Guarded recursive types A programming-language perspective

Adrien Guatto¹ & Daniel Gratzer²

¹: Université Paris Cité ²: Aarhus University

ÉPIT 2025

Introduction

Daniel

Adrien

Guarded recursion in types and terms

- An alternative to primitive (co)recursion and general recursion [Nakano, 2000]
- Applications to programming with infinite data and to logic and verification

Introduction

Daniel

Adrien

Guarded recursion in types and terms

- An alternative to primitive (co)recursion and general recursion [Nakano, 2000]
- Applications to programming with infinite data and to logic and verification

Introduction

Daniel

Adrien

Guarded recursion in types and terms

- An alternative to primitive (co)recursion and general recursion [Nakano, 2000]
- Applications to programming with infinite data and to logic and verification

Streams as first-class interactions [Kahn, 1974]

- Use streams to represent and manipulate entire, infinite histories of events happening over the unending execution of a program.
- Transfer the benefits of functional programming, such as equational reasoning, to new application domains beyond symbolic computation.

Streams as first-class interactions [Kahn, 1974]

- Use streams to represent and manipulate entire, infinite histories of events happening over the unending execution of a program.
- Transfer the benefits of functional programming, such as equational reasoning, to new application domains beyond symbolic computation.

This idea has (re)appeared and been put into use several times:

- \blacksquare for interactive programs, e.g., GUIs, servers, and games
 - functional reactive programming [Elliott and Hudak, 1997] in Haskell
- for reactive programs, e.g., real-time control programs
 - dedicated synchronous languages such as Lustre [Caspi et al., 1987]

All of these expose fixpoint operators rather than primitive (co)recursion.

Streams as first-class interactions [Kahn, 1974]

- Use streams to represent and manipulate entire, infinite histories of events happening over the unending execution of a program.
- Transfer the benefits of functional programming, such as equational reasoning, to new application domains beyond symbolic computation.

This idea has (re)appeared and been put into use several times:

- for interactive programs, e.g., GUIs, servers, and games
 - functional reactive programming [Elliott and Hudak, 1997] in Haskell
- for reactive programs, e.g., real-time control programs
 - dedicated synchronous languages such as Lustre [Caspi et al., 1987]

All of these expose fixpoint operators rather than primitive (co)recursion.

Important questions in safety-critical settings

- Productivity: reject unsound cyclic definitions
- *Real-time implementations*: bounded in time and space

Streams as first-class interactions [Kahn, 1974]

- Use streams to represent and manipulate entire, infinite histories of events happening over the unending execution of a program.
- Transfer the benefits of functional programming, such as equational reasoning, to new application domains beyond symbolic computation.

This idea has (re)appeared and been put into use several times:

- for interactive programs, e.g., GUIs, servers, and games
 - functional reactive programming [Elliott and Hudak, 1997] in Haskell
- for reactive programs, e.g., real-time control programs
 - dedicated synchronous languages such as Lustre [Caspi et al., 1987]

All of these expose fixpoint operators rather than primitive (co)recursion.

Important questions in safety-critical settings

- Productivity: reject unsound cyclic definitions (focus of this lecture)
- *Real-time implementations*: bounded in time and space

Streams as first-class interactions [Kahn, 1974]

- Use streams to represent and manipulate entire, infinite histories of events happening over the unending execution of a program.
- Transfer the benefits of functional programming, such as equational reasoning, to new application domains beyond symbolic computation.

This idea has (re)appeared and been put into use several times:

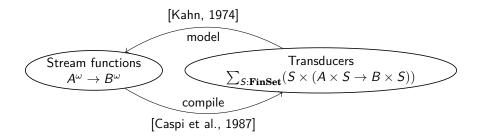
- for interactive programs, e.g., GUIs, servers, and games
 - functional reactive programming [Elliott and Hudak, 1997] in Haskell
- for reactive programs, e.g., real-time control programs
 - dedicated synchronous languages such as Lustre [Caspi et al., 1987]

All of these expose fixpoint operators rather than primitive (co)recursion.

Important questions in safety-critical settings

- Productivity: reject unsound cyclic definitions
- *Real-time implementations*: bounded in time and space

From synchronous languages to synchrony



- Design and study of functional languages compiling to state machines
- Programs have to satisfy specific properties, such as synchrony
- Strongly related to guarded recursion: guarded calculi are all (?) synchronous

Definition (Synchrony, informal and intuitive) A stream function f is synchronous when $xs|_n = ys|_n \implies f(xs)|_n = f(ys)|_n$.

This lecture

A language-oriented reconstruction of guarded recursion starting from

 $\mathsf{types} \leftrightarrow \mathsf{partial} \ \mathsf{orders}$ nonstrict programs \leftrightarrow monotone maps

A model of a *guarded* variant of synchronous functional programming

 $\mathsf{types} \leftrightarrow \mathsf{trees}$

synchronous functions \leftrightarrow height-preserving tree maps

■ A syntax suggested by the model.

Inspirations

Birkedal et al. [2012], Pouzet [2002], G. [2016, 2018], Clouston [2018], others.

Caveat

This is a specific view of guarded recursion, coming from programming languages.

Outline

1 Introduction

- 2 A nonstrict stream language
 - Syntax and execution
 - Modeling nonstrict streams
- **3** Synchrony in the topos of trees
 - From orders to presheaves
 - Back to syntax
- 4 Perspectives
 - Limitations
 - Conclusion

Outline

1 Introduction

- 2 A nonstrict stream language
 - Syntax and execution
 - Modeling nonstrict streams

3 Synchrony in the topos of trees

- From orders to presheaves
- Back to syntax

4 Perspectives

- Limitations
- Conclusion

Syntax of $\mathscr L$

$$\begin{array}{c} x:A \in \Gamma \\ \overline{\Gamma \vdash x:A} \\ \hline \Gamma \vdash \mathsf{fun}(x.t):A \to B \\ \hline \Gamma \vdash \mathsf{fun}(x.t):A \to B \\ \hline \Gamma \vdash \mathsf{app}(t,u):B \\ \hline \Gamma \vdash \mathsf{app}(t,u):E \\ \hline \Gamma \vdash$$

Reduction for ${\mathscr L}$

```
\begin{split} V &:= \mathsf{fun}(x.t) \mid \langle t_1, t_2 \rangle \mid \mathsf{tt} \mid \mathsf{ff} \mid V :: t \\ E &:= \Box \mid \mathsf{app}(E, u) \mid \mathsf{proj}_i(E) \mid \mathsf{if}(E, u, s) \mid E :: t \mid \mathsf{head}(E) \mid \mathsf{tail}(E) \end{split}
```

```
\begin{aligned} & \mathsf{app}(\mathsf{fun}(x.t), u) \rightsquigarrow t[u/x] \\ & \mathsf{proj}_i(\langle t_1, t_2 \rangle) \rightsquigarrow t_i \\ & \mathsf{if}(\mathsf{tt}, u, s) \rightsquigarrow u \\ & \mathsf{if}(\mathsf{ff}, u, s) \rightsquigarrow s \\ & \mathsf{rec}(x.t) \rightsquigarrow t[\mathsf{rec}(x.t)/x] \\ & \mathsf{head}(V :: t) \rightsquigarrow V \\ & \mathsf{tail}(V :: t) \rightsquigarrow t \end{aligned}
```

$$\frac{u \rightsquigarrow u'}{\mathsf{E}\{u\} \to \mathsf{E}\{u'\}}$$

Summary

A λ -calculus with call-by-name semantics, except for streams which are left-strict.

Basic metatheory

Lemma (Determinism)

If $t \to t_1$ and $t \to t_2$ then $t_1 = t_2$.

Lemma (Subject reduction)

If $\Gamma \vdash t : A$ and $t \rightarrow t'$ then $\Gamma \vdash t' : A$.

Write $t \uparrow$ when there exists $(t_i)_{i \in \omega}$ with $t_i \rightarrow t_{i+1}$ and $t_0 = t$.

Lemma (Type safety)

If $\Gamma \vdash t : A$ then either $t \uparrow$ or $t \rightarrow^* V \not\rightarrow$.

Productivity

$$tail^0(t) \coloneqq t$$
 $tail^{m+1}(t) \coloneqq tail(tail^m(t))$

Definition

A term t: Str A is productive up to $n \le \omega$ when $tail^m(t)$ converges to a value for all m < n. It is productive when it is productive up to ω .

The terms ffs and tts below are productive.

$$\begin{split} \textit{ffs} &\coloneqq \mathsf{rec}(\mathsf{xs.ff}::\mathsf{xs}) &: \mathsf{Str} \, \mathsf{Bool} \\ \textit{notb} &\coloneqq \mathsf{fun}(\mathsf{x.if}(\mathsf{x},\mathsf{ff},\mathsf{tt})) &: \mathsf{Bool} \to \mathsf{Bool} \\ \textit{nots} &\coloneqq \mathsf{rec}(\mathsf{F}.\mathsf{fun}(\mathsf{xs.app}(\textit{notb},\mathsf{head}(\mathsf{xs}))::\mathsf{app}(\mathsf{F},\mathsf{tail}(\mathsf{xs})))) &: \mathsf{Str} \, \mathsf{Bool} \to \mathsf{Str} \, \mathsf{Bool} \\ \textit{tts} &\coloneqq \mathsf{app}(\textit{nots},\textit{ffs}) &: \mathsf{Str} \, \mathsf{Bool} \end{split}$$

Productivity and time

Here are two non-productive terms, not even productive up to 1.

loop := rec(xs.xs) : Str Bool weird := rec(xs.head(tail(xs))::(tt::xs)) : Str Bool

The case of *weird* is the most interesting one.

```
\begin{array}{l} tail^{0}(weird) \\ \rightarrow weird \\ \rightarrow head(tail(weird))::(tt::weird) \\ \rightarrow head(tail(head(tail(weird)))::(tt::weird)))::(tt::weird) \\ \rightarrow \dots \end{array}
```

The reduction of streams reflects the temporal intuition of Kahn [1974].

