# CIRCULAR AND NON-WELLFOUNDED PROOFS: EXPRESSIVENESS AND SEMANTICS I

Anupam Das

University of Birmingham

École de Printemps d'Informatique Théorique 2025

Centre Paul-Langevin, Aussois, France, 22<sup>nd</sup> May 2025. 1 Types with fixed points

2 Circular proofs

3 Some results on expressivity





# 1 Types with fixed points

Circular proofs

3 Some results on expressivity



# SIMPLE TYPES

Types:

$$\sigma, \tau, \dots ::= \perp \mid 1 \mid X \in \mathsf{Var} \mid \sigma + \tau \mid \sigma \times \tau \mid \sigma \to \tau$$

## Simple types

Types:

$$\sigma, \tau, \dots ::= \perp \mid 1 \mid X \in \mathsf{Var} \mid \sigma + \tau \mid \sigma \times \tau \mid \sigma \to \tau$$

Curry-Howard viewpoint: formulas as types.

#### SIMPLE TYPES

#### Types:

 $\sigma, \tau, \dots ::= \perp \mid 1 \mid X \in \mathsf{Var} \mid \sigma + \tau \mid \sigma \times \tau \mid \sigma \to \tau \mid \mu X \sigma \mid \nu X \sigma$ 

In  $\mu X \sigma$  and  $\nu X \sigma$ , the variable X must occur positively in  $\sigma$ .

Curry-Howard viewpoint: formulas as types.

 $\mu$  and  $\nu$  : inductive and coinductive data types.

#### Types:

 $\sigma, \tau, \dots ::= \perp \mid 1 \mid X \in \mathsf{Var} \mid \sigma + \tau \mid \sigma \times \tau \mid \sigma \to \tau \mid \mu X \sigma \mid \nu X \sigma$ 

In  $\mu X \sigma$  and  $\nu X \sigma$ , the variable X must occur **positively** in  $\sigma$ .

Curry-Howard viewpoint: formulas as types.

 $\mu$  and  $\nu$  : inductive and coinductive data types.

# Example

- B := 1 + 1 represents the Booleans.
- $N := \mu X(1 + X)$  represents the natural numbers.
- $S_{\tau} := \nu X(\tau \times X)$  represents infinite streams over  $\tau$ .
- $W := \mu X(1 + \nu Y(X \times Y))$  represents the ( $\omega$ -branching) well-founded trees.

**Sequents:**  $\sigma_1, \ldots, \sigma_n \Rightarrow \tau$  (interpret as  $\sigma_1 \times \cdots \times \sigma_n \to \tau$ )

Each type can be constructed and destructed. E.g.

$$\xrightarrow[]{\sigma \Rightarrow \tau} \sigma \Rightarrow \tau \qquad \xrightarrow[]{\sigma \Rightarrow \sigma \Rightarrow \tau} \frac{\sigma \Rightarrow \rho \quad \sigma \Rightarrow \tau}{\rho \to \sigma \Rightarrow \tau}$$

**Sequents:**  $\sigma_1, \ldots, \sigma_n \Rightarrow \tau$  (interpret as  $\sigma_1 \times \cdots \times \sigma_n \to \tau$ )

Each type can be constructed and destructed. E.g.

$$\xrightarrow[]{\sigma \Rightarrow \tau} \sigma \Rightarrow \tau \qquad \xrightarrow[]{\sigma \Rightarrow \sigma \Rightarrow \tau} \frac{\sigma \Rightarrow \rho \quad \sigma \Rightarrow \tau}{\rho \to \sigma \Rightarrow \tau}$$

Curry-Howard viewpoint: proofs as programs.

**Sequents:**  $\sigma_1, \ldots, \sigma_n \Rightarrow \tau$  (interpret as  $\sigma_1 \times \cdots \times \sigma_n \to \tau$ )

Each type can be constructed and destructed. E.g.

$$\xrightarrow[]{\sigma \Rightarrow \tau} \frac{\sigma \Rightarrow \tau}{\Rightarrow \sigma \to \tau} \qquad \xrightarrow[]{\sigma \Rightarrow \rho} \frac{\Rightarrow \rho \quad \sigma \Rightarrow \tau}{\rho \to \sigma \Rightarrow \tau}$$

Curry-Howard viewpoint: proofs as programs.

