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Infinite streams in functional programming

Streams as first-class interactions [Kahn, 1974]

m Use streams to represent and manipulate entire, infinite histories of events
happening over the unending execution of a program.

m Transfer the benefits of functional programming, such as equational
reasoning, to new application domains beyond symbolic computation.
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m Transfer the benefits of functional programming, such as equational
reasoning, to new application domains beyond symbolic computation.

This idea has (re)appeared and been put into use several times:
m for interactive programs, e.g., GUIs, servers, and games
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m dedicated synchronous languages such as Lustre [Caspi et al., 1987]
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From synchronous languages to synchrony

[Kahn, 1974]

Transducers
> sFinset(S X (AX S = BxS))

Stream functions
A¥Y — B¥
compile

[Caspi et al., 1987]

m Design and study of compiling to state machines
m Programs have to satisfy specific properties, such as

m Strongly related to . guarded calculi are all (?) synchronous

Definition (Synchrony, informal and intuitive)

A stream function f is synchronous when xs|, = ys|, = f(xs)|, = f(ys)|n-
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This lecture

m A language-oriented of guarded recursion starting from

types <> partial orders

nonstrict programs <+ monotone maps
m A of a guarded variant of synchronous functional programming

types < trees

synchronous functions <+ height-preserving tree maps

m A suggested by the model.

Inspirations
Birkedal et al. [2012], Pouzet [2002], G. [2016, 2018], Clouston [2018], others. {

Caveat
This is a specific view of guarded recursion, coming from programming languages.
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A nonstrict stream language
Syntax of .&

x:Ael I'x:A+t:B ''Ft:A—~B I'Fu:A
I'Ex:A Ik fun(x.t): A= B '+ app(t,u) : B

(F Ft Ai)i6{1,2} T'Et: A <Ay
't <l’1, l'2> AL X< Ay 'k prOj,-e{LQ}(t) LA I' F tt, ff : Bool

I'Ft: Bool T'Fu:A 'kFs:A I'x:AFt:A
I'Fif(t,u,s): A 'k rec(x.t): A

I'Ft:StrA I'Ft:StrA T'Ht: A T'Fu:StrA
't head(t) : A I+ tail(t) : StrA Phktiiu:StrA

8/54



A nonstrict stream language
Reduction for .¥

V ou=fun(x.t) | {(t1,to) | tt | ff| Vit
E ==0|app(E,u) | proj;(E) | if(E,u,s) | E::t]| head(E) | tail(E)

app(fun(x.t), u
proji({t1, t2)
if(tt, u, s

)~ f[U/X]
)~
)~
if(ff, u, 5) ~
)~
)~
)~

!
u~~>u

E{u} — E{J'}
rec( .t

head(V::t
tail(V::t

t[rec(x t)/x]

Summary }

A \-calculus with call-by-name semantics, except for streams which are left-strict.
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A nonstrict stream language

Basic metatheory

Lemma (Determinism)
Ift — ti and t — ty then t = t. J

Lemma (Subject reduction)
IfTFt:Aandt—t' thenT - t': A J

Write t T when there exists (&), with t; — ;41 and ty = t.

Lemma (Type safety)
IfT'F t: A then either t T or t —* V /4. J
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A nonstrict stream language

Productivity

tail’(t) =t tail ™ (t) = tail(tail ™ (t))

Definition

A term t: Str A'is productive up to n < w when tail™(t) converges to a value for
all m < n. It is productive when it is productive up to w.

The terms ffs and tts below are productive.

ff's == rec(xs.ff::xs) : Str Bool
notb = fun(x.if(x, ff, tt)) : Bool — Bool
nots = rec(F.fun(xs.app(notb, head(xs)) : : app(F, tail(xs)))) : StrBool — StrBool
tts == app(nots, ffs) : Str Bool
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A nonstrict stream language

Productivity and time

Here are two non-productive terms, not even productive up to 1.

loop := rec(xs.xs) : Str Bool
weird := rec(xs.head(tail(xs)) :: (tt::xs)) : Str Bool
The case of weird is the most interesting one.
tail’ (weird)
— weird
— head(tail(weird)) : : (tt: : weird)
— head(tail(head(tail(weird)) : : (tt: :weird))) : : (tt : : weird)

The reduction of streams reflects the of Kahn [1974].
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A nonstrict stream language
Synchrony

Definition (Synchrony, formal)

A term t: Str A— Str A is synchronous when, for all u: StrA and n < w, u

productive up to n implies app(t, u) productive up to n.

