A categorical approach to automata learning and minimization

Daniela Petrişan

Université Paris Cité, IRIF, France

EPIT'25, Aussois, 20 May 2025

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

Some references

T. Colcombet and D. Petrişan, *Automata minimization: a functorial approach*. Log. Methods Comput. Sci., 16(1), 2020

T. Colcombet, D. Petrisan, R. Stabile, *Learning Automata and Transducers: A Categorical Approach.* CSL 2021

J. E. Pin (Ed.) Handbook of Automata Theory, EMS Press, 2021 Further reading:

Q. Aristote, S. van Gool, D. Petrişan, M. Shirmohammadi, *Learning Weighted Automata over Number Rings, Concretely and Categorically* LICS 2025

https://arxiv.org/pdf/2504.16596

This tutorial is about ...

the interplay between category theory and automata theory.

This tutorial is about ...

the interplay between category theory and automata theory. In particular, we will see how the category-theoretic approach

- provides a unifying framework for modelling various forms of automata,
- for obtaining generic algorithms for learning algorithms,

This tutorial is about ...

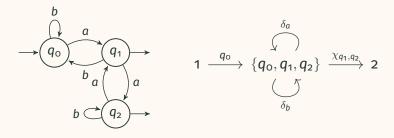
the interplay between category theory and automata theory. In particular, we will see how the category-theoretic approach

- provides a unifying framework for modelling various forms of automata,
- for obtaining generic algorithms for learning algorithms,
- highlights the link between automata learning and minimization.

Automata with effects

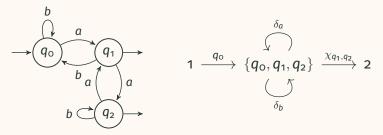
Complete Deterministic Finite Automata

Let's rewrite the definition of a complete DFA...

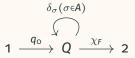


Complete Deterministic Finite Automata

Let's rewrite the definition of a complete DFA...

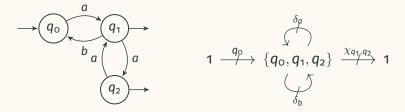


To give a complete DFA over A amounts to give a set Q and the functions depicted below.



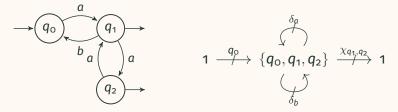
Deterministic Finite Automata

Let's rewrite the definition of a DFA...

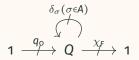


Deterministic Finite Automata

Let's rewrite the definition of a DFA...

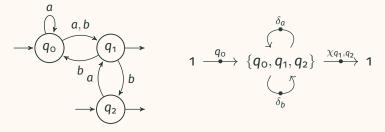


To give a DFA over A amounts to give a set Q and the **partial** functions depicted below.



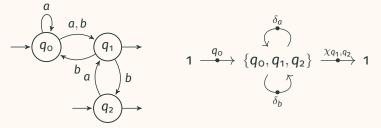
Nondeterministic Finite Automata

Let's rewrite the definition of an NFA...

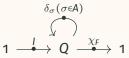


Nondeterministic Finite Automata

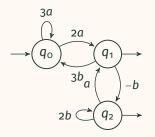
Let's rewrite the definition of an NFA...

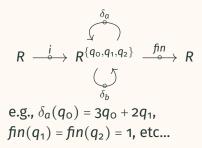


To give an NFA amounts to give a set *Q* and the **relations** depicted below.

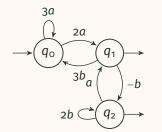


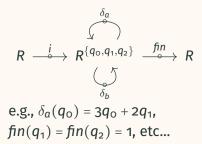
Weighted automata over a semiring





Weighted automata over a semiring





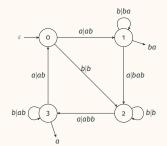
To give a WA over *R* amounts to give a free module *R*^{*Q*} and the **linear** maps depicted below.

$$R \xrightarrow{i}{\stackrel{i}{\longrightarrow}} R^Q \xrightarrow{f} R$$

Sequential transducers

A sequential transducer with input alphabet A and output alphabet B consists of:

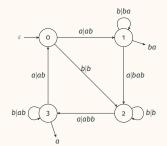
- a finite set of states Q
- an initial state with an initial output in *B**, or an undefined initial state



Sequential transducers

A sequential transducer with input alphabet A and output alphabet B consists of:

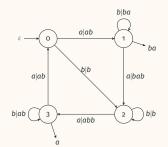
- a finite set of states Q
- an initial state with an initial output in B^* , or an undefined initial state
- for each $a \in A$ a transition function $Q \rightarrow B^* \times Q + 1$



Sequential transducers

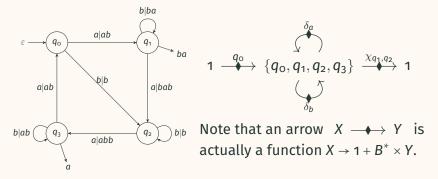
A sequential transducer with input alphabet A and output alphabet B consists of:

- a finite set of states Q
- an initial state with an initial output in *B**, or an undefined initial state
- for each $a \in A$ a transition function $Q \rightarrow B^* \times Q + 1$
- for each state in Q, either an output word in B^* or undefined.



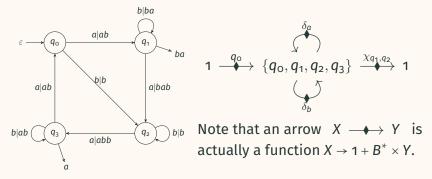
Sequential Transducers

Let's rewrite the definition of a sequential transducer with input alphabet $\{a, b\}$ and output alphabet $B = \{a, b\}$.

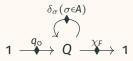


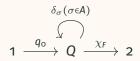
Sequential Transducers

Let's rewrite the definition of a sequential transducer with input alphabet $\{a, b\}$ and output alphabet $B = \{a, b\}$.