Synchrony

Definition (Synchrony, formal)

A term $t : \operatorname{Str} A \to \operatorname{Str} A$ is synchronous when, for all $u : \operatorname{Str} A$ and $n \le \omega$, u productive up to n implies $\operatorname{app}(t, u)$ productive up to n.

The term *nots* is synchronous, *ands* is not, *stut* imprecisely so.

 $\begin{array}{ll} \textit{nots} \coloneqq \mathsf{rec}(\mathsf{F}.\mathsf{fun}(\mathsf{xs.app}(\textit{notb},\mathsf{head}(\mathsf{xs}))::\mathsf{app}(\mathsf{F},\mathsf{tail}(\mathsf{xs})))) & : \mathsf{Str}\:\mathsf{Bool} \to \mathsf{Str}\:\mathsf{Bool} \\ \textit{andb} \coloneqq \mathsf{fun}(\mathsf{x}.\mathsf{fun}(\mathsf{y}.\mathsf{if}(\mathsf{y},\mathsf{tt},\mathsf{ff}),\mathsf{ff}))) & : \:\mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool} \\ \textit{and1} \coloneqq \mathsf{fun}(\mathsf{xs.app}(\mathsf{app}(\textit{andb},\mathsf{head}(\mathsf{xs})),\mathsf{head}(\mathsf{tail}(\mathsf{xs})))) & : \:\mathsf{Str}\:\mathsf{Bool} \to \mathsf{Bool} \\ \textit{ands} \coloneqq \mathsf{rec}(\mathsf{F}.\mathsf{fun}(\mathsf{xs.app}(\textit{and1},\mathsf{xs})::\mathsf{app}(\mathsf{F},\mathsf{tail}(\mathsf{tail}(\mathsf{xs}))))) & : \:\mathsf{Str}\:\mathsf{Bool} \to \mathsf{Str}\:\mathsf{Bool} \\ \textit{stut} \coloneqq \mathsf{rec}(\mathsf{F}.\mathsf{fun}(\mathsf{xs.head}(\mathsf{xs})::\mathsf{head}(\mathsf{xs})::\mathsf{app}(\mathsf{F},\mathsf{tail}(\mathsf{xs})))) & : \:\mathsf{Str}\:\mathsf{Bool} \to \mathsf{Str}\:\mathsf{Bool} \\ \end{array}$

Remark

Synchrony is a stronger condition than *totality*: to be total at type Str Bool \rightarrow Str Bool a term is only required to preserve productivity at ω .

Approximation and equivalence

Let $\Gamma \vdash t, u : A$.

Definition (Approximation)

We say that *t* approximates *u*, denoted $\Gamma \vdash t \sqsubseteq_{obs} u : A$, when $\forall (\Box : (\Gamma \vdash A) \vdash K : (\vdash Bool)), K\{t\} \rightarrow^* tt \Rightarrow K\{u\} \rightarrow^* tt.$

Definition (Equivalence)

We say that t is equivalent to u, denoted $\Gamma \vdash t \equiv_{obs} u : A$, when

 $\Gamma \vdash t \sqsubseteq_{obs} u : A \text{ and } \Gamma \vdash t \sqsubseteq_{obs} u : A.$

Difficulties

The unwieldy nature of these definitions can motivate the study of models.

Outline

1 Introduction

- A nonstrict stream language
 Syntax and execution
 - Modeling nonstrict streams

3 Synchrony in the topos of trees

- From orders to presheaves
- Back to syntax

4 Perspectives

- Limitations
- Conclusion

A model for \mathscr{L}

Setting

A model of ${\mathscr L}$ is a category ${\mathcal C}$ together with

- for each type A or context Γ , an object $\llbracket A \rrbracket$ or $\llbracket \Gamma \rrbracket$ of C
- for each term $\Gamma \vdash t : A$, a morphism $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$ of \mathcal{C}
- In addition, $[\![-]\!]$ should be functorial, i.e., commute with substitution.

Official goals: soundness and adequacy

For all $\Gamma \vdash t, u : A$, we expect the model to verify

- soundness: if $t \to u$ then $[\![t]\!] = [\![u]\!]$, and
- adequacy: if $\llbracket t \rrbracket = \llbracket u \rrbracket$ then $\Gamma \vdash t \equiv_{obs} u : A$.

Actual goal: insight

We are looking for an analysis of the language grounded in the model.

A model for \mathscr{L}

Requirements

The model must have enough structure to interpret \mathscr{L} , mostly:

- function types with currying and evaluation, i.e., cartesian closure,
- a fixpoint operator at each type to interpret recursion,
- In interpretation of recursive types to model streams.

Those classic requirements lead us to various kinds of partial orders.

I will omit much of the details and focus on building intuitions at this stage.

A model for $\mathscr L$

The categories $\ensuremath{\mathbf{CPO}}$ and $\ensuremath{\mathbf{PCPO}}$

Definition

- A poset *P* is *complete* when all suprema of directed sets exist.
- It is *pointed* when it has a least element, denoted \perp_P or \perp .

Definition

Let P, Q be complete posets. Then $f : P \to Q$ is *Scott-continuous* when: $\bigvee f(D) = f\left(\bigvee D\right)$ for all $D \subseteq P$ directed.

In addition, if P and Q are furthermore pointed, f is *strict* when $f(\perp) = \perp$.

- Complete posets and Scott-continuous maps form a category CPO.
- Pointed complete posets and strict Scott-cont. maps form a category PCPO.

A model for \mathscr{L} Type formers in **PCPO**

The category PCPO is closed under various type formers, including:

- cartesian products $P \times Q$, ordered componentwise;
- **smashed products** $P \otimes Q$, obtained by identifying \perp_P and \perp_Q ;
- strict function types $P \rightarrow_{s} Q$, ordered pointwise;
- lifting $\uparrow P$, adding a new least element to P;
- unit *I*, the one-element pcpo, neutral for both \otimes and \times ;
- etc.

Remark

The object *I* is both terminal and initial in **PCPO**. I will write $\iota_P : I \to P$ and $\pi_P : A \to P$, or simply ι and π , for the corresponding unique maps.

A model for \mathscr{L}

Lifting

Given a cpo A, we define a pcpo $\uparrow A$ as follows.

$$El(\uparrow A) = \{ \langle x \rangle \mid x \in El(A) \} \cup \{ \langle \rangle \} \qquad \qquad \frac{x \leq_A x'}{\langle \rangle \leq_{\uparrow A} \alpha} \qquad \qquad \frac{x \leq_A x'}{\langle x \rangle \leq_{\uparrow A} \langle x' \rangle}$$

Visually:

Remark for the categorically-minded

- The endofunctor \uparrow of **CPO** can be given the structure of a monad (\uparrow, η, μ) .
- The category **PCPO** is (equivalent to) the Eilenberg-Moore category **CPO**_↑.

,

A model for \mathscr{L}

Cartesian and smash product

Given two pcpos P and Q, define their cartesian products $P \times Q$ as for posets.

$$El(P \times Q) = El(P) \times El(Q) \qquad \qquad \frac{x \leq_P x' \quad y \leq_Q y'}{(x, y) \leq_{P \times Q} (x', y')}$$

The smash product of pcpos P and Q, is the pcpo $P \otimes Q \coloneqq \uparrow (\downarrow P \times \downarrow Q)$.

• Here $\downarrow X$ is the sub-cpo of X formed of non- \perp elements.

A model for \mathscr{L} Recursion in **PCPO**

Theorem (Kleene, Scott) Every map $f : \uparrow A \rightarrow_s A$ of **PCPO** has a least "fixpoint" given by $fix(f) = \bigsqcup iter \text{ where } iter : \omega \rightarrow A = n \mapsto \begin{cases} \bot & \text{if } n = 0 \\ f(\langle iter(n-1) \rangle) & \text{otherwise.} \end{cases}$

By "fixpoint" we mean that it satisfies $f(\langle fix(f) \rangle) = fix(f)$.

Theorem (Scott, Adámek...)

Every "continuous" functor $F : \mathbf{PCPO} \to \mathbf{PCPO}$ has an initial algebra $FIX(F) = \varprojlim ITER^+$

where $ITER^+$: $\omega \rightarrow \mathbf{PCPO}$ is the diagram below.

$$I \xrightarrow{\iota} F(I) \xrightarrow{F(\iota)} F^2(I) \xrightarrow{F^2(\iota)} F^3(I) \longrightarrow \dots$$

A model for $\mathscr L$

Constructing boolean streams in **PCPO**

The object [Str Bool] can be constructed as the initial algebra of

$F: \mathbf{PCPO} \to \mathbf{PCPO}$

$$F(A) = [Bool] \otimes \uparrow A$$
$$= \uparrow \mathbb{B} \otimes \uparrow A$$
$$= \uparrow (\mathbb{B} \times A).$$

Iterating this functor gives rise to the diagram below, up to $A \times I \cong A$.

$$I \xrightarrow{\iota} \uparrow \mathbb{B} \xrightarrow{F(\iota)} \uparrow (\mathbb{B} \times \uparrow \mathbb{B}) \xrightarrow{F^2(\iota)} \uparrow (\mathbb{B} \times \uparrow (\mathbb{B} \times \uparrow \mathbb{B})) \longrightarrow \dots$$

Thus, $F^n(I)$ consists in words of length at most *n* ordered by prefix, connected by what ought to be thought of as inclusion maps.

Difficulty

This colimit in **PCPO** is not so easy to present explicitly.

