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Infinite streams in functional programming
Streams as first-class interactions [Kahn, 1974]

Use streams to represent and manipulate entire, infinite histories of events
happening over the unending execution of a program.
Transfer the benefits of functional programming, such as equational
reasoning, to new application domains beyond symbolic computation.

This idea has (re)appeared and been put into use several times:
for interactive programs, e.g., GUIs, servers, and games

functional reactive programming [Elliott and Hudak, 1997] in Haskell
for reactive programs, e.g., real-time control programs

dedicated synchronous languages such as Lustre [Caspi et al., 1987]
All of these expose fixpoint operators rather than primitive (co)recursion.

Important questions in safety-critical settings
Productivity: reject unsound cyclic definitions

(focus of this lecture)

Real-time implementations: bounded in time and space
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From synchronous languages to synchrony

Stream functions
Aω → Bω

Transducers∑
S:FinSet(S × (A× S → B × S))

[Kahn, 1974]
model

[Caspi et al., 1987]
compile

Design and study of functional languages compiling to state machines
Programs have to satisfy specific properties, such as synchrony
Strongly related to guarded recursion: guarded calculi are all (?) synchronous

Definition (Synchrony, informal and intuitive)
A stream function f is synchronous when xs|n = ys|n =⇒ f (xs)|n = f (ys)|n.
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This lecture
A language-oriented reconstruction of guarded recursion starting from

types↔ partial orders
nonstrict programs↔ monotone maps

A model of a guarded variant of synchronous functional programming

types↔ trees
synchronous functions↔ height-preserving tree maps

A syntax suggested by the model.

Inspirations
Birkedal et al. [2012], Pouzet [2002], G. [2016, 2018], Clouston [2018], others.

Caveat
This is a specific view of guarded recursion, coming from programming languages.
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2 A nonstrict stream language
Syntax and execution
Modeling nonstrict streams

3 Synchrony in the topos of trees
From orders to presheaves
Back to syntax

4 Perspectives
Limitations
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A nonstrict stream language
Syntax of L

x : A ∈ Γ

Γ ` x : A
Γ, x : A ` t : B

Γ ` fun(x .t) : A→B
Γ ` t : A→B Γ ` u : A

Γ ` app(t, u) : B

(Γ ` ti : Ai)i∈{1,2}

Γ ` 〈t1, t2〉 : A1×A2

Γ ` t : A1×A2

Γ ` proji∈{1,2}(t) : Ai Γ ` tt, ff : Bool

Γ ` t : Bool Γ ` u : A Γ ` s : A
Γ ` if(t, u, s) : A

Γ, x : A ` t : A
Γ ` rec(x .t) : A

Γ ` t : Str A
Γ ` head(t) : A

Γ ` t : Str A
Γ ` tail(t) : Str A

Γ ` t : A Γ ` u : Str A
Γ ` t : : u : Str A
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A nonstrict stream language
Reduction for L

V ::= fun(x .t) | 〈t1, t2〉 | tt | ff | V : : t
E ::= � | app(E , u) | proji(E) | if(E , u, s) | E : : t | head(E) | tail(E)

app(fun(x .t), u) t[u/x ]
proji(〈t1, t2〉) ti

if(tt, u, s) u
if(ff, u, s) s
rec(x .t) t[rec(x .t)/x ]

head(V : : t) V
tail(V : : t) t

u  u′

E{u} → E{u′}

Summary
A λ-calculus with call-by-name semantics, except for streams which are left-strict.
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A nonstrict stream language
Basic metatheory

Lemma (Determinism)
If t → t1 and t → t2 then t1 = t2.

Lemma (Subject reduction)
If Γ ` t : A and t → t′ then Γ ` t′ : A.

Write t ↑ when there exists (ti)i∈ω with ti → ti+1 and t0 = t.

Lemma (Type safety)
If Γ ` t : A then either t ↑ or t →∗ V 6→.
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A nonstrict stream language
Productivity

tail0(t) := t tailm+1(t) := tail(tailm(t))

Definition
A term t : Str A is productive up to n ≤ ω when tailm(t) converges to a value for
all m < n. It is productive when it is productive up to ω.