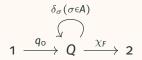


To give a seq. transducer amounts to give a set *Q* and arrows:

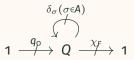




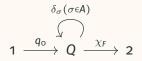
complete DFAs — Set (sets and functions)



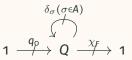
complete DFAs - Set (sets and functions)



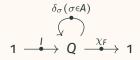
DFAs - Set. (sets and partial functions)



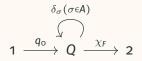
complete DFAs - Set (sets and functions)



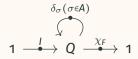
DFAs - Set. (sets and partial functions)



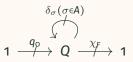
NFA - Rel (sets and relations)



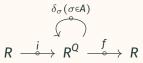
complete DFAs - Set (sets and functions)



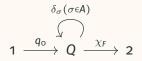
NFA - Rel (sets and relations)



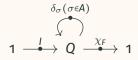
DFAs - Set. (sets and partial functions)



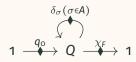
WAs over R — FreeMod_R (R-modules and linear maps)



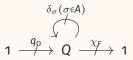
complete DFAs - Set (sets and functions)



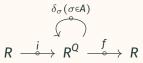
NFA - Rel (sets and relations)



Sequential transducers - ?



DFAs - Set. (sets and partial functions)



WAs over R - FreeMod_R (R-modules and linear maps)

We consider partial actions for the free monoid B^* .

We consider partial actions for the free monoid B^* .

We consider a category ${\mathcal T}$ with

- objects: sets X, Y, Z, ...
- arrows: $f: X \longrightarrow Y$, where $f: X \rightarrow B^* \times Y + 1$ is a function

We consider partial actions for the free monoid B^* .

We consider a category ${\mathcal T}$ with

- objects: sets X, Y, Z, ...
- arrows: $f: X \longrightarrow Y$, where $f: X \rightarrow B^* \times Y + 1$ is a function

How to compose $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$?

$$g \circ f: X \longrightarrow Z \quad \text{(i.e. } g \circ f: X \to B^* \times Z + 1\text{) is given by}$$
$$g \circ f(x) = \begin{cases} (uv, z) & \text{if } f(x) = (u, y) \text{ and } g(y) = (v, z) \\ \bot & \text{otherwise.} \end{cases}$$

We consider partial actions for the free monoid B^* .

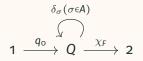
We consider a category ${\mathcal T}$ with

- objects: sets X, Y, Z, ...
- arrows: $f: X \longrightarrow Y$, where $f: X \rightarrow B^* \times Y + 1$ is a function

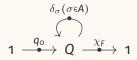
How to compose $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$?

$$g \circ f: X \longrightarrow Z \quad \text{(i.e. } g \circ f: X \to B^* \times Z + 1\text{) is given by}$$
$$g \circ f(x) = \begin{cases} (uv, z) & \text{if } f(x) = (u, y) \text{ and } g(y) = (v, z) \\ \bot & \text{otherwise.} \end{cases}$$

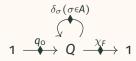
This is the Kleisli category for the monad $T: Set \rightarrow Set$ given by $T(X) = B^* \times X + 1$, which associates to each set X the free partial action of B^* on X.



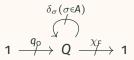
complete DFAs - Set (sets and functions)



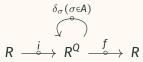
NFA - Rel (sets and relations)



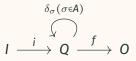
Sequential transducers – T



DFAs - Set. (sets and partial functions)



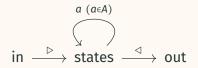
WAs over R - FreeMod_R (R-modules and linear maps)



(C, I, O)-automata – C

Word automata as functors

Word automata on A^* are **functors** $\mathcal{A}: \mathcal{I} \to \mathcal{C}$, where the input category \mathcal{I} is freely generated by

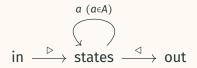


The data given by the functor A is a tuple $\langle Q, i, f, (\delta_a)_{a \in A} \rangle$, where

- Q is an object of \mathcal{C} .
- $i{:}\,I \to Q$ is the «initial» arrow, for some object I of $\mathcal C$
- $f: Q \rightarrow F$ is the «final» arrow, for some object F of C
- $\delta_a: Q \rightarrow Q$ is the «transition» arrow for each $a \in A$

Word automata as functors

Word automata on A^* are **functors** $\mathcal{A}: \mathcal{I} \to \mathcal{C}$, where the input category \mathcal{I} is freely generated by



The data given by the functor A is a tuple $\langle Q, i, f, (\delta_a)_{a \in A} \rangle$, where

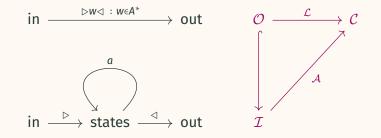
- Q is an object of \mathcal{C} .
- $i{:}\,I \to Q$ is the «initial» arrow, for some object I of $\mathcal C$
- $f: Q \to F$ is the «final» arrow, for some object F of C
- $\delta_a: Q \rightarrow Q$ is the «transition» arrow for each $a \in A$

The language accepted by \mathcal{A} is a map $L_{\mathcal{A}}: \mathcal{A}^* \to \mathcal{C}(I, F)$ that associates to a word $w = a_1 \dots a_n$ the composite morphism

$$I \xrightarrow{i} Q \xrightarrow{\delta_{a_1}} Q \xrightarrow{\delta_{a_2}} \dots \xrightarrow{\delta_{a_n}} Q \xrightarrow{f} F \qquad 13/43$$

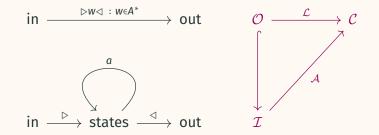
Automata and languages as functors

An automaton $\mathcal A$ accepts a language $\mathcal L$ when the next diagram commutes



Automata and languages as functors

An automaton $\mathcal A$ accepts a language $\mathcal L$ when the next diagram commutes



For every language $\mathcal{L}: \mathcal{O} \to \mathcal{C}$ we consider a category $Auto_{\mathcal{L}}$ of automata accepting \mathcal{L} .