A model for \mathscr{L}

An alternative construction

For general reasons, it is equivalent to consider the diagram $ITER^-$ below

$${}^{\prime} \xleftarrow{\pi} \uparrow \mathbb{B} \xleftarrow{F(\pi)} \uparrow (\mathbb{B} \times \uparrow \mathbb{B}) \xleftarrow{F^{2}(\pi)} \uparrow (\mathbb{B} \times \uparrow (\mathbb{B} \times \uparrow \mathbb{B})) \xleftarrow{} \dots$$

and compute its limit, which is easier to describe explicitly.

$$El(\llbracket Str Bool \rrbracket) = \left\{ \prod_{n < \omega} F^n(I) \; \middle| \; \forall n < \omega, F^n(p)(x_{n+1}) = x_n \right\}.$$

The coherence requirement force the sequences to be strictly-increasing up to the point at which they become constant (if ever). This is isomorphic to

$$\llbracket Str Bool \rrbracket := (\mathbb{B}^* \cup \mathbb{B}^{\omega}, \sqsubseteq)$$
 where $u \sqsubseteq v$ iff u is a prefix of v .

Remark

Divergence arises from the fact that $F^n(I)$ contains words of length $\leq n$.

A model for $\mathscr L$

Time and streams

So, streams are "recursive left-strict pairs," à la Kahn [1974].

```
\llbracket \operatorname{\mathsf{Str}} A \rrbracket \cong \llbracket A \rrbracket \otimes \uparrow \llbracket \operatorname{\mathsf{Str}} A \rrbracket
```

But the temporal intuition breaks down quickly, e.g., [Str Str Bool] contains

 $((\pmb{b}^0_0,(\pmb{b}^0_1,(\pmb{b}^0_2,\bot))),((\pmb{b}^1_0,\bot),((\pmb{b}^2_0,(\pmb{b}^2_1,\bot)),\bot)))$

where clearly the "degrees of productivity" are almost unrelated.

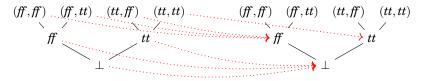
Observation

Synchrony would require a much "stricter" notion of cartesian product.

A model for \mathscr{L}

Time and continuous maps

As expected, most continuous maps are not synchronous, e.g., ands.



This is by design since **PCPO** models general recursion.

A model for \mathscr{L}

Putting it all together

$$\llbracket_\rrbracket : \mathscr{L} \to \mathbf{PCPO}$$
$$\llbracket\mathsf{Bool}\rrbracket = \uparrow \mathbb{B}$$
$$\llbracket A \times B \rrbracket = \llbracket A \rrbracket \times \llbracket B \rrbracket$$
$$\llbracket A \to B \rrbracket = \uparrow \llbracket A \rrbracket \to_{\mathbf{s}} \llbracket B \rrbracket$$
$$\llbracket S tr A \rrbracket = \llbracket A \rrbracket \otimes \uparrow \llbracket S tr A \rrbracket$$

The interpretation map

$$\llbracket_\rrbracket: \mathscr{L}(\Gamma, A) \to \mathbf{PCPO}(\uparrow \llbracket \Gamma \rrbracket, \llbracket A \rrbracket)$$

interprets \mathscr{L} into the Kleisli category **PCPO**^{\uparrow} of the lift comonad on **PCPO**.

Observation

The syntax does not have to mention \uparrow , thanks to force_A : $\uparrow A \rightarrow A$ in particular.

Outline

1 Introduction

2 A nonstrict stream language

- Syntax and execution
- Modeling nonstrict streams

3 Synchrony in the topos of trees

- From orders to presheaves
- Back to syntax

4 Perspectives

- Limitations
- Conclusion

Towards the topos of trees Inadequacies of **PCPO**

Summing up the inadequacies of **PCPO** from our perspective:

- Scott-continuous stream functions are obviously not synchronous (nor total),
- Ithe definition of streams is not "right" one, beyond scalars.

These problems stem from the interpretations of \rightarrow and $\otimes/\times\text{,}$ respectively.

A possible solution

Refine the base model with a logical relation [G., 2016].

The rest of this lecture

Describe a model whose objects have an *intrinsic* temporal character.

Towards the topos of trees

Streams without limits

Let us go back to streams computed as the limit of the diagram below.

$$I \xleftarrow{\pi} \uparrow \mathbb{B} \xleftarrow{F(\pi)} \uparrow (\mathbb{B} \times \uparrow \mathbb{B}) \xleftarrow{F^2(\pi)} \uparrow (\mathbb{B} \times \uparrow (\mathbb{B} \times \uparrow \mathbb{B})) \longleftarrow \dots$$

We remove words of length < n at stage n. The ordering becomes useless.

$$1 \xleftarrow{!} \mathbb{B} \xleftarrow{\pi_1} \mathbb{B} \times \mathbb{B} \xleftarrow{\pi_1} (\mathbb{B} \times \mathbb{B}) \times \mathbb{B} \longleftarrow \dots$$

The limit of this diagram in **Set** is \mathbb{B}^{ω} , losing all temporal information.

Towards the topos of trees

Streams without limits

Let us go back to streams computed as the limit of the diagram below.

$$I \xleftarrow{\pi} \uparrow \mathbb{B} \xleftarrow{F(\pi)} \uparrow (\mathbb{B} \times \uparrow \mathbb{B}) \xleftarrow{F^2(\pi)} \uparrow (\mathbb{B} \times \uparrow (\mathbb{B} \times \uparrow \mathbb{B})) \longleftarrow \dots$$

We remove words of length < n at stage n. The ordering becomes useless.

$$1 \stackrel{!}{\longleftarrow} \mathbb{B} \stackrel{\pi_1}{\longleftarrow} \mathbb{B} \times \mathbb{B} \stackrel{\pi_1}{\longleftarrow} (\mathbb{B} \times \mathbb{B}) \times \mathbb{B} \longleftarrow \dots$$

The limit of this diagram in **Set** is \mathbb{B}^{ω} , losing all temporal information.

Key idea

Instead of computing the limit, keep the entire diagram.

Towards the topos of trees

From elements to maps

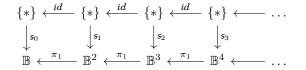
Dropping the now useless initial stage, we have a diagram of sets

$$\mathbb{B} \xleftarrow{\pi_1} \mathbb{B}^2 \xleftarrow{\pi_1} \mathbb{B}^3 \xleftarrow{\pi_1} \mathbb{B}^4 \xleftarrow{\dots} \dots$$

for interpreting Str Bool. Intuitively, what should its "elements" be? Full streams:

$$\left\{ \boldsymbol{s} \in \prod_{\boldsymbol{n} \in \omega} \mathbb{B}^{\boldsymbol{n}} \; \middle| \; \forall \boldsymbol{n} \in \omega, \boldsymbol{s}_{\boldsymbol{n}} = \pi_1(\boldsymbol{s}_{\boldsymbol{n}+1}) \right\}.$$

Yet an "element" of A should be the same thing as a morphism $1 \rightarrow A$.



This suggests using natural transformations as maps between diagrams.

Objects and morphisms: synchrony beyond streams

$$\mathbf{Pr}(\omega) \ \coloneqq \ [\omega^{op}, \mathbf{Set}]$$

Objects and morphisms: synchrony beyond streams

 $\mathbf{Pr}(\omega) := [\omega^{op}, \mathbf{Set}]$

Objects and morphisms: synchrony beyond streams

$$0 \leq 1 \leq 2 \leq 3 \leq 4 \dots$$

Objects and morphisms: synchrony beyond streams

$$0 \leq 1 \leq 2 \leq 3 \leq 4 \dots$$

Objects and morphisms: synchrony beyond streams

$$0 \leq 1 \leq 2 \leq 3 \leq 4 \dots$$

$$\Gamma \qquad \Gamma(0) \xleftarrow{r_0^{\Gamma}} \Gamma(1) \xleftarrow{r_1^{\Gamma}} \Gamma(2) \xleftarrow{r_2^{\Gamma}} \Gamma(3) \xleftarrow{r_3^{\Gamma}} \Gamma(4) \qquad \dots$$

Objects and morphisms: synchrony beyond streams

$$0 \leq 1 \leq 2 \leq 3 \leq 4 \dots$$

$$\Gamma \qquad \Gamma(0) \xleftarrow{r_0^{\Gamma}} \Gamma(1) \xleftarrow{r_1^{\Gamma}} \Gamma(2) \xleftarrow{r_2^{\Gamma}} \Gamma(3) \xleftarrow{r_3^{\Gamma}} \Gamma(4) \qquad \dots$$
$$A \qquad A(0) \xleftarrow{r_0^{A}} A(1) \xleftarrow{r_1^{A}} A(2) \xleftarrow{r_2^{A}} A(3) \xleftarrow{r_3^{A}} A(4) \qquad \dots$$

Objects and morphisms: synchrony beyond streams

$$0 \leq 1 \leq 2 \leq 3 \leq 4 \dots$$

Objects and morphisms: synchrony beyond streams

$$0 \leq 1 \leq 2 \leq 3 \leq 4 \dots$$

$$\begin{array}{c} \Gamma \\ \downarrow f \\ A \end{array} \begin{array}{c} \Gamma(0) \xleftarrow{r_0^{\Gamma}}{\leftarrow} \Gamma(1) \xleftarrow{r_1^{\Gamma}}{\leftarrow} \Gamma(2) \xleftarrow{r_2^{\Gamma}}{\leftarrow} \Gamma(3) \xleftarrow{r_3^{\Gamma}}{\leftarrow} \Gamma(4) \\ \downarrow f_0 \\ \downarrow f_1 \\ \downarrow f_2 \\ \downarrow f_3 \\ \downarrow f_3 \\ \downarrow f_4 \\ A(0) \xleftarrow{r_0^{A}}{\leftarrow} A(1) \xleftarrow{r_1^{A}}{\leftarrow} A(2) \xleftarrow{r_2^{A}}{\leftarrow} A(3) \xleftarrow{r_3^{A}}{\leftarrow} A(4) \\ \end{array} \right. \dots$$

Recursion

Have we lost the ability to write recursive definitions? No. Remember:

Theorem (Kleene)
Every map
$$f : \uparrow A \rightarrow_s A$$
 of **PCPO** has a least "fixpoint"
 $fix(f) = \bigsqcup iter \text{ where } iter : \omega \rightarrow A = n \mapsto \begin{cases} \bot & \text{if } n = 0 \\ f(\langle iter(n-1) \rangle) & \text{otherwise.} \end{cases}$

Can we do the same thing in $\mathbf{Pr}(\omega)$, replacing the "completed" supremum with the entire chain, as we just did for types?

