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Simple types

Types:

σ, τ, . . . ::“ K | 1 | X P Var | σ ` τ | σ ˆ τ | σ Ñ τ

Curry-Howard viewpoint: formulas as types.
µ and ν : inductive and coinductive data types.

Example
‚ B :“ 1 ` 1 represents the Booleans.
‚ N :“ µXp1 ` Xq represents the natural numbers.
‚ Sτ :“ νXpτ ˆ Xq represents infinite streams over τ .
‚ W :“ µXp1 ` νYpX ˆ Yqq represents the (ω-branching) well-founded trees.
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Simple types withfixed points
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Sequent calculus withfixed points

Sequents: σ1, . . . , σn ñ τ (interpret as σ1 ˆ ¨ ¨ ¨ ˆ σn Ñ τ )

Each type can be constructed and destructed. E.g.

σ ñ τ
Ñr

ñ σ Ñ τ

ñ ρ σ ñ τ
Ñl

ρ Ñ σ ñ τ

Curry-Howard viewpoint: proofs as programs.

Fixed point rules:

ñ σpµX σpXqq
µr

ñ µX σpXq

σpτq ñ τ
µl
µX σpXq ñ τ

τ ñ σpτq
νr
τ ñ νX σpXq

σpνX σpXqq ñ τ
νl

νX σpXq ñ τ

Definition ([Cla09])
µLJ is the extension of usual LJ by the fixed point rules above.
Computational theory given by cut-reduction.
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Examples: natural numbers and streams

N :“ µXp1 ` Xq

0 :“
ñ 1

ñ 1 ` N
µr

ñ N

n ` 1 :“

n

ñ N
ñ 1 ` N

µr
ñ N

add : N ˆ N Ñ N

id
N ñ N
1,N ñ N

id
N ñ N

N ñ 1 ` N
µr

N ñ N
1 ` N,N ñ N

µl
N,N ñ N

ˆ

addp0, nq “ n
addpm ` 1, nq “ addpm, nq ` 1

˙
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Aside: interpreting types withfixed points

A set theoretic model
Interpret τ as a set τS:

K
S :“ ∅
1S :“ ∅

pσ ` τq
S :“ σS

Z τS

pσ ˆ τq
S :“ σS

ˆ τS

pσ Ñ τq
S :“ tf : σS

Ñ τS
u

pµXσpXqq
S :“ ?

pνXσpXqq
S :“ ?

No interpretation of, e.g.,
νX X and µXppX Ñ σq Ñ τq.

A computability theoretic model
Interpret τ as a set τK

Ď N:

K
K :“ ∅
1K :“ t0u

pσ0 ` σ1q
K :“ tn : &Mn1Ó P σK

i &Mn0Ó iu
pσ0 ˆ σ1q

K :“ tn : MniÓ P σK
i , for i ă 2u

pσ Ñ τq
K :“ tn : @m P σKMnmÓ P τK

u

pµXσpXqq
K :“ LFPrA ÞÑ σpAq

K
s

pνXσpXqq
K :“ GFPrA ÞÑ σpAq

K

Q:what do B,N, Sτ ,W denote inK?
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Structure meets power: a question of expressivity

Curry-Howard viewpoint relates logic and computation

:

System Computation Logic
simple types Extended Polynomials Pure FO Logic

+N HO Primitive Recursion (T) FO Arithmetic (PA)

+ @, D Polymorphic λ-Calculus (F) SO Arithmetic (PA2)

What do fixed point type systems compute?
Thismay be model-sensitive, but is robust for type 1 functions.
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Non-wellfounded typing

Replace µl and νr by unfoldings:

Γ, σpµX σpXq ñ τ
µ1
l

Γ, µX σpXq ñ τ

Γ ñ σpνX σpXqq
ν1
r

Γ ñ νX σpXq

‚ A coderivation is generated coinductively from rules of µ1LJ.
‚ It is progressing if every infinite branch has an infinite progressing thread.
(Precise definition is beyond the scope of this talk.)

Definition
CµLJ is the class of regular progressing coderivations.
Computational theory again given by cut-reduction.

NB: cyclic proof checking is decidable, reducing to universality of Büchi automata.
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Examples of progressing coderivations

add : N ˆ N Ñ N rn0, n1, . . . s n ÞÑ rn, n ` 1, . . . s

id
N ñ N
1,N ñ N

...
µ1
l ‚
N,N ñ N

N,N ñ 1 ` N
µr

N,N ñ N
1 ` N,N ñ N

µ1
l ‚

N,N ñ N

n0

ñ N

n1

ñ N
...

ñ N ˆ S
νr

ñ S
ñ N ˆ S

νr
ñ S

id
N ñ N

id
N ñ N

N ñ 1 ` N
µr

N ñ N

...
‚

N ñ S
cut

N ñ S
N ñ N ˆ S

ν1
r ‚

N ñ S

Iteration to cycles:

σpτq ñ τ
µl
µXσpXq ñ τ

⇝

...
µ1
l ‚
µXσpXq ñ τ

σ
σpµXσpXqq ñ σpτq σpτq ñ τ

cut
σpµXσpXqq ñ τ

µ1
l ‚

µXσpXq ñ τ
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Ackermann function

Ap0, nq “ n ` 1
Apm ` 1, 0q “ Apm, 1q

Apm ` 1, n ` 1q “ Apm, Apn ` 1,mqq

1
ñ N

...
‚

N,N ñ N
cut

N ñ N
wk
N,N ñ N

...
‚

N,N ñ N

...
‚

N,N ñ N
cut

N,N,N ñ N
µ1
l N,N,N ñ N

µ1
l ,s N,N,N ñ N
c ‚
N,N ñ N

NB:The function A requires iteration at type 1 in finitary derivations.