 ${\mathcal O}$ can be seen as an "observation" subcategory of ${\mathcal I}.$

Much of the ensuing theory can be developed independently on the precise shape of \mathcal{I} .

The output categories we have seen so far

What do these categories have in common ?

- Set the category of sets and functions
- Set. the category of sets and partial functions
- Rel the category of sets and relations
- Vec the category of vector spaces and linear transformations
- \mathcal{T} the category of free partial actions of some free monoid B^* and their morphisms

The output categories we have seen so far

What do these categories have in common ?

- Set the category of sets and functions
- Set. the category of sets and partial functions
- Rel the category of sets and relations
- Vec the category of vector spaces and linear transformations
- \mathcal{T} the category of free partial actions of some free monoid B^* and their morphisms

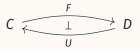
Answer. They are categories of free algebras (aka Kleisli categories) for monads specifying some effect:

- the identity monad
- the Maybe monad (aka option)
- the powerset monad non-determinism
- the monad of partial free actions of B^* .

Changing output categories

Adjunctions – Recap

Having an adjunction

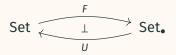


means we have isomorphisms $C(X, UY) \cong D(FX, Y)$ natural in both X and Y.

$$f: FX \to Y$$
 yields $f_{\flat}: X \to UY$

 $g: X \to UY$ yields $g^{\sharp}: FX \to Y$

Exercise. Describe an adjunction between Set and Set.

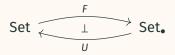


means we have isomorphisms $Set(X, UY) \cong Set_{\bullet}(FX, Y)$ natural in both X and Y.

$$f: FX \longrightarrow Y$$
 in Set, yields $f_{\flat}: X \rightarrow UY$ in Set

 $g: X \to UY$ in Set yields $g^{\sharp}: FX \longrightarrow Y$ in Set.

Exercise. Describe an adjunction between Set and Set.



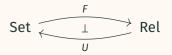
means we have isomorphisms $Set(X, UY) \cong Set_{\bullet}(FX, Y)$ natural in both X and Y.

Answer. FX = X, UX = 1 + X...

 $f: X \longrightarrow Y$ in Set, yields $f_b: X \rightarrow 1 + Y$ in Set

 $g: X \to 1 + Y$ in Set yields $g^{\sharp}: X \longrightarrow Y$ in Set.

Exercise. Describe an adjunction between Set and Rel.

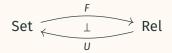


means we have isomorphisms $Set(X, UY) \cong Rel(FX, Y)$ natural in both X and Y.

$$f: FX \longrightarrow Y$$
 in Rel yields $f_{\flat}: X \rightarrow UY$ in Set

$$g: X \to UY$$
 in Set yields $g^{\sharp}: FX \longrightarrow Y$ in Rel

Exercise. Describe an adjunction between Set and Rel.



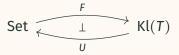
means we have isomorphisms $Set(X, UY) \cong Rel(FX, Y)$ natural in both X and Y.

Answer. FX = X, $UX = \mathcal{P}X$...

 $f: X \longrightarrow Y$ in Rel yields $f_{\flat}: X \rightarrow \mathcal{P}Y$ in Set

 $g: X \to \mathcal{P}Y$ in Set yields $g^{\sharp}: X \longrightarrow Y$ in Rel

The above adjunctions are all standard in category theory: They are adjunctions between Set and the Kleisli category for a monad.

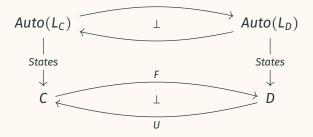


with F identity on objects and UX = TX.

Getting rid of effects - or lifting adjunctions

Suppose we have the 'same' language interpreted in two different categories related by an adjunction $F \rightarrow U$:

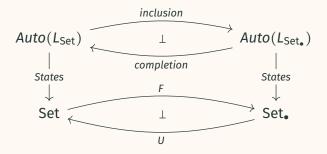
$$L_C: A^* \to C(X, UY)$$
 and $L_D: A^* \to D(FX, Y)$.



Lifting adjunctions - completing DFAs

Suppose we have the 'same' regular language interpretted in two different categories (Set and Rel) related by an adjunction $F \dashv U$:

```
L_{Set}: A^* \rightarrow Set(1,2) and L_{Set_{\bullet}}: A^* \rightarrow Set_{\bullet}(1,1).
```

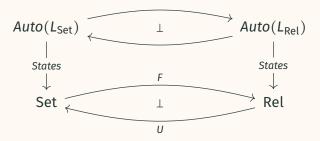


Corollary 1. The completion of a DFA is a right adjoint to inclusions of complete DFA in DFA.

Lifting adjunctions – determinization

Suppose we have the 'same' regular language interpretted in two different categories (Set and Rel) related by an adjunction $F \dashv U$:

 $L_{\text{Set}}: A^* \rightarrow \text{Set}(1, U1) \text{ and } L_{\text{Rel}}: A^* \rightarrow \text{Rel}(F1, 1).$

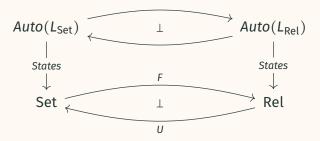


Corollary 1. The determinization of NFA is a right adjoint to inclusions of DFA in NFA.

Lifting adjunctions – determinization

Suppose we have the 'same' regular language interpretted in two different categories (Set and Rel) related by an adjunction $F \dashv U$:

 $L_{\text{Set}}: A^* \rightarrow \text{Set}(1, U1) \text{ and } L_{\text{Rel}}: A^* \rightarrow \text{Rel}(F1, 1).$



Corollary 1. The determinization of NFA is a right adjoint to inclusions of DFA in NFA.

Corollary 2. Initial automata for free in Kleisli valued automata.

Automata in a category: minimization

Given a language $L \subseteq A^*$ and a word $u \in A^*$ the left quotient $u^{-1}L$ is the set

 $\{v \in A^* \mid uv \in L\}$

The Myhill-Nerode equivalence is defined by

 $u \cong_L v \text{ iff } u^{-1}L = v^{-1}L$

Given a language $L \subseteq A^*$ and a word $u \in A^*$ the left quotient $u^{-1}L$ is the set

 $\{v \in A^* \mid uv \in L\}$

The Myhill-Nerode equivalence is defined by

 $u \cong_L v$ iff $u^{-1}L = v^{-1}L$

Theorem (Myhill-Nerode). A language *L* is regular iff it has only finitely many left quotients iff \cong_L has finite index.