Yes, but we need something to play the rôle of lifting.

Recursion: the "later" modality

 $\rhd \quad : \quad \mathbf{Pr}(\omega) \to \mathbf{Pr}(\omega)$

$$0 \leq 1 \leq 2 \leq 3 \leq 4 \dots$$

$$A \qquad A(0) \stackrel{r_0^A}{\longleftarrow} A(1) \stackrel{r_1^A}{\longleftarrow} A(2) \stackrel{r_2^A}{\longleftarrow} A(3) \stackrel{r_3^A}{\longleftarrow} A(4) \qquad \dots$$

Recursion: the "later" modality

 $\rhd \quad : \quad \mathbf{Pr}(\omega) \to \mathbf{Pr}(\omega)$

$$0 \leq 1 \leq 2 \leq 3 \leq 4 \dots$$

$$A \qquad A(0) \stackrel{r_0^A}{\leftarrow} A(1) \stackrel{r_1^A}{\leftarrow} A(2) \stackrel{r_2^A}{\leftarrow} A(3) \stackrel{r_3^A}{\leftarrow} A(4) \qquad \dots$$
$$\triangleright A \qquad \{*\} \qquad A(0) \qquad A(1) \qquad A(2) \qquad A(3) \qquad \dots$$

Recursion: the "later" modality

 \triangleright : $\mathbf{Pr}(\omega) \to \mathbf{Pr}(\omega)$

$$0 \leq 1 \leq 2 \leq 3 \leq 4 \dots$$

$$A \qquad A(0) \stackrel{r_0^A}{\leftarrow} A(1) \stackrel{r_1^A}{\leftarrow} A(2) \stackrel{r_2^A}{\leftarrow} A(3) \stackrel{r_3^A}{\leftarrow} A(4) \qquad \dots$$
$$\triangleright A \qquad \{*\} \stackrel{!}{\leftarrow} A(0) \stackrel{r_0^A}{\leftarrow} A(1) \stackrel{r_1^A}{\leftarrow} A(2) \stackrel{r_2^A}{\leftarrow} A(3) \qquad \dots$$

Recursion: the "later" modality

 \triangleright : $\mathbf{Pr}(\omega) \to \mathbf{Pr}(\omega)$

$$0 \leq 1 \leq 2 \leq 3 \leq 4 \dots$$

$$A \longrightarrow A(0) \xleftarrow{r_0^A} A(1) \xleftarrow{r_1^A} A(2) \xleftarrow{r_2^A} A(3) \xleftarrow{r_3^A} A(4) \dots$$

$$A \longrightarrow A(0) \xleftarrow{r_0^A} A(1) \xleftarrow{r_1^A} A(2) \xleftarrow{r_2^A} A(3) \cdots$$

$$\{*\} \xleftarrow{!} A(0) \xleftarrow{r_0^A} A(1) \xleftarrow{r_1^A} A(2) \xleftarrow{r_2^A} A(3) \dots$$

Recursion: the "later" modality

 \triangleright : $\mathbf{Pr}(\omega) \to \mathbf{Pr}(\omega)$

$$0 \leq 1 \leq 2 \leq 3 \leq 4 \dots$$

$$\begin{array}{c} \mathsf{A} \\ \downarrow \\ \mathsf{e}_{\mathsf{A}} \\ \mathsf{A}(0) \xleftarrow{r_0^A} \mathsf{A}(1) \xleftarrow{r_1^A} \mathsf{A}(2) \xleftarrow{r_2^A} \mathsf{A}(3) \xleftarrow{r_3^A} \mathsf{A}(4) \\ \downarrow \\ \downarrow \\ \downarrow \\ \mathsf{A}(1) \xleftarrow{r_0^A} \mathsf{A}(2) \xleftarrow{r_1^A} \mathsf{A}(2) \xleftarrow{r_2^A} \mathsf{A}(4) \\ \downarrow \\ \mathsf{A}(1) \xleftarrow{r_1^A} \mathsf{A}(2) \xleftarrow{r_2^A} \mathsf{A}(3) \\ \mathsf{A}(1) \xleftarrow{r_1^A} \mathsf{A}(2) \xleftarrow{r_1^A} \mathsf{A}(3) \\ \mathsf{A}(2) \xleftarrow{r_1^A} \mathsf{A}(3) \\ \mathsf{A}(2) \xleftarrow{r_1^A} \mathsf{A}(3) \\ \mathsf{A}(3)$$

Guarded recursion Let $f : \triangleright A \to A$ and define $fix(f) : 1 \to A$ by induction as

$$fix(f)_n: \{*\} \to A(n) = \begin{cases} f_0 & \text{if } n = 0\\ f_n \circ fix(f)_{n-1} & \text{if } n > 0. \end{cases}$$

Guarded recursion Let $f : \triangleright A \to A$ and define $fix(f) : 1 \to A$ by induction as

$$fix(f)_n: \{*\} \to A(n) = \begin{cases} f_0 & \text{if } n = 0\\ f_n \circ fix(f)_{n-1} & \text{if } n > 0. \end{cases}$$

Theorem (Löb)

We have $fix(f) = f \circ delay \circ fix(f)$ and moreover it is the unique such map.

Guarded recursion Let $f : \triangleright A \to A$ and define $fix(f) : 1 \to A$ by induction as

$$fix(f)_n: \{*\} \to A(n) = \begin{cases} f_0 & \text{if } n = 0\\ f_n \circ fix(f)_{n-1} & \text{if } n > 0. \end{cases}$$

Theorem (Löb)

We have $fix(f) = f \circ delay \circ fix(f)$ and moreover it is the unique such map.

Proof.

We prove the equation by induction over n.

- Case n = 0: we have $fix(f)_0(*) = f_0(*) = f_0(\text{delay}_0(f_0(*)))$.
- Case n > 0: we have $fix(f)_n = f_n \circ fix(f)_{n-1}$

$$= f_n \circ f_{n-1} \circ r_{n-2}^A \circ fix(f)_{n-1} \qquad (I. H.)$$

$$= f_n \circ r_{n-1}^A \circ f_n \circ fix(f)_{n-1} \qquad (naturality)$$

$$= f_n \circ r_{n-1}^A \circ fix(f)_n$$

The uniqueness part of the statement is left as an exercise for the audience.

Cartesian-closed structure

The category $\mathbf{Pr}(\omega)$ has cartesian products, defined pointwise.

$$(A \times B)(n) = A(n) \times B(n), \qquad r_n^{A \times B}(x, y) = (r_n^X(x), r_n^Y(y))$$

It also has function objects, which can be described as follows.

$$(A \Rightarrow B)(n) = \left\{ f \in \prod_{i \le n} A(i) \to B(i) \mid \forall i < n, r_n^Y \circ f_{n+1} = f_n \circ r_n^X \right\}$$
$$r_n^{A \Rightarrow B} = (f_i)_{i \le n+1} \mapsto (f_i)_{i \le n}$$

Cartesian-closed structure

The category $\mathbf{Pr}(\omega)$ has cartesian products, defined pointwise.

$$(A \times B)(n) = A(n) \times B(n), \qquad r_n^{A \times B}(x, y) = (r_n^X(x), r_n^Y(y))$$

It also has function objects, which can be described as follows.

$$(A \Rightarrow B)(n) = \left\{ f \in \prod_{i \le n} A(i) \to B(i) \; \middle| \; \forall i < n, r_n^Y \circ f_{n+1} = f_n \circ r_n^X \right\}$$
$$r_n^{A \Rightarrow B} = (f_i)_{i \le n+1} \mapsto (f_i)_{i \le n}$$

Categories of presheaves (Set-valued functors)

They always have a lot of structure, including bicartesian closure.

- For example $\mathbf{Pr}(\omega)$ has coproducts, in contrast with \mathbf{PCPO}^{\uparrow} .
- Enough structure to interpret HOL & DTT. See Daniel's part!
- The previous definitions are "unfolded" version of general constructions.

Streams

General streams can be defined as

 $\llbracket \operatorname{Str} A \rrbracket \cong \llbracket A \rrbracket \times \rhd \llbracket \operatorname{Str} A \rrbracket.$

Again, one can solve this as a colimit in $\mathbf{Pr}(\omega)$, obtaining

$$\llbracket \operatorname{Str} A \rrbracket(0) = \llbracket A \rrbracket(0)$$
$$\llbracket \operatorname{Str} A \rrbracket(n+1) = \llbracket A \rrbracket(n+1) \times \llbracket \operatorname{Str} A \rrbracket(n).$$

In particular, [Str Str Bool] looks much better behaved. Can you describe it?

Streams

General streams can be defined as

 $\llbracket \operatorname{Str} A \rrbracket \cong \llbracket A \rrbracket \times \rhd \llbracket \operatorname{Str} A \rrbracket.$

Again, one can solve this as a colimit in $\mathbf{Pr}(\omega)$, obtaining

$$\llbracket \operatorname{Str} A \rrbracket(0) = \llbracket A \rrbracket(0)$$
$$[\operatorname{Str} A \rrbracket(n+1) = \llbracket A \rrbracket(n+1) \times \llbracket \operatorname{Str} A \rrbracket(n).$$

In particular, [Str Str Bool] looks much better behaved. Can you describe it?

