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This tutorial is about ...

the interplay between category theory and automata theory.
In particular, we will see how the category-theoretic approach
« provides a unifying framework for modelling various forms of
automata,

- for obtaining generic algorithms for learning algorithms,

« highlights the link between automata learning and
minimization.
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Automata with effects



Complete Deterministic Finite Automata

Let's rewrite the definition of a complete DFA...
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Complete Deterministic Finite Automata

Let's rewrite the definition of a complete DFA...
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_> Jdo X41,92
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To give a complete DFA over A amounts to give a set Q and the
functions depicted below.
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Deterministic Finite Automata

Let’s rewrite the definition of a DFA...

./N@ a 4,
(’S
X@1,02

b
a a 1 _qf_> {90,91,92} —— 1

(%) +

To give a DFA over A amounts to give a set Q and the partial
functions depicted below.

0o (0€h)

D
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Nondeterministic Finite Automata

Let's rewrite the definition of an NFA...
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Nondeterministic Finite Automata

Let's rewrite the definition of an NFA...

a,b %a

~(@_ @ £ (o 25
; 1 —" {Go.G1,G2} —+ 1
"\ Y (L
—(%) "
To give an NFA amounts to give a set Q and the relations depicted

below.
0o (0€A)

O

1_L_>Q_X.F_>1
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Weighted automata over a semiring

da
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fin(g.) = fin(qgz) =1, etc...
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Weighted automata over a semiring

da

3a
2 i

_) @ R _!;_> R{q07q17q2} _ﬁ@n_> R
)

-b o
e.8. da(go) = 3qo +20n,
2b
@ fin(g.) = fin(qz) =1, etc...
To give a WA over R amounts to give a free module R? and the linear
maps depicted below.

0o (0€A)
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Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

- a finite set of states Q
« an initial state with an initial output in B*, or an undefined
initial state
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Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

- a finite set of states Q

« an initial state with an initial output in B*, or an undefined
initial state

- for each a € A a transition function Q - B* x Q +1

- for each state in Q, either an output word in B* or undefined.

blba
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Sequential Transducers

Let's rewrite the definition of a sequential transducer with input
alphabet {a,b} and output alphabet B = {a, b}.

blba

da

™

1% {40, q1,G2,q3} —4% 1

v

Note that an arrow X —— Y is
actually a function X -1+ B* x Y.
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Sequential Transducers

Let's rewrite the definition of a sequential transducer with input
alphabet {a,b} and output alphabet B = {a, b}.

da

™

1% {40, q1,G2,q3} —4% 1

v

[ )ob Notethatanarrow X —— Y is
actually a function X -1+ B* x Y.

To give a seq. transducer amounts to give a set Q and arrows:

0o (o€h)

1 %5 0 N>
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Word automata

0o (0€h)

qom

1—>Qi>2

complete DFAs — Set (sets and functions)
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Word automata

S5 (0€h) 5o (aeh)
Jo XF q X
1 —>Q =52 11— Q 1
complete DFAs — Set (sets and functions) DFAs — Set, (sets and partial functions)
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Word automata

60(UEA) 50 (O'EA)

)

Jdo XF q X
1 —5Q 2 11—+ Q 1
complete DFAs — Set (sets and functions) DFAs — Set, (sets and partial functions)

b0 (o€h)

)

1 —eQ X1

NFA — Rel (sets and relations)
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Word automata

60(UEA) 50 (O'EA)

)

1 do Q XF 2 1 qE Q XZ s 1

complete DFAs — Set (sets and functions) DFAs — Set, (sets and partial functions)
o (CTGA) 0o (UEA)
I XF i f
1 —> Q — 1 R > RQ > R
NFA — Rel (sets and relations) WAs over R — FreeModg (R-modules and linear maps)
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Word automata

60(UEA) 50 (O'EA)

f

1 do Q XF 2 1 qE Q XZ s 1

complete DFAs — Set (sets and functions) DFAs — Set, (sets and partial functions)
o ((J’GA) 0o (UEA)
| XF i f
1 —> Q — 1 R > RQ > R
NFA — Rel (sets and relations) WAs over R — FreeModg (R-modules and linear maps)
0o (0€A)

do F
1 —%>Q ¥
Sequential transducers — ?
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The output category for subsequential transducers

We consider partial actions for the free monoid B*.
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The output category for subsequential transducers

We consider partial actions for the free monoid B*.

