Guarded recursive types
A programming-language perspective

Adrien Guatto! & Daniel Gratzer?

L. Université Paris Cité
2. Aarhus University

EPIT 2025

Introduction

T ’
Daniel Adrien

Guarded recursion in types and terms
m An alternative to primitive (co)recursion and general recursion [Nakano, 2000]
m Applications to programming with infinite data and to logic and verification

2/54

Introduction

T ’
Daniel Adrien

Guarded recursion in types and terms
m An alternative to primitive (co)recursion and general recursion [Nakano, 2000]
m Applications to and to logic and verification

2/54

Introduction

T ’
Daniel Adrien

Guarded recursion in types and terms
m An alternative to primitive (co)recursion and general recursion [Nakano, 2000]
m Applications to programming with infinite data and to

2/54

Infinite streams in functional programming

Streams as first-class interactions [Kahn, 1974]

m Use streams to represent and manipulate entire, infinite histories of events
happening over the unending execution of a program.

m Transfer the benefits of functional programming, such as equational
reasoning, to new application domains beyond symbolic computation.

3/54

Infinite streams in functional programming

Streams as first-class interactions [Kahn, 1974]

m Use streams to represent and manipulate entire, infinite histories of events
happening over the unending execution of a program.

m Transfer the benefits of functional programming, such as equational
reasoning, to new application domains beyond symbolic computation.

This idea has (re)appeared and been put into use several times:
m for interactive programs, e.g., GUIs, servers, and games
m functional reactive programming [Elliott and Hudak, 1997] in Haskell
m for reactive programs, e.g., real-time control programs
m dedicated synchronous languages such as Lustre [Caspi et al., 1987]

All of these expose rather than primitive (co)recursion.

3/54

Infinite streams in functional programming

Streams as first-class interactions [Kahn, 1974]

m Use streams to represent and manipulate entire, infinite histories of events
happening over the unending execution of a program.

m Transfer the benefits of functional programming, such as equational
reasoning, to new application domains beyond symbolic computation.

This idea has (re)appeared and been put into use several times:
m for interactive programs, e.g., GUIs, servers, and games
m functional reactive programming [Elliott and Hudak, 1997] in Haskell
m for reactive programs, e.g., real-time control programs
m dedicated synchronous languages such as Lustre [Caspi et al., 1987]

All of these expose fixpoint operators rather than primitive (co)recursion.

Productivity: reject unsound cyclic definitions
Real-time implementations: bounded in time and space

3/54

Infinite streams in functional programming

Streams as first-class interactions [Kahn, 1974]

m Use streams to represent and manipulate entire, infinite histories of events
happening over the unending execution of a program.

m Transfer the benefits of functional programming, such as equational
reasoning, to new application domains beyond symbolic computation.

This idea has (re)appeared and been put into use several times:
m for interactive programs, e.g., GUIs, servers, and games
m functional reactive programming [Elliott and Hudak, 1997] in Haskell
m for reactive programs, e.g., real-time control programs
m dedicated synchronous languages such as Lustre [Caspi et al., 1987]

All of these expose fixpoint operators rather than primitive (co)recursion.

Productivity: reject unsound cyclic definitions ()
Real-time implementations: bounded in time and space

3/54

Infinite streams in functional programming

Streams as first-class interactions [Kahn, 1974]

m Use streams to represent and manipulate entire, infinite histories of events
happening over the unending execution of a program.

m Transfer the benefits of functional programming, such as equational
reasoning, to new application domains beyond symbolic computation.

This idea has (re)appeared and been put into use several times:
m for interactive programs, e.g., GUIs, servers, and games
m functional reactive programming [Elliott and Hudak, 1997] in Haskell
m for reactive programs, e.g., real-time control programs
m dedicated such as Lustre [Caspi et al., 1987]
All of these expose fixpoint operators rather than primitive (co)recursion.

Productivity: reject unsound cyclic definitions
Real-time implementations: bounded in time and space

3/54

From synchronous languages to synchrony

[Kahn, 1974]

Transducers
> sFinset(S X (AX S = BxS))

Stream functions
A¥Y — B¥
compile

[Caspi et al., 1987]

m Design and study of compiling to state machines
m Programs have to satisfy specific properties, such as

m Strongly related to . guarded calculi are all (?) synchronous

Definition (Synchrony, informal and intuitive)

A stream function f is synchronous when xs|, = ys|, = f(xs)|, = f(ys)|n-

4/54

This lecture

m A language-oriented of guarded recursion starting from

types <> partial orders

nonstrict programs <+ monotone maps
m A of a guarded variant of synchronous functional programming

types < trees

synchronous functions <+ height-preserving tree maps

m A suggested by the model.

Inspirations
Birkedal et al. [2012], Pouzet [2002], G. [2016, 2018], Clouston [2018], others. {

Caveat
This is a specific view of guarded recursion, coming from programming languages.

5/54

Outline

Introduction

A nonstrict stream language
@ Syntax and execution
@ Modeling nonstrict streams

Synchrony in the topos of trees
@ From orders to presheaves
@ Back to syntax

Perspectives
@ Limitations
@ Conclusion

6/54

Outline

Introduction

A nonstrict stream language
@ Syntax and execution

Synchrony in the topos of trees

Perspectives

7/54

A nonstrict stream language
Syntax of .&

x:Ael I'x:A+t:B ''Ft:A—~B I'Fu:A
I'Ex:A Ik fun(x.t): A= B '+ app(t,u) : B

(F Ft Ai)i6{1,2} T'Et: A <Ay
't <l’1, l'2> AL X< Ay 'k prOj,-e{LQ}(t) LA I' F tt, ff : Bool

I'Ft: Bool T'Fu:A 'kFs:A I'x:AFt:A
I'Fif(t,u,s): A 'k rec(x.t): A

I'Ft:StrA I'Ft:StrA T'Ht: A T'Fu:StrA
't head(t) : A I+ tail(t) : StrA Phktiiu:StrA

8/54

A nonstrict stream language
Reduction for .¥

V ou=fun(x.t) | {(t1,to) | tt | ff| Vit
E ==0|app(E,u) | proj;(E) | if(E,u,s) | E::t]| head(E) | tail(E)

app(fun(x.t), u
proji({t1, t2)
if(tt, u, s

)~ f[U/X]
)~
)~
if(ff, u, 5) ~
)~
)~
)~

!
u~~>u

E{u} — E{J'}
rec(.t

head(V::t
tail(V::t

t[rec(x t)/x]

Summary }

A \-calculus with call-by-name semantics, except for streams which are left-strict.