Remark

Birkedal et al. [2012] show how to build general guarded recursive types, even allowing for negative self-references (in line with Farzad's lecture this afternoon).

$$\mathcal{W} = \mathsf{Loc} o_{\mathsf{fin}} \mathcal{T} \qquad \qquad \mathcal{T} = arprop \mathcal{W} o \mathsf{Val} o \mathsf{Prop}$$

Daniel will develop this example in detail.

Outline

1 Introduction

2 A nonstrict stream language

- Syntax and execution
- Modeling nonstrict streams

3 Synchrony in the topos of trees

- From orders to presheaves
- Back to syntax

4 Perspectives

- Limitations
- Conclusion

We have a category where objects are explicit approximation sequences, with a fixpoint theorem, and nice properties. Is there a price to pay?

We have a category where objects are explicit approximation sequences, with a fixpoint theorem, and nice properties. Is there a price to pay?

The force morphism is no longer with us

The functor \triangleright is not a comonad: there is no map $\triangleright A \rightarrow A$ in general.

(Exercise: what is $\triangleright 0$ in $\mathbf{Pr}(\omega)$? What does this imply for $\triangleright 0 \rightarrow 0$?)

We have a category where objects are explicit approximation sequences, with a fixpoint theorem, and nice properties. Is there a price to pay?

The force morphism is no longer with us

The functor \triangleright is not a comonad: there is no map $\triangleright A \rightarrow A$ in general.

(Exercise: what is $\triangleright 0$ in $\mathbf{Pr}(\omega)$? What does this imply for $\triangleright 0 \rightarrow 0$?)

Consequences

The syntax needs to include \triangleright as a type former.

We have a category where objects are explicit approximation sequences, with a fixpoint theorem, and nice properties. Is there a price to pay?

The force morphism is no longer with us

The functor \triangleright is not a comonad: there is no map $\triangleright A \rightarrow A$ in general.

(Exercise: what is $\triangleright 0$ in $\mathbf{Pr}(\omega)$? What does this imply for $\triangleright 0 \rightarrow 0$?)

Consequences

The syntax needs to include \triangleright as a type former.

We want to follow the discipline of *natural deduction*, meaning:

- introduction and elimination forms with a *generic* context in the conclusion
- $\blacksquare~\beta/\eta$ rules governing the interplay between introduction and elimination forms
 - β rule: elimination-of-introduction simplifies, e.g., $\text{proj}_i(\langle t_1, t_2 \rangle) \equiv t_i$.
 - $\blacksquare \ \eta$ rule: terms can be written as intro-of-elim for their type

Intuitions

$$\left(\frac{\Gamma, x: \rhd A \vdash t: A}{\Gamma \vdash \mathsf{rec}(x.t): A}\right) \qquad \frac{? \vdash t: A}{\Gamma \vdash \mathsf{guard}(t): \rhd A} \qquad \frac{? \vdash t: \rhd A}{\Gamma \vdash \mathsf{open}(t): A}$$

• We ought to be able to write a simple β -rule: open(guard(t)) $\rightsquigarrow t$.

Intuitions

$$\left(\frac{\Gamma, x: \rhd A \vdash t: A}{\Gamma \vdash \mathsf{rec}(x.t): A}\right) \qquad \frac{\Gamma? \vdash t: A}{\Gamma \vdash \mathsf{guard}(t): \rhd A} \qquad \frac{\Gamma? \vdash t: \rhd A}{\Gamma \vdash \mathsf{open}(t): A}$$

• We ought to be able to write a simple β -rule: open(guard(t)) $\rightsquigarrow t$.

• Can we pick the same context in the premises and in the conclusion?

Intuitions

$$\left(\frac{\Gamma, x : \rhd A \vdash t : A}{\Gamma \vdash \mathsf{rec}(x.t) : A}\right) \qquad \frac{\Gamma? \vdash t : A}{\Gamma \vdash \mathsf{guard}(t) : \rhd A} \qquad \frac{\Gamma? \vdash t : \rhd A}{\Gamma \vdash \mathsf{open}(t) : A}$$

• We ought to be able to write a simple β -rule: open(guard(t)) $\rightsquigarrow t$.

• Can we pick the same context in the premises and in the conclusion? No.

 $fun(x.open(x)) \not \rhd A \to A \qquad rec(x.open(x)) \not \mathsf{Str Bool}$

Intuitions

$$\left(\frac{\Gamma, x: \rhd A \vdash t: A}{\Gamma \vdash \mathsf{rec}(x.t): A}\right) \qquad \frac{? \vdash t: A}{\Gamma \vdash \mathsf{guard}(t): \triangleright A} \qquad \frac{? \vdash t: \triangleright A}{\Gamma \vdash \mathsf{open}(t): A}$$

• We ought to be able to write a simple β -rule: open(guard(t)) $\rightsquigarrow t$.

• Can we pick the same context in the premises and in the conclusion? No.

$$fun(x.open(x)) \not \rhd A \to A \qquad rec(x.open(x)) \not \mathsf{Str Bool}$$

■ We need to be able to write interesting terms, e.g.,

 $\begin{aligned} \mathsf{delay} &\coloneqq \mathsf{fun}(x.\mathsf{guard}(x)) : A \to \triangleright A \\ &\circledast \coloneqq \mathsf{fun}(f.\mathsf{fun}(x.\mathsf{guard}(\mathsf{open}(f)\,\mathsf{open}(x)))) : \triangleright (A \to B) \to \triangleright A \to \triangleright B \end{aligned}$

Intuitions

$$\left(\frac{\Gamma, x : \rhd A \vdash t : A}{\Gamma \vdash \mathsf{rec}(x.t) : A}\right) \qquad \qquad \frac{\textcircled{}}{\Gamma \vdash \mathsf{guard}(t) : \rhd A} \qquad \qquad \frac{\textcircled{}}{\Gamma \vdash \mathsf{open}(t) : A}$$

• We ought to be able to write a simple β -rule: open(guard(t)) $\rightsquigarrow t$.

• Can we pick the same context in the premises and in the conclusion? No.

 $fun(x.open(x)) \not \rhd A \to A \qquad rec(x.open(x)) \not \mathsf{Str Bool}$

■ We need to be able to write interesting terms, e.g.,

 $\begin{aligned} \mathsf{delay} &\coloneqq \mathsf{fun}(x.\mathsf{guard}(x)) : A \to \triangleright A \\ & \circledast \coloneqq \mathsf{fun}(f.\mathsf{fun}(x.\mathsf{guard}(\mathsf{open}(f)\,\mathsf{open}(x)))) : \triangleright (A \to B) \to \triangleright A \to \triangleright B \end{aligned}$

A simple scope discipline

The term t in open(t) loses access to the variables bound after the last guard(-).

More formally

Definition (Typing contexts and un/locking)

- Contexts Γ map variables $x \in dom(\Gamma)$ to a type $\Gamma(x)$.ty and a *depth* $\Gamma(x)$.d.
- The operation decreases the depth of every positive-depth variable and removes variables at depth zero.

$$\frac{x \in \operatorname{dom}(\Gamma)}{\Gamma \vdash x : \Gamma(x).\operatorname{ty}} \cdots \frac{\Gamma, x : \triangleright A \vdash t : A}{\Gamma \vdash \operatorname{rec}(x.t) : A} \frac{\Gamma \vdash t : \operatorname{Str} A}{\Gamma \vdash \operatorname{head}(t) : A} \frac{\Gamma \vdash t : \operatorname{Str} A}{\Gamma \vdash \operatorname{tail}(t) : \triangleright \operatorname{Str} A}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : u : \triangleright \operatorname{Str} A} \frac{\Box \Gamma \vdash t : A}{\Gamma \vdash \operatorname{guard}(t) : \triangleright A} \frac{\Box \Gamma \vdash t : \triangleright A}{\Gamma \vdash \operatorname{open}(t) : A}$$

Remark for the categorically-minded
Categorically,
$$\square \dashv \square : \mathbb{C} \to \mathbb{C}$$
 where \mathbb{C} is the category of contexts and renamings.