The term nots is synchronous, ands is not, stut imprecisely so.

nots := rec(F.fun(xs.app(notb, head(xs)) : : app(F, tail(xs)))) : Str Bool
andb := fun(x.fun(y.if(x, if(y, tt, ff), ff))) : Bool — Bool — Bool
andl = fun(xs.app(app(andb, head(xs)), head(tail(xs))))
ands = rec(F.fun(xs.app(andl, xs) : : app(F, tail(tail(xs)))))

stut := rec(F.fun(xs.head(xs) : : head(xs) : : app(F, tail(xs)))) : Str Bool — Str Bool

Remark

Synchrony is a stronger condition than totality: to be total at

type Str Bool — StrBool a term is only required to preserve productivity at w.

: Str Bool — Bool
: Str Bool — Str Bool
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A nonstrict stream language

Approximation and equivalence

LetT'Ft,u: A

Definition (Approximation)
We say that t approximates u, denoted I' =t T u : A, when
V@O:(TkFAFK: (FBool)), K{t} =" tt = K{u} =" tt.

Definition (Equivalence)

We say that t is equivalent to u, denoted I' - t =qps u : A, when
PFEtCosu:Aand 't Cops u i A.

The unwieldy nature of these definitions can motivate the study of . J
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A model for .

Setting

A of £ is a category C together with
m for each type A or context ', an object [A] or [I'] of C
m for each term I' -t : A, a morphism [t] : [T] — [A] of C

In addition, [—] should be functorial, i.e., commute with substitution.

Official goals: soundness and adequacy
For all T'F t,u : A, we expect the model to verify
m soundness: if t — u then [t] = [u], and
m adequacy: if [t] = [u] then T'F t =gps u : A.

Actual goal: insight

We are looking for an of the language grounded in the model.
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A model for .

Requirements

The model must have enough structure to interpret .Z, mostly:
@ function types with currying and evaluation, i.e.,
Q a operator at each type to interpret recursion,
@ an interpretation of to model streams.
Those classic requirements lead us to various kinds of

| will omit much of the details and focus on building intuitions at this stage. )
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A model for .

The categories CPO and PCPO

Definition
m A poset P is complete when all suprema of directed sets exist.
m It is pointed when it has a least element, denoted | p or L.

Definition
Let P, Q be complete posets. Then f : P — @ is Scott-continuous when:
\/ (D) = (\/ D) for all D C P directed.

In addition, if P and Q are furthermore pointed, f is strict when f(L) = L.

m Complete posets and Scott-continuous maps form a category CPO.

m Pointed complete posets and strict Scott-cont. maps form a category PCPO.
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A model for .

Type formers in PCPO

The category PCPO is closed under various type formers, including:

[ P x Q, ordered componentwise;
™ P ® Q, obtained by identifying Lp and Lg;
n P —¢ Q, ordered pointwise;
| 1 P, adding a new least element to P;
m I, the one-element pcpo, neutral for both ® and x;
m etc.
Remark

The object / is both terminal and initial in PCPO. | will write tp : | — P
and mp : A — P, or simply ¢ and 7, for the corresponding unique maps.
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A model for .

Lifting

Given a cpo A, we define a pcpo 1T A as follows.

x <ax'

EI(TA) = {(x) | x e EL(A)} U{()}

() <taa

Visually:

V]

Remark for the categorically-minded

(x) <pa (X)

m The endofunctor 1 of CPO can be given the structure of a monad (1,7, u).
m The category PCPO is (equivalent to) the Eilenberg-Moore category CPO;.
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A model for .

Cartesian and smash product

Given two pcpos P and Q, define their cartesian products P x @ as for posets.

x<px' y<qy

El(P x Q) = EL(P) x El(Q) (x.¥) <pxq (X.¥)

The smash product of pcpos P and Q, is the pcpo P® Q :=1(} P x | Q).
m Here | X is the sub-cpo of X formed of non-_L elements.
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A model for .

Recursion in PCPO

Theorem (Kleene, Scott)
Every map f : 1 A—3 A of PCPO has a least “fixpoint” given by

1L ifn=0
fix(f) = |_|iter where iter 1w — A= n+» { Irn

f((iter(n—1))) otherwise.

By “fixpoint” we mean that it satisfies f((fix(f))) = fix(f).