The terms ffs and tts below are productive.

ffs := rec(xs.ff : : xs) : Str Bool
notb := fun(x.if(x, ff, tt)) : Bool→Bool
nots := rec(F.fun(xs.app(notb, head(xs)) : : app(F, tail(xs)))) : Str Bool→Str Bool

tts := app(nots,ffs) : Str Bool

11 / 54



A nonstrict stream language
Productivity and time

Here are two non-productive terms, not even productive up to 1.

loop := rec(xs.xs) : Str Bool
weird := rec(xs.head(tail(xs)) : : (tt : : xs)) : Str Bool

The case of weird is the most interesting one.

tail0(weird)
→ weird
→ head(tail(weird)) : : (tt : : weird)
→ head(tail(head(tail(weird)) : : (tt : : weird))) : : (tt : : weird)
→ . . .

The reduction of streams reflects the temporal intuition of Kahn [1974].
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A nonstrict stream language
Synchrony

Definition (Synchrony, formal)
A term t : Str A→Str A is synchronous when, for all u : Str A and n ≤ ω, u
productive up to n implies app(t, u) productive up to n.

The term nots is synchronous, ands is not, stut imprecisely so.
nots := rec(F.fun(xs.app(notb, head(xs)) : : app(F, tail(xs)))) : Str Bool→ Str Bool

andb := fun(x.fun(y.if(x, if(y, tt, ff), ff))) : Bool→Bool→Bool
and1 := fun(xs.app(app(andb, head(xs)), head(tail(xs)))) : Str Bool→Bool
ands := rec(F.fun(xs.app(and1, xs) : : app(F, tail(tail(xs))))) : Str Bool→ Str Bool
stut := rec(F.fun(xs.head(xs) : : head(xs) : : app(F, tail(xs)))) : Str Bool→ Str Bool

Remark
Synchrony is a stronger condition than totality: to be total at
type Str Bool→Str Bool a term is only required to preserve productivity at ω.
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A nonstrict stream language
Approximation and equivalence

Let Γ ` t, u : A.

Definition (Approximation)
We say that t approximates u, denoted Γ ` t vobs u : A, when

∀(� : (Γ ` A) ` K : ( ` Bool)),K{t} →∗ tt⇒ K{u} →∗ tt.

Definition (Equivalence)
We say that t is equivalent to u, denoted Γ ` t ≡obs u : A, when

Γ ` t vobs u : A and Γ ` t vobs u : A.

Difficulties
The unwieldy nature of these definitions can motivate the study of models.
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A model for L
Setting

A model of L is a category C together with
for each type A or context Γ, an object JAK or JΓK of C
for each term Γ ` t : A, a morphism JtK : JΓK→ JAK of C

In addition, J−K should be functorial, i.e., commute with substitution.

Official goals: soundness and adequacy
For all Γ ` t, u : A, we expect the model to verify

soundness: if t → u then JtK = JuK, and
adequacy: if JtK = JuK then Γ ` t ≡obs u : A.

Actual goal: insight
We are looking for an analysis of the language grounded in the model.
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A model for L
Requirements

The model must have enough structure to interpret L , mostly:
1 function types with currying and evaluation, i.e., cartesian closure,
2 a fixpoint operator at each type to interpret recursion,
3 an interpretation of recursive types to model streams.

Those classic requirements lead us to various kinds of partial orders.

I will omit much of the details and focus on building intuitions at this stage.
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A model for L
The categories CPO and PCPO

Definition
A poset P is complete when all suprema of directed sets exist.
It is pointed when it has a least element, denoted ⊥P or ⊥.

Definition
Let P ,Q be complete posets. Then f : P → Q is Scott-continuous when:∨

f (D) = f
(∨

D
)

for all D ⊆ P directed.

In addition, if P and Q are furthermore pointed, f is strict when f (⊥) = ⊥.

Complete posets and Scott-continuous maps form a category CPO.
Pointed complete posets and strict Scott-cont. maps form a category PCPO.
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A model for L
Type formers in PCPO

The category PCPO is closed under various type formers, including:
cartesian products P × Q, ordered componentwise;
smashed products P ⊗ Q, obtained by identifying ⊥P and ⊥Q ;
strict function types P→s Q, ordered pointwise;
lifting ↑P , adding a new least element to P ;
unit I, the one-element pcpo, neutral for both ⊗ and ×;
etc.

Remark
The object I is both terminal and initial in PCPO. I will write ιP : I → P
and πP : A→ P , or simply ι and π, for the corresponding unique maps.
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A model for L
Lifting

Given a cpo A, we define a pcpo ↑A as follows.