Substitution

Writing $Te(\Gamma; A)$ for $\{t \mid \Gamma \vdash t : A\}$, the set of substitutions from Γ to Δ is

$$\mathsf{Sub}(\Delta\,;\Gamma) \coloneqq \prod_{x\in\mathsf{dom}(\Gamma)}\mathsf{Te}(\textbf{G}^{\Gamma(x).\mathsf{d}}\Delta\,;\Gamma(x).\mathsf{ty}).$$

Substitution

Writing $Te(\Gamma; A)$ for $\{t \mid \Gamma \vdash t : A\}$, the set of substitutions from Γ to Δ is

$$\mathsf{Sub}(\Delta\,;\Gamma)\coloneqq \prod_{x\in\mathsf{dom}(\Gamma)}\mathsf{Te}(\textbf{G}^{\Gamma(x).\mathsf{d}}\Delta\,;\Gamma(x).\mathsf{ty}).$$

Locking and unlocking should act on substitutions, sending $\sigma \in \mathsf{Sub}(\Gamma; \Delta)$ to

$$\mathbf{\hat{e}} \sigma \qquad \in \mathsf{Sub}(\mathbf{\hat{e}} \Gamma; \mathbf{\hat{e}} \Delta) \\ \mathbf{\hat{e}} \sigma \qquad \in \mathsf{Sub}(\mathbf{\hat{e}} \Gamma; \mathbf{\hat{e}} \Delta)$$

Substitution

Writing $Te(\Gamma; A)$ for $\{t \mid \Gamma \vdash t : A\}$, the set of substitutions from Γ to Δ is

$$\mathsf{Sub}(\Delta\,;\Gamma)\coloneqq \prod_{x\in\mathsf{dom}(\Gamma)}\mathsf{Te}(\textbf{G}^{\Gamma(x).\mathsf{d}}\Delta\,;\Gamma(x).\mathsf{ty}).$$

Locking and unlocking should act on substitutions, sending $\sigma \in \mathsf{Sub}(\Gamma; \Delta)$ to

$$\mathbf{\Delta} \sigma \qquad \in \mathsf{Sub}(\mathbf{\Delta} \Gamma; \mathbf{\Delta} \Delta) = \mathsf{Sub}(\Gamma; \Delta)$$
$$\mathbf{\Delta} \sigma \qquad \in \mathsf{Sub}(\mathbf{\Delta} \Gamma; \mathbf{\Delta} \Delta)$$

Substitution

Writing $Te(\Gamma; A)$ for $\{t \mid \Gamma \vdash t : A\}$, the set of substitutions from Γ to Δ is

$$\mathsf{Sub}(\Delta\,;\Gamma)\coloneqq \prod_{x\in\mathsf{dom}(\Gamma)}\mathsf{Te}(\textbf{G}^{\Gamma(x).\mathsf{d}}\Delta\,;\Gamma(x).\mathsf{ty}).$$

Locking and unlocking should act on substitutions, sending $\sigma\in\mathsf{Sub}(\Gamma\,;\Delta)$ to

$$\begin{aligned} & \mathbf{\Delta} \, \sigma & \in \mathsf{Sub}(\mathbf{\Delta} \, \Gamma \, ; \mathbf{\Delta} \, \Delta) = \mathsf{Sub}(\Gamma \, ; \Delta) \\ & \quad \in \mathsf{Sub}(\mathbf{\Delta} \, \Gamma \, ; \mathbf{\Delta} \, \Delta) = \prod_{x \in \mathsf{dom}^+(\Gamma)} \mathsf{Te}(\mathbf{\Delta}^{\Gamma(x).\mathsf{d}} \Delta \, ; \Gamma(x).\mathsf{ty}) \end{aligned}$$

Substitution

Writing $Te(\Gamma; A)$ for $\{t \mid \Gamma \vdash t : A\}$, the set of substitutions from Γ to Δ is

$$\mathsf{Sub}(\Delta\,;\Gamma)\coloneqq \prod_{x\in\mathsf{dom}(\Gamma)}\mathsf{Te}(\textbf{G}^{\Gamma(x).\mathsf{d}}\Delta\,;\Gamma(x).\mathsf{ty}).$$

Locking and unlocking should act on substitutions, sending $\sigma\in\mathsf{Sub}(\Gamma\,;\Delta)$ to

$$\mathbf{\Delta} \sigma \coloneqq \sigma \in \mathsf{Sub}(\mathbf{\Delta} \Gamma; \mathbf{\Delta}) = \mathsf{Sub}(\Gamma; \Delta)$$
$$\mathbf{\Delta} \sigma \coloneqq \sigma|_{\mathsf{dom}^+(\Gamma)} \in \mathsf{Sub}(\mathbf{\Delta} \Gamma; \mathbf{\Delta}) = \prod_{x \in \mathsf{dom}^+(\Gamma)} \mathsf{Te}(\mathbf{\Delta}^{\Gamma(x).\mathsf{d}}\Delta; \Gamma(x).\mathsf{ty})$$

Substitution

Writing $\mathsf{Te}(\Gamma; A)$ for $\{t \mid \Gamma \vdash t : A\}$, the set of substitutions from Γ to Δ is

$$\mathsf{Sub}(\Delta\,;\Gamma)\coloneqq \prod_{x\in\mathsf{dom}(\Gamma)}\mathsf{Te}(\textbf{G}^{\Gamma(x).\mathsf{d}}\Delta\,;\Gamma(x).\mathsf{ty}).$$

Locking and unlocking should act on substitutions, sending $\sigma\in\mathsf{Sub}(\Gamma\,;\Delta)$ to

$$\mathbf{\Delta} \sigma \coloneqq \sigma \in \mathsf{Sub}(\mathbf{\Delta} \Gamma; \mathbf{\Delta}) = \mathsf{Sub}(\Gamma; \Delta)$$
$$\mathbf{\Delta} \sigma \coloneqq \sigma|_{\mathsf{dom}^+(\Gamma)} \in \mathsf{Sub}(\mathbf{\Delta} \Gamma; \mathbf{\Delta}) = \prod_{x \in \mathsf{dom}^+(\Gamma)} \mathsf{Te}(\mathbf{\Delta}^{\Gamma(x).\mathsf{d}}\Delta; \Gamma(x).\mathsf{ty})$$

Lemma (Weakening and substitution)

• Weakening: if $\Gamma \vdash t : A$ then $\square \Gamma \vdash t : A$. If $\square \Gamma \vdash t : A$ then $\Gamma \vdash t : A$.

Substitution: if $\Gamma \vdash t : A$ and $\sigma \in Sub(\Delta; \Gamma)$ then $\Delta \vdash t[\sigma] : A$.

Back to the interpretation in $\mathbf{Pr}(\omega)$

Interpreting typing contexts

- Define \lhd : $\mathbf{Pr}(\omega) \rightarrow \mathbf{Pr}(\omega)$ ("earlier") to be the functor $A \mapsto n \mapsto A_{n+1}$.
- \blacksquare A typing context Γ is interpreted in $\mathbf{Pr}(\omega)$ as the object

$$\llbracket \Gamma \rrbracket \coloneqq \prod_{\mathsf{x} \in \mathsf{dom}(\Gamma)} \triangleleft^{\Gamma(\mathsf{x}).\mathsf{d}} \llbracket \Gamma(\mathsf{x}).\mathsf{ty} \rrbracket.$$

Back to the interpretation in $\mathbf{Pr}(\omega)$

Interpreting typing contexts

- Define \lhd : $\mathbf{Pr}(\omega) \rightarrow \mathbf{Pr}(\omega)$ ("earlier") to be the functor $A \mapsto n \mapsto A_{n+1}$.
- \blacksquare A typing context Γ is interpreted in $\mathbf{Pr}(\omega)$ as the object

$$\llbracket \Gamma \rrbracket \coloneqq \prod_{x \in \mathsf{dom}(\Gamma)} \lhd^{\Gamma(x).\mathsf{d}} \llbracket \Gamma(x).\mathsf{ty} \rrbracket.$$

The functor \lhd is left adjoint to \triangleright .

$$((-)^{\sharp}, (-)_{\flat}) : \mathbf{Pr}(\omega)(-, \rhd =) \cong \mathbf{Pr}(\omega)(\lhd -, =)$$

We have $\llbracket \mathbf{A} \Gamma \rrbracket = \triangleleft \llbracket \Gamma \rrbracket$ as well as a canonical morphism $w_{\Gamma} : \llbracket \Gamma \rrbracket \to \triangleleft \llbracket \mathbf{A} \Gamma \rrbracket$.

Back to the interpretation in $\mathbf{Pr}(\omega)$

Interpreting typing contexts

- Define \lhd : $\mathbf{Pr}(\omega) \rightarrow \mathbf{Pr}(\omega)$ ("earlier") to be the functor $A \mapsto n \mapsto A_{n+1}$.
- \blacksquare A typing context Γ is interpreted in $\mathbf{Pr}(\omega)$ as the object

$$\llbracket \Gamma \rrbracket \coloneqq \prod_{\mathsf{x} \in \mathsf{dom}(\Gamma)} \lhd^{\Gamma(\mathsf{x}).\mathsf{d}} \llbracket \Gamma(\mathsf{x}).\mathsf{ty} \rrbracket.$$

The functor \lhd is left adjoint to \triangleright .

$$((-)^{\sharp}, (-)_{\flat}) : \mathbf{Pr}(\omega)(-, \rhd =) \cong \mathbf{Pr}(\omega)(\lhd -, =)$$

We have $\llbracket \mathbf{A} \Gamma \rrbracket = \triangleleft \llbracket \Gamma \rrbracket$ as well as a canonical morphism $w_{\Gamma} : \llbracket \Gamma \rrbracket \to \triangleleft \llbracket \mathbf{A} \Gamma \rrbracket$.

Interpreting terms

$$\left[\!\left[\frac{\textcircled{}{}\Gamma\vdash t:A}{\Gamma\vdash \mathsf{guard}(t):\triangleright A}\right]\!\right] = \left[\!\left[\textcircled{}{}\Gamma\vdash t:A\right]\!\right]_{\flat} \qquad \left[\!\left[\frac{\textcircled{}{}\Gamma\vdash t:\triangleright A}{\Gamma\vdash \mathsf{open}(t):A}\right]\!\right] = \mathsf{w}_{\Gamma} ; \left[\!\left[\textcircled{}{}\square\Gamma\vdash t:\triangleright A\right]\!\right]^{\sharp}$$

Atomic β reduction

$$t \rightsquigarrow t'$$

$$\begin{array}{ccc} \operatorname{app}(\operatorname{fun}(x.t), u) \rightsquigarrow t[x/u] & (1) \\ f(b \in \{\operatorname{tt}, \operatorname{ff}\}, t_{\operatorname{tt}}, t_{\operatorname{ff}}) \rightsquigarrow t_b & (2) \\ & \operatorname{head}(t::u) \rightsquigarrow t & (3) \\ & \operatorname{tail}(t::u) \rightsquigarrow u & (4) \\ & \operatorname{rec}(x.t) \rightsquigarrow t[\operatorname{guard}(\operatorname{rec}(x.t))/x] & (5) \\ & \operatorname{open}(\operatorname{guard}(t)) \rightsquigarrow t & (6) \end{array}$$

Atomic β reduction

$$t \rightsquigarrow t'$$

$$\begin{array}{ll} \operatorname{app}(\operatorname{fun}(x.t), u) \rightsquigarrow t[x/u] & (1) \\ \operatorname{if}(b \in \{\operatorname{tt}, \operatorname{ff}\}, t_{\operatorname{tt}}, t_{\operatorname{ff}}) \rightsquigarrow t_b & (2) \\ \operatorname{head}(t :: u) \rightsquigarrow t & (3) \\ \operatorname{tail}(t :: u) \rightsquigarrow u & (4) \\ \operatorname{rec}(x.t) \rightsquigarrow t[\operatorname{guard}(\operatorname{rec}(x.t))/x] & (5) \\ \operatorname{open}(\operatorname{guard}(t)) \rightsquigarrow t & (6) \end{array}$$

Lemma (Subject reduction, atomic case) If $\Gamma \vdash t : A$ and $t \rightsquigarrow t'$ then $\Gamma \vdash t' : A$.