We consider a category 7 with
- objects: sets X,Y.Z, ...
- arrows: f:X —— Y ,where f:X - B* xY +1is afunction

How to compose f:X —— Y and gY —— Z ?

gof:X —4— Z (i.e.gof:X > B* xZ+1)is given by

(uv,z) iff(x)=(u,y)andg(y) = (v,2)
L otherwise.

gof(X){
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The output category for subsequential transducers

We consider partial actions for the free monoid B*.
We consider a category 7 with

- objects: sets X,Y.Z, ...
- arrows: f:X —— Y ,where f:X - B* xY +1is afunction

How to compose f:X —— Y and gY —— Z ?

gof:X —4— Z (i.e.gof:X > B* xZ+1)is given by

(uv,z) iff(x)=(u,y)andg(y) = (v,2)
L otherwise.

gof(X){

This is the Kleisli category for the monad T:Set — Set given by
T(X) = B* x X +1, which associates to each set X the free partial
action of B* on X.
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Word automata

complete DFAs — Set (sets and functions)

do(0€A)

do XF
1 ——= Q ——1
NFA — Rel (sets and relations)

b0 (0€h)

1-%5 0 N1

Sequential transducers — 7~

b0 (g€h)

q X
11— Q —F=>1
DFAs — Set, (sets and partial functions)

b0 (0€h)

WAs over R — FreeModg (R-modules and linear maps)
b0 (0€h)
i f
| — Q — O
(C,I,0)-automata — C
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Word automata as functors

Word automata on A* are functors A:7 — C, where the input
category 7 is freely generated by

a (ach)

C )

in —= states —— out
The data given by the functor A is a tuple (Q,i,f, (da)gea), Where

 Qis an object of C.

« i:] - Q is the «initial» arrow, for some object | of C
f:Q — F is the «final» arrow, for some object F of C
* 5q:Q — Q is the «transition» arrow for each a ¢ A
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Word automata as functors

Word automata on A* are functors A:7 — C, where the input
category 7 is freely generated by

a (ach)

C )

in —= states —— out
The data given by the functor A is a tuple (Q,i,f, (da)gea), Where

 Qis an object of C.

« i:] - Q is the «initial» arrow, for some object | of C
* f:Q — F is the «final» arrow, for some object F of C
*+ 0g:Q — Q is the «transition» arrow for each ac A

The language accepted by A isa map L4:A* — C(I,F) that associates
to aword w = a,...a, the composite morphism

I —"sq 601>Q b, L P R
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Automata and languages as functors

An automaton A accepts a language £ when the next diagram
commutes

. DW<C : WweA* L
n > out

. > <
In —— states —— out
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Automata and languages as functors

An automaton A accepts a language £ when the next diagram
commutes

. DW<C : WweA*
n > out

. A

. > <
In —— states —— out

For every language £: O — C we consider
a category Auto, of automata accepting L.

O can be seen as an “observation” subcategory of Z.

Much of the ensuing theory can be developed independently on the
precise shape of 7. /43



The output categories we have seen so far

What do these categories have in common ?

- Set - the category of sets and functions

- Set, - the category of sets and partial functions

 Rel - the category of sets and relations

« Vec - the category of vector spaces and linear transformations
T - the category of free partial actions of some free monoid B*
and their morphisms
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The output categories we have seen so far

What do these categories have in common ?

- Set - the category of sets and functions

- Set, - the category of sets and partial functions

 Rel - the category of sets and relations

« Vec - the category of vector spaces and linear transformations

« T - the category of free partial actions of some free monoid B*
and their morphisms

Answer. They are categories of free algebras (aka Kleisli categories)
for monads specifying some effect:

+ the identity monad
+ the Maybe monad (aka option)
- the powerset monad - non-determinism
- the monad of partial free actions of B™.
15/ 43



Changing output categories




Adjunctions - Recap

Having an adjunction

means we have isomorphisms C(X,UY) = D(FX,Y) natural in both X
andY.

f:FX — Yyields f,: X - UY

g:X - UY yields g": FX - Y

16 / 43



Adjunctions - example 1

Exercise. Describe an adjunction between Set and Set,.

F
—,
Set . L 7 Set,
u

means we have isomorphisms Set(X,UY) = Set,(FX,Y) natural in
both X and Y.

f:FX —— Y in Set, yields f,:X — UY in Set

g:X - UY in Setyields g':FX —— Y in Set,
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Adjunctions - example 1
Exercise. Describe an adjunction between Set and Set,.