12 / 24



Ackermann function

Ap0, nq “ n ` 1
Apm ` 1, 0q “ Apm, 1q

Apm ` 1, n ` 1q “ Apm, Apn ` 1,mqq

1
ñ N

...
‚

N,N ñ N
cut

N ñ N
wk
N,N ñ N

...
‚

N,N ñ N

...
‚

N,N ñ N
cut

N,N,N ñ N
µ1
l N,N,N ñ N

µ1
l ,s N,N,N ñ N
c ‚
N,N ñ N

NB:The function A requires iteration at type 1 in finitary derivations.

12 / 24



The ‘Brotherston-Simpson conjecture’

Some observations
‚ Circular proofs interpret finite ones.
‚ Circular proofs can be more succinct than finite ones.

Are circular proofsmore expressive than finite ones?
...over type 1 functions / ...over some/all models.

Ametamathematical approach
‚ Second-order arithmetic can formalisemetatheory of infinite proofs.
‚ Computational interpretations allow us to extract finitary proofs thence.
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Gödel’sT and its circular variant

Definition
pCqT is the restriction of pCqµLJ to just one fixed pointN.

‚ NS
– N: soS reduces to a model of higher-order functionals overN.

‚ A circular preproof P : Γ ñ τ represents a partial functional PS : ΓS
Ñ τS.

Theorem ([KPP21])
(Affine)CT and (affine)T represent the same type 1 functions (in all models).

Write pCqTn for the restriction of pCqT to just level n types.

Theorem ([Das21])
Tn`1 andCTn interpret each other.
ThusTn`1 andCTn represent the same type 1 functions (in all models).
Formally, pCqT here is an equational theory with quantifier-free induction.

Proposition ([Das21])
T andCT represent the same functionals inS.
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Totality: the problem of non-constructivity

Proposition (Totality)
If P is progressing, then PS is total.

Proof sketch.
Let P0 be a coderivation of Γ0 ñ τ0.

‚ Suppose not P0 total, and let a⃗0 P ΓS
0 s.t. PS0 a⃗0 Ò.

‚ Each rule preserves totality, so we can build an infinite branch B “ pPiqiăω and
inputs a⃗i such that Pi⃗aiÒ.

‚ Any thread pNj
qjăω in B induces a non-increasing sequence a “ paijqjăω P Nω.

‚ amust converge, by well-foundedness ofN, so pNj
qjăω is not progressing.

NB: this proof is highly non-constructive! How can we extract induction invariants?
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Towards arithmetisation: explaining the approach

Before dissecting these results, let us set up our toolbox:

Proof theoretic ingredients:
‚ Totality at type 1 is aΠ0

2 property (@mDn PmÓn).
⇝ all proofs are constructive!

‚ Formalising this proof bounds the proof theoretic strength of CT.

(Higher-order) recursion theoretic ingredients:
‚ Totality can proved wrt. HO computability models, e.g.K.
⇝ formalisation in subsystems of SO arithmetic.

‚ Proof checking is decidable, provably.
⇝ reverse mathematics of ω-automaton theory [KMPS19, Das20].

Textbook interpretations:
‚ SO theories are conservative extensions of appropriate FO ones.
‚ Computational interpretations allowT to realise FO theorems.
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Putting things together

For f of type 1:

Tn`1 $ f : τ IΣn`2 $ f P |τ |

CTn $ f : τ RCA0 ` IΣn`2 $ f P |τ |

conservativity

program extraction

formalised abstraction

formalised totality

‚ formalised abstraction requires a careful partial evaluation result.
‚ Confluence of CT inRCA0 ùñ determinism.
‚ formalised totality arithmetises the totality argument for CT.

‚ Reverse mathematics ofω-automaton theory [KMPS19, Das20].
‚ Must formalise totality argument in a HO computability model | ¨ |.

‚ program extraction is textbook.
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What about pCqµLJ?

Theorem ([CD23])
µLJ andCµLJ define just the functions provably recursive inΠ1

2-CA0.

µLJp´q CµLJ CµLJ´

µHA Π1
2-CA0µPA

simulation ␣␣-trans.

(‹)

(˝)␣␣-trans.

(†)

Systems:

Theories:

(‹) Formalisation of semantics by fixed points as fixed points:
‚ Novel reverse mathematics of ordinal and fixed point theory, building on
[Das21, DM23].

(˝) A complex black box result due to [Mö02].

(†) Realisability interpretation by fixed points as SO types.
‚ (Considerable) specialisation ofHA2 Ñ F.
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Summary and further directions

Metamathematics provides a powerful toolbox for understanding circular proofs.

‚ Classifying absolute and relative expressivity of circular systems.
‚ Exposing new connections with classical topics.
‚ Fuelling new results of independent interest.

NB: considerable precursory work in cyclic arithmetic [Sim17, BT17, Das20].

Motto: circular proofs are more expressive than finite ones... up to a point!

‚ What about weak systems? some work in complexity theory e.g. [CD22].
‚ Further development of the model theory of circular proofs.

Thank you.
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