Theorem (Scott, Adamek...)

Every “continuous” functor F : PCPO — PCPO has an initial algebra
FIX(F) = gnITERJr

where ITER" : w — PCPO is the diagram below.

F2(e)

F2(1) F3(l) — ...
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A model for .

Constructing boolean streams in PCPO

The object [StrBool] can be constructed as the initial algebra of

F : PCPO — PCPO
F(A) = [Bool] ® T A
=1TB®RTA
=1(B x A).

Iterating this functor gives rise to the diagram below, up to A x [ & A.

F— s B Y% (B x 1B) Y (B x 1(B x 1B)) —— ...

Thus, F"(I) consists in words of length n ordered by prefix, connected by
what ought to be thought of as inclusion maps.

This colimit in PCPO is not so easy to present explicitly.
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A model for .

An alternative construction

For general reasons, it is equivalent to consider the diagram ITER™ below

F(m)

|+ 1B+ 1(B x 1B) @T(BXT(BXTB))%...

and compute its , which is easier to describe explicitly.
EL([StrBool]) = {H F(I) | ¥n < w, F"(p)(Xny1) = x,,}.
n<w

The coherence requirement force the sequences to be strictly-increasing up to the
point at which they become constant (if ever). This is isomorphic to

[StrBool] :== (B* UB“,C) where u C v iff u is a prefix of v.

Remark

Divergence arises from the fact that F"(/) contains words of length < n.
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A model for .

Time and streams

So, streams are “recursive left-strict pairs,” a la Kahn [1974].
[StrA] =2 [A] @ T[Str A]
But the temporal intuition breaks down quickly, e.g., [StrStrBool] contains
((bg, (b7, (b3, 1)), ((bg, L), (b, (b, L)), L))

where clearly the “degrees of productivity” are almost unrelated.

Observation

Synchrony would require a much “stricter” notion of cartesian product.

25/54



A model for .

Time and continuous maps

As expected, most continuous maps are not synchronous, e.g., ands.

(s ) (ﬁ“tt) (ttﬁ”) (ﬁ”tt) (. ff)  (t,tt)

This is by design since PCPO models general recursion.
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A model for .

Putting it all together

I_]: ¥ — PCPO
[Bool] = 1B
A~ B] = [A] x [B]
[A— B] = 1[A] —s[B]
[StrA] = [A] ® T[Str A]

The interpretation map
[L]: 2, A) = PCPO[L], [A])

interprets . into the Kleisli category PCPO" of the lift comonad on PCPO.

The syntax does not have to mention 1, thanks to forcea : T A — A in particular.
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Towards the topos of trees
Inadequacies of PCPO

Summing up the inadequacies of PCPO from our perspective:
@ Scott-continuous stream functions are obviously not synchronous (nor total),
@ the definition of streams is not “right” one, beyond scalars.

These problems stem from the interpretations of — and ®/ X, respectively.

A possible solution
Refine the base model with a logical relation [G., 2016]. {

The rest of this lecture

Describe a model whose objects have an intrinsic temporal character. J
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Towards the topos of trees

Streams without limits
Let us go back to streams computed as the limit of the diagram below.

F ™ 1B B x 1B) £ (B x 1(B x 1B)) —— ...

We remove words of length < n at stage n. The ordering becomes useless.

1+ B+¢™ BxB«™ BxB)xB+— ...

The limit of this diagram in Set is B“, losing all temporal information.
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Towards the topos of trees

Streams without limits
Let us go back to streams computed as the limit of the diagram below.
F ™ 1B B x 1B) £ (B x 1(B x 1B)) —— ...
We remove words of length < n at stage n. The ordering becomes useless.
1+ B+¢™ BxB«™ BxB)xB+— ...
The limit of this diagram in Set is B“, losing all temporal information.

Key idea

Instead of computing the limit,
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Towards the topos of trees

From elements to maps

Dropping the now useless initial stage, we have a diagram of sets

B+ B2+ B3+ B4

for interpreting Str Bool. Intuitively, what should its “elements” be? Full streams:

{se I1B"

ncw

Vnew,s, = 7r1(s,,+1)} )
Yet an “element” of A should be the same thing as a morphism 1 — A.