#### Fixed point rules:

$$^{\mu_{r}} \xrightarrow{\Rightarrow \sigma(\mu X \, \sigma(X))}{\Rightarrow \mu X \, \sigma(X)} \ ^{\mu_{l}} \frac{\sigma(\tau) \Rightarrow \tau}{\mu X \, \sigma(X) \Rightarrow \tau} \ ^{\nu_{r}} \frac{\tau \Rightarrow \sigma(\tau)}{\tau \Rightarrow \nu X \, \sigma(X)} \ ^{\nu_{l}} \frac{\sigma(\nu X \, \sigma(X)) \Rightarrow \tau}{\nu X \, \sigma(X) \Rightarrow \tau}$$

**Sequents:**  $\sigma_1, \ldots, \sigma_n \Rightarrow \tau$  (interpret as  $\sigma_1 \times \cdots \times \sigma_n \to \tau$ )

Each type can be constructed and destructed. E.g.

$$\xrightarrow[]{\sigma \Rightarrow \tau} \frac{\sigma \Rightarrow \tau}{\Rightarrow \sigma \to \tau} \qquad \xrightarrow[]{\sigma \Rightarrow \rho} \frac{\Rightarrow \rho \quad \sigma \Rightarrow \tau}{\rho \to \sigma \Rightarrow \tau}$$

Curry-Howard viewpoint: proofs as programs.

#### Fixed point rules:

$${}^{\mu_r} \frac{\Rightarrow \sigma(\mu X \, \sigma(X))}{\Rightarrow \mu X \, \sigma(X)} \; {}^{\mu_l} \frac{\sigma(\tau) \Rightarrow \tau}{\mu X \, \sigma(X) \Rightarrow \tau} \; {}^{\nu_r} \frac{\tau \Rightarrow \sigma(\tau)}{\tau \Rightarrow \nu X \, \sigma(X)} \; {}^{\nu_l} \frac{\sigma(\nu X \, \sigma(X)) \Rightarrow \tau}{\nu X \, \sigma(X) \Rightarrow \tau}$$

#### Definition ([Cla09])

 $\mu {\sf LJ}$  is the extension of usual  ${\sf LJ}$  by the fixed point rules above.

Computational theory given by cut-reduction.

### **Examples: natural numbers and streams**

$$\underline{\mathbf{O}} := \frac{N := \mu X (1 + X)}{\underset{\mu_r}{\Rightarrow} \frac{1}{\underset{N}{\Rightarrow} 1 + N}} \qquad \underline{\underline{n+1}} := \frac{\underbrace{\underbrace{n}}_{\mu_r}}{\underset{\mu_r}{\xrightarrow{\underline{n+N}}}} \\ \underbrace{\frac{N}{\underset{N}{\Rightarrow} N}}_{\mu_r} \underbrace{\frac{N + 1}{\underset{N}{\Rightarrow} N}}_{\mu_r}$$

## **Examples: natural numbers and streams**

$$\underline{N} := \mu X(1 + X)$$

$$\underline{0} := \prod_{\mu_r} \frac{\Rightarrow 1}{\Rightarrow 1 + N} \qquad \underline{n+1} := \prod_{\mu_r} \frac{\Rightarrow N}{\Rightarrow N}$$

$$\underline{add} : N \times N \to N$$

$$\underline{id} \qquad \underbrace{N \Rightarrow N}_{\mu_r} \frac{N \Rightarrow 1 + N}{N \Rightarrow N}$$

$$\underline{1 + N, N \Rightarrow N}_{\mu_l} \frac{1 + N, N \Rightarrow N}{N, N \Rightarrow N}$$

$$\left(\begin{array}{c} add(0, n) = n \\ add(m + 1, n) = add(m, n) + 1 \end{array}\right)$$

### Examples: natural numbers and streams

$$\underbrace{ \begin{array}{c} \underline{N} := \mu X(1 + X) \\ \underline{N} := \mu X(1 + X) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \overline{N} := \frac{1}{\mu r} (1 + X) \\ \overline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} (N \times Y) \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \\ \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c} \underline{N} := \frac{1}{\mu r} \underbrace{ \begin{array}{c}$$

$$\begin{pmatrix} \operatorname{add}(0,n) = n \\ \operatorname{add}(m+1,n) = \operatorname{add}(m,n) + 1 \end{pmatrix}$$