El(↑A) = {〈x〉 | x ∈ El(A)} ∪ {〈 〉}
〈 〉 ≤↑ A α

x ≤A x ′

〈x〉 ≤↑ A 〈x ′〉

Visually:

A

〈 〉

Remark for the categorically-minded
The endofunctor ↑ of CPO can be given the structure of a monad (↑, η, µ).
The category PCPO is (equivalent to) the Eilenberg-Moore category CPO↑.
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A model for L
Cartesian and smash product

Given two pcpos P and Q, define their cartesian products P × Q as for posets.

El(P × Q) = El(P)× El(Q)
x ≤P x ′ y ≤Q y ′

(x , y) ≤P×Q (x ′, y ′)

The smash product of pcpos P and Q, is the pcpo P ⊗ Q := ↑(↓P × ↓Q).
Here ↓X is the sub-cpo of X formed of non-⊥ elements.
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A model for L
Recursion in PCPO

Theorem (Kleene, Scott)
Every map f : ↑A→s A of PCPO has a least “fixpoint” given by

fix(f ) =
⊔

iter where iter : ω → A = n 7→
{
⊥ if n = 0

f (〈iter(n − 1)〉) otherwise.

By “fixpoint” we mean that it satisfies f (〈fix(f )〉) = fix(f ).

Theorem (Scott, Adámek…)
Every “continuous” functor F : PCPO→ PCPO has an initial algebra

FIX(F ) = lim←− ITER+

where ITER+ : ω → PCPO is the diagram below.

I F (I) F 2(I) F 3(I) . . .
ι F(ι) F2(ι)
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A model for L
Constructing boolean streams in PCPO

The object JStr BoolK can be constructed as the initial algebra of

F : PCPO→ PCPO
F (A) = JBoolK⊗ ↑A

= ↑B⊗ ↑A
= ↑(B× A).

Iterating this functor gives rise to the diagram below, up to A× I ∼= A.

I ↑B ↑(B× ↑B) ↑(B× ↑(B× ↑B)) . . .
ι F(ι) F2(ι)

Thus, F n(I) consists in words of length at most n ordered by prefix, connected by
what ought to be thought of as inclusion maps.

Difficulty
This colimit in PCPO is not so easy to present explicitly.
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A model for L
An alternative construction

For general reasons, it is equivalent to consider the diagram ITER− below

I ↑B ↑(B× ↑B) ↑(B× ↑(B× ↑B)) . . .
π F(π) F2(π)

and compute its limit, which is easier to describe explicitly.

El(JStr BoolK) =
{∏

n<ω

F n(I)

∣∣∣∣∣ ∀n < ω,F n(p)(xn+1) = xn

}
.

The coherence requirement force the sequences to be strictly-increasing up to the
point at which they become constant (if ever). This is isomorphic to

JStr BoolK := (B∗ ∪ Bω,v) where u v v iff u is a prefix of v .

Remark
Divergence arises from the fact that F n(I) contains words of length ≤ n.
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A model for L
Time and streams

So, streams are “recursive left-strict pairs,” à la Kahn [1974].

JStr AK ∼= JAK⊗ ↑JStr AK

But the temporal intuition breaks down quickly, e.g., JStr Str BoolK contains

((b0
0 , (b0

1 , (b0
2 ,⊥))), ((b1

0 ,⊥), ((b2
0 , (b2

1 ,⊥)),⊥)))

where clearly the “degrees of productivity” are almost unrelated.

Observation
Synchrony would require a much “stricter” notion of cartesian product.
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A model for L
Time and continuous maps

As expected, most continuous maps are not synchronous, e.g., ands.

⊥

tt

(tt, tt)(tt,ff)

ff

(ff , tt)(ff ,ff)

⊥

tt

(tt, tt)(tt,ff)

ff

(ff , tt)(ff ,ff)

This is by design since PCPO models general recursion.
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A model for L
Putting it all together

J_K : L → PCPO
JBoolK = ↑B

JA×BK = JAK× JBK
JA→BK = ↑JAK→sJBK
JStr AK = JAK⊗ ↑JStr AK

The interpretation map

J_K : L (Γ,A)→ PCPO(↑JΓK, JAK)

interprets L into the Kleisli category PCPO↑ of the lift comonad on PCPO.

Observation
The syntax does not have to mention ↑, thanks to forceA : ↑A→ A in particular.
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Towards the topos of trees
Inadequacies of PCPO

Summing up the inadequacies of PCPO from our perspective:
1 Scott-continuous stream functions are obviously not synchronous (nor total),
2 the definition of streams is not “right” one, beyond scalars.