R O B O

B+ B2+ B3t B4

This suggests using as maps between diagrams.
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The topos of trees

Objects and morphisms: synchrony beyond streams
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The topos of trees
Recursion
Have we lost the ability to write recursive definitions? No. Remember:

Theorem (Kleene)
Every map f : 1 A—s A of PCPO has a least “fixpoint”

1 ifn=0
ﬁx(f):|_|iter where iter : w — A= n+— . o i
f((iter(n—1))) otherwise.

Can we do the same thing in Pr(w), replacing the “completed” supremum with
the entire chain, as we just did for types?

Yes, but we need something to
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The topos of trees

Recursion: the “later” modality

> : Pr(w)— Prw)
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The topos of trees

Guarded recursion

Let f: >>A — A and define fix(f) : 1 — A by induction as

f if n=0

fee(F)n: () = Aln) = {f o fix(f)ar i n>0.
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The topos of trees

Guarded recursion

Let f: >>A — A and define fix(f) : 1 — A by induction as

fix(F)n: {x} = Aln) = {);O o fix(F)n_r :; : : 8

Theorem (Lob)

We have fix(f) = f o delay o fix(f) and moreover it is the unique such map. J

35/54



The topos of trees

Guarded recursion

Let f: >>A — A and define fix(f) : 1 — A by induction as

f if n=0

fix(f)p : {} — A(n) = {f ofix(f)p—1 ifn>0.

Theorem (Lob)

We have fix(f) = f o delay o fix(f) and moreover it is the unique such map.

Proof.
We prove the equation by induction over n.

m Case n = 0: we have fix(f)o(x) = fio(x) = foy(delayy (fo(*))).

m Case n > 0: we have fix(f)n = f, o fix(f)n—1
=frofh_10roofix(fa1 (1. H.)
=f,o0 r,f‘,l o fpofix(f)n-1 (naturality)
= f,ory ofix(f),.

The uniqueness part of the statement is left as an exercise for the audience.
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The topos of trees

Cartesian-closed structure

The category Pr(w) has cartesian products, defined pointwise.
(A x B)(n) = A(n) x B(n), Bl y) = (rX (%), rd (v))

It also has function objects, which can be described as follows.

(A= B)(n) =< fe[[AG) — B(i) | Vi<nr) ofyy=fhorS
i<n

78 = (f)icns1 — (F)i<n
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The topos of trees

Cartesian-closed structure

The category Pr(w) has cartesian products, defined pointwise.
(A x B)(n) = A(n) x B(n), Bl y) = (rX (%), rd (v))

It also has function objects, which can be described as follows.

(A= B)(n) =< fe[[AG) — B(i) | Vi<nr) ofyy=fhorS
i<n

78 = (f)icns1 — (F)i<n

Categories of presheaves (Set-valued functors)

m They always have a lot of structure, including bicartesian closure.

m For example Pr(w) has coproducts, in contrast with PCPO" .
m Enough structure to interpret HOL & DTT. See Daniel’s part!

m The previous definitions are “unfolded” version of general constructions.
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The topos of trees

Streams

General streams can be defined as
[StrA] = [A] x >[Str A].
Again, one can solve this as a colimit in Pr(w), obtaining

[StrA(0) = [A](0)
[StrAl(n+1) = [Al(n+ 1) x [Str A](n).

In particular, [StrStrBool] looks much better behaved. Can you describe it?
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The topos of trees

Streams

General streams can be defined as
[StrA] = [A] x >[Str A].
Again, one can solve this as a colimit in Pr(w), obtaining

[StrAJ(0) = [A](0)
[StrA](n+ 1) = [A](n+ 1) x [Str A](n).

In particular, [StrStrBool] looks much better behaved. Can you describe it?

Remark

Birkedal et al. [2012] show how to build general recursive types, even
allowing for negative self-references (in line with Farzad's lecture this afternoon).

W = Loc —¢in T T =W — Val — Prop

Daniel will develop this example in detail.
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Towards a guarded and synchronous stream language

We have a category where objects are explicit approximation sequences, with a
fixpoint theorem, and nice properties. Is there a price to pay?
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Towards a guarded and synchronous stream language

We have a category where objects are explicit approximation sequences, with a
fixpoint theorem, and nice properties. Is there a price to pay?

The functor > is not a comonad: there is no map > A — A in general. {

(Exercise: what is = 0 in Pr(w)? What does this imply for = 0— 07)

Consequences {

The syntax needs to include > as a type former.