9/54

A nonstrict stream language

Basic metatheory

Lemma (Determinism)
Ift — ti and t — ty then t = t. J

Lemma (Subject reduction)
IfTFt:Aandt—t' thenT - t': A J

Write t T when there exists (&), with t; — ;41 and ty = t.

Lemma (Type safety)
IfT'F t: A then either t T or t —* V /4. J

10/54

A nonstrict stream language

Productivity

tail’(t) =t tail ™ (t) = tail(tail ™ (t))

Definition

A term t: Str A'is productive up to n < w when tail™(t) converges to a value for
all m < n. It is productive when it is productive up to w.

The terms ffs and tts below are productive.

ff's == rec(xs.ff::xs) : Str Bool
notb = fun(x.if(x, ff, tt)) : Bool — Bool
nots = rec(F.fun(xs.app(notb, head(xs)) : : app(F, tail(xs)))) : StrBool — StrBool
tts == app(nots, ffs) : Str Bool

11/54

A nonstrict stream language

Productivity and time

Here are two non-productive terms, not even productive up to 1.

loop := rec(xs.xs) : Str Bool
weird := rec(xs.head(tail(xs)) :: (tt::xs)) : Str Bool
The case of weird is the most interesting one.
tail’ (weird)
— weird
— head(tail(weird)) : : (tt: : weird)
— head(tail(head(tail(weird)) : : (tt: :weird))) : : (tt : : weird)

The reduction of streams reflects the of Kahn [1974].

12/54

A nonstrict stream language
Synchrony

Definition (Synchrony, formal)

A term t: Str A— Str A is synchronous when, for all u: StrA and n < w, u

productive up to n implies app(t, u) productive up to n.

The term nots is synchronous, ands is not, stut imprecisely so.

nots := rec(F.fun(xs.app(notb, head(xs)) : : app(F, tail(xs)))) : Str Bool
andb := fun(x.fun(y.if(x, if(y, tt, ff), ff))) : Bool — Bool — Bool
andl = fun(xs.app(app(andb, head(xs)), head(tail(xs))))
ands = rec(F.fun(xs.app(andl, xs) : : app(F, tail(tail(xs)))))

stut := rec(F.fun(xs.head(xs) : : head(xs) : : app(F, tail(xs)))) : Str Bool — Str Bool

Remark

Synchrony is a stronger condition than totality: to be total at

type Str Bool — StrBool a term is only required to preserve productivity at w.

: Str Bool — Bool
: Str Bool — Str Bool

13/54

A nonstrict stream language

Approximation and equivalence

LetT'Ft,u: A

Definition (Approximation)
We say that t approximates u, denoted I' =t T u : A, when
V@O:(TkFAFK: (FBool)), K{t} =" tt = K{u} =" tt.

Definition (Equivalence)

We say that t is equivalent to u, denoted I' - t =qps u : A, when
PFEtCosu:Aand 't Cops u i A.

The unwieldy nature of these definitions can motivate the study of . J

14 /54

Outline

Introduction

A nonstrict stream language
@ Modeling nonstrict streams

Synchrony in the topos of trees

Perspectives

15/54

A model for .

Setting

A of £ is a category C together with
m for each type A or context ', an object [A] or [I'] of C
m for each term I' -t : A, a morphism [t] : [T] — [A] of C

In addition, [—] should be functorial, i.e., commute with substitution.

Official goals: soundness and adequacy
For all T'F t,u : A, we expect the model to verify
m soundness: if t — u then [t] = [u], and
m adequacy: if [t] = [u] then T'F t =gps u : A.

Actual goal: insight

We are looking for an of the language grounded in the model.

16 /54

A model for .

Requirements

The model must have enough structure to interpret .Z, mostly:
@ function types with currying and evaluation, i.e.,
Q a operator at each type to interpret recursion,
@ an interpretation of to model streams.
Those classic requirements lead us to various kinds of

| will omit much of the details and focus on building intuitions at this stage.)

17 /54

A model for .

The categories CPO and PCPO

Definition
m A poset P is complete when all suprema of directed sets exist.
m It is pointed when it has a least element, denoted | p or L.

Definition
Let P, Q be complete posets. Then f : P — @ is Scott-continuous when:
\/ (D) = (\/ D) for all D C P directed.

In addition, if P and Q are furthermore pointed, f is strict when f(L) = L.

m Complete posets and Scott-continuous maps form a category CPO.

m Pointed complete posets and strict Scott-cont. maps form a category PCPO.

18/54

A model for .

Type formers in PCPO

The category PCPO is closed under various type formers, including:

[P x Q, ordered componentwise;
™ P ® Q, obtained by identifying Lp and Lg;
n P —¢ Q, ordered pointwise;
| 1 P, adding a new least element to P;
m I, the one-element pcpo, neutral for both ® and x;
m etc.
Remark

The object / is both terminal and initial in PCPO. | will write tp : | — P
and mp : A — P, or simply ¢ and 7, for the corresponding unique maps.

19/54

A model for .

Lifting

Given a cpo A, we define a pcpo 1T A as follows.

x <ax'

EI(TA) = {(x) | x e EL(A)} U{()}

() <taa

Visually:

V]

Remark for the categorically-minded

(x) <pa (X)

m The endofunctor 1 of CPO can be given the structure of a monad (1,7, u).
m The category PCPO is (equivalent to) the Eilenberg-Moore category CPO;.