These problems stem from the interpretations of → and ⊗/×, respectively.

A possible solution
Refine the base model with a logical relation [G., 2016].

The rest of this lecture
Describe a model whose objects have an intrinsic temporal character.
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Towards the topos of trees
Streams without limits

Let us go back to streams computed as the limit of the diagram below.

I ↑B ↑(B× ↑B) ↑(B× ↑(B× ↑B)) . . .
π F(π) F2(π)

We remove words of length < n at stage n. The ordering becomes useless.

1 B B× B (B× B)× B . . .
! π1 π1

The limit of this diagram in Set is Bω, losing all temporal information.

Key idea
Instead of computing the limit, keep the entire diagram.
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Towards the topos of trees
From elements to maps

Dropping the now useless initial stage, we have a diagram of sets

B B2 B3 B4 . . .
π1 π1 π1

for interpreting Str Bool. Intuitively, what should its “elements” be? Full streams:{
s ∈

∏
n∈ω

Bn

∣∣∣∣∣ ∀n ∈ ω, sn = π1(sn+1)

}
.

Yet an “element” of A should be the same thing as a morphism 1→ A.

{∗} {∗} {∗} {∗} . . .

B B2 B3 B4 . . .

s0

id

s1

id

s2

id

s3

π1 π1 π1

This suggests using natural transformations as maps between diagrams.
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The topos of trees
Objects and morphisms: synchrony beyond streams

Pr(ω) := [ωop,Set]

0 1 2 3 4 . . .

Γ

Γ(0) Γ(1) Γ(2) Γ(3) Γ(4) . . .

A A(0) A(1) A(2) A(3) A(4) . . .

≤

rΓ0

rA
0

≤

rΓ1

rA
1

≤

rΓ2

rA
2

≤

rΓ3

rA
3

f f0 f1 f2 f3 f4
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The topos of trees
Recursion

Have we lost the ability to write recursive definitions? No. Remember:

Theorem (Kleene)
Every map f : ↑A→s A of PCPO has a least “fixpoint”

fix(f ) =
⊔

iter where iter : ω → A = n 7→
{
⊥ if n = 0

f (〈iter(n − 1)〉) otherwise.

Can we do the same thing in Pr(ω), replacing the “completed” supremum with
the entire chain, as we just did for types?

Yes, but we need something to play the rôle of lifting.
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The topos of trees
Recursion: the “later” modality

B : Pr(ω)→ Pr(ω)

0 1 2 3 4 . . .

A A(0) A(1) A(2) A(3) A(4) . . .

BA {∗} A(0) A(1) A(2) A(3) . . .

≤

rA
0

≤

rA
1

≤

rA
2

≤

rA
3

! rA
0 rA

1 rA
2

delay ! rA
0! rA

1! rA
2! rA

3
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The topos of trees
Guarded recursion
Let f : BA→ A and define fix(f ) : 1→ A by induction as

fix(f )n : {∗} → A(n) =
{

f0 if n = 0

fn ◦ fix(f )n−1 if n > 0.

Theorem (Löb)
We have fix(f ) = f ◦ delay ◦ fix(f ) and moreover it is the unique such map.

Proof.
We prove the equation by induction over n.

Case n = 0: we have fix(f )0(∗) = f0(∗) = f0(delay0(f0(∗))).
Case n > 0: we have fix(f )n = fn ◦ fix(f )n−1

= fn ◦ fn−1 ◦ rA
n−2 ◦ fix(f )n−1 (I. H.)

= fn ◦ rA
n−1 ◦ fn ◦ fix(f )n−1 (naturality)

= fn ◦ rA
n−1 ◦ fix(f )n.

The uniqueness part of the statement is left as an exercise for the audience.
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The topos of trees
Cartesian-closed structure

The category Pr(ω) has cartesian products, defined pointwise.

(A× B)(n) = A(n)× B(n), rA×B
n (x , y) = (rX

n (x), rY
n (y))

It also has function objects, which can be described as follows.

(A⇒ B)(n) =

f ∈
∏
i≤n

A(i)→ B(i)

∣∣∣∣∣∣ ∀i < n, rY
n ◦ fn+1 = fn ◦ rX

n


rA⇒B
n = (fi)i≤n+1 7→ (fi)i≤n

Categories of presheaves (Set-valued functors)
They always have a lot of structure, including bicartesian closure.

