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Introduction

Daniel Adrien
Guarded recursion in types and terms

• An alternative to primitive (co)recursion and general recursion [Nak00]
• Applications to programming with infinite data and to logic and verification

1/52



What have we done?

Yesterday, Adrien told us about...

• Functional programming with infinite streams
• A model of stream programming with domain theory
• The topos of trees Pr(ω)
• The model of an STLC-variant in Pr(ω).

Today we focus on Pr(ω) more deeply.
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What are we doing?

Our goal: to touch on the following topics

• Guarded higher-order logic and its model in Pr(ω)
• Guarded dependent type theory and its model in Pr(ω)
• Applications of the above to denotational semantics

Warning
A long march through (categorical) logic and type theory. Ask questions as we go!
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First steps in the topos of trees

Recall that Pr(ω) = [ωop,Set]:

• Objects: ω-indexed collection of sets:

X (0) X (1) X (2) . . .

• Morphisms: natural transformations:

X (0) X (1) X (2) . . .

Y (0) Y (1) Y (2) . . .

Theorem
Pr(ω) is bicartesian closed.
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Second steps in the topos of trees

Theorem
Pr(ω) is a Grothendieck topos.

• All small (co)limits,
• Right adjoints to pullback functors (Π-types)
• A subobject classifier (Prop)
• A hierarchy of “categorical” universes (U0,U1,U2, . . . )
• . . .

Slogan: Pr(ω) behaves like Set (except for all the ways it doesn’t).

In particular, Pr(ω) doesn’t support LEM or choice.
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Quick recapitulation of higher-order logic

HOL starts with a simply-typed λ-calculus extended with a new type:

(Types) A,B ::= · · · | Prop
(Terms) t, u, ϕ, ψ ::= · · · | ⊤ | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ ⇒ ψ | ϕ = ψ |

∀x : A. ϕ(x) | ∃x : A. ϕ(x)

We then add an entailment judgment:

Γ | Θ ⊢ ϕ

where Γ ⊢ ϕ : Prop and Θ = θ0, . . . , θn such that Γ ⊢ θ : Prop
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Rules for entailment

Γ | Θ ⊢ ϕ0 Γ | Θ ⊢ ϕ1

Γ | Θ ⊢ ϕ0 ∧ ϕ1

Γ | Θ ⊢ ϕ0 ∧ ϕ1

Γ | Θ ⊢ ϕ0 Γ | Θ ⊢ ϕ1

Γ, x : A | Θ ⊢ ϕ(x)
Γ | Θ ⊢ ∀x : A. ϕ(x)

Γ, x : A | Θ, ϕ(x) ⊢ ψ Γ | Θ ⊢ ∃x : A. ϕ(x)
Γ | Θ ⊢ ψ
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Interpreting higher-order logic in Set

We interpret HOL into Set by extending the normal interpretation of STLC:

J1K ≜ {⋆}
JA × BK ≜ JAK × JBK

JA → BK ≜ JAK → JBK

. . .

JPropK ≜ 2

Apply the Broccoli Methodology for the terms of type Prop:

Jϕ ∧ ψK ≜ JϕK ∧ JψK

Fancier phrasing
We interpret free complete Heyting algebra (cHa) into the cHa 2.
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Interpreting the entailment relation

How do we interpret Γ | Θ ⊢ ϕ?

JΓ | Θ ⊢ ϕK ∈ 2
JΓ | Θ ⊢ ϕK ≜ ∀γ ∈ JΓK. JΓ ⊢ ΘK(γ) ⇒ JΓ ⊢ ϕK(γ)

Helpful to write this with the pointwise ordering on X → 2:

JΓ | Θ ⊢ ϕK ≜ JΓ ⊢ ΘK ⊑ JΓ ⊢ ϕK

We then eat our vegetables and check that this definition validates all the rules.
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Generalizing the Set interpretation

How can we generalize this recipe?

• We know how to interpret STLC into Pr(ω)
• What about Prop?

Theorem
If C is a cartesian closed category and X : C is a

n internal

complete Heyting algebra
in C, then C supports a model of higher-order logic.