#### **EXAMPLES: NATURAL NUMBERS AND STREAMS**

$$\underbrace{N := \mu X(1 + X)}_{\substack{N := \mu X(1 + X)}} \\ \underline{0} := \underbrace{\frac{\Rightarrow 1}{\Rightarrow 1}}_{\mu_r} \underbrace{n + 1}_{\Rightarrow N} \xrightarrow{n + 1 :=} \underbrace{\frac{\Rightarrow N}{\Rightarrow N}}_{\mu_r} \frac{\underline{\Rightarrow 1 + N}}{\underline{\Rightarrow 1 + N}} \\ \mathbf{hd} := \underbrace{\frac{\mathrm{id}}{N \Rightarrow N}}_{\nu_l} \underbrace{\frac{\mathrm{id}}{N \Rightarrow N}}_{\substack{N \times S \Rightarrow N}} \xrightarrow{\mathrm{tl} :=} \underbrace{\frac{\mathrm{id}}{S \Rightarrow S}}_{\substack{N \times S \Rightarrow S}} \frac{\underline{\mathrm{tl}} :=}{\underline{s \Rightarrow N}}_{\underline{N \times S \Rightarrow N}} \underbrace{\frac{\mathrm{id}}{N \Rightarrow S \Rightarrow S}}_{\substack{N \times S \Rightarrow S}} \underbrace{\mathrm{tl} :=} \underbrace{\frac{\mathrm{id}}{N \Rightarrow S \Rightarrow S}}_{\substack{N \times S \Rightarrow S}} \frac{\underline{\mathrm{sl}} := \underbrace{\mathrm{id}}_{N \times S \Rightarrow S}}{\underline{S \Rightarrow S}} \underbrace{\frac{\mathrm{id}}{N \Rightarrow N}}_{\underline{N \times S \Rightarrow N}} \xrightarrow{\mathrm{tl} :=} \underbrace{\frac{\mathrm{id}}{N \Rightarrow N}}_{\underline{N \times S \Rightarrow S}} \underbrace{\frac{\mathrm{id}}{N \Rightarrow N \Rightarrow N}}_{\substack{N \Rightarrow 1 + N \\ \underline{1, N \Rightarrow N}} \underbrace{\frac{\mathrm{id}}{N \Rightarrow N}}_{\substack{N \Rightarrow 1 + N \\ \underline{N \Rightarrow N}} \underbrace{\frac{\mathrm{id}}{N \Rightarrow N}}_{\underline{N \Rightarrow N \times N}} \underbrace{\frac{\mathrm{id}}{N \Rightarrow N \times N}}_{\underline{N \Rightarrow N \times N}} \underbrace{\frac{\mathrm{id}}{N \Rightarrow N \times N}}_{\substack{N \Rightarrow N \times N \\ \nu_r, \frac{N \Rightarrow N \times N \times N}{N \Rightarrow S}}} \underbrace{\frac{\mathrm{add}(0, n) = n}{\mathrm{add}(m + 1, n) = \mathrm{add}(m, n) + 1}$$

### ASIDE: INTERPRETING TYPES WITH FIXED POINTS

$$\begin{array}{rcl} \bot^{\mathfrak{S}} & := & \varnothing \\ 1^{\mathfrak{S}} & := & \varnothing \\ (\sigma + \tau)^{\mathfrak{S}} & := & \sigma^{\mathfrak{S}} \uplus \tau^{\mathfrak{S}} \\ (\sigma \times \tau)^{\mathfrak{S}} & := & \sigma^{\mathfrak{S}} \times \tau^{\mathfrak{S}} \\ (\sigma \to \tau)^{\mathfrak{S}} & := & \{f : \sigma^{\mathfrak{S}} \to \tau^{\mathfrak{S}}\} \end{array}$$

$$\begin{array}{rcl} \bot^{\mathfrak{S}} & := & \varnothing \\ \mathbf{1}^{\mathfrak{S}} & := & \varnothing \\ (\sigma + \tau)^{\mathfrak{S}} & := & \sigma^{\mathfrak{S}} \oplus \tau^{\mathfrak{S}} \\ (\sigma \times \tau)^{\mathfrak{S}} & := & \sigma^{\mathfrak{S}} \times \tau^{\mathfrak{S}} \\ (\boldsymbol{\sigma} \to \tau)^{\mathfrak{S}} & := & \{f : \sigma^{\mathfrak{S}} \to \tau^{\mathfrak{S}}\} \\ (\boldsymbol{\mu}\boldsymbol{X}\boldsymbol{\sigma}(\boldsymbol{X}))^{\mathfrak{S}} & := & ? \\ (\boldsymbol{\nu}\boldsymbol{X}\boldsymbol{\sigma}(\boldsymbol{X}))^{\mathfrak{S}} & := & ? \end{array}$$

$$\begin{array}{rcl} \bot^{\mathfrak{S}} & := & \varnothing \\ 1^{\mathfrak{S}} & := & \varnothing \\ (\sigma + \tau)^{\mathfrak{S}} & := & \sigma^{\mathfrak{S}} \oplus \tau^{\mathfrak{S}} \\ (\sigma \times \tau)^{\mathfrak{S}} & := & \sigma^{\mathfrak{S}} \times \tau^{\mathfrak{S}} \\ (\sigma \to \tau)^{\mathfrak{S}} & := & \{f : \sigma^{\mathfrak{S}} \to \tau^{\mathfrak{S}}\} \\ (\mu X \sigma (X))^{\mathfrak{S}} & := & ? \\ (\nu X \sigma (X))^{\mathfrak{S}} & := & ? \end{array}$$

No interpretation of, e.g.,  $\nu X X$  and  $\mu X((X \rightarrow \sigma) \rightarrow \tau)$ .