For example Pr(ω) has coproducts, in contrast with PCPO↑ .
Enough structure to interpret HOL & DTT. See Daniel’s part!

The previous definitions are “unfolded” version of general constructions.
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The topos of trees
Streams

General streams can be defined as

JStr AK ∼= JAK×BJStr AK.

Again, one can solve this as a colimit in Pr(ω), obtaining

JStr AK(0) = JAK(0)
JStr AK(n + 1) = JAK(n + 1)× JStr AK(n).

In particular, JStr Str BoolK looks much better behaved. Can you describe it?

Remark
Birkedal et al. [2012] show how to build general guarded recursive types, even
allowing for negative self-references (in line with Farzad’s lecture this afternoon).

W = Loc→fin T T = BW → Val→ Prop

Daniel will develop this example in detail.
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Towards a guarded and synchronous stream language

We have a category where objects are explicit approximation sequences, with a
fixpoint theorem, and nice properties. Is there a price to pay?

The force morphism is no longer with us
The functor B is not a comonad: there is no map BA→ A in general.

(Exercise: what is B 0 in Pr(ω)? What does this imply for B 0→ 0?)

Consequences
The syntax needs to include B as a type former.

We want to follow the discipline of natural deduction, meaning:
introduction and elimination forms with a generic context in the conclusion
β/η rules governing the interplay between introduction and elimination forms

β rule: elimination-of-introduction simplifies, e.g., proji(〈t1, t2〉) ≡ ti .
η rule: terms can be written as intro-of-elim for their type
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The Fitch-style guarded language S
Intuitions

(
Γ, x : BA ` t : A
Γ ` rec(x .t) : A

)
? ` t : A

Γ ` guard(t) : BA
? ` t : BA

Γ ` open(t) : A

We ought to be able to write a simple β-rule: open(guard(t)) t.

Can we pick the same context in the premises and in the conclusion?

No.

fun(x .open(x)) 6 :BA→A rec(x .open(x)) 6 :Str Bool

We need to be able to write interesting terms, e.g.,

delay := fun(x .guard(x)) : A→ BA
~ := fun(f .fun(x .guard(open(f ) open(x)))) : B(A→B)→BA→BB

A simple scope discipline
The term t in open(t) loses access to the variables bound after the last guard(−).
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The Fitch-style guarded language S
More formally

Definition (Typing contexts and un/locking)
Contexts Γ map variables x ∈ dom(Γ) to a type Γ(x).ty and a depth Γ(x).d.
The operation LOCK increases the depth of every variable.
The operation UNLOCK decreases the depth of every positive-depth variable and
removes variables at depth zero.

x ∈ dom(Γ)

Γ ` x : Γ(x).ty
. . .

Γ, x : BA ` t : A
Γ ` rec(x .t) : A

Γ ` t : Str A
Γ ` head(t) : A

Γ ` t : Str A
Γ ` tail(t) : B Str A

Γ ` t : A Γ ` u : B Str A
Γ ` t : : u : Str A

LOCKΓ ` t : A
Γ ` guard(t) : BA

UNLOCKΓ ` t : BA
Γ ` open(t) : A

Remark for the categorically-minded
Categorically, LOCK a UNLOCK : C→ C where C is the category of contexts and renamings.
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The Fitch-style guarded language S
Substitution

Writing Te(Γ ;A) for {t | Γ ` t : A}, the set of substitutions from Γ to ∆ is

Sub(∆ ; Γ) :=
∏

x∈dom(Γ)

Te(UNLOCKΓ(x).d
∆;Γ(x).ty).

Locking and unlocking should act on substitutions, sending σ ∈ Sub(Γ ;∆) to

LOCKσ

:= σ

∈ Sub(LOCKΓ ;LOCK∆)

= Sub(Γ ;∆)

UNLOCKσ

:= σ|dom+(Γ)

∈ Sub(UNLOCKΓ ;UNLOCK∆)

=
∏

x∈dom+(Γ)

Te(UNLOCKΓ(x).d
∆;Γ(x).ty)

Lemma (Weakening and substitution)
Weakening: if Γ ` t : A then LOCKΓ ` t : A. If UNLOCKΓ ` t : A then Γ ` t : A.
Substitution: if Γ ` t : A and σ ∈ Sub(∆ ; Γ) then ∆ ` t[σ] : A.
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The Fitch-style guarded language S
Back to the interpretation in Pr(ω)

Interpreting typing contexts
Define C : Pr(ω)→ Pr(ω) (“earlier”) to be the functor A 7→ n 7→ An+1.
A typing context Γ is interpreted in Pr(ω) as the object

JΓK :=
∏

x∈dom(Γ)

CΓ(x).dJΓ(x).tyK.