Need some object X : Pr(ω) which supports interpretations of all of the operations:

J∧K, J∨K, J⇒K : X × X → X J∀τ K, J∃τ K : (JτK → X ) → X . . .

satisfying the expected equations.

Don’t worry: I’ll show one equation and then we’ll meet a concrete example!
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Internal complete Heyting algebras

Suppose X is to be a complete Heyting algebra. We must then have...

1. A morphism m : X × X X representing meet
2. A morphism t : 1 X representing top
3. . . .
4. The following diagram must commute (⊤ ∧ a = a):

X × 1

X × X

X × t

X

X

π1

id

m
5. . . .
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The subobject classifier Ω : Pr(ω)

Definition
The subobject classifier Ω : Pr(ω) is defined as follows:

Ω(n) ≜ {−1, . . . , n}
Ω(n ≤ m) : Ω(m) → Ω(n)
Ω(n ≤ m) ≜ min(n,−)

(Exercise: check this is indeed a functor)
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Temporal intuition for Ω

Temporal intuition for guarded recursion
x ∈ X (n) ∼ x is the results of computing a value of X for n steps

Elements of Ω are observations on truth values:

i ∈ Ω(n) ∼ the truth value which holds for the first i steps

• n ∈ Ω(n) is true (so far).
• −1 ∈ Ω(n) is false right away.
• Other values interpolate between these extremes.
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A check for intuition

Lemma
Hom(1,Ω) ∼= {−1,∞} ∪ ω

Proof.
To the board.
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Categorical intuition for Ω

We can also give Ω a nice universal property:

Lemma (Mac Lane and Moerdijk [MM92])
Ω is the subobject classifier: there is a natural isomorphism Hom(X ,Ω) ∼= Sub(X )

• Maps Hom(X ,Ω) determine subobjects A X (up to iso) of the domain
• Yields an ordering ⊑ on Hom(X ,Ω)

• Compare with Set and 2; a map X → 2 characterizes a subset.
• Everything which follows could be done just using this universal property.
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Theorem
Ω is an internal complete Heyting algebra.

Proof.

⊤ : Ω ⊥ : Ω
⊤n = n ⊥n = −1

∧ : Hom(Ω × Ω,Ω) ∨ : Hom(Ω × Ω,Ω)
i ∧n j = min(i , j) i ∨n j = max(i , j)

∀X : Hom(ΩX ,Ω) ∃X : Hom(ΩX ,Ω)
∀X

n α = ∀m ≤ n, x ∈ X (m). α(x) ∃X
n α = ∃x ∈ X (n). α(x)

Must verify that these satisfy the expected equations.
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An aside: the Kripke–Joyal semantics

Lemma
ϕ ∈ Ω(n) “is” a monotone predicate on {0, . . . , n}. Elements of Hom(1,Ω) “are” a
monotone predicates on ω.

If Γ ⊢ t : Prop, JtK : JΓK → Ω which induces a predicate on
∑

n:ωJΓK(n):

n ⊨ JΓ ⊢ t : PropKγ ≜ JΓ ⊢ t : PropKn(γ) = n

Chasing this through, we obtain the (familiar?) Kripke semantics over ω:

n ⊨ JΓ ⊢ ϕ ⇒ ψKγ = ∀m ≤ n. m ⊨ JΓ ⊢ ϕ : PropKγ ⇒ m ⊨ JΓ ⊢ ψ : PropKγ

(Kripke semantics arise as interpretations in Pr(C); Beth semantics from Sh(C).)
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A further aside: Pr(ω) refutes LEM

We can now show that this model in Pr(ω) refutes LEM. That is:

Lemma
Jϕ : Prop | ⊤ ⊢ ϕ ∨ (ϕ ⇒ ⊥)K does not hold.

Proof.
To the board.

Exercise for the curious: show that ∀ϕ. ¬ϕ ∨ ¬¬ϕ does hold in this model.1

1Question: does anyone have a name for this?
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Taking stock

For those who slept through the first n minutes, what has happened?

• Thus far we have shown how to interpret HOL into Pr(ω).
• However, nothing thus far is truly guarded about this.
• Next: we extend HOL with some guarded-recursion specific connectives.