Given a language $L \subseteq A^*$ and a word $u \in A^*$ the left quotient $u^{-1}L$ is the set

 $\{v \in A^* \mid uv \in L\}$

The Myhill-Nerode equivalence is defined by

 $u \cong_L v$ iff $u^{-1}L = v^{-1}L$

Theorem (Myhill-Nerode). A language *L* is regular iff it has only finitely many left quotients iff \cong_L has finite index.

Proof. \Rightarrow If an automaton $\mathcal{A} = (Q, q_0, F, (\delta_a)_{a \in A})$ accepts a language *L*, then the automaton $(Q, \delta_u(q_0), F, (\delta_a)_{a \in A})$ accepts $u^{-1}L$.

Given a language $L \subseteq A^*$ and a word $u \in A^*$ the left quotient $u^{-1}L$ is the set

 $\{v \in A^* \mid uv \in L\}$

The Myhill-Nerode equivalence is defined by

 $u \cong_L v$ iff $u^{-1}L = v^{-1}L$

Theorem (Myhill-Nerode). A language *L* is regular iff it has only finitely many left quotients iff \cong_L has finite index.

Proof. \Rightarrow If an automaton $\mathcal{A} = (Q, q_0, F, (\delta_a)_{a \in A})$ accepts a language *L*, then the automaton $(Q, \delta_u(q_0), F, (\delta_a)_{a \in A})$ accepts $u^{-1}L$.

 \leftarrow Consider the Nerode automaton of *L*, that is $(Q, q_0, F, (\delta_a)_{a \in A})$, where

• $Q = \{u^{-1}L \mid u \in A^*\},$ • $F = \{u^{-1}L \mid u \in L\}$ and

•
$$q_0 = L$$
 • $\delta_a(u^{-1}L) = (ua)^{-1}L.$

How do we minimize an automaton A?

- remove all states that are not accessible from the initial state.
 We obtain the reachable sub-automaton Reach(A).
- Merge all states that accept the same language, we obtain the observable quotient Obs(Reach(A)).

How do we minimize an automaton A?

- remove all states that are not accessible from the initial state.
 We obtain the reachable sub-automaton Reach(A).
- Merge all states that accept the same language, we obtain the observable quotient Obs(Reach(A)).

There are several algorithms for minimizing automata: Moore, Hopcroft, Brzozowski.

- What does it mean for a *C*-automaton to be minimal?
- What are sufficient conditions on *C* so that a minimal automaton for a language exists?
- · Can we compute the minimal automaton effectively?

- What does it mean for a *C*-automaton to be minimal?
- What are sufficient conditions on *C* so that a minimal automaton for a language exists?
- Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the same language.

- What does it mean for a *C*-automaton to be minimal?
- What are sufficient conditions on *C* so that a minimal automaton for a language exists?
- Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the same language. Here divides = «is a quotient of a sub-automaton of»

- What does it mean for a *C*-automaton to be minimal?
- What are sufficient conditions on *C* so that a minimal automaton for a language exists?
- Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the same language. Here divides = «is a quotient of a sub-automaton of»

Thus we need a notion of «quotient» (surjection for sets) and «sub-object» (injection for sets), i.e. a factorization system.

Three more category-theoretic notions

An initial object in a category C is an object X such that for any object A of C there is a unique morphism !: X → A.
 Question: what is the initial object in Set? And in Rel?

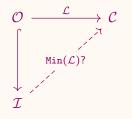
Three more category-theoretic notions

- An initial object in a category C is an object X such that for any object A of C there is a unique morphism !: X → A.
 Question: what is the initial object in Set? And in Rel?
- A final object in a category C is an object Y such that for any object A of C there is a unique morphism !: A → Y.
 Question: what is the final object in Set? And in Rel?

Three more category-theoretic notions

- An initial object in a category C is an object X such that for any object A of C there is a unique morphism !: X → A.
 Question: what is the initial object in Set? And in Rel?
- A final object in a category C is an object Y such that for any object A of C there is a unique morphism !: A → Y.
 Question: what is the final object in Set? And in Rel?
- A factorization system provides the category-theoretic generalizations for the notions of "quotients" and "subobjects", definition on next slide...

When does a 'minimal' automaton accepting a language \mathcal{L} exist?



When does a 'minimal' automaton accepting a language \mathcal{L} exist?

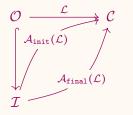
left Kan ext?

$$\begin{array}{c} \mathcal{O} \xrightarrow{\mathcal{L}} \mathcal{C} \\ & \swarrow \mathcal{A}_{\text{init}}(\mathcal{L}) \\ & \swarrow \mathcal{I} \end{array}$$

If the category of automata accepting $\ensuremath{\mathcal{L}}$ has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$

When does a 'minimal' automaton accepting a language \mathcal{L} exist?

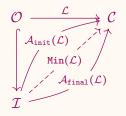


right Kan extension?

If the category of automata accepting $\ensuremath{\mathcal{L}}$ has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})$,
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L}),$ and,

When does a 'minimal' automaton accepting a language \mathcal{L} exist?



If the category of automata accepting $\ensuremath{\mathcal{L}}$ has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L})\text{, and,}$
- a factorization system

then $\mathtt{Min}(\mathcal{L})$ is obtained as the factorization

 $\mathcal{A}_{\text{init}}(\mathcal{L}) \twoheadrightarrow \operatorname{Min}(\mathcal{L}) \mapsto \mathcal{A}_{\text{final}}(\mathcal{L}).$

When does a 'minimal' automaton accepting a language \mathcal{L} exist?