20/54

A model for .

Cartesian and smash product

Given two pcpos P and Q, define their cartesian products P x @ as for posets.

x<px' y<qy

El(P x Q) = EL(P) x El(Q) (x.¥) <pxq (X.¥)

The smash product of pcpos P and Q, is the pcpo P® Q :=1(} P x | Q).
m Here | X is the sub-cpo of X formed of non-_L elements.

21/54

A model for .

Recursion in PCPO

Theorem (Kleene, Scott)
Every map f : 1 A—3 A of PCPO has a least “fixpoint” given by

1L ifn=0
fix(f) = |_|iter where iter 1w — A= n+» { Irn

f((iter(n—1))) otherwise.

By “fixpoint” we mean that it satisfies f((fix(f))) = fix(f).

Theorem (Scott, Adamek...)

Every “continuous” functor F : PCPO — PCPO has an initial algebra
FIX(F) = gnITERJr

where ITER" : w — PCPO is the diagram below.

F2(e)

F2(1) F3(l) — ...

22/54

A model for .

Constructing boolean streams in PCPO

The object [StrBool] can be constructed as the initial algebra of

F : PCPO — PCPO
F(A) = [Bool] ® T A
=1TB®RTA
=1(B x A).

Iterating this functor gives rise to the diagram below, up to A x [& A.

F— s B Y% (B x 1B) Y (B x 1(B x 1B)) —— ...

Thus, F"(I) consists in words of length n ordered by prefix, connected by
what ought to be thought of as inclusion maps.

This colimit in PCPO is not so easy to present explicitly.

23/54

A model for .

An alternative construction

For general reasons, it is equivalent to consider the diagram ITER™ below

F(m)

|+ 1B+ 1(B x 1B) @T(BXT(BXTB))%...

and compute its , which is easier to describe explicitly.
EL([StrBool]) = {H F(I) | ¥n < w, F"(p)(Xny1) = x,,}.
n<w

The coherence requirement force the sequences to be strictly-increasing up to the
point at which they become constant (if ever). This is isomorphic to

[StrBool] :== (B* UB“,C) where u C v iff u is a prefix of v.

Remark

Divergence arises from the fact that F"(/) contains words of length < n.

24 /54

A model for .

Time and streams

So, streams are “recursive left-strict pairs,” a la Kahn [1974].
[StrA] =2 [A] @ T[Str A]
But the temporal intuition breaks down quickly, e.g., [StrStrBool] contains
((bg, (b7, (b3, 1)), ((bg, L), (b, (b, L)), L))

where clearly the “degrees of productivity” are almost unrelated.

Observation

Synchrony would require a much “stricter” notion of cartesian product.

25/54

A model for .

Time and continuous maps

As expected, most continuous maps are not synchronous, e.g., ands.

(s) (ﬁ“tt) (ttﬁ”) (ﬁ”tt) (. ff) (t,tt)

This is by design since PCPO models general recursion.

26 /54

A model for .

Putting it all together

I_]: ¥ — PCPO
[Bool] = 1B
A~ B] = [A] x [B]
[A— B] = 1[A] —s[B]
[StrA] = [A] ® T[Str A]

The interpretation map
[L]: 2, A) = PCPO[L], [A])

interprets . into the Kleisli category PCPO" of the lift comonad on PCPO.

The syntax does not have to mention 1, thanks to forcea : T A — A in particular.

27/54

Outline

Introduction

A nonstrict stream language

Synchrony in the topos of trees

@ From orders to presheaves

Perspectives

28/54

Towards the topos of trees
Inadequacies of PCPO

Summing up the inadequacies of PCPO from our perspective:
@ Scott-continuous stream functions are obviously not synchronous (nor total),
@ the definition of streams is not “right” one, beyond scalars.

These problems stem from the interpretations of — and ®/ X, respectively.

A possible solution
Refine the base model with a logical relation [G., 2016]. {

The rest of this lecture

Describe a model whose objects have an intrinsic temporal character. J

29/54

Towards the topos of trees

Streams without limits
Let us go back to streams computed as the limit of the diagram below.

F ™ 1B B x 1B) £ (B x 1(B x 1B)) —— ...

We remove words of length < n at stage n. The ordering becomes useless.

1+ B+¢™ BxB«™ BxB)xB+— ...

The limit of this diagram in Set is B“, losing all temporal information.

30/54

Towards the topos of trees

Streams without limits
Let us go back to streams computed as the limit of the diagram below.
F ™ 1B B x 1B) £ (B x 1(B x 1B)) —— ...
We remove words of length < n at stage n. The ordering becomes useless.
1+ B+¢™ BxB«™ BxB)xB+— ...
The limit of this diagram in Set is B“, losing all temporal information.

Key idea

Instead of computing the limit,

30/54

Towards the topos of trees

From elements to maps

Dropping the now useless initial stage, we have a diagram of sets

B+ B2+ B3+ B4

for interpreting Str Bool. Intuitively, what should its “elements” be? Full streams:

{se I1B"

ncw

Vnew,s, = 7r1(s,,+1)})
Yet an “element” of A should be the same thing as a morphism 1 — A.

R O B O

B+ B2+ B3t B4

This suggests using as maps between diagrams.

31/54

The topos of trees

Objects and morphisms: synchrony beyond streams

32/54

The topos of trees

Objects and morphisms: synchrony beyond streams

Pr(w) = [w%,Set]

32/54

The topos of trees

Objects and morphisms: synchrony beyond streams

Pr(w) = [w%,Set]

32/54

The topos of trees

Objects and morphisms: synchrony beyond streams

Pr(w) = [w%,Set]

32/54

The topos of trees

Objects and morphisms: synchrony beyond streams

Pr(w) = [w%,Set]

32/54

The topos of trees

Objects and morphisms: synchrony beyond streams

Pr(w) = [w%,Set]

32/54

The topos of trees

Objects and morphisms: synchrony beyond streams

Pr(w) = [w%,Set]

32/54

The topos of trees

Objects and morphisms: synchrony beyond streams

Pr(w) = [w%,Set]

32/54

The topos of trees
Recursion
Have we lost the ability to write recursive definitions? No. Remember:

Theorem (Kleene)
Every map f : 1 A—s A of PCPO has a least “fixpoint”

1 ifn=0
ﬁx(f):|_|iter where iter : w — A= n+— . o i
f((iter(n—1))) otherwise.