A computability theoretic model Interpret  $\tau$  as a set  $\tau^{\mathfrak{K}} \subseteq \mathbb{N}$ :

No interpretation of, e.g.,  $\nu X X$  and  $\mu X((X \rightarrow \sigma) \rightarrow \tau)$ .

A computability theoretic model Interpret  $\tau$  as a set  $\tau^{\mathfrak{K}} \subseteq \mathbb{N}$ :

No interpretation of, e.g.,  $\nu X X$  and  $\mu X((X \rightarrow \sigma) \rightarrow \tau)$ .

A computability theoretic model Interpret  $\tau$  as a set  $\tau^{\mathfrak{K}} \subseteq \mathbb{N}$ :

No interpretation of, e.g.,  $\nu X X$  and  $\mu X((X \to \sigma) \to \tau)$ .

**Q**: what do  $B, N, S_{\tau}, W$  denote in  $\Re$ ?

 $\mapsto \sigma(A)^{\mathfrak{K}}$ 

# Structure meets power: a question of expressivity

Curry-Howard viewpoint relates logic and computation

*Curry-Howard* viewpoint relates logic and computation:

| System       | Computation                         | Logic               |
|--------------|-------------------------------------|---------------------|
| simple types | Extended Polynomials                | Pure FO Logic       |
| +N           | HO Primitive Recursion (T)          | FO Arithmetic (PA)  |
| +∀,∃         | Polymorphic $\lambda$ -Calculus (F) | SO Arithmetic (PA2) |

*Curry-Howard* viewpoint relates logic and computation:

| System             | Computation                         | Logic               |
|--------------------|-------------------------------------|---------------------|
| simple types       | Extended Polynomials                | Pure FO Logic       |
| +N                 | HO Primitive Recursion (T)          | FO Arithmetic (PA)  |
| $+\mu, \nu$        | ?                                   | ?                   |
| $+\forall,\exists$ | Polymorphic $\lambda$ -Calculus (F) | SO Arithmetic (PA2) |

*Curry-Howard* viewpoint relates logic and computation:

| System             | Computation                         | Logic               |
|--------------------|-------------------------------------|---------------------|
| simple types       | Extended Polynomials                | Pure FO Logic       |
| +N                 | HO Primitive Recursion (T)          | FO Arithmetic (PA)  |
| $+\mu, \nu$        | ?                                   | ?                   |
| $+\forall,\exists$ | Polymorphic $\lambda$ -Calculus (F) | SO Arithmetic (PA2) |

# What do fixed point type systems compute?

This may be model-sensitive, but is *robust* for type 1 functions.

Types with fixed points

# Circular proofs

3 Some results on expressivity



# Non-wellfounded typing

# Non-wellfounded typing

Replace  $\mu_l$  and  $\nu_r$  by unfoldings:

$$\mu_{l}^{\prime} \frac{\Gamma, \sigma(\mu X \sigma(X) \Rightarrow \tau}{\Gamma, \mu X \sigma(X) \Rightarrow \tau} \qquad \qquad \nu_{r}^{\prime} \frac{\Gamma \Rightarrow \sigma(\nu X \sigma(X))}{\Gamma \Rightarrow \nu X \sigma(X)}$$

Replace  $\mu_l$  and  $\nu_r$  by unfoldings:

$$\mu'_{1} \frac{\Gamma, \sigma(\mu X \, \sigma(X) \Rightarrow \tau}{\Gamma, \mu X \, \sigma(X) \Rightarrow \tau} \qquad \nu'_{r} \frac{\Gamma \Rightarrow \sigma(\nu X \, \sigma(X))}{\Gamma \Rightarrow \nu X \, \sigma(X)}$$

- A coderivation is generated *coinductively* from rules of  $\mu'LJ$ .
- It is **progressing** if every infinite branch has an infinite progressing thread. (Precise definition is beyond the scope of this talk.)

Replace  $\mu_l$  and  $\nu_r$  by unfoldings:

$$\mu'_{l} \frac{\Gamma, \sigma(\mu X \, \sigma(X) \Rightarrow \tau}{\Gamma, \mu X \, \sigma(X) \Rightarrow \tau} \qquad \nu'_{r} \frac{\Gamma \Rightarrow \sigma(\nu X \, \sigma(X))}{\Gamma \Rightarrow \nu X \, \sigma(X)}$$

- A coderivation is generated *coinductively* from rules of  $\mu'LJ$ .
- It is **progressing** if every infinite branch has an infinite progressing thread. (Precise definition is beyond the scope of this talk.)

# $\begin{array}{l} Definition \\ C\mu LJ \mbox{ is the class of regular progressing coderivations.} \end{array}$

Computational theory again given by cut-reduction.