F
—,
Set . L 7 Set,
u

means we have isomorphisms Set(X,UY) = Set,(FX,Y) natural in
both X and Y.

Answer. FX =X, UX =1+ X...

f:X —— Y inSet, yields f,:X -1+ Y in Set

g:X - 1+YinSetyields g X —— Y in Set,
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Adjunctions - example 2

Exercise. Describe an adjunction between Set and Rel.

F
—,
Set . L 7 Rel
u

means we have isomorphisms Set(X, UY) =~ Rel(FX,Y) natural in both
XandY.

f:FX —e— Y in Relyields f;:X - UY in Set
g:X —» UY in Setyields g':FX —— Y in Rel

19/ 43



Adjunctions - example 2
Exercise. Describe an adjunction between Set and Rel.

F
— >
Set . 1 7 Rel
u

means we have isomorphisms Set(X,UY) = Rel(FX,Y) natural in both
XandY.

Answer. FX = X, UX = PX...

f:X —e— Y inRelyields f;:X - PY in Set

g:X - PY in Setyields g':X —— Y in Rel
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Adjunctions - example 3

The above adjunctions are all standard in category theory:
They are adjunctions between Set and the Kleisli category for a
monad.

F

—

Set «_ L+ 7 KL(T)
u

with F identity on objects and UX = TX.
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Getting rid of effects - or lifting adjunctions

Suppose we have the ‘same’ language interpreted in two different
categories related by an adjunction F+ U :

Le:A* > C(X,UY) and Lp:A* > D(FX, Y).

— ==
Auto(L¢) 1L Auto(Lp)
T |
States States

[
C\i//D

u
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Lifting adjunctions - completing DFAs

Suppose we have the ‘same’ regular language interpretted in two
different categories (Set and Rel) related by an adjunction F— U:

Lser:A™ — Set(1,2) and Lset,:A* — Sete(1,1).

inclusion

— T
Auto(Lset) 1 Auto(Lset, )
| completion |
States States
b
Set \i/ Set,

V)

Corollary 1. The completion of a DFA is a right adjoint to inclusions

of complete DFA in DFA.
23/ 43



Lifting adjunctions - determinization

Suppose we have the ‘same’ regular language interpretted in two
different categories (Set and Rel) related by an adjunction F -4 U :

Lset:A* — Set(1,U1) and Lge:A™ — Rel(F1,1).

— ==
Auto(Lset) 1 Auto(Lget)
\—/
| |

States States
I
Set \i/ Rel

u

Corollary 1. The determinization of NFA is a right adjoint to
inclusions of DFA in NFA.
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Lifting adjunctions - determinization

Suppose we have the ‘same’ regular language interpretted in two
different categories (Set and Rel) related by an adjunction F -4 U :

Lset:A* — Set(1,U1) and Lge:A™ — Rel(F1,1).

— ==
Auto(Lset) 1 Auto(Lget)
\—/
| |

States States
I
Set \i/ Rel

u

Corollary 1. The determinization of NFA is a right adjoint to
inclusions of DFA in NFA.

Corollary 2. Initial automata for free in Kleisli valued automata. o] 43



Automata in a category:
minimization




DFA Minimization

Given a language L c A* and a word u € A* the left quotient u™"L is
the set
{veA" |uvel}

The Myhill-Nerode equivalence is defined by

uxviffu'll=vL
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Theorem (Myhill-Nerode). A language L is regular iff it has only
finitely many left quotients iff ; has finite index.

25/ 43



DFA Minimization

Given a language L c A* and a word u € A* the left quotient u™"L is

the set
{veA" |uvel}

The Myhill-Nerode equivalence is defined by

uxviffu'll=vL

Theorem (Myhill-Nerode). A language L is regular iff it has only
finitely many left quotients iff ; has finite index.

Proof. = If an automaton A = (Q, qo, F, (0a)aca) accepts a language L,
then the automaton (Q,64(qo), F, (a)aca) accepts u~"L.
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DFA Minimization

Given a language L c A* and a word u € A* the left quotient u™"L is
the set
{veA" |uvel}

The Myhill-Nerode equivalence is defined by
uxviffu'll=vL

Theorem (Myhill-Nerode). A language L is regular iff it has only
finitely many left quotients iff ; has finite index.

Proof. = If an automaton A = (Q, qo, F, (0a)aca) accepts a language L,
then the automaton (Q,64(qo), F, (a)aca) accepts u~"L.