Part of a more general pattern: we’re after the internal logic of Pr(ω).
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Guarded higher-order logic

We return to the previous definition of higher-order logic:

(Types) A,B ::= · · · | Prop
(Terms) t, u, ϕ, ψ ::= · · · | ⊤ | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ ⇒ ψ | ϕ = ψ |

∀x : A. ϕ(x) | ∃x : A. ϕ(x) | � ϕ

Γ | Θ ⊢ ϕ

Γ | Θ ⊢ �ϕ

Γ | Θ,�ϕ ⊢ ϕ

Γ | Θ ⊢ ϕ

Γ | Θ ⊢ �ϕ ∧ �ψ

Γ | Θ ⊢ �(ϕ ∧ ψ)
Γ | Θ ⊢ �(ϕ ∧ ψ)
Γ | Θ ⊢ �ϕ ∧ �ψ
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Extending the interpretation III

We must now

1. Choose � : Hom(Ω,Ω) such that J�ϕK = � ◦ JϕK

2. Show that � satisfies the expected inference rules.

Let’s begin with the definition:

� : Hom(Ω,Ω)
�n i = min(i + 1, n)

(Remember: i is “true for the first i ticks” so �ni is then true for i + 1 ticks)
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Extending the interpretation II

Lemma
If JΓ | Θ ⊢ ϕK then JΓ | Θ ⊢ �ϕK.

• Suffices to show that id ⊑ � ∈ Hom(Ω,Ω)
• Fix n : ω and i ∈ Ω(n); suffices to show i ≤ min(n, i + 1).

Lemma
JΓ | Θ ⊢ �(ϕ ∧ ψ)K = JΓ | Θ ⊢ �ϕ ∧ �ψK.

• Suffices to show that � ◦ ∧ = ∧ ◦ (�,�) ∈ Hom(Ω × Ω,Ω)
• Fix n : ω and i , j ∈ Ω(n); suffices to show

min(n, 1 + min(i , j)) = min(min(n, i + 1),min(n, j + 1)).

22/52



Extending the interpretation I

Lemma
If JΓ | Θ,�ϕ ⊢ ϕK then JΓ | Θ ⊢ ϕK.

• Fix n and γ ∈ JΓK(n). Want to show JΘK(n, γ) ≤ JϕK(n, γ).
• By assumption, we know JΘ,�ϕK(n, γ) ≤ JΘ, ϕK(n, γ)
• Iterating n times with other rules for � we get JΘ,�nϕK(n, γ) ≤ JΘ, ϕK(n, γ)

JΘ,�nϕK(n, γ) = min(JΘK(n, γ), J�nϕK(n, γ))
= min(JΘK(n, γ),min(n, n + JϕK(n, γ)))
= min(JΘK(n, γ), n)
= JΘK(n, γ)

(Secretly same idea as Adrien’s proof of rec; just cooler)
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Other structure in Pr(ω)

Q How do get guarded recursive propositions?
A1 Could add bespoke fixed-point operator µx . ϕ(x)

A2 Reuse ordinary term-level guarded recursion recA : (�A → A) → A.

(Types) A,B ::= · · · | Prop | � A

Now define µ ≜ recProp : (�Prop → Prop) → Prop... but what use is �Prop?

• Need to add an operator �̂ to use the IH

Γ ⊢ ϕ : �Prop
Γ ⊢ �̂ϕ : Prop

• Add an equation �̂(delay(ϕ)) = �ϕ to connect this with existing �.

Exercise: prove µx .⊥ ∨ �̂x .
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What is �̂?

Let’s show how to define �̂ : �Ω → Ω in Pr(ω).

�̂n i = i + 1

Calculation now shows �̂ ◦ JdelayK = �
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A quick aside: applications

Why is guarded higher-order logic useful?

• One compelling application of gHOL: step-indexed logical relation.
• We can use �/step-indexing to handle µ, ref, etc. [AM01; Ahm04; App+07]
• Using �, we can hide the step-indices from the user [App+07; DAB11]
• There’s a whole cottage industry of these applications!