Replace  $\mu_l$  and  $\nu_r$  by unfoldings:

$$\mu'_{l} \frac{\Gamma, \sigma(\mu X \, \sigma(X) \Rightarrow \tau}{\Gamma, \mu X \, \sigma(X) \Rightarrow \tau} \qquad \nu'_{r} \frac{\Gamma \Rightarrow \sigma(\nu X \, \sigma(X))}{\Gamma \Rightarrow \nu X \, \sigma(X)}$$

- A coderivation is generated *coinductively* from rules of  $\mu'LJ$ .
- It is **progressing** if every infinite branch has an infinite progressing thread. (Precise definition is beyond the scope of this talk.)

# $\begin{array}{l} \text{Definition} \\ \text{C}\mu\text{LJ} \text{ is the class of regular progressing coderivations.} \end{array}$

Computational theory again given by cut-reduction.

NB: cyclic proof checking is decidable, reducing to universality of Büchi automata.

# Examples of progressing coderivations

# Examples of progressing coderivations

$$\begin{array}{c|c} \underline{add} : \underline{N} \times \underline{N} \to \underline{N} \\ \vdots \\ \underline{id} & \frac{1}{N \Rightarrow N} \\ \underline{il} & \frac{\mu_{1}'}{N, N \Rightarrow N} \\ \underline{id} & \frac{N}{N, N \Rightarrow N} \\ \underline{il} & \frac{N}{N, N \Rightarrow N} \\ \mu_{1}' & \frac{1 + N, N \Rightarrow N}{N, N \Rightarrow N} \\ \bullet \end{array} \\ \begin{array}{c} \underline{id} & \underbrace{n}_{N, N} \\ \underline{n}_{N, N} & \underline{n}_{N, N} \\ \underline{n}_{N, N} & \underline{n}_{N} \\ \underline{n}_{N, N} \\ \underline{n}_{N, N} & \underline{n}_{N} \\ \underline{n}_{N, N} \\ \underline{n}_{N, N} & \underline{n}_{N} \\ \underline{n}_{N, N} \\ \underline{n}_{N,$$

Iteration to cycles:

 $\mu_l$ 

$$\frac{\sigma(\tau) \Rightarrow \tau}{\mu X \sigma(X) \Rightarrow \tau} \qquad \rightsquigarrow \qquad \sigma \underbrace{\sigma_{\text{cut}}^{\mu_l'} \frac{\overline{\mu X \sigma(X) \Rightarrow \tau}}{\overline{\sigma(\mu X \sigma(X)) \Rightarrow \sigma(\tau)}} \sigma(\tau) \Rightarrow \tau}_{\mu_l' \frac{\sigma(\mu X \sigma(X)) \Rightarrow \tau}{\mu X \sigma(X) \Rightarrow \tau}} \bullet$$

÷

# ACKERMANN FUNCTION

$$A(0, n) = n + 1$$

$$A(m + 1, 0) = A(m, 1)$$

$$A(m + 1, n + 1) = A(m, A(n + 1, m))$$

$$\stackrel{i}{\underset{cut}{\longrightarrow}} \underbrace{\frac{N \Rightarrow N}{N, N \Rightarrow N}}_{wk} \underbrace{\frac{N \Rightarrow N}{N, N \Rightarrow N}}_{cut} \underbrace{\frac{N, N \Rightarrow N}{N, N \Rightarrow N}}_{v_{1}', \frac{N, N, N \Rightarrow N}{c}} \underbrace{\frac{N, N, N \Rightarrow N}{N, N \Rightarrow N}}_{(N, N, N \Rightarrow N)} \bullet$$

#### ACKERMANN FUNCTION

$$A(0, n) = n + 1$$

$$A(m + 1, 0) = A(m, 1)$$

$$A(m + 1, n + 1) = A(m, A(n + 1, m))$$

$$\vdots$$

$$cut \xrightarrow{N \Rightarrow N}_{wk} \underbrace{\frac{N \Rightarrow N}{N, N \Rightarrow N}}_{w'_{1}} \bullet \underbrace{\vdots}_{v'_{1}} \underbrace{\frac{N \Rightarrow N}{N, N \Rightarrow N}}_{\mu'_{1}, s} \underbrace{\frac{N, N, N \Rightarrow N}{N, N \Rightarrow N}}_{cut} \underbrace{\frac{N, N \Rightarrow N}{N, N, N \Rightarrow N}}_{c \underbrace{\frac{N, N, N \Rightarrow N}{N, N \Rightarrow N}}} \bullet$$

**NB:** The function *A* requires iteration at type 1 in finitary derivations.

# THE 'BROTHERSTON-SIMPSON CONJECTURE'

# Some observations

- Circular proofs interpret finite ones.
- Circular proofs can be more succinct than finite ones.