<« Consider the Nerode automaton of L, that is (Q, go, F, (da)aca),
where
« Q={u'L|ueA*}, « F={u'L|uel}and

—_ O -1 _ =7
go=1L da(u™'L) = (ua)~'L. i



DFA Minimization

How do we minimize an automaton A4?

« remove all states that are not accessible from the initial state.
We obtain the reachable sub-automaton Reach(A).

 Merge all states that accept the same language, we obtain the
observable quotient Obs(Reach(A)).
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DFA Minimization

How do we minimize an automaton A4?

« remove all states that are not accessible from the initial state.
We obtain the reachable sub-automaton Reach(A).

 Merge all states that accept the same language, we obtain the
observable quotient Obs(Reach(A)).

There are several algorithms for minimizing automata:
Moore, Hopcroft, Brzozowski.

26/ 43



Minimization of C-automata

« What does it mean for a C-automaton to be minimal?

« What are sufficient conditions on C so that a minimal
automaton for a language exists?

« Can we compute the minimal automaton effectively?
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« What does it mean for a C-automaton to be minimal?

+ What are sufficient conditions on C so that a minimal
automaton for a language exists?

« Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the
same language.
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Minimization of C-automata

« What does it mean for a C-automaton to be minimal?

+ What are sufficient conditions on C so that a minimal
automaton for a language exists?

« Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton
of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

27/ 43



Three more category-theoretic notions

« An initial object in a category C is an object X such that for any
object A of C there is a unique morphism : X — A.
Question: what is the initial object in Set? And in Rel?
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Three more category-theoretic notions

« An initial object in a category C is an object X such that for any
object A of C there is a unique morphism : X — A.
Question: what is the initial object in Set? And in Rel?

« Afinal object in a category C is an object Y such that for any
object A of C there is a unique morphism :A - Y.
Question: what is the final object in Set? And in Rel?
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Three more category-theoretic notions

« An initial object in a category C is an object X such that for any
object A of C there is a unique morphism : X — A.
Question: what is the initial object in Set? And in Rel?

« Afinal object in a category C is an object Y such that for any
object A of C there is a unique morphism :A - Y.
Question: what is the final object in Set? And in Rel?

« Afactorization system provides the category-theoretic

generalizations for the notions of “quotients” and “subobjects”,
definition on next slide...
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The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?
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The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

left Kan ext? @ 4'6/; C

Ainit (L)
T

If the category of automata accepting £ has

- an initial object A;,;i¢ (L),
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The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

@) 4'6/; C right Kan extension?

Ainit (L) /

Asina1(£)
7—

If the category of automata accepting £ has

- an initial object A;,;i¢ (L),
« afinal object Afina1(£), and,
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The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?
c
@) 4/§ C
n
Ainit(ﬁ) ///
Min(L) /
/// Asina1(£)
7=
If the category of automata accepting £ has

- an initial object A;,;i¢ (L),
« afinal object Afina1(£), and,
- a factorization system

then Min(£) is obtained as the factorization

Ainit (L) > Min(L) = Asina1 (L) .
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The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?
c
@) 4/§ C
1

Ainit (E) ////
/ Min(L)

) ~ Asina1(£)

7"
If the category of automata accepting £ has
« an initial object A;nit (L), v when C has copowers
- afinal object A¢ina1(£), and, v'when C has powers
- a factorization system v“when C has one

then Min(£) is obtained as the factorization

Ainit (L) > Min(L) = Asina1 (L) .
29 /43



Factorization systems

Factorization systems are a generalization of the next situation:

Every function f:X — Y can we written as a composite
X—25z2y"sy

with e a surjection and m and injection, and, moreover, such a

decomposition is unique up-to isomorphism.
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Factorization systems

Factorization systems are a generalization of the next situation:
Every function f:X — Y can we written as a composite

X—S5zy"sy
with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

« E and M contain the isomorphisms and are closed under
composition;

« every morphism f:X — Y can we written as a composite moe
withecEand me M;

« the decomposition is functorial, i.e. any two decompositions

are isomorphic
30/43



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?
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The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

If the category of automata accepting £ has

- an initial object A;,i¢ (L),
« afinal object Afina1(£), and,
- a factorization system

then Min(£) is obtained as the factorization

Asnic (L) > Min(L) = Asina1 (L)
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The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

If the category of automata accepting £ has

« an initial object A;nit (L), v“when C has copowers
- afinal object Asina1 (£), and, v“when C has powers
- a factorization system v“when C has one

then Min(£) is obtained as the factorization

Asnic(L£) > Min(L) = Asina1 (L)

31/43



Trivial example: minimizing DFAs

The initial automaton A;,;, for Set-automata accepting a language L
is the following :
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Trivial example: minimizing DFAs

The initial automaton A;,;, for Set-automata accepting a language L
is the following :

The final automaton As;,.1 for Set-automata accepting a language L
is the following :
K—a 'K

1A o
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Trivial example: minimizing DFAs accepting L

The unique map from the initial to the final automaton is given by
1:A* - 2%, defined by w — w'L.