Can we do the same thing in Pr(w), replacing the “completed” supremum with
the entire chain, as we just did for types?

Yes, but we need something to

33/54

The topos of trees

Recursion: the “later” modality

> : Pr(w)— Prw)

34/54

The topos of trees

Recursion: the “later” modality

> : Pr(w)— Prw)

34/54

The topos of trees

Recursion: the “later” modality

> : Pr(w)— Prw)

34/54

The topos of trees

Recursion: the “later” modality

> : Pr(w)— Prw)

34/54

The topos of trees

Recursion: the “later” modality

> : Pr(w)— Prw)

34/54

The topos of trees

Guarded recursion

Let f: >>A — A and define fix(f) : 1 — A by induction as

f if n=0

fee(F)n: () = Aln) = {f o fix(f)ar i n>0.

35/54

The topos of trees

Guarded recursion

Let f: >>A — A and define fix(f) : 1 — A by induction as

fix(F)n: {x} = Aln) = {);O o fix(F)n_r :; : : 8

Theorem (Lob)

We have fix(f) = f o delay o fix(f) and moreover it is the unique such map. J

35/54

The topos of trees

Guarded recursion

Let f: >>A — A and define fix(f) : 1 — A by induction as

f if n=0

fix(f)p : {} — A(n) = {f ofix(f)p—1 ifn>0.

Theorem (Lob)

We have fix(f) = f o delay o fix(f) and moreover it is the unique such map.

Proof.
We prove the equation by induction over n.

m Case n = 0: we have fix(f)o(x) = fio(x) = foy(delayy (fo(*))).

m Case n > 0: we have fix(f)n = f, o fix(f)n—1
=frofh_10roofix(fa1 (1. H.)
=f,o0 r,f‘,l o fpofix(f)n-1 (naturality)
= f,ory ofix(f),.

The uniqueness part of the statement is left as an exercise for the audience.

35/54

The topos of trees

Cartesian-closed structure

The category Pr(w) has cartesian products, defined pointwise.
(A x B)(n) = A(n) x B(n), Bl y) = (rX (%), rd (v))

It also has function objects, which can be described as follows.

(A= B)(n) =< fe[[AG) — B(i) | Vi<nr) ofyy=fhorS
i<n

78 = (f)icns1 — (F)i<n

36/54

The topos of trees

Cartesian-closed structure

The category Pr(w) has cartesian products, defined pointwise.
(A x B)(n) = A(n) x B(n), Bl y) = (rX (%), rd (v))

It also has function objects, which can be described as follows.

(A= B)(n) =< fe[[AG) — B(i) | Vi<nr) ofyy=fhorS
i<n

78 = (f)icns1 — (F)i<n

Categories of presheaves (Set-valued functors)

m They always have a lot of structure, including bicartesian closure.

m For example Pr(w) has coproducts, in contrast with PCPO" .
m Enough structure to interpret HOL & DTT. See Daniel’s part!

m The previous definitions are “unfolded” version of general constructions.

36/54

The topos of trees

Streams

General streams can be defined as
[StrA] = [A] x >[Str A].
Again, one can solve this as a colimit in Pr(w), obtaining

[StrA(0) = [A](0)
[StrAl(n+1) = [Al(n+ 1) x [Str A](n).

In particular, [StrStrBool] looks much better behaved. Can you describe it?

37/54

The topos of trees

Streams

General streams can be defined as
[StrA] = [A] x >[Str A].
Again, one can solve this as a colimit in Pr(w), obtaining

[StrAJ(0) = [A](0)
[StrA](n+ 1) = [A](n+ 1) x [Str A](n).

In particular, [StrStrBool] looks much better behaved. Can you describe it?

Remark

Birkedal et al. [2012] show how to build general recursive types, even
allowing for negative self-references (in line with Farzad's lecture this afternoon).

W = Loc —¢in T T =W — Val — Prop

Daniel will develop this example in detail.

37/54

Outline

Introduction

A nonstrict stream language

Synchrony in the topos of trees

@ Back to syntax

Perspectives

38/54

Towards a guarded and synchronous stream language

We have a category where objects are explicit approximation sequences, with a
fixpoint theorem, and nice properties. Is there a price to pay?

39/54

Towards a guarded and synchronous stream language

We have a category where objects are explicit approximation sequences, with a
fixpoint theorem, and nice properties. Is there a price to pay?

The functor > is not a comonad: there is no map > A — A in general. J

(Exercise: what is = 0 in Pr(w)? What does this imply for = 0— 07)

39/54

Towards a guarded and synchronous stream language

We have a category where objects are explicit approximation sequences, with a
fixpoint theorem, and nice properties. Is there a price to pay?

The functor > is not a comonad: there is no map > A — A in general. J

(Exercise: what is = 0 in Pr(w)? What does this imply for = 0— 07)

Consequences

The syntax needs to include > as a type former. J

39/54

Towards a guarded and synchronous stream language

We have a category where objects are explicit approximation sequences, with a
fixpoint theorem, and nice properties. Is there a price to pay?

The functor > is not a comonad: there is no map > A — A in general. {

(Exercise: what is = 0 in Pr(w)? What does this imply for = 0— 07)

Consequences {

The syntax needs to include > as a type former.