We’re soon on to more theory, but perhaps one slide of examples.
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Step-indexed logical relations

Logical relations in a hurry:

• a LR inductively assigns a predicate/relation to every type
• Here, the relation Rτ (v0, v1) tells us when v0 refines v1.
• Describe the relation on values Rval then uniformly extend to expressions Rexpr.

Rval
τ : Val(τ) × Val(τ) → Prop

Rval
1 (v0, v1) = v0 = ⋆ ∧ v1 = ⋆

Rval
τ→σ(f , g) = ∀v0, v1 : Val(τ). Rτ (v0, v1) ⇒ Rexpr

σ (f (v0), g(v1))
. . .

Rexpr
τ : Expr(τ) × Expr(τ) → Prop

Rexpr
τ (e0, e1) = ∀v0. e0 7→∗ v0 ⇒ ∃v1. e1 7→∗ v1 ∧ Rval

τ (v0, v1)
27/52



µ in logical relations

• µα.τ(α) is a headache... want Rτ [µα.τ(α)/α] but have only Rτ .
• Solution: replace “inductive” with “guarded recursive” [AM01]

Rval
τ : Val(τ) × Val(τ) → Prop

Rval
µα.τ(α)(v0, v1) = �̂Rexpr

τ [µα.τ(α)/α](unfold(v0), unfold(v1))

Rexpr
τ : Expr(τ) × Expr(τ) → Prop

Rexpr
τ (e0, e1) = ∀v0, n. e0 7→n v0 ⇒ ∃v1. e1 7→∗ v1 ∧ �nRval

τ (v0, v1)

Basis of ongoing work e.g., Iris [Jun+18] (https://iris-project.org).
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From logic to type theory



From higher-order logic to dependent types

Our next goal: switch from HOL to Martin-Löf type theory.

• We’ve met type theory before this week, but a brief reminder!
• Logic no longer confined to Prop; propositions and ordinary types intermingle.
• Formally, we shall treat type theory as consisting of 4 judgments:

⊢ Γ ∆ ⊢ γ : Γ Γ ⊢ A Γ ⊢ a : A

(each with a corresponding notion of equality)

My bias: type theory is a (generalized) algebraic theory; makes models easier
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A few basic rules

⊢ 1
⊢ Γ Γ ⊢ A

⊢ Γ.A

∆ ⊢ γ : Γ Γ ⊢ A
∆ ⊢ A[γ]

∆ ⊢ γ : Γ Γ ⊢ A Γ ⊢ a : A
∆ ⊢ a[γ] : A[γ]

⊢ Γ Γ ⊢ A
Γ.A ⊢ ↑ : Γ

∆ ⊢ γ : Γ ∆ ⊢ a : A[γ]
∆ ⊢ γ.a : Γ.A

⊢ Γ Γ ⊢ A
Γ.A ⊢ v : A[↑]

• Contexts are formal syntactic objects: not just lists!
• Substitution application is a term/type former; variables are nameless (de Bruijn)

• Self-promotion: “Principles of Dependent Type Theory” by Angiuli and G.
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All the type formers

Unfortunately, it’s not practical to try and introduce all of MLTT

• Let me instead rely on intuition from Rocq
• We have dependent functions, dependent pairs, disjoint unions, universes. . .

All of these can be (laboriously) specified by rules like before:

⊢ Γ
Γ ⊢ 1

∆ ⊢ γ : Γ
Γ ⊢ 1[γ] = 1

⊢ Γ
Γ ⊢ ⋆ : 1

⊢ Γ Γ ⊢ u : 1
Γ ⊢ u = ⋆ : 1

Want to see all the rules? Angiuli and G.’s Appendix A (9 pages).
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Scaling up Adrien’s calculus from yesterday

Our goal today: not MLTT, but guarded MLTT.

Q How do we add a modality like � to MLTT?
A Carefully!

• Must account for substitutions, new equations, etc., etc.
• In particular, the well-formedness of �A is much more complex! (More akin to �̂).
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Modal dependent type theory

Lots of approaches to modal type theory; today, we follow Birkedal et al. [Bir+20].