We want to follow the discipline of natural deduction, meaning:
m introduction and elimination forms with a generic context in the conclusion

m /7 rules governing the interplay between introduction and elimination forms
m [ rule: elimination-of-introduction simplifies, e.g., proji((t1, t2)) = t:.
m 7) rule: terms can be written as intro-of-elim for their type
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The Fitch-style guarded language .

Intuitions

'x:>AFt: A Ft:A Ft:>A
It rec(x.t): A I'F guard(t) : > A '+ open(t): A

m We ought to be able to write a simple S-rule: open(guard(t)) ~ t.
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It rec(x.t): A I'F guard(t) : > A '+ open(t): A

m We ought to be able to write a simple S-rule: open(guard(t)) ~ t.

m Can we pick the same context in the premises and in the conclusion? No.

fun(x.open(x)) /> A— A rec(x.open(x)) /StrBool
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The Fitch-style guarded language .

Intuitions

'x:>AFt: A Ft:A Ft:>A
It rec(x.t): A I'F guard(t) : > A '+ open(t): A

m We ought to be able to write a simple S-rule: open(guard(t)) ~ t.
m Can we pick the same context in the premises and in the conclusion? No.

fun(x.open(x)) /> A— A rec(x.open(x)) /StrBool

m We need to be able to write interesting terms, e.g.,

delay := fun(x.guard(x)) : A = > A
@® := fun(f.fun(x.guard(open(f)open(x)))) : >(A—B) —>>A—1>B
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The Fitch-style guarded language .

Intuitions

'x:>AFt: A Ft:A Ft:>A
I'Frec(x.t): A I'F guard(t) : > A I'Fopen(t): A

m We ought to be able to write a simple S-rule: open(guard(t)) ~ t.
m Can we pick the same context in the premises and in the conclusion? No.

fun(x.open(x)) /> A— A rec(x.open(x)) /StrBool

m We need to be able to write interesting terms, e.g.,

delay := fun(x.guard(x)) : A = > A
@® := fun(f.fun(x.guard(open(f)open(x)))) : >(A—B) > >A—~1>B

The term ¢ in open(t) loses access to the variables bound after the last guard(—).

A simple scope discipline J
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The Fitch-style guarded language .

More formally

Definition (Typing contexts and un/locking)
m Contexts I' map variables x € dom(I") to a type I'(x).ty and a depth I'(x).d.
m The operation @ increases the depth of every variable.

m The operation d@ decreases the depth of every positive-depth variable and
removes variables at depth zero.

x € dom(T") I)x:>AFt: A T'Ht:StrA FHt:StrA
'k x:T(x).ty T rec(x.t): A Tk head(t) : A T I tail(t) : > Str A
I't:A TFu:>StrA @rrt:A GrFt: A

Pk-tiiu:StrA 'k guard(t): > A I+ open(t) : A

Remark for the categorically-minded

Categorically, @@ & : C — C where C is the category of contexts and renamings.
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The Fitch-style guarded language .

Substitution

Writing Te(T"; A) for {t | T' - ¢ : A}, the set of substitutions from T" to A is

Sub(A:;T) = [ Te@ "“A:T(x).ty).

xedom(T")
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The Fitch-style guarded language .

Substitution

Writing Te(T"; A) for {t | T' - ¢ : A}, the set of substitutions from T" to A is

Sub(A:;T) = [ Te@ "“A:T(x).ty).

xedom(T")
Locking and unlocking should act on substitutions, sending o € Sub(I'; A) to

& cSub(@T ;@A)
& cSub(@T ;@A)
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The Fitch-style guarded language .

Substitution

Writing Te(T"; A) for {t | T' - ¢ : A}, the set of substitutions from T" to A is

Sub(A:;T) = [ Te@ "“A:T(x).ty).

xedom(T")
Locking and unlocking should act on substitutions, sending o € Sub(I'; A) to

Y € Sub(@T ;@A) =Sub(I'; A)
& cSub(@T ;@A)
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The Fitch-style guarded language .

Substitution

Writing Te(T"; A) for {t | T' - ¢ : A}, the set of substitutions from T" to A is

Sub(A:;T) = [ Te@ "“A:T(x).ty).
xedom(T")
Locking and unlocking should act on substitutions, sending o € Sub(I'; A) to
Y € Sub(@T ;@A) =Sub(I'; A)
&o csub@r:@A) = J[ Tel@ “AT(x)ty)

x€dom™ (T")
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The Fitch-style guarded language .