We want to follow the discipline of natural deduction, meaning:
m introduction and elimination forms with a generic context in the conclusion

m /7 rules governing the interplay between introduction and elimination forms
m [rule: elimination-of-introduction simplifies, e.g., proji((t1, t2)) = t:.
m 7) rule: terms can be written as intro-of-elim for their type

39/54

The Fitch-style guarded language .

Intuitions

'x:>AFt: A Ft:A Ft:>A
It rec(x.t): A I'F guard(t) : > A '+ open(t): A

m We ought to be able to write a simple S-rule: open(guard(t)) ~ t.

40/54

The Fitch-style guarded language .

Intuitions

'x:>AFt: A Ft:A Ft:>A
It rec(x.t): A I'F guard(t) : > A '+ open(t): A

m We ought to be able to write a simple S-rule: open(guard(t)) ~ t.
m Can we pick the same context in the premises and in the conclusion?

40/54

The Fitch-style guarded language .

Intuitions

'x:>AFt: A Ft:A Ft:>A
It rec(x.t): A I'F guard(t) : > A '+ open(t): A

m We ought to be able to write a simple S-rule: open(guard(t)) ~ t.

m Can we pick the same context in the premises and in the conclusion? No.

fun(x.open(x)) /> A— A rec(x.open(x)) /StrBool

40/54

The Fitch-style guarded language .

Intuitions

'x:>AFt: A Ft:A Ft:>A
It rec(x.t): A I'F guard(t) : > A '+ open(t): A

m We ought to be able to write a simple S-rule: open(guard(t)) ~ t.
m Can we pick the same context in the premises and in the conclusion? No.

fun(x.open(x)) /> A— A rec(x.open(x)) /StrBool

m We need to be able to write interesting terms, e.g.,

delay := fun(x.guard(x)) : A = > A
@® := fun(f.fun(x.guard(open(f)open(x)))) : >(A—B) —>>A—1>B

40/54

The Fitch-style guarded language .

Intuitions

'x:>AFt: A Ft:A Ft:>A
I'Frec(x.t): A I'F guard(t) : > A I'Fopen(t): A

m We ought to be able to write a simple S-rule: open(guard(t)) ~ t.
m Can we pick the same context in the premises and in the conclusion? No.

fun(x.open(x)) /> A— A rec(x.open(x)) /StrBool

m We need to be able to write interesting terms, e.g.,

delay := fun(x.guard(x)) : A = > A
@® := fun(f.fun(x.guard(open(f)open(x)))) : >(A—B) > >A—~1>B

The term ¢ in open(t) loses access to the variables bound after the last guard(—).

A simple scope discipline J

40/54

The Fitch-style guarded language .

More formally

Definition (Typing contexts and un/locking)
m Contexts I' map variables x € dom(I") to a type I'(x).ty and a depth I'(x).d.
m The operation @ increases the depth of every variable.

m The operation d@ decreases the depth of every positive-depth variable and
removes variables at depth zero.

x € dom(T") I)x:>AFt: A T'Ht:StrA FHt:StrA
'k x:T(x).ty T rec(x.t): A Tk head(t) : A T I tail(t) : > Str A
I't:A TFu:>StrA @rrt:A GrFt: A

Pk-tiiu:StrA 'k guard(t): > A I+ open(t) : A

Remark for the categorically-minded

Categorically, @@ & : C — C where C is the category of contexts and renamings.

41/54

The Fitch-style guarded language .

Substitution

Writing Te(T"; A) for {t | T' - ¢ : A}, the set of substitutions from T" to A is

Sub(A:;T) = [Te@ "“A:T(x).ty).

xedom(T")

42/54

The Fitch-style guarded language .

Substitution

Writing Te(T"; A) for {t | T' - ¢ : A}, the set of substitutions from T" to A is

Sub(A:;T) = [Te@ "“A:T(x).ty).

xedom(T")
Locking and unlocking should act on substitutions, sending o € Sub(I'; A) to

& cSub(@T ;@A)
& cSub(@T ;@A)

42/54

The Fitch-style guarded language .

Substitution

Writing Te(T"; A) for {t | T' - ¢ : A}, the set of substitutions from T" to A is

Sub(A:;T) = [Te@ "“A:T(x).ty).

xedom(T")
Locking and unlocking should act on substitutions, sending o € Sub(I'; A) to

Y € Sub(@T ;@A) =Sub(I'; A)
& cSub(@T ;@A)

42/54

The Fitch-style guarded language .

Substitution

Writing Te(T"; A) for {t | T' - ¢ : A}, the set of substitutions from T" to A is

Sub(A:;T) = [Te@ "“A:T(x).ty).
xedom(T")
Locking and unlocking should act on substitutions, sending o € Sub(I'; A) to
Y € Sub(@T ;@A) =Sub(I'; A)
&o csub@r:@A) = J[Tel@ “AT(x)ty)

x€dom™ (T")

42/54

The Fitch-style guarded language .

Substitution

Writing Te(T"; A) for {t | T' - ¢ : A}, the set of substitutions from T" to A is

Sub(A:;T) = [Te@ "“A:T(x).ty).
xedom(T")
Locking and unlocking should act on substitutions, sending o € Sub(I'; A) to
@0 =0 cSub(@T ;@A) =Sub(T;A)
&0 = Oliom+(r) ESUD@T ;@A) = [Teld “AiT(x).ty)

x€dom™ (T")

42/54

The Fitch-style guarded language .

Substitution

Writing Te(T"; A) for {t | T' - ¢ : A}, the set of substitutions from T" to A is
Sub(A:;T) = [Te@ "“A:T(x).ty).
xedom(T)
Locking and unlocking should act on substitutions, sending o € Sub(I'; A) to
@0 =0 cSub(@T ;@A) =Sub(T;A)
&0 = Oliom+(r) ESUD@T ;@A) = [Teld “AiT(x).ty)

x€dom™ (T")

Lemma (Weakening and substitution)

m Weakening: ifT'-t: Athen@TFt:A If@TFt:AthenTt:A.
m Substitution: ifT' -t : A and o € Sub(A;T) then A I t[o] : A.