 $\mathcal{O} \xrightarrow{\mathcal{L}} \mathcal{C}$ $\bigwedge^{\text{Min}(\mathcal{L})} \xrightarrow{\mathcal{A}_{\text{final}}(\mathcal{L})}$

If the category of automata accepting $\ensuremath{\mathcal{L}}$ has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L})\text{, and,}$
- a factorization system

then $\mathtt{Min}(\mathcal{L})$ is obtained as the factorization

 $\mathcal{A}_{\text{init}}(\mathcal{L}) \twoheadrightarrow \text{Min}(\mathcal{L}) \rightarrowtail \mathcal{A}_{\text{final}}(\mathcal{L}) \,.$

✓ when C has copowers ✓ when C has powers ✓ when C has one

Factorization systems are a generalization of the next situation: Every function $f: X \rightarrow Y$ can we written as a composite

$$X \xrightarrow{e} Z \xrightarrow{m} Y$$

with *e* a surjection and *m* and injection, and, moreover, such a decomposition is unique up-to isomorphism.

Factorization systems are a generalization of the next situation: Every function $f: X \rightarrow Y$ can we written as a composite

$$X \xrightarrow{e} Z \xrightarrow{m} Y$$

with *e* a surjection and *m* and injection, and, moreover, such a decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of morphisms, E and M, so that:

Factorization systems are a generalization of the next situation: Every function $f: X \rightarrow Y$ can we written as a composite

$$X \xrightarrow{e} Z \xrightarrow{m} Y$$

with *e* a surjection and *m* and injection, and, moreover, such a decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of morphisms, E and M, so that:

• *E* and *M* contain the isomorphisms and are closed under composition;

Factorization systems are a generalization of the next situation: Every function $f: X \rightarrow Y$ can we written as a composite

$$X \xrightarrow{e} Z \xrightarrow{m} Y$$

with *e* a surjection and *m* and injection, and, moreover, such a decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of morphisms, E and M, so that:

- *E* and *M* contain the isomorphisms and are closed under composition;
- every morphism f: X → Y can we written as a composite m ∘ e with e ∈ E and m ∈ M;

Factorization systems are a generalization of the next situation: Every function $f: X \rightarrow Y$ can we written as a composite

$$X \xrightarrow{e} Z \xrightarrow{m} Y$$

with *e* a surjection and *m* and injection, and, moreover, such a decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of morphisms, E and M, so that:

- *E* and *M* contain the isomorphisms and are closed under composition;
- every morphism $f: X \rightarrow Y$ can we written as a composite $m \circ e$ with $e \in E$ and $m \in M$;
- the decomposition is functorial, i.e. any two decompositions are isomorphic

When does a 'minimal' automaton accepting a language $\mathcal L$ exist?

When does a 'minimal' automaton accepting a language \mathcal{L} exist? If the category of automata accepting \mathcal{L} has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$

The three ingredients for minimization

When does a 'minimal' automaton accepting a language \mathcal{L} exist? If the category of automata accepting \mathcal{L} has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L})\text{, and,}$

The three ingredients for minimization

When does a 'minimal' automaton accepting a language \mathcal{L} exist? If the category of automata accepting \mathcal{L} has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L})\text{, and,}$
- a factorization system

then $\mathtt{Min}(\mathcal{L})$ is obtained as the factorization

$$\mathcal{A}_{\text{init}}(\mathcal{L}) \twoheadrightarrow \operatorname{Min}(\mathcal{L}) \mapsto \mathcal{A}_{\text{final}}(\mathcal{L}).$$

The three ingredients for minimization

When does a 'minimal' automaton accepting a language \mathcal{L} exist? If the category of automata accepting \mathcal{L} has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L})$, and,
- a factorization system

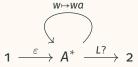
✓ when C has copowers ✓ when C has powers ✓ when C has one

then $\mathtt{Min}(\mathcal{L})$ is obtained as the factorization

 $\mathcal{A}_{\text{init}}(\mathcal{L}) \twoheadrightarrow \text{Min}(\mathcal{L}) \rightarrowtail \mathcal{A}_{\text{final}}(\mathcal{L}) \, .$

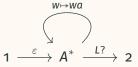
Trivial example: minimizing DFAs

The initial automaton $\mathcal{A}_{\texttt{init}}$ for Set-automata accepting a language L is the following :

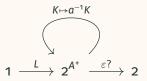


Trivial example: minimizing DFAs

The initial automaton A_{init} for Set-automata accepting a language L is the following :

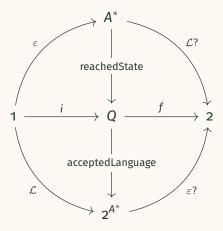


The final automaton A_{final} for Set-automata accepting a language *L* is the following :



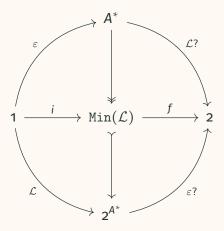
Trivial example: minimizing DFAs accepting L

The unique map from the initial to the final automaton is given by $!:A^* \rightarrow 2^{A^*}$, defined by $w \mapsto w^{-1}L$.



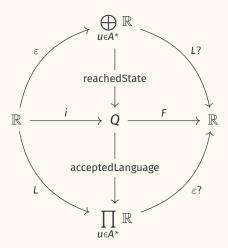
Trivial example: minimizing DFAs accepting L

The unique map from the initial to the final automaton is given by $!:A^* \rightarrow 2^{A^*}$, defined by $w \mapsto w^{-1}L$.



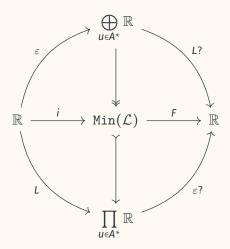
Another trivial example

 \mathbb{R} -weighted automata, i.e. (Vec, \mathbb{R} , \mathbb{R})-automata accepting a (Vec, \mathbb{R} , \mathbb{R})-language



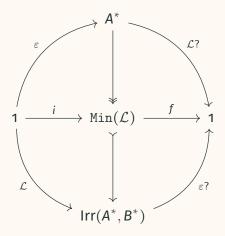
Another trivial example

 \mathbb{R} -weighted automata, i.e. (Vec, \mathbb{R} , \mathbb{R})-automata accepting a (Vec, \mathbb{R} , \mathbb{R})-language



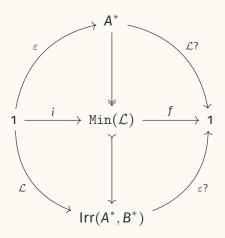
The minimal transducer in a picture

We obtain $\mathtt{Min}(\mathcal{L})$ – the minimal subsequential transducer as obtained by Choffrut!