Substitution

Writing Te(T"; A) for {t | T' - ¢ : A}, the set of substitutions from T" to A is

Sub(A:;T) = [ Te@ "“A:T(x).ty).
xedom(T")
Locking and unlocking should act on substitutions, sending o € Sub(I'; A) to
@0 =0 cSub(@T ;@A) =Sub(T;A)
&0 = Oliom+(r) ESUD@T ;@A) = [ Teld “AiT(x).ty)

x€dom™ (T")
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The Fitch-style guarded language .

Substitution

Writing Te(T"; A) for {t | T' - ¢ : A}, the set of substitutions from T" to A is
Sub(A:;T) = [ Te@ "“A:T(x).ty).
xedom(T)
Locking and unlocking should act on substitutions, sending o € Sub(I'; A) to
@0 =0 cSub(@T ;@A) =Sub(T;A)
&0 = Oliom+(r) ESUD@T ;@A) = [ Teld “AiT(x).ty)

x€dom™ (T")

Lemma (Weakening and substitution)

m Weakening: ifT'-t: Athen@TFt:A If@TFt:AthenTt:A.
m Substitution: ifT' -t : A and o € Sub(A;T) then A I t[o] : A.
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The Fitch-style guarded language .

Back to the interpretation in Pr(w)

Interpreting typing contexts
m Define < : Pr(w) — Pr(w) (“earlier”) to be the functor A — n— Api1.
m A typing context I is interpreted in Pr(w) as the object

)= J] <"[rx).tyl.

xedom(T")
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The Fitch-style guarded language .

Back to the interpretation in Pr(w)

Interpreting typing contexts

m Define < : Pr(w) — Pr(w) (“earlier”) to be the functor A — n— Api1.

m A typing context I is interpreted in Pr(w) as the object

)= J] <"[rx).tyl.

x€dom(T")

The functor < is left adjoint to .

(=)%, (=)p) : Pr(w) (=, > =) = Pr(w)(<1—,=)

We have [@T] = <[] as well as a canonical morphism wr : [I'] — <[@T7].
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The Fitch-style guarded language .

Back to the interpretation in Pr(w)

Interpreting typing contexts
m Define < : Pr(w) — Pr(w) (“earlier”) to be the functor A — n— Api1.
m A typing context I is interpreted in Pr(w) as the object

)= J] <"[rx).tyl.

x€dom(T")

The functor < is left adjoint to .
()%, (<)) : Pr(w)(~, > =) = Pr(w)(<—, =)
We have [@T] = <[] as well as a canonical morphism wr : [I'] — <[@T7].

Interpreting terms

|[ a&r-:t:A

&r-t:-A
l“l—g;uard(t):~A]l:[[ﬁf|—t:,4]]b |[

' open(t): A

]l:wr;[[afl—t:»A]]ﬁ
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Atomic [ reduction
t~t

app(fun(x.t), u
if(b € {tt, ff}, tu, ts
head(t::u
tail(t::u

rec(x.
(

= tx/ul
> tb

~o t[guard(rec(x t))/x]

)
)
)~
)~
)
)~

t
)

open(guard(t

A~ N N~~~
Gl W N
— — ~— — ~— —

(=)}

44 /54



Atomic [ reduction

t~t

app(fun(x.t), u) ~ t[x/ul (1)

if(b € {tt, ff}, tu, te) ~ tb (2)

head(t::u) ~ (3)

tail(t:: u) ~ (4)

rec(x.t) ~» t[guard(rec(x t))/x] (5)

open(guard(t)) ~ (6)

Lemma (Subject reduction, atomic case)

IfTFt:Aandt~t' thenT -t : A J

The proof is the usual one, with clauses 5 and 6 relying on lock/unlock weakening.
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Stratified 5 reduction

A context is a term with a unique occurrence of a formal “hole” denoted O.
Kx> K :==0|app(K,u) | app(t, K) | fun(x.K) | ...

For every K € Kx and n € w we define K(n) as follows.

O(n)=n
guard(K)(n) = K(n+1)
open(K)(n) =K(n-1)
op(.. ..)(n) = K(n) otherwise
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Stratified 5 reduction

A context is a term with a unique occurrence of a formal “hole” denoted O.
Kx> K :==0|app(K,u) | app(t, K) | fun(x.K) | ...

For every K € Kx and n € w we define K(n) as follows.