42/54

The Fitch-style guarded language .

Back to the interpretation in Pr(w)

Interpreting typing contexts
m Define < : Pr(w) — Pr(w) (“earlier”) to be the functor A — n— Api1.
m A typing context I is interpreted in Pr(w) as the object

)= J] <"[rx).tyl.

xedom(T")

43/54

The Fitch-style guarded language .

Back to the interpretation in Pr(w)

Interpreting typing contexts

m Define < : Pr(w) — Pr(w) (“earlier”) to be the functor A — n— Api1.

m A typing context I is interpreted in Pr(w) as the object

)= J] <"[rx).tyl.

x€dom(T")

The functor < is left adjoint to .

(=)%, (=)p) : Pr(w) (=, > =) = Pr(w)(<1—,=)

We have [@T] = <[] as well as a canonical morphism wr : [I'] — <[@T7].

43/54

The Fitch-style guarded language .

Back to the interpretation in Pr(w)

Interpreting typing contexts
m Define < : Pr(w) — Pr(w) (“earlier”) to be the functor A — n— Api1.
m A typing context I is interpreted in Pr(w) as the object

)= J] <"[rx).tyl.

x€dom(T")

The functor < is left adjoint to .
()%, (<)) : Pr(w)(~, > =) = Pr(w)(<—, =)
We have [@T] = <[] as well as a canonical morphism wr : [I'] — <[@T7].

Interpreting terms

|[a&r-:t:A

&r-t:-A
l“l—g;uard(t):~A]l:[[ﬁf|—t:,4]]b |[

' open(t): A

]l:wr;[[afl—t:»A]]ﬁ

43/54

Atomic [reduction
t~t

app(fun(x.t), u
if(b € {tt, ff}, tu, ts
head(t::u
tail(t::u

rec(x.
(

= tx/ul
> tb

~o t[guard(rec(x t))/x]

)
)
)~
)~
)
)~

t
)

open(guard(t

A~ N N~~~
Gl W N
— — ~— — ~— —

(=)}

44 /54

Atomic [reduction

t~t

app(fun(x.t), u) ~ t[x/ul (1)

if(b € {tt, ff}, tu, te) ~ tb (2)

head(t::u) ~ (3)

tail(t:: u) ~ (4)

rec(x.t) ~» t[guard(rec(x t))/x] (5)

open(guard(t)) ~ (6)

Lemma (Subject reduction, atomic case)

IfTFt:Aandt~t' thenT -t : A J

The proof is the usual one, with clauses 5 and 6 relying on lock/unlock weakening.

44 /54

Stratified 5 reduction

A context is a term with a unique occurrence of a formal “hole” denoted O.
Kx> K :==0|app(K,u) | app(t, K) | fun(x.K) | ...

For every K € Kx and n € w we define K(n) as follows.

O(n)=n
guard(K)(n) = K(n+1)
open(K)(n) =K(n-1)
op(.. ..)(n) = K(n) otherwise

45/54

Stratified 5 reduction

A context is a term with a unique occurrence of a formal “hole” denoted O.
Kx> K :==0|app(K,u) | app(t, K) | fun(x.K) | ...

For every K € Kx and n € w we define K(n) as follows.

O(n)=n
guard(K)(n) = K(n+1)
open(K)(n) = K(n—1)
op(...,K,...)(n) = K(n) otherwise

We can define a family of reduction relations for each m € w + 1.
u~u K(O) <m
. K{u} —m K{u'}

Lemma (Subject reduction)
IfT-t:Aandt —,t thenT -t :A. J

45/54

Metatheoretical results

Classic results

Theorem

The relation —, is confluent.

Proof.

By the method of Tait and Martin-Lof.

46 /54

Metatheoretical results

Classic results

Theorem

The relation —, is confluent.

Proof.
By the method of Tait and Martin-Lof. O

Theorem (G., Tasson, Vienot)

The relations —, for m < w are strongly normalizing.

Proof.
By a step-indexed adaptation of Girard’s reducibility candidates. O

(The theorem above has been proved for a slightly different variant of —,.)

46 /54

Metatheoretical results

Erasing the modality

Target language
m Let ¥ be call-by-value STLC with general rec. and Str A = A x Unit — Str A.

Ix:Unit—AFt: A T'Ft:A I'Fwu:UnitStrA
I Frec(x.t): A PhHt:iu:StrA

m Its model in PCPO [Amadio and Curien, 1998] is s.t. [Unit — A] = 1[A].

47 /54

Metatheoretical results
Erasing the modality

Target language
m Let ¥ be call-by-value STLC with general rec. and Str A = A x Unit — Str A.
Ix:Unit—AFt: A T'Ft:A I'Fwu:UnitStrA
I Frec(x.t): A PhHt:iu:StrA
m Its model in PCPO [Amadio and Curien, 1998] is s.t. [Unit — A] = 1[A].

Define an erasure function [—] on types and terms.

[Bool] = Bool

[Str Al = Str[A] frec(x.tﬂ = rec(x.[t])
[A— B] = [A] ~+[B] [guard(t)] = fun(().[t])

[> AT = Unit —[A] [open(t)] = [t] ()

47 /54

Metatheoretical results
Erasing the modality

Target language
m Let ¥ be call-by-value STLC with general rec. and Str A = A x Unit — Str A.

Ix:Unit—AFt: A T'Ft:A I'Fwu:UnitStrA
I Frec(x.t): A PhHt:iu:StrA

m Its model in PCPO [Amadio and Curien, 1998] is s.t. [Unit — A] = 1[A].

Define an erasure function [—] on types and terms.

[Bool] = Bool

[Str Al = Str[A] frec(x.tﬂ = rec(x.[t])
[A— Bl =[A] ~+[B] [guard(t)] = fun(().[t])

[A] = Unit —[A] [open(t)] = [t] ()

Theorem (G., Jafarrahmani, Tasson) J

If t : StrBool then [t] has the same elements as t. In particular, [t] is productive.