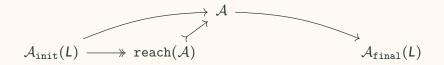


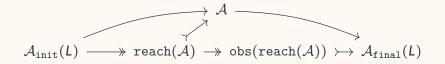
The minimal transducer in a picture

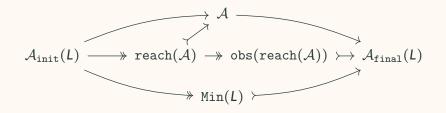
We obtain $Min(\mathcal{L})$ – the minimal subsequential transducer as obtained by Choffrut! In fact it also works if we replace B^* by a trace monoid.

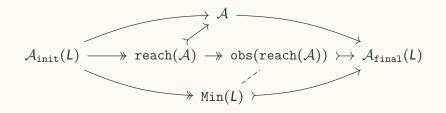


 $\mathcal{A}_{\text{final}}(L)$ $\mathcal{A}_{\text{init}}(L)$

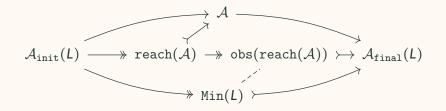








The automaton $Min(\mathcal{L})$ divides any other automaton accepting \mathcal{L} .



Thus far we identified simple sufficient conditions on C so that minimization of C-automata is guaranteed!

Learning

• **Goal:** learn a regular language of words *L*.

- **Goal:** learn a regular language of words *L*.
- The algorithm interacts with a teacher who knows *L* by asking two types of queries:

- **Goal:** learn a regular language of words *L*.
- The algorithm interacts with a teacher who knows *L* by asking two types of queries:
 - 1. Membership queries: Does a word belong to the language ?

- **Goal:** learn a regular language of words *L*.
- The algorithm interacts with a teacher who knows *L* by asking two types of queries:
 - 1. Membership queries: Does a word belong to the language ?
 - 2. Equivalence queries: It gives the teacher a hypothesis automaton and asks whether it accepts the language *L*.

- **Goal:** learn a regular language of words *L*.
- The algorithm interacts with a teacher who knows *L* by asking two types of queries:
 - 1. Membership queries: Does a word belong to the language ?
 - 2. Equivalence queries: It gives the teacher a hypothesis automaton and asks whether it accepts the language *L*. If no, the teacher provides a counter-example.

- **Goal:** learn a regular language of words *L*.
- The algorithm interacts with a teacher who knows *L* by asking two types of queries:
 - 1. Membership queries: Does a word belong to the language ?
 - 2. Equivalence queries: It gives the teacher a hypothesis automaton and asks whether it accepts the language *L*. If no, the teacher provides a counter-example.
- The algorithm stops when the teacher agrees that the hypothesis automaton accepts the language *L*.

- At each step, we maintain a pair of sets of words (*Q*,*T*), starting with ({*e*}, {*e*}).
 - *Q* —> potential states for the hypothesis automaton
 - T —> test words used to define an equivalence relation coarser than the Myhill-Nerode equivalence.

- At each step, we maintain a pair of sets of words (*Q*,*T*), starting with ({*e*}, {*e*}).
 - *Q* —> potential states for the hypothesis automaton
 - *T* —> test words used to define an equivalence relation coarser than the Myhill-Nerode equivalence.
- the *T*-equivalence relation: $w \sim_T v$ iff $\forall u \in T$. $wu \in L \Leftrightarrow vu \in L$

- At each step, we maintain a pair of sets of words (*Q*,*T*), starting with ({*e*}, {*e*}).
 - *Q* —> potential states for the hypothesis automaton
 - *T* —> test words used to define an equivalence relation coarser than the Myhill-Nerode equivalence.
- the *T*-equivalence relation: $w \sim_T v$ iff $\forall u \in T$. $wu \in L \Leftrightarrow vu \in L$
- closedness : $\forall q \in Q . \forall a \in A . \exists p \in Q . p \sim_T qa$.

- At each step, we maintain a pair of sets of words (*Q*,*T*), starting with ({*e*}, {*e*}).
 - *Q* —> potential states for the hypothesis automaton
 - *T* —> test words used to define an equivalence relation coarser than the Myhill-Nerode equivalence.
- the *T*-equivalence relation: $w \sim_T v$ iff $\forall u \in T$. $wu \in L \Leftrightarrow vu \in L$
- closedness : $\forall q \in Q . \forall a \in A . \exists p \in Q . p \sim_T qa$.
- consistency : $\forall q, q' \in Q . \forall a \in A$. $q \sim_T q' \Rightarrow qa \sim_T q'a$

- At each step, we maintain a pair of sets of words (*Q*,*T*), starting with ({*e*}, {*e*}).
 - *Q* —> potential states for the hypothesis automaton
 - *T* —> test words used to define an equivalence relation coarser than the Myhill-Nerode equivalence.
- the *T*-equivalence relation: $w \sim_T v$ iff $\forall u \in T$. $wu \in L \Leftrightarrow vu \in L$
- closedness : $\forall q \in Q . \forall a \in A . \exists p \in Q . p \sim_T qa$.
- consistency : $\forall q, q' \in Q . \forall a \in A . q \sim_T q' \Rightarrow qa \sim_T q'a$
- When (Q,T) is closed and consistent it is possible to build a hypothesis automaton $\mathcal{H}(Q,T)$

L*-revisited

• At the (*Q*, *T*) stage of the algorithm the learner only has access to a fragment of the language:

 $L_{Q,T}: QAT \cup QT \longrightarrow A^* \longrightarrow 2$

L*-revisited

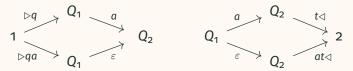
• At the (*Q*, *T*) stage of the algorithm the learner only has access to a fragment of the language:

$$L_{Q,T}: QAT \cup QT \longrightarrow A^* \xrightarrow{L} 2$$

• This can be represented by a notion of (Q, T)-biautomaton

$$1 \xrightarrow[(q \in Q)]{(q \in Q)} Q_1 \xrightarrow[\varepsilon]{a (a \in A)} Q_2 \xrightarrow[(t \in T)]{t \triangleleft} 2$$

such that the following coherence diagrams commute



Minimal (Q, T)-biautomaton and the hypothesis automaton

Closure and consistency for the pair (Q,T) can be encoded categorically via the minimal (Q,T)-biautomaton.