• Same idea as Adrien’s calculus: � ⊣ � realized by �.
• More syntactically naïve (no �); we’ll discuss problems at the end.
• Main advantage: the rules of this calculus are very short.
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The calculus of dependent right adjoints

⊢ Γ
⊢ Γ.�

∆ ⊢ γ : Γ
∆.� ⊢ γ.� : Γ.�

Γ.� ⊢ A
Γ ⊢ �A

Γ.� ⊢ a : A
Γ ⊢ guard(a) : �A

Γ ⊢ a : �A
Γ.� ⊢ open(a) : A

Γ.� ⊢ a : A
Γ.� ⊢ open(guard(a)) = a : A

Γ ⊢ a : �A
Γ ⊢ guard(open(a)) = a : �A

∆ ⊢ γ : Γ Γ.� ⊢ a : A
∆.� ⊢ open(a)[γ.�] = open(a[γ]) : A

∆ ⊢ γ : Γ Γ ⊢ a : �A
∆ ⊢ guard(a)[γ] = guard(a[γ.�]) : �(A[γ.�])

34/52



The calculus of dependent right adjoints

⊢ Γ
⊢ Γ.�

∆ ⊢ γ : Γ
∆.� ⊢ γ.� : Γ.�

Γ.� ⊢ A
Γ ⊢ �A

Γ.� ⊢ a : A
Γ ⊢ guard(a) : �A

Γ ⊢ a : �A
Γ.� ⊢ open(a) : A

Γ.� ⊢ a : A
Γ.� ⊢ open(guard(a)) = a : A

Γ ⊢ a : �A
Γ ⊢ guard(open(a)) = a : �A

∆ ⊢ γ : Γ Γ.� ⊢ a : A
∆.� ⊢ open(a)[γ.�] = open(a[γ]) : A

∆ ⊢ γ : Γ Γ ⊢ a : �A
∆ ⊢ guard(a)[γ] = guard(a[γ.�]) : �(A[γ.�])

34/52



The calculus of dependent right adjoints

⊢ Γ
⊢ Γ.�

∆ ⊢ γ : Γ
∆.� ⊢ γ.� : Γ.�

Γ.� ⊢ A
Γ ⊢ �A

Γ.� ⊢ a : A
Γ ⊢ guard(a) : �A

Γ ⊢ a : �A
Γ.� ⊢ open(a) : A

Γ.� ⊢ a : A
Γ.� ⊢ open(guard(a)) = a : A

Γ ⊢ a : �A
Γ ⊢ guard(open(a)) = a : �A

∆ ⊢ γ : Γ Γ.� ⊢ a : A
∆.� ⊢ open(a)[γ.�] = open(a[γ]) : A

∆ ⊢ γ : Γ Γ ⊢ a : �A
∆ ⊢ guard(a)[γ] = guard(a[γ.�]) : �(A[γ.�])

34/52



The calculus of dependent right adjoints

⊢ Γ
⊢ Γ.�

∆ ⊢ γ : Γ
∆.� ⊢ γ.� : Γ.�

Γ.� ⊢ A
Γ ⊢ �A

Γ.� ⊢ a : A
Γ ⊢ guard(a) : �A

Γ ⊢ a : �A
Γ.� ⊢ open(a) : A

Γ.� ⊢ a : A
Γ.� ⊢ open(guard(a)) = a : A

Γ ⊢ a : �A
Γ ⊢ guard(open(a)) = a : �A

∆ ⊢ γ : Γ Γ.� ⊢ a : A
∆.� ⊢ open(a)[γ.�] = open(a[γ]) : A

∆ ⊢ γ : Γ Γ ⊢ a : �A
∆ ⊢ guard(a)[γ] = guard(a[γ.�]) : �(A[γ.�])

34/52



The calculus of dependent right adjoints

⊢ Γ
⊢ Γ.�

∆ ⊢ γ : Γ
∆.� ⊢ γ.� : Γ.�

Γ.� ⊢ A
Γ ⊢ �A

Γ.� ⊢ a : A
Γ ⊢ guard(a) : �A

Γ ⊢ a : �A
Γ.� ⊢ open(a) : A

Γ.� ⊢ a : A
Γ.� ⊢ open(guard(a)) = a : A

Γ ⊢ a : �A
Γ ⊢ guard(open(a)) = a : �A

∆ ⊢ γ : Γ Γ.� ⊢ a : A
∆.� ⊢ open(a)[γ.�] = open(a[γ]) : A

∆ ⊢ γ : Γ Γ ⊢ a : �A
∆ ⊢ guard(a)[γ] = guard(a[γ.�]) : �(A[γ.�])

34/52



Guarded dependent type theory

We must add a few operations which specialize things to guarded recursion.