The proof is the usual one, with clauses 5 and 6 relying on lock/unlock weakening.

Stratified β reduction

A *context* is a term with a unique occurrence of a formal "hole" denoted \Box .

 $Kx \ni K ::= \Box \mid app(K, u) \mid app(t, K) \mid fun(x.K) \mid \dots$

For every $K \in Kx$ and $n \in \omega$ we define K(n) as follows.

$$\Box(n) = n$$

guard(K)(n) = K(n + 1)
open(K)(n) = K(n - 1)
op(..., K,...)(n) = K(n) otherwise

Stratified β reduction

A *context* is a term with a unique occurrence of a formal "hole" denoted \Box .

 $Kx \ni K ::= \Box \mid \operatorname{app}(K, u) \mid \operatorname{app}(t, K) \mid \operatorname{fun}(x.K) \mid \dots$

For every $K \in Kx$ and $n \in \omega$ we define K(n) as follows.

$$\Box(n) = n$$

guard(K)(n) = K(n + 1)
open(K)(n) = K(n - 1)
op(..., K, ...)(n) = K(n) otherwise

We can define a family of reduction relations for each $m \in \omega + 1$.

$$\boxed{t \to_k t'} \qquad \qquad \frac{u \rightsquigarrow u' \quad K(0) < m}{K\{u\} \to_m K\{u'\}}$$

Lemma (Subject reduction)

If $\Gamma \vdash t : A$ and $t \rightarrow_m t'$ then $\Gamma \vdash t' : A$.

Classic results

Theorem

The relation \rightarrow_{ω} is confluent.

Proof.

By the method of Tait and Martin-Löf.

Classic results

Theorem

The relation \rightarrow_{ω} is confluent.

Proof. By the method of Tait and Martin-Löf.

Theorem (G., Tasson, Vienot)

The relations \rightarrow_m for $m < \omega$ are strongly normalizing.

Proof.

By a step-indexed adaptation of Girard's reducibility candidates.

(The theorem above has been proved for a slightly different variant of \rightarrow_{m} .)

Erasing the modality

Target language

• Let \mathscr{V} be *call-by-value* STLC with general rec. and $\operatorname{Str} A \cong A \times \operatorname{Unit} \to \operatorname{Str} A$.

$\Gamma, x: Unit \to A \vdash t: A$	$\Gamma \vdash t : A$	$\Gamma \vdash u : UnitStrA$	
$\Gamma \vdash rec(x.t) : A$	$\Gamma \vdash t :: u : Str A$		•••

■ Its model in **PCPO** [Amadio and Curien, 1998] is s.t. $[[Unit \rightarrow A]] \cong \uparrow [[A]]$.

Erasing the modality

Target language

• Let \mathscr{V} be *call-by-value* STLC with general rec. and $\operatorname{Str} A \cong A \times \operatorname{Unit} \to \operatorname{Str} A$.

$\Gamma, x: Unit \to A \vdash t: A$	$\Gamma \vdash t : A$	$\Gamma \vdash u : UnitStrA$	
$\Gamma \vdash rec(x.t) : A$	$\Gamma \vdash t :: u : Str A$		

■ Its model in **PCPO** [Amadio and Curien, 1998] is s.t. $[Unit \rightarrow A] \cong \uparrow [A]$.

Define an erasure function $\lceil - \rceil$ on types and terms.

$$\begin{bmatrix} \mathsf{Bool} \end{bmatrix} = \mathsf{Bool} \qquad \dots \\ \begin{bmatrix} \mathsf{Str} \ A \end{bmatrix} = \mathsf{Str} \begin{bmatrix} A \end{bmatrix} \qquad \begin{bmatrix} \mathsf{rec}(x.t) \end{bmatrix} = \mathsf{rec}(x.\lfloor t \rfloor) \\ \begin{bmatrix} A \to B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \to \begin{bmatrix} B \end{bmatrix} \qquad \begin{bmatrix} \mathsf{guard}(t) \end{bmatrix} = \mathsf{fun}(().\lfloor t \end{bmatrix}) \\ \begin{bmatrix} \triangleright \ A \end{bmatrix} = \mathsf{Unit} \to \begin{bmatrix} A \end{bmatrix} \qquad \begin{bmatrix} \mathsf{open}(t) \end{bmatrix} = \lfloor t \rfloor ()$$

Erasing the modality

Target language

• Let \mathscr{V} be *call-by-value* STLC with general rec. and $\operatorname{Str} A \cong A \times \operatorname{Unit} \to \operatorname{Str} A$.

$\Gamma, x: Unit \to A \vdash t: A$	$\Gamma \vdash t : A$	$\Gamma \vdash u : \operatorname{Unit} \operatorname{Str} A$	
$\Gamma \vdash rec(x.t) : A$	$\Gamma \vdash t :: u : Str A$		

■ Its model in **PCPO** [Amadio and Curien, 1998] is s.t. $[Unit \rightarrow A] \cong \uparrow [A]$.

Define an erasure function $\lceil - \rceil$ on types and terms.

 $\begin{bmatrix} \mathsf{Bool} \end{bmatrix} = \mathsf{Bool} \qquad \dots \\ \begin{bmatrix} \mathsf{Str} \ A \end{bmatrix} = \mathsf{Str} \begin{bmatrix} A \end{bmatrix} \qquad \begin{bmatrix} \mathsf{rec}(x.t) \end{bmatrix} = \mathsf{rec}(x.\lfloor t \rfloor) \\ \begin{bmatrix} A \to B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \to \begin{bmatrix} B \end{bmatrix} \qquad \begin{bmatrix} \mathsf{guard}(t) \end{bmatrix} = \mathsf{fun}(().\lfloor t \rrbracket) \\ \begin{bmatrix} \triangleright \ A \end{bmatrix} = \mathsf{Unit} \to \begin{bmatrix} A \end{bmatrix} \qquad \begin{bmatrix} \mathsf{open}(t) \end{bmatrix} = \lfloor t \rfloor () \end{aligned}$

Theorem (G., Jafarrahmani, Tasson) If t :Str Bool then $\lceil t \rceil$ has the same elements as t. In particular, $\lceil t \rceil$ is productive.

Outline

1 Introduction

2 A nonstrict stream language

- Syntax and execution
- Modeling nonstrict streams

3 Synchrony in the topos of trees

- From orders to presheaves
- Back to syntax

4 Perspectives

- Limitations
- Conclusion

Results

 ${\mathscr S}$ is the simplest interesting guarded language I can think of.

Disappointment

 $\ensuremath{\mathscr{S}}$ is unsatisfactory compared to existing synchronous or guarded languages.

What is lacking or unpleasant in \mathscr{S} ?

Failure of confluence in ${\mathscr S}$

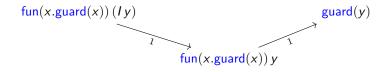
The reduction relations \rightarrow_k for $0 < k < \omega$ fail to be confluent. Witness, for k = 1:

fun(x.guard(x))(Iy)

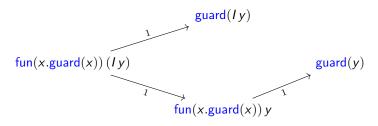
Failure of confluence in ${\mathscr S}$

fun(x.guard(x))(Iy)ī fun(x.guard(x)) y

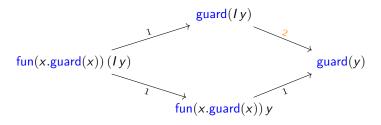
Failure of confluence in ${\mathscr S}$



Failure of confluence in ${\mathscr S}$



Failure of confluence in ${\mathscr S}$



 \triangleright is not enough One can write simple synchronous functions in $\mathscr{S}.$

```
nots : Str Bool \rightarrow Str Bool
nots := rec(F.fun(xs.app(notb, head(xs))::(F \circledast tail(xs))))
```

However, some very reasonable functions cannot be written.

 $ands \coloneqq rec(F.fun(xs.app(and1, xs)::app(F, tail(tail(xs)))))$ $stut \coloneqq rec(F.fun(xs.head(xs)::head(xs)::app(F, tail(xs))))$

Worse from a synchronous perspective, mutual recursion is rejected as well!

 $\begin{array}{ll} \textit{natpos}: \mathsf{Str}\,\mathsf{Nat}\,\times\,\mathsf{Str}\,\mathsf{Nat} & (*\,\textit{In}\,\,\mathscr{L}!\,*)\\ \textit{natpos}:=\mathsf{rec}(\mathsf{NP}.\langle 0\!:\!:\,\mathsf{proj}_2(\mathsf{NP}),\mathsf{app}(\mathsf{sucs},\mathsf{proj}_1(\mathsf{NP}))\rangle) \end{array}$

A possible solution (G. [2018])

Add new modalities beyond \triangleright , corresponding to other time transforms.