# THE 'BROTHERSTON-SIMPSON CONJECTURE'

# Some observations

- Circular proofs interpret finite ones.
- Circular proofs can be more succinct than finite ones.

# Are circular proofs more expressive than finite ones?

... over type I functions / ... over some/all models.

# The 'Brotherston-Simpson conjecture'

# Some observations

- Circular proofs interpret finite ones.
- Circular proofs can be more succinct than finite ones.

# Are circular proofs more expressive than finite ones?

... over type 1 functions / ... over some/all models.

# A metamathematical approach

- Second-order arithmetic can formalise *metatheory* of infinite proofs.
- Computational interpretations allow us to extract finitary proofs thence.

Types with fixed points



3 Some results on expressivity



Definition (C)T is the restriction of (C) $\mu$ LJ to just one fixed point *N*.

#### Definition

(C)T is the restriction of (C) $\mu$ LJ to just one fixed point *N*.

- $N^{\mathfrak{S}} \cong \mathbb{N}$ : so  $\mathfrak{S}$  reduces to a model of higher-order functionals over  $\mathbb{N}$ .
- A circular preproof  $P: \Gamma \Rightarrow \tau$  represents a partial functional  $P^{\mathfrak{S}}: \Gamma^{\mathfrak{S}} \to \tau^{\mathfrak{S}}$ .

# Theorem ([KPP21])

(Affine) CT and (affine) T represent the same type 1 functions (in all models).

#### Definition

(C)T is the restriction of (C) $\mu$ LJ to just one fixed point N.

- $N^{\mathfrak{S}} \cong \mathbb{N}$ : so  $\mathfrak{S}$  reduces to a model of higher-order functionals over  $\mathbb{N}$ .
- A circular preproof  $P: \Gamma \Rightarrow \tau$  represents a partial functional  $P^{\mathfrak{S}}: \Gamma^{\mathfrak{S}} \to \tau^{\mathfrak{S}}$ .

# Theorem ([KPP21])

(Affine) CT and (affine) T represent the same type 1 functions (in all models).

Write  $(C)T_n$  for the restriction of (C)T to just level *n* types.

# Theorem ([Das21])

 $\mathsf{T}_{n+1}$  and  $\mathsf{CT}_n$  interpret each other.

Thus  $T_{n+1}$  and  $CT_n$  represent the same type 1 functions (in all models).

Formally, (C)T here is an equational theory with quantifier-free induction.

#### Definition

(C)T is the restriction of (C) $\mu$ LJ to just one fixed point N.

- $N^{\mathfrak{S}} \cong \mathbb{N}$ : so  $\mathfrak{S}$  reduces to a model of higher-order functionals over  $\mathbb{N}$ .
- A circular preproof  $P: \Gamma \Rightarrow \tau$  represents a partial functional  $P^{\mathfrak{S}}: \Gamma^{\mathfrak{S}} \to \tau^{\mathfrak{S}}$ .

# Theorem ([KPP21])

(Affine) CT and (affine) T represent the same type 1 functions (in all models).

Write  $(C)T_n$  for the restriction of (C)T to just level *n* types.

# Theorem ([Das21])

 $\mathsf{T}_{n+1}$  and  $\mathsf{CT}_n$  interpret each other.

Thus  $T_{n+1}$  and  $CT_n$  represent the same type 1 functions (in all models).

Formally, (C)T here is an equational theory with quantifier-free induction.

# Proposition ([Das21])

T and CT represent the same functionals in  $\mathfrak{S}$ .

Proof sketch.

Let  $P_0$  be a coderivation of  $\Gamma_0 \Rightarrow \tau_0$ .

- Suppose not  $P_0$  total, and let  $\vec{a}_0 \in \Gamma_0^{\mathfrak{S}}$  s.t.  $P_0^{\mathfrak{S}} \vec{a}_0 \uparrow$ .
- Each rule preserves totality, so we can build an infinite branch  $B = (P_i)_{i < \omega}$  and inputs  $\vec{a}_i$  such that  $P_i \vec{a}_i \uparrow$ .

Proof sketch.

Let  $P_0$  be a coderivation of  $\Gamma_0 \Rightarrow \tau_0$ .

- Suppose not  $P_0$  total, and let  $\vec{a}_0 \in \Gamma_0^{\mathfrak{S}}$  s.t.  $P_0^{\mathfrak{S}} \vec{a}_0 \uparrow$ .
- Each rule preserves totality, so we can build an infinite branch  $B = (P_i)_{i < \omega}$  and inputs  $\vec{a}_i$  such that  $P_i \vec{a}_i \uparrow$ .
- Any thread  $(N^j)_{j<\omega}$  in *B* induces a non-increasing sequence  $\mathbf{a} = (a_{i_j})_{j<\omega} \in \mathbb{N}^{\omega}$ .