Closure and consistency for the pair (Q,T) can be encoded categorically via the minimal (Q,T)-biautomaton.

We obtain a generic FunL* algorithm that instantiates to

- Angluin's original algorithm,
- the weighted automata over fields variant of L^*
- the sequential transducer variant

Further details: Thomas Colcombet, Daniela Petrisan, Riccardo Stabile: Learning Automata and Transducers: A Categorical Approach. CSL 2021 Perspectives

Minimization/learning for free ?

Are there some conditions on a monad T so that Kl(T) has all the required properties required for the existence of minimization/learning of Kl(T)-automata ?

Minimization/learning for free ?

Are there some conditions on a monad T so that Kl(T) has all the required properties required for the existence of minimization/learning of Kl(T)-automata ?

Move to Eilenberg-Moore algebras when Kl(T) is not good enough, e.g., to the category of join sup-semilattices.

We see a Rel-valued automaton as a JSL-valued automaton.

Minimization/learning for free ?

Are there some conditions on a monad T so that Kl(T) has all the required properties required for the existence of minimization/learning of Kl(T)-automata ?

Move to Eilenberg-Moore algebras when Kl(T) is not good enough, e.g., to the category of join sup-semilattices.

We see a Rel-valued automaton as a JSL-valued automaton.

Extension to tree automata

Minimization/learning for free ?

Are there some conditions on a monad T so that Kl(T) has all the required properties required for the existence of minimization/learning of Kl(T)-automata ?

Move to Eilenberg-Moore algebras when Kl(T) is not good enough, e.g., to the category of join sup-semilattices.

We see a Rel-valued automaton as a JSL-valued automaton.

Extension to tree automata

Weighted automata over number rings -> see
https://arxiv.org/pdf/2504.16596

Minimization/learning for free ?

Are there some conditions on a monad T so that Kl(T) has all the required properties required for the existence of minimization/learning of Kl(T)-automata ?

Move to Eilenberg-Moore algebras when Kl(T) is not good enough, e.g., to the category of join sup-semilattices.

We see a Rel-valued automaton as a JSL-valued automaton.

Extension to tree automata

Weighted automata over number rings -> see
https://arxiv.org/pdf/2504.16596

Learning nominal automata, building on Victor Iwaniack's work on automata in toposes.

More details for learning

We can compute the minimal (Q, T)-biautomaton in an arbitrary category^{*} using off-the-shelf results from (Colcombet, P., 2017).

$$1 \xrightarrow{\rhd q_{min}} Q/_{\neg T \cup AT} \xrightarrow{a_{min}} (Q \cup QA)/_{\neg T} \xrightarrow{t \lhd_{min}} 2$$

Recall $w \sim_T v$ iff $\forall u \in T$. $wu \in L \Leftrightarrow vu \in L$

* under mild assumptions

We can compute the minimal (Q, T)-biautomaton in an arbitrary category^{*} using off-the-shelf results from (Colcombet, P., 2017).

$$1 \xrightarrow{\rhd q_{min}} Q/_{\neg T \cup AT} \xrightarrow{a_{min}} (Q \cup QA)/_{\neg T} \xrightarrow{t \lhd_{min}} 2$$

Recall $w \sim_T v$ iff $\forall u \in T$. $wu \in L \Leftrightarrow vu \in L$

 $\triangleright q_{min}(*) = [q]_{\sim_{T \cup AT}}$

We can compute the minimal (Q, T)-biautomaton in an arbitrary category^{*} using off-the-shelf results from (Colcombet, P., 2017).

$$1 \xrightarrow{\rhd q_{min}} Q/{\sim_{T \cup AT}} \xrightarrow{a_{min}} (Q \cup QA)/{\sim_T} \xrightarrow{t \lhd_{min}} 2$$

Recall $w \sim_T v$ iff $\forall u \in T$. $wu \in L \Leftrightarrow vu \in L$

$$\rhd q_{min}(*) = [q]_{\sim_{\mathsf{T}\cup\mathsf{AT}}} \qquad a_{min}([q]_{\sim_{\mathsf{T}\cup\mathsf{AT}}}) = [qa]_{\sim_{\mathsf{T}}}$$
$$\varepsilon_{min}([q]_{\sim_{\mathsf{T}\cup\mathsf{AT}}}) = [q]_{\sim_{\mathsf{T}}}$$

We can compute the minimal (Q, T)-biautomaton in an arbitrary category^{*} using off-the-shelf results from (Colcombet, P., 2017).

$$1 \xrightarrow{\rhd q_{min}} Q/{\sim_{T \cup AT}} \xrightarrow{a_{min}} (Q \cup QA)/{\sim_T} \xrightarrow{t \triangleleft_{min}} 2$$

Recall $w \sim_T v$ iff $\forall u \in T$. $wu \in L \Leftrightarrow vu \in L$

$$\triangleright q_{min}(*) = [q]_{\neg_{T \cup AT}} \qquad a_{min}([q]_{\neg_{T \cup AT}}) = [qa]_{\neg_{T}} \qquad t \triangleleft_{min}([q]_{\neg_{T}}) = L_{Q,T}(qt)$$

$$\varepsilon_{min}([q]_{\neg_{T \cup AT}}) = [q]_{\neg_{T}} \qquad t \triangleleft_{min}([qa]_{\neg_{T}}) = L_{Q,T}(qat)$$

We can compute the minimal (Q, T)-biautomaton in an arbitrary category^{*} using off-the-shelf results from (Colcombet, P., 2017).