47 /54

Outline

Introduction

A nonstrict stream language

Synchrony in the topos of trees

Perspectives
@ Limitations

48/54

Limitations

Results
.7 is the simplest interesting guarded language | can think of. J

Disappointment
. is unsatisfactory compared to existing synchronous or guarded languages. J

What is lacking or unpleasant in .7

49/54

Limitations

Failure of confluence in .

The reduction relations —, for 0 < k < w fail to be confluent. Witness, for k = 1:

fun(x.guard(x)) (1y)

50/54

Limitations

Failure of confluence in .

The reduction relations —, for 0 < k < w fail to be confluent. Witness, for k = 1:

fun(x.guard(x)) (1y)

\

fun(x.guard(x)) y

50/54

Limitations

Failure of confluence in .

The reduction relations —, for 0 < k < w fail to be confluent. Witness, for k = 1:

fun(x.guard(x)) (1y) guard(y)

\ /

fun(x.guard(x)) y

50/54

Limitations

Failure of confluence in .

The reduction relations —, for 0 < k < w fail to be confluent. Witness, for k = 1:

guard(ly)
fun(x.guard(x)) (1y) guard(y)

\ /

fun(x.guard(x)) y

50/54

Limitations

Failure of confluence in .

The reduction relations —, for 0 < k < w fail to be confluent. Witness, for k = 1:
guard(ly)
fun(x.guard(x)) (/

\
guard(y)
/

fun(x.guard(x)) y

50/54

Limitations
> is not enough

One can write simple synchronous functions in ..

nots : Str Bool — Str Bool
nots := rec(F.fun(xs.app(notb, head(xs)) : : (F ® tail(xs))))

However, some very reasonable functions cannot be written.

ands = rec(F.fun(xs.app(and1,xs) :: app(F, tail(tail(xs)))))
stut = rec(F.fun(xs.head(xs) : : head(xs) : : app(F, tail(xs))))

Worse from a synchronous perspective, mutual recursion is rejected as well!

natpos : StrNat x StrNat (x In L %)
natpos = rec(NP.(0:: projo(NP), app(sucs, proj; (NP))))

Add new modalities beyond >, corresponding to other time transforms.

A possible solution (G. [2018]) J

51/54

Limitations

Simple types are not enough

The historical interest in guarded recursion from the type-theoretical side was to
replace the positivity criterion used in proof assistants (see Damien’s lecture).

Several authors [Birkedal et al., 2012, Birkedal and Mggelberg, 2013, Bizjak et al.,
2016, Bahr et al., 2017, Gratzer, 2025, ..] have developed dependent type theories

featuring “later”-like modalities.

Daniel will touch upon this line of work in his lecture.

52/54

Outline

Introduction

A nonstrict stream language

Synchrony in the topos of trees

Perspectives

@ Conclusion

53/54

Conclusion

Summary
m Start from a run-of-the-mill nonstrict language .Z with streams.
m Build a very classic denotational semantics, with synchrony in mind.
m Contrast this model with a category where all maps are synchronous.

m Transfer back features from the latter to the syntax, obtaining .%.

Some open questions

m What is the relationship between general and guarded recursion?

m Study functors between Pr(w) and some well-chosen category of domains.

m Can we have a proper \-calculus with guarded recursion?
m Make — confluent for all k.
m Make —, strongly normalizing via infinitary rewriting?

m Design a similar calculus for other temporal modalities.

54 /54

References |

R. Amadio and P. Curien. Domains and Lambda-Calculi. Cambridge University
Press, 1998.

P. Bahr, H. Bugge Grathwohl, and R. E. Mggelberg. The Clocks Are Ticking: No
More Delays! Reduction Semantics for Type Theory with Guarded Recursion. In
Logic in Computer Science (LICS’17). Springer, 2017. URL
http://www.itu.dk/people/mogel/papers/1ics2017.pdf.

L. Birkedal and R. E. Mggelberg. Intensional Type Theory with Guarded Recursive
Types qua Fixed Points on Universes. 2013 28th Annual ACM/IEEE
Symposium on Logic in Computer Science, 6 2013. doi: 10.1109/1ics.2013.27.
URL http://www.itu.dk/people/mogel/papers/lics2013.pdf.

L. Birkedal, R. E. Mggelberg, J. Schwinghammer, and K. Stgvring. First steps in
synthetic guarded domain theory: step-indexing in the topos of trees. Logical
Methods in Computer Science, 8(4), 2012. URL
https://arxiv.org/pdf/1208.3596.pdf.

A. Bizjak, H. Bugge Grathwohl, R. Clouston, R. E. Mggelberg, and L. Birkedal.
Guarded Dependent Type Theory with Coinductive Types. In Foundations of
Software Science and Computation Structures (FoS5aCS’16). Springer, 2016.
URL https://arxiv.org/pdf/1601.01586v1.

54 /54

http://www.itu.dk/people/mogel/papers/lics2017.pdf
http://www.itu.dk/people/mogel/papers/lics2013.pdf
https://arxiv.org/pdf/1208.3596.pdf
https://arxiv.org/pdf/1601.01586v1

References |l

P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE: A declarative

language for programming synchronous systems. In Principles of Programming
Languages (POPL'87), 1987. URL
http://www-verimag.imag.fr/~halbwach/SCAN/lustre-popl87.pdf.

R. Clouston. Fitch-Style Modal Lambda Calculi. In Foundations of Software
Science and Computation Structures (FoS5aC5°18), 2018. URL
https://arxiv.org/pdf/1710.08326.

C. Elliott and P. Hudak. Functional Reactive Animation. In International
Conference on Functional Programming (ICFP'97). ACM, 1997. URL
http://conal.net/papers/icfp97/icfp97.pdf.

D. Gratzer. A modal deconstruction of 16b induction. Proc. ACM Program. Lang.,
9(POPL):864-892, 2025. doi: 10.1145/3704866. URL
https://doi.org/10.1145/3704866.