O(n)=n
guard(K)(n) = K(n+1)
open(K)(n) = K(n—1)
op(...,K,...)(n) = K(n) otherwise

We can define a family of reduction relations for each m € w + 1.
u~u K(O) <m
. K{u} —m K{u'}

Lemma (Subject reduction)
IfT-t:Aandt —,t thenT -t :A. J
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Metatheoretical results

Classic results

Theorem

The relation —, is confluent.

Proof.

By the method of Tait and Martin-Lof.
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Metatheoretical results

Classic results

Theorem

The relation —, is confluent.

Proof.
By the method of Tait and Martin-Lof. O

Theorem (G., Tasson, Vienot)

The relations —, for m < w are strongly normalizing.

Proof.
By a step-indexed adaptation of Girard’s reducibility candidates. O

(The theorem above has been proved for a slightly different variant of —,.)

46 /54



Metatheoretical results

Erasing the modality

Target language
m Let ¥ be call-by-value STLC with general rec. and Str A = A x Unit — Str A.

Ix:Unit—AFt: A T'Ft:A I'Fwu:UnitStrA
I Frec(x.t): A PhHt:iu:StrA

m Its model in PCPO [Amadio and Curien, 1998] is s.t. [Unit — A] = 1[A].
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Metatheoretical results
Erasing the modality

Target language
m Let ¥ be call-by-value STLC with general rec. and Str A = A x Unit — Str A.
Ix:Unit—AFt: A T'Ft:A I'Fwu:UnitStrA
I Frec(x.t): A PhHt:iu:StrA
m Its model in PCPO [Amadio and Curien, 1998] is s.t. [Unit — A] = 1[A].

Define an erasure function [—] on types and terms.

[Bool] = Bool

[Str Al = Str[A] frec(x.tﬂ = rec(x.[t])
[A— B] = [A] ~+[B] [guard(t)] = fun(().[t])

[> AT = Unit —[A] [open(t)] = [t] ()
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Metatheoretical results
Erasing the modality

Target language
m Let ¥ be call-by-value STLC with general rec. and Str A = A x Unit — Str A.

Ix:Unit—AFt: A T'Ft:A I'Fwu:UnitStrA
I Frec(x.t): A PhHt:iu:StrA

m Its model in PCPO [Amadio and Curien, 1998] is s.t. [Unit — A] = 1[A].

Define an erasure function [—] on types and terms.

[Bool] = Bool

[Str Al = Str[A] frec(x.tﬂ = rec(x.[t])
[A— Bl =[A] ~+[B] [guard(t)] = fun(().[t])

[ A] = Unit —[A] [open(t)] = [t] ()

Theorem (G., Jafarrahmani, Tasson) J

If t : StrBool then [t] has the same elements as t. In particular, [t] is productive.
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Limitations

Results
.7 is the simplest interesting guarded language | can think of. J

Disappointment
. is unsatisfactory compared to existing synchronous or guarded languages. J

What is lacking or unpleasant in .7
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Limitations

Failure of confluence in .

The reduction relations —, for 0 < k < w fail to be confluent. Witness, for k = 1:

fun(x.guard(x)) (1y)
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Limitations

Failure of confluence in .

The reduction relations —, for 0 < k < w fail to be confluent. Witness, for k = 1:

fun(x.guard(x)) (1y) guard(y)

\ /

fun(x.guard(x)) y
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Limitations

Failure of confluence in .

The reduction relations —, for 0 < k < w fail to be confluent. Witness, for k = 1:

guard(ly)
fun(x.guard(x)) (1y) guard(y)

\ /

fun(x.guard(x)) y
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Limitations

Failure of confluence in .

The reduction relations —, for 0 < k < w fail to be confluent. Witness, for k = 1:
guard(ly)
fun(x.guard(x)) (/

\
guard(y)
/

fun(x.guard(x)) y
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Limitations
> is not enough

One can write simple synchronous functions in ..

nots : Str Bool — Str Bool
nots := rec(F.fun(xs.app(notb, head(xs)) : : (F ® tail(xs))))

However, some very reasonable functions cannot be written.

ands = rec(F.fun(xs.app(and1,xs) :: app(F, tail(tail(xs)))))
stut = rec(F.fun(xs.head(xs) : : head(xs) : : app(F, tail(xs))))

Worse from a synchronous perspective, mutual recursion is rejected as well!

natpos : StrNat x StrNat (x In L %)
natpos = rec(NP.(0:: projo(NP), app(sucs, proj; (NP))))

Add new modalities beyond >, corresponding to other time transforms.