$$1 \xrightarrow{\rhd q_{min}} Q/{\sim_{T \cup AT}} \xrightarrow{a_{min}} (Q \cup QA)/{\sim_T} \xrightarrow{t \lhd_{min}} 2$$

Recall $w \sim_T v$ iff $\forall u \in T$. $wu \in L \Leftrightarrow vu \in L$

$$\rhd q_{min}(*) = [q]_{\neg_{T \cup AT}} \qquad a_{min}([q]_{\neg_{T \cup AT}}) = [qa]_{\neg_{T}} \qquad t \triangleleft_{min}([q]_{\neg_{T}}) = L_{Q,T}(qt)$$

$$\varepsilon_{min}([q]_{\neg_{T \cup AT}}) = [q]_{\neg_{T}} \qquad t \triangleleft_{min}([qa]_{\neg_{T}}) = L_{Q,T}(qat)$$

We can compute the minimal (Q, T)-biautomaton in an arbitrary category^{*} using off-the-shelf results from (Colcombet, P., 2017).

$$1 \xrightarrow{\rhd q_{min}} Q/_{\neg T \cup AT} \xrightarrow{a_{min}} (Q \cup QA)/_{\neg T} \xrightarrow{t \lhd_{min}} 2$$

Recall $w \sim_T v$ iff $\forall u \in T$. $wu \in L \Leftrightarrow vu \in L$

$$= [q]_{\sim_{T\cup AT}} \qquad a_{min}([q]_{\sim_{T\cup AT}}) \qquad \varepsilon_{min}([q]_{\sim_{T\cup AT}})$$

 $a_{min}([q]_{\sim_{T \cup AT}}) = [qa]_{\sim_{T}}$ $\varepsilon_{min}([q]_{\sim_{T \cup AT}}) = [q]_{\sim_{T}}$

 $t \triangleleft_{min} ([q]_{\sim_T}) = L_{Q,T}(qt)$ $t \triangleleft_{min} ([qa]_{\sim_T}) = L_{Q,T}(qat)$

- ε_{min} is surjective iff (Q, T) is closed
- ε_{min} is injective iff (Q, T) is consistent

 $\begin{array}{l} Q=T:=\{\varepsilon\}\\ \textbf{repeat}\\ \textbf{while}~(Q,T)~ not~closed~ and~consistent\\ \textbf{if}~(Q,T)~ is~ not~closed~ enlarge~Q\\ (~\forall q\in Q, \forall a\in A. \exists p\in Q, p \rightarrow rqa)\\ \textbf{if}~(Q,T)~ is~ not~consistent~enlarge~T\\ (~\forall q, q'\in Q, \forall a\in A. q \rightarrow rq' \Rightarrow qa \rightarrow rq'a)\\ \textbf{ask}~ an~equivalence~query~for~\mathcal{H}(Q,T)\\ \textbf{if}~ the~answer~ is~ no~then\\ add~ the~counterexample~ and~its\\ prefixes~to~Q\\ \textbf{until}~ the~answer~ is~ yes\\ \textbf{return}~\mathcal{H}(Q,T) \end{array}$

We can compute the minimal (Q, T)-biautomaton in an arbitrary category^{*} using off-the-shelf results from (Colcombet, P., 2017).

$$1 \xrightarrow{\rhd q_{min}} Q/_{\neg T \cup AT} \xrightarrow{a_{min}} (Q \cup QA)/_{\neg T} \xrightarrow{t \lhd_{min}} 2$$

$$\rhd q_{min}(*) = [q]_{\sim_{\mathsf{T}\cup\mathsf{A}\mathsf{T}}} \qquad a_{min}([q]_{\sim_{\mathsf{T}\cup\mathsf{A}\mathsf{T}}}) = [qa]_{\sim_{\mathsf{T}}} \\ \varepsilon_{min}([q]_{\sim_{\mathsf{T}\cup\mathsf{A}\mathsf{T}}}) = [q]_{\sim_{\mathsf{T}}}$$

Recall $w \sim_T v$ iff $\forall u \in T$. $wu \in L \Leftrightarrow vu \in L$

$$t \triangleleft_{min} ([q_{]\sim_T}) = L_{Q,T}(qt)$$
$$t \triangleleft_{min} ([qa]_{\sim_T}) = L_{Q,T}(qat)$$

- ε_{min} is surjective iff (Q, T) is closed
- ε_{min} is injective iff (Q, T) is consistent
- If ε_{min} is an isomorphism we merge the two states of the (Q,T)-biautomaton and obtain H(Q,T).

 $\begin{array}{l} Q=T:=\{\varepsilon\}\\ \textbf{repeat}\\ \textbf{while}~(Q,T)~ not~closed~ and~consistent\\ \textbf{if}~(Q,T)~ is~ not~closed~ enlarge~Q\\ (\forall q\in Q,\forall a\in A. \exists p\in Q,~ p \rightarrow r~qa)\\ \textbf{if}~(Q,T)~ is~ not~consistent~enlarge~T\\ (\forall q,q'\in Q.\forall a\in A. q \rightarrow r~q'\Rightarrow qa \rightarrow r~q'a)\\ ask~ an~equivalence~query~for~H(Q,T)\\ \textbf{if}~ the~answer~ is~ no~then\\ add~ the~counterexample~and~its\\ prefixes~to~Q\\ \textbf{until}~the~answer~ is~ yes\\ \textbf{return}~H(Q,T)\end{array}$

The FunL*-algorithm

```
input: teacher of the target language L
                                                                  in a catgeory C
output: Min(L)
Q := T := \{\varepsilon\}
repeat
  while \varepsilon_{min} is not an isomorphism do
                                                                        Iso = F \cap M
     if \varepsilon_{min} \notin E then
                                                              (E, M) fact. system
        add QA to Q
     if \varepsilon_{min} \notin M then
        add AT to T
  ask an equivalence query for the hypothesis automaton \mathcal{H}(Q,T)
  if the answer is no then
     add the counterexample and all its prefixes to Q
until the answer is yes
return \mathcal{H}(Q,T)
```