Simple types are not enough

The historical interest in guarded recursion from the type-theoretical side was to replace the positivity criterion used in proof assistants (see Damien's lecture).

Several authors [Birkedal et al., 2012, Birkedal and Møgelberg, 2013, Bizjak et al., 2016, Bahr et al., 2017, Gratzer, 2025, ...] have developed dependent type theories featuring "later"-like modalities.

Daniel will touch upon this line of work in his lecture.

Outline

1 Introduction

2 A nonstrict stream language

- Syntax and execution
- Modeling nonstrict streams

3 Synchrony in the topos of trees

- From orders to presheaves
- Back to syntax

4 Perspectives

- Limitations
- Conclusion

Conclusion

Summary

- \blacksquare Start from a run-of-the-mill nonstrict language $\mathscr L$ with streams.
- Build a very classic denotational semantics, with synchrony in mind.
- Contrast this model with a category where all maps are synchronous.
- \blacksquare Transfer back features from the latter to the syntax, obtaining $\mathscr{S}.$

Some open questions

- What is the relationship between general and guarded recursion?
 - \blacksquare Study functors between $\mathbf{Pr}(\omega)$ and some well-chosen category of domains.
- Can we have a proper λ -calculus with guarded recursion?
 - Make \rightarrow_k confluent for all k.
 - $\blacksquare Make \rightarrow_{\omega} strongly normalizing via infinitary rewriting?$
- Design a similar calculus for other temporal modalities.

References I

- R. Amadio and P. Curien. *Domains and Lambda-Calculi*. Cambridge University Press, 1998.
- P. Bahr, H. Bugge Grathwohl, and R. E. Møgelberg. The Clocks Are Ticking: No More Delays! Reduction Semantics for Type Theory with Guarded Recursion. In Logic in Computer Science (LICS'17). Springer, 2017. URL http://www.itu.dk/people/mogel/papers/lics2017.pdf.
- L. Birkedal and R. E. Møgelberg. Intensional Type Theory with Guarded Recursive Types qua Fixed Points on Universes. 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, 6 2013. doi: 10.1109/lics.2013.27. URL http://www.itu.dk/people/mogel/papers/lics2013.pdf.
- L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring. First steps in synthetic guarded domain theory: step-indexing in the topos of trees. *Logical Methods in Computer Science*, 8(4), 2012. URL https://arxiv.org/pdf/1208.3596.pdf.
- A. Bizjak, H. Bugge Grathwohl, R. Clouston, R. E. Møgelberg, and L. Birkedal. Guarded Dependent Type Theory with Coinductive Types. In Foundations of Software Science and Computation Structures (FoSSaCS'16). Springer, 2016. URL https://arxiv.org/pdf/1601.01586v1.

References II

- P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE: A declarative language for programming synchronous systems. In *Principles of Programming Languages (POPL'87)*, 1987. URL http://www-verimag.imag.fr/~halbwach/SCAN/lustre-popl87.pdf.
- R. Clouston. Fitch-Style Modal Lambda Calculi. In Foundations of Software Science and Computation Structures (FoSSaCS'18), 2018. URL https://arxiv.org/pdf/1710.08326.
- C. Elliott and P. Hudak. Functional Reactive Animation. In International Conference on Functional Programming (ICFP'97). ACM, 1997. URL http://conal.net/papers/icfp97/icfp97.pdf.
- D. Gratzer. A modal deconstruction of löb induction. *Proc. ACM Program. Lang.*, 9(POPL):864–892, 2025. doi: 10.1145/3704866. URL https://doi.org/10.1145/3704866.
- A. Guatto. A Synchronous Functional Language with Integer Clocks. PhD thesis, École normale supérieure, 2016. URL http://www.di.ens.fr/~guatto/papers/thesis_guatto.pdf.

References III

- A. Guatto. A Generalized Modality for Recursion. In Logic in Computer Science (LICS'18), 2018. URL https://arxiv.org/pdf/1805.11021.
- H. Huwig and A. Poigné. A note on inconsistencies caused by fixpoints in a cartesian closed category. *Theoretical Computer Science*, 73(1):101–112, 1990. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(90)90165-E. URL https:

//www.sciencedirect.com/science/article/pii/030439759090165E.

- G. Kahn. The semantics of a simple language for parallel programming. In Information Processing Congress (IFIP'74). IFIP, 1974. URL https: //www.cs.princeton.edu/courses/archive/fall07/cos595/kahn74.pdf.
- H. Nakano. A Modality for Recursion. In *Logic in Computer Science (LICS'00)*. IEEE, 2000. URL http:

//www602.math.ryukoku.ac.jp/~nakano/papers/modality-lics00.ps.

M. Pouzet. Lucid Synchrone: un langage synchrone d'ordre supérieur, 11 2002. URL

https://www.di.ens.fr/~pouzet/bib/habilitation-pouzet02.ps.gz. Habilitation à diriger des recherches. Appendix

Mapping the CPO landscape

Category	Pointed?	Strict?	CCC?	Fixpoints?	Coproducts?
СРО	N	Ν	Y	N	Y
PCPO/CPO ↑	Y	Y	N	Y*	Y
PCPO [↑]	Y	Ν	Y	Y	Ν

*: "lift-guarded" fixpoints, in the sense that $fix_A : (\uparrow A \to A) \to A$.

Huwig and Poigné [1990]'s incompatibility result

A CCC w/ coproducts and general fixpoints is equivalent to the terminal category.

Proof of the uniqueness of the Löb fixed-point

Recall that given $f: \triangleright A \to A$, the map $fix(f): 1 \to A$ is defined as

$$fix(f)_n: \{*\} \to A(n) = \begin{cases} f_0 & \text{if } n = 0\\ f_n \circ fix(f)_{n-1} & \text{if } n > 0. \end{cases}$$

Show that every $g : 1 \to A$ satisfying $g = f \circ \text{delay} \circ g$ is fix(f) by induction.

- Case n = 0: immediate since $(delay \circ g)_n = !$.
- Case n > 0: we have $g_n = f_n \circ r_{n-1}^A \circ g_n$ $= f_n \circ g_{n-1} \circ r_n^A$ (naturality) $= f_n \circ fix(f)_{n-1} \circ r_n^A$ (I. H.) $= f_n \circ r_n^A \circ fix(f)_n$ (naturality) $= fix(f)_n$.

Contexts and renaming for the Fitch-style syntax The set of types Ty is given by Ty $\ni A, B ::= \text{Bool} | A \rightarrow B | \text{Str} A | \triangleright A$.

Definition (The category \mathbb{C} of contexts and renamings)

• Objects are finite families $\Gamma = (\operatorname{dom}(\Gamma) : \operatorname{FinSet}, \underline{\Gamma} : \operatorname{dom}(\Gamma) \to \operatorname{Ty} \times \omega).$

Morphisms are type-preserving, non-depth-decreasing maps

 $\mathbb{C}(\Gamma\,;\Delta) \coloneqq \{\rho: \mathsf{dom}(\Gamma) \to \mathsf{dom}(\Delta) \mid \forall x \in \mathsf{dom}(\Gamma), \underline{\Gamma}(x) \leq \underline{\Delta}(\rho(x)) \}.$

Contexts and renaming for the Fitch-style syntax The set of types Ty is given by Ty $\ni A, B ::= \text{Bool} | A \rightarrow B | \text{Str} A | \triangleright A$.

Definition (The category \mathbb{C} of contexts and renamings)

• Objects are finite families $\Gamma = (\operatorname{dom}(\Gamma) : \operatorname{FinSet}, \underline{\Gamma} : \operatorname{dom}(\Gamma) \to \operatorname{Ty} \times \omega).$

Morphisms are type-preserving, non-depth-decreasing maps

 $\mathbb{C}(\Gamma\,;\Delta):=\{\rho:\mathrm{dom}(\Gamma)\to\mathrm{dom}(\Delta)\mid\forall x\in\mathrm{dom}(\Gamma),\underline{\Gamma}(x)\leq\underline{\Delta}(\rho(x))\}.$

Given Γ in $obj(\mathbb{C})$, write:

- dom⁺(Γ) for { $x \in dom(\Gamma) \mid \Gamma(x).d > 0$ },
- for $f: \omega \to \omega$ monotone, set dom $(f_*\Gamma) \coloneqq \text{dom}(\Gamma)$ and $f_*\Gamma(x) \coloneqq (id \times f) \circ \underline{\Gamma}$.

Definition (The locking and unlocking functors)

Define two functors $\square, \square : \mathbb{C} \to \mathbb{C}$ by their actions on objects. $\square \Gamma := (+1)_* \Gamma \qquad \square \Gamma := (\mathsf{dom}^+(\Gamma), (-1)_* \Gamma)$

Their action on morphisms is morally the identity.

No resource guarantees

Synchronous languages such as Lustre compile to finite state machines.

$$A \rightarrow_{sync} B \longrightarrow \sum_{S:\mathbf{FinSet}} (S \times (\partial A \times S \rightarrow \partial B \times S))$$

The input and output "alphabets" ∂A and ∂B should arguably be finite.

However, types such as Str Str Bool seem to be intrinsically non-real-time.

$$\partial \operatorname{Str} \operatorname{Str} \operatorname{Bool}_n \cong \sum_{\mathsf{xs}: \operatorname{Str} \operatorname{Str} \operatorname{Bool}_n} \{\mathsf{xs}' \in \operatorname{Str} \operatorname{Str} \operatorname{Bool}_{n+1} | \mathsf{xs} = \operatorname{delay}(\mathsf{xs}')_n \}$$
$$\cong \mathbb{B}^n$$

It should however be possible to adapt the state-passing transform to the general guarded-recursive setting, and to reject non-finite-state programs.