Proof sketch.

Let  $P_0$  be a coderivation of  $\Gamma_0 \Rightarrow \tau_0$ .

- Suppose not  $P_0$  total, and let  $\vec{a}_0 \in \Gamma_0^{\mathfrak{S}}$  s.t.  $P_0^{\mathfrak{S}} \vec{a}_0 \uparrow$ .
- Each rule preserves totality, so we can build an infinite branch  $B = (P_i)_{i < \omega}$  and inputs  $\vec{a}_i$  such that  $P_i \vec{a}_i \uparrow$ .
- Any thread  $(N^j)_{j<\omega}$  in B induces a non-increasing sequence  $\mathbf{a} = (a_{i_j})_{j<\omega} \in \mathbb{N}^{\omega}$ .
- a must converge, by well-foundedness of  $\mathbb{N}$ , so  $(N^{j})_{j < \omega}$  is not progressing.

Proof sketch.

Let  $P_0$  be a coderivation of  $\Gamma_0 \Rightarrow \tau_0$ .

- Suppose not  $P_0$  total, and let  $\vec{a}_0 \in \Gamma_0^{\mathfrak{S}}$  s.t.  $P_0^{\mathfrak{S}} \vec{a}_0 \uparrow$ .
- Each rule preserves totality, so we can build an infinite branch  $B = (P_i)_{i < \omega}$  and inputs  $\vec{a}_i$  such that  $P_i \vec{a}_i \uparrow$ .
- Any thread  $(N^j)_{j<\omega}$  in B induces a non-increasing sequence  $\mathbf{a} = (a_{i_j})_{j<\omega} \in \mathbb{N}^{\omega}$ .
- a must converge, by well-foundedness of  $\mathbb{N}$ , so  $(N^j)_{j<\omega}$  is not progressing.

NB: this proof is highly non-constructive! How can we extract induction invariants?

Before dissecting these results, let us set up our toolbox:

#### **Proof theoretic ingredients:**

- Totality at type 1 is a Π<sup>0</sup><sub>2</sub> property (∀m∃n Pm↓n).
   ~→ all proofs are constructive!
- Formalising this proof bounds the proof theoretic strength of CT.

Before dissecting these results, let us set up our toolbox:

#### **Proof theoretic ingredients:**

- Totality at type 1 is a Π<sup>0</sup><sub>2</sub> property (∀m∃n Pm↓n).
   → all proofs are constructive!
- Formalising this proof bounds the proof theoretic strength of CT.

# (Higher-order) recursion theoretic ingredients:

- Totality can proved wrt. HO computability models, e.g. ℜ. → formalisation in subsystems of SO arithmetic.
- Proof checking is decidable, provably.
  - $\rightsquigarrow$  reverse mathematics of  $\omega\textsc{-}automaton$  theory [KMPS19, Das20].

Before dissecting these results, let us set up our toolbox:

### **Proof theoretic ingredients:**

- Totality at type 1 is a Π<sup>0</sup><sub>2</sub> property (∀m∃n Pm↓n).
   ~→ all proofs are constructive!
- Formalising this proof bounds the proof theoretic strength of CT.

# (Higher-order) recursion theoretic ingredients:

- Totality can proved wrt. HO computability models, e.g. ℜ. → formalisation in subsystems of SO arithmetic.
- Proof checking is decidable, provably.
   → reverse mathematics of ω-automaton theory [KMPS19, Das20].

### **Textbook interpretations:**

- SO theories are conservative extensions of appropriate FO ones.
- *Computational interpretations* allow T to realise FO theorems.

# PUTTING THINGS TOGETHER

For f of type 1:



- formalised abstraction requires a careful partial evaluation result.
- Confluence of CT in  $RCA_0 \implies$  determinism.
- formalised totality arithmetises the totality argument for CT.
  - Reverse mathematics of  $\omega$ -automaton theory [KMPS19, Das20].
  - Must formalise totality argument in a HO computability model | · |.
- program extraction is textbook.

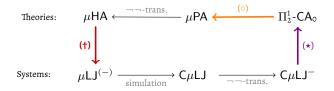
# What about (C) $\mu$ LJ?

# Theorem ([CD23])

 $\mu$ LJ and C $\mu$ LJ define just the functions provably recursive in  $\Pi_2^1$ -CA $_0$ .

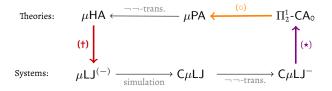
# Theorem ([CD23])

 $\mu$ LJ and C $\mu$ LJ define just the functions provably recursive in  $\Pi_2^1$ -CA $_0$ .



# Theorem ([CD23])

 $\mu$ LJ and C $\mu$ LJ define just the functions provably recursive in  $\Pi_2^1$ -CA $_0$ .