The functor C is left adjoint to B.

((−)], (−)[) : Pr(ω)(−,B =) ∼= Pr(ω)(C−,=)

We have JLOCKΓK = CJΓK as well as a canonical morphism wΓ : JΓK→ CJUNLOCKΓK.

Interpreting terms
t

LOCKΓ ` t : A
Γ ` guard(t) : BA

|

=
q
LOCKΓ ` t : A

y
[

t
UNLOCKΓ ` t : BA
Γ ` open(t) : A

|

= wΓ ;
q
UNLOCKΓ ` t : BA

y]
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Atomic β reduction

t  t′

app(fun(x .t), u) t[x/u] (1)
if(b ∈ {tt, ff}, ttt, tff) tb (2)

head(t : : u) t (3)
tail(t : : u) u (4)

rec(x .t) t[guard(rec(x .t))/x ] (5)
open(guard(t)) t (6)

Lemma (Subject reduction, atomic case)
If Γ ` t : A and t  t′ then Γ ` t′ : A.

The proof is the usual one, with clauses 5 and 6 relying on lock/unlock weakening.
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Stratified β reduction
A context is a term with a unique occurrence of a formal “hole” denoted �.

Kx 3 K ::= � | app(K , u) | app(t,K) | fun(x .K) | . . .

For every K ∈ Kx and n ∈ ω we define K(n) as follows.

�(n) = n
guard(K)(n) = K(n + 1)

open(K)(n) = K(n − 1)

op(. . . ,K , . . . )(n) = K(n) otherwise

We can define a family of reduction relations for each m ∈ ω + 1.

t →k t′
u  u′ K(0) < m

K{u} →m K{u′}

Lemma (Subject reduction)
If Γ ` t : A and t →m t′ then Γ ` t′ : A.
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A context is a term with a unique occurrence of a formal “hole” denoted �.

Kx 3 K ::= � | app(K , u) | app(t,K) | fun(x .K) | . . .
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Metatheoretical results
Classic results

Theorem
The relation →ω is confluent.

Proof.
By the method of Tait and Martin-Löf.

Theorem (G., Tasson, Vienot)
The relations →m for m < ω are strongly normalizing.

Proof.
By a step-indexed adaptation of Girard’s reducibility candidates.

(The theorem above has been proved for a slightly different variant of →m.)
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Metatheoretical results
Erasing the modality

Target language
Let V be call-by-value STLC with general rec. and Str A ∼= A×Unit→Str A.

Γ, x : Unit→A ` t : A
Γ ` rec(x .t) : A

Γ ` t : A Γ ` u : Unit Str A
Γ ` t : : u : Str A

. . .

Its model in PCPO [Amadio and Curien, 1998] is s.t. JUnit→AK ∼= ↑JAK.

Define an erasure function d−e on types and terms.
dBoole = Bool
dStr Ae = Str dAe
dA→Be = dAe→dBe
dBAe = Unit→dAe

. . .

drec(x .t)e = rec(x .dte)
dguard(t)e = fun(().dte)
dopen(t)e = dte ()

Theorem (G., Jafarrahmani, Tasson)
If t : Str Bool then dte has the same elements as t. In particular, dte is productive.
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Limitations

Results
S is the simplest interesting guarded language I can think of.

Disappointment
S is unsatisfactory compared to existing synchronous or guarded languages.

What is lacking or unpleasant in S ?
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Limitations
Failure of confluence in S

The reduction relations →k for 0 < k < ω fail to be confluent. Witness, for k = 1:

guard(I y)

fun(x .guard(x)) (I y)

guard(y)

fun(x .guard(x)) y

21

1 1
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Limitations
B is not enough
One can write simple synchronous functions in S .

nots : Str Bool→Str Bool
nots := rec(F.fun(xs.app(notb, head(xs)) : : (F~ tail(xs))))

However, some very reasonable functions cannot be written.

ands := rec(F.fun(xs.app(and1, xs) : : app(F, tail(tail(xs)))))
stut := rec(F.fun(xs.head(xs) : : head(xs) : : app(F, tail(xs))))

Worse from a synchronous perspective, mutual recursion is rejected as well!

natpos : Str Nat× Str Nat (∗ In L ! ∗)
natpos := rec(NP.〈0 : : proj2(NP), app(sucs, proj1(NP))〉)

A possible solution (G. [2018])
Add new modalities beyond B, corresponding to other time transforms.
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Limitations
Simple types are not enough

The historical interest in guarded recursion from the type-theoretical side was to
replace the positivity criterion used in proof assistants (see Damien’s lecture).