A. Guatto. A Synchronous Functional Language with Integer Clocks. PhD thesis,
Ecole normale supérieure, 2016. URL
http://www.di.ens.fr/~guatto/papers/thesis_guatto.pdf.

54 /54

http://www-verimag.imag.fr/~halbwach/SCAN/lustre-popl87.pdf
https://arxiv.org/pdf/1710.08326
http://conal.net/papers/icfp97/icfp97.pdf
https://doi.org/10.1145/3704866
http://www.di.ens.fr/~guatto/papers/thesis_guatto.pdf

References Il|

A. Guatto. A Generalized Modality for Recursion. In Logic in Computer Science
(LICS’'18), 2018. URL https://arxiv.org/pdf/1805.11021.

H. Huwig and A. Poigné. A note on inconsistencies caused by fixpoints in a
cartesian closed category. Theoretical Computer Science, 73(1):101-112, 1990.
ISSN 0304-3975. doi: https:/doi.org/10.1016/0304-3975(90)90165-E. URL
https:
//www.sciencedirect.com/science/article/pii/030439759090165E.

G. Kahn. The semantics of a simple language for parallel programming. In
Information Processing Congress (IFIP'74). IFIP, 1974. URL https:
//www.cs.princeton.edu/courses/archive/fall07/cos595/kahn74.pdf.

H. Nakano. A Modality for Recursion. In Logic in Computer Science (LICS’'00).
IEEE, 2000. URL http:

//www602.math.ryukoku.ac. jp/~nakano/papers/modality-1ics00.ps.

M. Pouzet. Lucid Synchrone: un langage synchrone d’ordre supérieur, 11 2002.
URL
https://www.di.ens.fr/~pouzet/bib/habilitation-pouzet02.ps.gz.
Habilitation a diriger des recherches.

54 /54

https://arxiv.org/pdf/1805.11021
https://www.sciencedirect.com/science/article/pii/030439759090165E
https://www.sciencedirect.com/science/article/pii/030439759090165E
https://www.cs.princeton.edu/courses/archive/fall07/cos595/kahn74.pdf
https://www.cs.princeton.edu/courses/archive/fall07/cos595/kahn74.pdf
http://www602.math.ryukoku.ac.jp/~nakano/papers/modality-lics00.ps
http://www602.math.ryukoku.ac.jp/~nakano/papers/modality-lics00.ps
https://www.di.ens.fr/~pouzet/bib/habilitation-pouzet02.ps.gz

Appendix

Additional slides

Mapping the CPO landscape

*

Fy Ft
/\ /\
CPO CPO, =~ PCPO PCPO'
/ Y/
Uy ut
Category ‘ Pointed? Strict? ‘ CCC? Fixpoints? Coproducts?
CPO N N Y N Y
PCPO/CPO; Y Y N Y* Y
PCPO' Y N Y Y N

. “lift-guarded” fixpoints, in the sense that fix, : (1A — A) — A.

A CCC w/ coproducts and general fixpoints is equivalent to the terminal category.

54 /54

Additional slides

Proof of the uniqueness of the Lob fixed-point

Recall that given f : >A — A, the map fix(f) : 1 — A is defined as

f ifn=0

fix(F)n: {x} = Aln) = {f ofix(F)n_1 if n>0.

Show that every g : 1 — A satisfying g = f o delay o g is fix(f) by induction.

m Case n = 0: immediate since (delay o g), =!.

m Case n > 0: we have g, = f, 0 r,f‘fl o gn
=fyogn10r] (naturality)
= fyofix(f)o_10r) (I. H.)
=f,or)ofix(f), (naturality)

= fix(f)n.

54 /54

Additional slides

Contexts and renaming for the Fitch-style syntax

The set of types Ty is given by Ty 3 A, B := Bool | A— B | StrA | > A.

Definition (The category C of contexts and renamings)

m Objects are finite families T' = (dom(T") : FinSet, T : dom(T') — Ty X w).

m Morphisms are type-preserving, non-depth-decreasing maps

C(I;A) = {p : dom(T) — dom(A) | Vx € dom(I),L(x) < A(p(x))}.

54 /54

Additional slides

Contexts and renaming for the Fitch-style syntax

The set of types Ty is given by Ty 3 A, B == | A— B|StrA| > A.
Definition (The category C of contexts and renamings)

m Objects are finite families I' = (dom(T") : FinSet, " : dom(I") — Ty x w).
m Morphisms are type-preserving, non-depth-decreasing maps

C(I;A) = {p: dom(T) — dom(A) | ¥x € dom(I'),L(x) < A(p(x))}.

Given T in obj(C), write:
m dom™(T) for {x € dom(T") | T'(x).d > 0},
m for f : w — w monotone, set dom(f.I") := dom(I') and £.I'(x) := (id x f)oT.
Definition (The locking and unlocking functors)
Define two functors &, & : C — C by their actions on objects.
&r = (+1).I &7 = (dom™(I), (~1),I)

Their action on morphisms is morally the identity.

54 /54

Additional slides

No resource guarantees

Synchronous languages such as Lustre compile to finite state machines.

A—one B = > (Sx(0Ax S = 0B xYS))
S:FinSet

The input and output “alphabets” JA and 0B should arguably be finite.

However, types such as StrStrBool seem to be intrinsically non-real-time.

9 Str Str Bool, & Z {xs’ € StrStrBoolpy1 | xs = delay(xs’),}

xs:Str Str Bool,
~ B"
It should however be possible to adapt the state-passing transform to the general

guarded-recursive setting, and to reject non-finite-state programs.

54 /54

	Introduction
	A nonstrict stream language
	Syntax and execution
	Modeling nonstrict streams

	Synchrony in the topos of trees
	From orders to presheaves
	Back to syntax

	Perspectives
	Limitations
	Conclusion

	References
	Appendix