⊢ Γ
Γ.� ⊢ adv : Γ

Allows us to define delay(a) ≜ guard(a[adv]).

Now, rec (n.b. complicated by the need to balance substitutions).

Γ ⊢ A Γ.� A[adv] ⊢ a : A[↑]
Γ ⊢ rec(a) : A

Γ.� A[adv] ⊢ a : A[↑]
Γ ⊢ rec(a) = a[id.delay(rec(a))] : A
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Other approaches to rec

If this seems ad hoc, that’s because it is! Many different attempts to integrate �

• Extensional guarded type theory [Bir+12]
• Guarded type theory with clocks [Møg14]
• Clocked type theory [BGM17]
• Guarded cubical type theory [Bir+19]
• Clocked cubical type theory [KMV22]
• Stratified guarded type theory [GB22]
• Gatsby [Gra25]
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Why all of this churn?

Fundamentally, we want to satisfy 4 goals simultaneously:

1. Include � (and companion modalities)
2. Include rec with a propositional equation for unfolding
3. Closed elements of type N are convertible with actual numerals (canonicity)
4. Decidable type-checking (via decidable definitional equality)

Two possible type theories satisfy all 4 goals (CCloTT, Gatsby), but only conjecturally.
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Why guarded dependent types?

Dependence has remarkable interactions with guarded recursion.

1. We can interpret recursive programs using the guarded delay monad [PMB15]:

L(A) = A + �(L(A))

Recursive types [Pav16], non-determinism [BBM14], π-calculus [VV20]
higher-order store [SGB23], etc.

2. Even better, we can use � + U to solve domain equations (as seen in Iris):

Stream A = rec(S.A × �(open(S)))
Dg

∞ = rec(S.� (open(S) → open(S)))

https://www.jonmsterling.com/jms-005S/index.xml
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Modeling (guarded) type theory



How do we interpret dependent type theory?

Our goal for the rest of the lecture: interpret this calculus into Pr(ω).

We therefore need to...

• Work out how to model plain type theory in a category (categories with families)
• Show how to extend this to our calculus (CwFs + structure)
• Actual carry out this procedure for Pr(ω) (a small instance of coherence)

A complete example of working in categorical type theory [Bir+12; BM13].
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Models of type theory

The motivation for algebraic approaches to type theory: it makes models easy.

A model a generalized algebraic theory [Car78] consists of...

• To every judgment, an indexed family of sets.
• To every operation, a function between to the these sets.
• To every equation, a proof that the corresponding functions agree.

Theorem
There is a category of models of every GAT; syntax is initial in this category.

Really, this is the domain of logical frameworks. I picked the “simplest” one.
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Models of type theory II

Type theory:
⊢ Γ ∆ ⊢ γ : Γ Γ ⊢ A Γ ⊢ a : A

If we unfold this, a model M of type theory requires...

1. A set Cx of contexts
2. For every pair of contexts ∆, Γ ∈ Cx, a set of substitutions Sb(∆, Γ).
3. For every Γ ∈ Cx, a set of types Ty(Γ).
4. For every Γ ∈ Cx and A ∈ Ty(A), a set of terms Tm(Γ,A).
5. All of the operations and equations...

But where have the categories gone?
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Categories with families

Theorem (Categories with families (CwFs) [Dyb96])
A model of type theory consists of

1. A category C of contexts and substitutions.
2. A presheaf Ty : Pr(C) of types.
3. A presheaf Tm : Pr(

∫
Ty) of terms.

4. All of the rest of the operations and equations.

Repackaging of generated model; we still have Cartmell’s theorem!

Definition
A model of type theory in C is a CwF where (1) is given by C.
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From universes to CwFs

Continuous problem for type theorists: CwFs simply do not arise in nature.