Several authors [Birkedal et al., 2012, Birkedal and Møgelberg, 2013, Bizjak et al.,
2016, Bahr et al., 2017, Gratzer, 2025, …] have developed dependent type theories
featuring “later”-like modalities.

Daniel will touch upon this line of work in his lecture.
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Conclusion

Summary
Start from a run-of-the-mill nonstrict language L with streams.
Build a very classic denotational semantics, with synchrony in mind.
Contrast this model with a category where all maps are synchronous.
Transfer back features from the latter to the syntax, obtaining S .

Some open questions
What is the relationship between general and guarded recursion?

Study functors between Pr(ω) and some well-chosen category of domains.
Can we have a proper λ-calculus with guarded recursion?

Make →k confluent for all k.
Make →ω strongly normalizing via infinitary rewriting?

Design a similar calculus for other temporal modalities.
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Appendix



Additional slides
Mapping the CPO landscape

CPO CPO↑ ∼= PCPO PCPO↑

F↑

U↑

F↑

U↑

Category Pointed? Strict? CCC? Fixpoints? Coproducts?
CPO N N Y N Y

PCPO/CPO↑ Y Y N Y∗ Y
PCPO↑ Y N Y Y N

∗: “lift-guarded” fixpoints, in the sense that fixA : (↑A→ A)→ A.

Huwig and Poigné [1990]’s incompatibility result
A CCC w/ coproducts and general fixpoints is equivalent to the terminal category.
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Additional slides
Proof of the uniqueness of the Löb fixed-point

Recall that given f : BA→ A, the map fix(f ) : 1→ A is defined as

fix(f )n : {∗} → A(n) =
{

f0 if n = 0

fn ◦ fix(f )n−1 if n > 0.

Show that every g : 1→ A satisfying g = f ◦ delay ◦ g is fix(f ) by induction.
Case n = 0: immediate since (delay ◦ g)n = !.
Case n > 0: we have gn = fn ◦ rA

n−1 ◦ gn

= fn ◦ gn−1 ◦ rA
n (naturality)

= fn ◦ fix(f )n−1 ◦ rA
n (I. H.)

= fn ◦ rA
n ◦ fix(f )n (naturality)

= fix(f )n.

54 / 54



Additional slides
Contexts and renaming for the Fitch-style syntax
The set of types Ty is given by Ty 3 A,B ::= Bool | A→B | Str A | BA.

Definition (The category C of contexts and renamings)

Objects are finite families Γ = (dom(Γ) : FinSet,Γ : dom(Γ)→ Ty× ω).
Morphisms are type-preserving, non-depth-decreasing maps

C(Γ ;∆) := {ρ : dom(Γ)→ dom(∆) | ∀x ∈ dom(Γ),Γ(x) ≤ ∆(ρ(x))}.

Given Γ in obj(C), write:
dom+(Γ) for {x ∈ dom(Γ) | Γ(x).d > 0},
for f : ω → ω monotone, set dom(f∗Γ) := dom(Γ) and f∗Γ(x) := (id× f ) ◦Γ.

Definition (The locking and unlocking functors)
Define two functors LOCK,UNLOCK : C→ C by their actions on objects.

LOCKΓ := (+1)∗Γ UNLOCKΓ := (dom+(Γ), (−1)∗Γ)

Their action on morphisms is morally the identity.
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Additional slides
No resource guarantees

Synchronous languages such as Lustre compile to finite state machines.

A→sync B ↪→
∑

S:FinSet
(S × (∂A× S → ∂B × S))

The input and output “alphabets” ∂A and ∂B should arguably be finite.

However, types such as Str Str Bool seem to be intrinsically non-real-time.

∂ Str Str Booln ∼=
∑

xs:Str Str Booln

{xs′ ∈ Str Str Booln+1 | xs = delay(xs′)n}

∼= Bn

It should however be possible to adapt the state-passing transform to the general
guarded-recursive setting, and to reject non-finite-state programs.
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