A possible solution (G. [2018]) J
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Limitations

Simple types are not enough

The historical interest in guarded recursion from the type-theoretical side was to
replace the positivity criterion used in proof assistants (see Damien’s lecture).

Several authors [Birkedal et al., 2012, Birkedal and Mggelberg, 2013, Bizjak et al.,
2016, Bahr et al., 2017, Gratzer, 2025, ..] have developed dependent type theories

featuring “later”-like modalities.

Daniel will touch upon this line of work in his lecture.
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Conclusion

Summary
m Start from a run-of-the-mill nonstrict language .Z with streams.
m Build a very classic denotational semantics, with synchrony in mind.
m Contrast this model with a category where all maps are synchronous.

m Transfer back features from the latter to the syntax, obtaining .%.

Some open questions

m What is the relationship between general and guarded recursion?

m Study functors between Pr(w) and some well-chosen category of domains.

m Can we have a proper \-calculus with guarded recursion?
m Make — confluent for all k.
m Make —, strongly normalizing via infinitary rewriting?

m Design a similar calculus for other temporal modalities.
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Additional slides

Mapping the CPO landscape

*

Fy Ft
/\ /\
CPO CPO, =~ PCPO PCPO'
\_/ Y\_/
Uy ut
Category ‘ Pointed?  Strict? ‘ CCC?  Fixpoints? Coproducts?
CPO N N Y N Y
PCPO/CPO; Y Y N Y* Y
PCPO' Y N Y Y N

. “lift-guarded” fixpoints, in the sense that fix, : (1A — A) — A.

A CCC w/ coproducts and general fixpoints is equivalent to the terminal category.
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Additional slides

Proof of the uniqueness of the Lob fixed-point

Recall that given f : >A — A, the map fix(f) : 1 — A is defined as

f ifn=0

fix(F)n: {x} = Aln) = {f ofix(F)n_1 if n>0.

Show that every g : 1 — A satisfying g = f o delay o g is fix(f) by induction.

m Case n = 0: immediate since (delay o g), =!.

m Case n > 0: we have g, = f, 0 r,f‘fl o gn
=fyogn10r] (naturality)
= fyofix(f)o_10r) (I. H.)
=f,or)ofix(f),  (naturality)

= fix(f)n.
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Additional slides

Contexts and renaming for the Fitch-style syntax

The set of types Ty is given by Ty 3 A, B := Bool | A— B | StrA | > A.

Definition (The category C of contexts and renamings)

m Objects are finite families T' = (dom(T") : FinSet, T : dom(T') — Ty X w).

m Morphisms are type-preserving, non-depth-decreasing maps

C(I;A) = {p : dom(T) — dom(A) | Vx € dom(I),L(x) < A(p(x))}.
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Additional slides

Contexts and renaming for the Fitch-style syntax

The set of types Ty is given by Ty 3 A, B == | A— B|StrA| > A.
Definition (The category C of contexts and renamings)

m Objects are finite families I' = (dom(T") : FinSet, " : dom(I") — Ty x w).
m Morphisms are type-preserving, non-depth-decreasing maps

C(I;A) = {p: dom(T) — dom(A) | ¥x € dom(I'),L(x) < A(p(x))}.

Given T in obj(C), write:
m dom™(T) for {x € dom(T") | T'(x).d > 0},
m for f : w — w monotone, set dom(f.I") := dom(I') and £.I'(x) := (id x f)oT.
Definition (The locking and unlocking functors)
Define two functors &, & : C — C by their actions on objects.
&r = (+1).I &7 = (dom™(I), (~1),I)

Their action on morphisms is morally the identity.
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Additional slides

No resource guarantees

Synchronous languages such as Lustre compile to finite state machines.

A—one B = > (Sx(0Ax S = 0B xYS))
S:FinSet

The input and output “alphabets” JA and 0B should arguably be finite.

However, types such as StrStrBool seem to be intrinsically non-real-time.

9 Str Str Bool, & Z {xs’ € StrStrBoolpy1 | xs = delay(xs’),}

xs:Str Str Bool,
~ B"
It should however be possible to adapt the state-passing transform to the general

guarded-recursive setting, and to reject non-finite-state programs.
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