• Require coherence constructions to rectify C to support Ty/Tm.
• Today, we use the simplest coherence construction I know.
• Downside for simplicity: wasteful use of universes.

This construction is folklore, but see Voevodsky [Voe14] or Angiuli and G.
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Universes in a category

Q. Given C, how should we define Ty?
A. Assume C has an object of types (a universe) U; Ty = Hom(−,U).

Need a description of universes in a category. See Streicher [Str05].

Theorem (Hofmann and Streicher [HS97])

• In Pr(ω), have π : U• U and a bijection ι : Hom(X ,U) ≃ Prsmall(
∫

X ).
• Moreover, if A : X → U then lifts along π corresponds to Hom(1, ι(A)).

X U

U•

A

a
π

∼
ι(A) : Prsmall(

∫
X )

ι(a) : HomPrsmall(
∫

X )(1, ι(A))
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Universes in a category

With our Hofmann–Streicher universe to hand, we can describe the skeleton of a CwF:

Ty : Pr(ω)op → Set
Ty(X ) = Hom(X ,U)

Tm :
∫

Tyop → Set
Tm(X ,A) = {a ∈ Hom(X ,U•) | A = π ◦ a}

Elbow grease to close under all the operations (see Hofmann [Hof97] or Angiuli and G.)

Only have access to small types ⌢
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Taking stock

At this point, we have seen the outline of the following result:

Theorem
There is a model of MLTT in Pr(ω).

• Lots of closure conditions to prove, but we have the basic definitions in place.
• What remains: extending this to guarded type theory.

So, we need to describe �, �, guard(−), open(−), adv, rec.
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Translating these connectives into operations

We have no new judgments, so we merely add operations and equations.

For directness, I’ve also rephrased these operations using the language of categories:

Syntax Categorical rephrasing
Γ.�, γ.�, and equations � : Pr(ω) → Pr(ω)

✓

adv and equations a natural transformation � → id

✓

� and substitution equation a natural family of maps �̂ : Ty(�Γ) → Ty(Γ)
guard(−), open(−), and all equations a natural bijection Tm(�Γ,A) ∼= Tm(Γ, �̂A)
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Constructing �̂

A natural family of maps �̂ : Ty(�Γ) → Ty(Γ)

Let us recall that Ty(Γ) = Hom(Γ,U) ≃ Prsmall(
∫

Γ).

�̂Γ : Prsmall(�
∫

Γ) → Prsmall(
∫

Γ)

�̂Γ(X ) = λn, γ. ?

(X : Prsmall(
∫
�Γ) so in particular X : (n : ω) → Γ(n + 1) → Set)
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The introduction and elimination forms for �̂

A natural bijection Tm(�Γ,A) ∼= Tm(Γ, �̂A).

Boils down to two observations:

1. It suffices to show HomPrsmall(
∫
�Γ)(1, ι(A)) ∼= HomPrsmall(

∫
Γ)(1, �̂ι(A))

2. �̂Γ is right adjoint to precomposition functor Pr(
∫

Γ) → Pr(
∫
�Γ).

Result is now an exercise in adjoint yoga.
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Deep breath, we’re done with math



Why the calculus we just saw is actually unusable

Disappointing reality: this calculus has no substitution lemma:

open(a)[γ.�] = open(a[γ])

What about open(a)[γ] where γ ̸= _.�?

My tired joke:

We have a name for type theory with no substitution lemma, category theory.
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Possible solutions

1. Ad-hoc tricks to make this work specifically for � [BGM17; GSB19]:

Γ ⊢ a : �A
Γ.�.A1. . . . .An ⊢ open(a) : A[↑n]

2. Utilize additional structure of earlier [Gra+22] (�)
3. Use a more complex modal framework [Gra+20] (MTT)

None of these fundamentally impact the model; this is purely a matter of syntax.
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Open questions in guarded type theory

1. Does there exist “a well-adapted guarded recursive dependent type theory”
• � (plus other modalities)
• rec with propositional unfolding
• Canonicity
• Decidable type-checking.

2. What is the correct set of modalities for guarded recursion?
3. Is Löb induction the right primitive for guarded recursion?
4. Many questions in synthetic guarded domain theory (weak bisimulation? guarded

equational theories?)
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