

Proof. By assumption, G is bipartite. We define inductively a sequence of subsets of the set of players,

U0 = U ∩ D̄0, and for every k ≥ 0, Uk+1 = N(N(Ut)) – that is, Uk+1 contains the neighbors (in U) of

the neighbors (in V ) of the players in Uk. Note that, as a consequence of this definition, Uk ⊆ Uk+1. Let

k0 = bdiam(G)/2c.
Let us show that Uk0

= U (and hence, that for every k ≥ k0, Uk = U). For this purpose, consider a

player u ∈ U . Let (u0, v0, u1, v1, . . . , us−1, vs−1, us), where u0 ∈ U0 and us = u be a shortest path from U0
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to u. This path is of length 2s ≤ diam(G), so s ≤ k0. Since u`+1 ∈ N(N(u`)) for every ` ≤ s, it follows by

induction on ` that for every ` ≤ s, u` ∈ U`, and hence that u ∈ Us. As we have seen, the sequence {Uk}k
is non-decreasing and since s ≤ k0, we obtain u ∈ Uk0

. This establishes that Uk0
= U .

Next, we prove by induction that for every k, Uk ⊆ D̄2k. This is true for k = 0 by definition. Assume

that this is true for some integer k ≥ 0. We have

Uk+1 = N(N(Uk)) ⊆ N(N(D̄2k)) = D̄2k+2,

where the second transition is by the induction hypothesis and the last transition is due to Lemma 7. This

concludes the induction proof. Since we have already proved that Uk0
= U , we conclude that U ⊆ D̄2k0

.

We can apply the same reasoning to V and obtain that V ⊆ D̄2k0
. Thus, D̄2k0

contains all players. By

Lemma 8, from round 2k0+1 ≤ 2diam(G)+1 onward, the system will be in a configuration in which all players

are cooperative and will remain in this configuration forever. This concludes the proof of Lemma 12.

Finally, we wrap the aforementioned lemmas to prove the theorem with respect to different networks.

Recall that initially, each player is set to be a defector with probability 1− ε, a hypocritical with probability

ε/2, and a cooperative with probability ε/2, for some fixed 0 < ε < 1 independent of n. We consider three

families of networks.

• If G is not bipartite, then Lemma 11 guarantees that the system converges to full cooperation in

3 · diam(G) + 1 rounds, provided that the initial configuration contains at least one non-defector. This

happens with overwhelmingly high probability, specifically, 1 − (1 − ε)n = 1 − 1
cn , for some constant

c > 1. This completes the proof of the first item in Theorem 6.

• If G is bipartite, then the set of players in G can be split into two disjoint sets U and V such that

all edges are between U and V . Lemma 12 guarantees that the system converges to full cooperation

diam(G)+1 rounds, provided that there is at least one non-defector in U and at least one non-defector

in V . Let us see what is the probability that the initial configuration satisfies this.

– If G is ∆-regular, then both U and V contain precisely n/2 players. This follows from the fact

that the number of edges outgoing from U , respectively V , is precisely ∆|U |, respectively ∆|V |,
and these numbers are equal. In this case the probability that there is at least one non-defector

in U and at least one non-defector in V is
(
1− (1− ε)n/2

)2 ≥ 1− 2(1− ε)n/2 > 1− 1
cn , for some

constant c > 1. This completes the proof of the second item in Theorem 6.

– For general bipartite G with minimal degree ∆, we have that both |U | and |V | are greater or

equal to ∆. Hence, the probability that there is at least one non-defector in U and at least one

non-defector in V is at least
(
1− (1− ε)∆

)2 ≥ 1− 2(1− ε)∆ > 1− 1
c∆ , for some constant c > 1.

This completes the proof of the third item in Theorem 6.

C Proof of Theorem 2

The goal of this section is to prove Theorem 2. In fact, we prove the more general theorem below.

Theorem 13. Consider a network G with n players and minimal degree ∆ undergoing the two-order model,

so that the following conditions hold.

• Condition (i) α2 < β2, and
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• Condition (ii) α1 < ∆β1.

Then the following holds for some constant c > 1.

• If G is not bipartite then with probability at least 1− 1
cn , in at most 3 · diam(G) + 1 rounds, the system

will be in a configuration in which all players are cooperative, and will remain in this configuration

forever.

• If G is bipartite and ∆-regular then with probability at least 1 − 1
cn , in at most diam(G) + 1 rounds,

the system will be in a configuration in which all players are cooperative, and will remain in this

configuration forever.

• If G is bipartite then with probability at least 1− 1
c∆ , in at most diam(G) + 1 rounds, the system will

be in a configuration in which all players are cooperative, and will remain in this configuration forever.

Before we prove the theorem, we note that Condition (ii) is necessary for the emergence of cooperation

on ∆-regular graphs, since having α1 > ∆β1 would imply that it is always beneficial to defect on the first

level.

Proof of Theorem 13. Consider a network G, and parameters α1, α2, β1, and β2, satisfying Conditions (i)

and (ii) in Theorem 13. We first observe that under Condition (i), at any round t ≥ 1, no player ever

chooses to be a private cooperator in G. Indeed, if ∆2(u) ≥ 1, then a private cooperator would pay

α1 + ∆2(u)β2 > α1 + ∆2(u)α2 ≥ α1 +α2, hence, more than the cost of cooperating, and when ∆2(u) = 0, a

private cooperator would pay α1 > 0, hence, more than the cost of defecting. It follows that, although the

initial configuration may include private cooperators, this behavior completely disappears from the system

after the first round.