- (\*) Formalisation of semantics by fixed points as fixed points:
  - Novel reverse mathematics of ordinal and fixed point theory, building on [Das21, DM23].
- (•) A complex black box result due to [Mö02].
- (†) Realisability interpretation by fixed points as SO types.
  - (Considerable) specialisation of HA2  $\rightarrow$  F.

Types with fixed points

Circular proofs

3 Some results on expressivity



Metamathematics provides a **powerful toolbox** for understanding circular proofs.

### SUMMARY AND FURTHER DIRECTIONS

Metamathematics provides a **powerful toolbox** for understanding circular proofs.

- Classifying absolute and relative expressivity of circular systems.
- Exposing new connections with classical topics.
- Fuelling new results of independent interest.

Metamathematics provides a **powerful toolbox** for understanding circular proofs.

- Classifying absolute and relative expressivity of circular systems.
- Exposing new connections with classical topics.
- Fuelling new results of independent interest.

NB: considerable precursory work in cyclic arithmetic [Sim17, BT17, Das20].

Metamathematics provides a **powerful toolbox** for understanding circular proofs.

- Classifying absolute and relative expressivity of circular systems.
- Exposing new connections with classical topics.
- Fuelling new results of independent interest.

NB: considerable precursory work in cyclic arithmetic [Sim17, BT17, Das20].

Motto: circular proofs are more expressive than finite ones... up to a point!

Metamathematics provides a **powerful toolbox** for understanding circular proofs.

- Classifying absolute and relative expressivity of circular systems.
- Exposing new connections with classical topics.
- Fuelling new results of independent interest.

NB: considerable precursory work in cyclic arithmetic [Sim17, BT17, Das20].

Motto: circular proofs are more expressive than finite ones... up to a point!

- What about weak systems? some work in complexity theory e.g. [CD22].
- Further development of the model theory of circular proofs.

Metamathematics provides a powerful toolbox for understanding circular proofs.

- Classifying absolute and relative expressivity of circular systems.
- Exposing new connections with classical topics.
- Fuelling new results of independent interest.

NB: considerable precursory work in cyclic arithmetic [Sim17, BT17, Das20].

Motto: circular proofs are more expressive than finite ones... up to a point!

- What about weak systems? some work in complexity theory e.g. [CD22].
- Further development of the model theory of circular proofs.

# THANK YOU.

# **References** I



### Stefano Berardi and Makoto Tatsuta.

Equivalence of inductive definitions and cyclic proofs under arithmetic.

In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.



### Gianluca Curzi and Anupam Das.

### Cyclic implicit complexity.

In Christel Baier and Dana Fisman, editors, *LICS '22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 19:1–19:13. ACM, 2022.* 

# Gianluca Curzi and Anupam Das.

Computational expressivity of (circular) proofs with fixed points.

In *LICS*, pages 1–13, 2023.



# Pierre Clairambault.

#### Least and greatest fixpoints in game semantics.

In Ralph Matthes and Tarmo Uustalu, editors, *FICS '09, Coimbra, Portugal, September 12-13, 2009*, pages 39–45. Institute of Cybernetics, 2009.

# **References** II



# Anupam Das.

On the logical complexity of cyclic arithmetic.

Logical Methods in Computer Science, Volume 16, Issue 1, January 2020.

## Anupam Das.

A circular version of Gödel's T and its abstraction complexity. *CoRR*, abs/2012.14421, 2021.

## Anupam Das and Lukas Melgaard.

### Cyclic proofs for arithmetical inductive definitions.

In Marco Gaboardi and Femke van Raamsdonk, editors, 8th International Conference on Formal Structures for Computation and Deduction, FSCD 2023, July 3-6, 2023, Rome, Italy, volume 260 of LIPIcs, pages 27:1–27:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.



# Leszek Aleksander Kolodziejczyk, Henryk Michalewski, Pierre Pradic, and Michal Skrzypczak.

The logical strength of Büchi's decidability theorem.

Log. Methods Comput. Sci., 15(2), 2019.

# **References III**

Denis Kuperberg, Laureline Pinault, and Damien Pous. Cyclic proofs, system T, and the power of contraction. *Proc. ACM Program. Lang.*, 5(POPL):1–28, 2021.

# Michael Möllerfeld.

Generalized inductive definitions. The  $\mu$ -calculus and  $\Pi^1_2$ -comprehension.

PhD thesis, 2002. University of Münster, https://nbn-resolving.de/urn:nbn:de:hbz:6-85659549572.



### Alex Simpson.

#### Cyclic arithmetic is equivalent to peano arithmetic.

In Javier Esparza and Andrzej S. Murawski, editors, FOSSACS '17, Held as Part of ETAPS '17, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10203 of Lecture Notes in Computer Science, pages 283–300, 2017.