Next, we aim to prove Theorem 13 by reducing it to Theorem 6. Let G′ be a network identical to G,

undergoing the main model (for which Theorem 6 applies), taking the parameters:

Eh =
α2

α1 + α2
, ρh =

β1

α1 + α2
, and ρd =

β1 + β2

α1 + α2
. (5)

A configuration C on G is an assignment of behaviors, namely, either defectors, cooperators, hypocritical, or

private cooperators, to the players in G. Recall that the initial configuration on G is sampled according to

the distribution ψ(ε), so that each player is initially chosen to be a defector with probability 1− ε, and any

of the three remaining behaviors with probability ε/3.

We next define a mapping f , transforming each initial configuration C on G to an initial configuration

C′ on G′. The mapping is very simple: All players in G′ remain with the same behavior as in G except

that private cooperators are turned into defectors. It is easy to see that given the distribution ψ(ε), this

mapping induces the distribution ψ′(ε′) on the initial configurations in G′, where ε′ = 2
3ε. Indeed, under this

mapping, a player in G′ is initially chosen to be a defector with probability 1− ε+ ε/3 = 1− ε′, a cooperator

with probability ε/3 = ε′/2, and hypocritical with probability ε/3 = ε′/2.

At this point, we address a technicality that concerns the randomness involved in breaking ties. That

is, recall that at any round t, if the minimal cost is attained by several behaviors then the player chooses

one of them uniformly at random. One way to implement this is by considering a certain order between

the behaviors, and sampling a number uniformly at random r ∈ [0, 1]. For instance, consider the following

ordering: cooperator > hypocritical > defector (as we saw, in the regime of parameters we consider, a private

cooperator in the two-order model never attains the minimal cost, and hence it is never considered as an

option). If a player needs to choose, say, between being a cooperator or a defector, then it chooses to be a
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cooperator if r is in [0, 0.5], and otherwise, it chooses to be a defector. This means that given a sequence

of random numbers {ri}∞i=1, where ri ∈ [0, 1], the behavior of a player is deterministically described by the

behaviors of its neighbors at each round.

Consider a fixed sequence of random numbers {ri}∞i=1, where ri ∈ [0, 1]. Let C0 be an initial configuration

in G, and let Ct denote the configuration C0 at round t, with the costs defined according to the two-order

model on G, and using the sequence {ri}∞i=1 to break ties if necessary. Let C′0 = f(C0) be the mapped

configuration on G′, and let C′t be the corresponding configuration at round t ≥ 1, with the costs defined

according to the parameters mentioned in Eq. (5), and using the same sequence {ri}∞i=1 to break ties if

necessary.

Claim 14. For every t ≥ 1, we have

C′t = Ct,

Proof of Claim 14. Our goal is to show that at any round t ≥ 0, a player u in Ct is a defector, a cooperator

or a hypocritical, respectively, if and only if it is a defector, a cooperator or a hypocritical, respectively, in

C′t, and that a private cooperator in Ct is a defector in C′t.
Let us prove this claim by induction. By definition, the claim holds for t = 0. Assume that it holds for

some integer t ≥ 0. By the induction hypothesis, for every player u, the set ∆2(u) in G is equal to ∆d̄(u)

in G′. Hence, with our definitions of Eh, ρh and ρd in Eq. (5), we argue that the cost of being a cooperator

in C′t (respectively hypocritical, defector) is 1
α1+α2

times the cost of being a cooperator in Ct (respectively

hypocritical, defector). Indeed, a cooperator in C′t pays

1 =
1

α1 + α2
· (α1 + α2),

while (α1 + α2) is what it pays in Ct. A hypocritical player in C′t pays

Eh + ∆d̄(u) · ρh =
α2

α1 + α2
+ ∆2(u)

β1

α1 + α2
,

while (α2 + ∆2(u) · β1) is what a hypocritical pays in Ct, and a defector in C′t pays

∆d̄(u) · ρd = ∆2(u) · β1 + β2

α1 + α2
,

while ∆2(u) · (β1 + β2) is what it pays in Ct.
Moreover, recall that no player in G ever chooses to be a private cooperator in rounds t ≥ 1. Hence, the

behavior that minimizes the cost in G is the same as in G′. It follows that at round t+ 1, all players choose

the same behavior in G as they would in G′, which establishes the induction proof, and concludes the proof

of Claim 14.

Next, we prove that with our choices of Eh, ρh and ρd in Eq. (5), Conditions (i) and (ii) in Theorem 13

imply Conditions (i) and (ii) in Theorem 6:

α2 < β2 ⇐⇒ α2 + β1 < β1 + β2

⇐⇒ α2

α1 + α2
+

β1

α1 + α2
<
β1 + β2

α1 + α2

⇐⇒ Eh + ρh < ρd,

and

∆ · β1 > α1 ⇐⇒ α2 + ∆ · β1 > α1 + α2

⇐⇒ α2

α1 + α2
+ ∆ · β1

α1 + α2
> 1

⇐⇒ Eh + ρh ·∆ > 1.
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Hence, we can apply Theorem 6 to the mapped process on G′. It follows that in the number of rounds and

probability guarantees as stated in Theorem 6, G′ converges to the configuration in which all players are

cooperators, and remains in that configuration forever. By Claim 14, this holds for G as well, concluding

the proof of Theorem 13.
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