A>(—
15 L?
reachedState
1 i > Q ! > 2
acceptedLanguage
E N 67
2A
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Trivial example: minimizing DFAs accepting L

The unique map from the initial to the final automaton is given by
1:A* - 2%, defined by w — w'L.

A>(—
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Another trivial example

R-weighted automata, i.e. (Vec,R,R)-automata
accepting a (Vec, R,R)-language

ueA*
reachedState
acceptedLanguage
L

|
IR

UeA*

(1]

— D
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Another trivial example
R-weighted automata, i.e. (Vec,R,R)-automata

accepting a (Vec, R,R)-language

PR

ueA*

UeA*
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The minimal transducer in a picture

We obtain Min(£) - the minimal subsequential transducer as
obtained by Choffrut!

Irr(A*,B*)
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The minimal transducer in a picture

We obtain Min(£) - the minimal subsequential transducer as
obtained by Choffrut! In fact it also works if we replace B* by a trace
monoid.
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Minimal Automaton Min(£) for a Language
The automaton Min(£) divides any other automaton accepting L.
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Minimal Automaton Min(£) for a Language

The automaton Min(£) divides any other automaton accepting L.

/—> A
e \
Ainit(L) —>» reach(A) —» obs(reach(A)) > Asina1(L)

\% Min(L)/;/

Thus far we identified simple sufficient conditions on C so that
minimization of C-automata is guaranteed!
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Learning




The L*-algorithm

+ Goal: learn a regular language of words L.
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The L*-algorithm

+ Goal: learn a regular language of words L.
« The algorithm interacts with a teacher who knows L by asking
two types of queries:

1. Membership queries: Does a word belong to the language ?

2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L. If no, the teacher
provides a counter-example.

+ The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.
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The L*-algorithm: some definitions

+ At each step, we maintain a pair of sets of words (Q, T), starting
with ({e},{e}).
« Q —> potential states for the hypothesis automaton
« T —> test words used to define an equivalence relation coarser
than the Myhill-Nerode equivalence.
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The L*-algorithm: some definitions

At each step, we maintain a pair of sets of words (Q, T), starting
with ({e},{e}).
« Q —> potential states for the hypothesis automaton
« T —> test words used to define an equivalence relation coarser
than the Myhill-Nerode equivalence.

the T-equivalence relation: w~rviffVueT. wuel < vuel
closedness: VgeQ.VaecA.3peQ. p ~1 qa.
consistency: vVq,q' cQ.VacA. g~1q' = qa~1q'a

When (Q,T) is closed and consistent it is possible to build a
hypothesis automaton H(Q,T)
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L*-revisited

« At the (Q,T) stage of the algorithm the learner only has access
to a fragment of the language:

Lor: QATUQT — A* —5 2
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L*-revisited

« At the (Q,T) stage of the algorithm the learner only has access
to a fragment of the language:

Lor: QATUQT — A* —5 2

+ This can be represented by a notion of (Q, T)-biautomaton

a (aecA)
! (q o) Q :a Q (Sr> 2

such that the following coherence diagrams commute

> Q a t<
1 q/ ~2 o o / \
an\ Q /5 \ /atq
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Minimal (Q, T)-biautomaton and the hypothesis automaton

Closure and consistency for the pair (Q,T) can be encoded
categorically via the minimal (Q, T)-biautomaton.
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Minimal (Q, T)-biautomaton and the hypothesis automaton

Closure and consistency for the pair (Q,T) can be encoded
categorically via the minimal (Q, T)-biautomaton.

We obtain a generic FunL* algorithm that instantiates to
« Angluin’s original algorithm,
« the weighted automata over fields variant of L~
- the sequential transducer variant

Further details: Thomas Colcombet, Daniela Petrisan, Riccardo Stabile:
Learning Automata and Transducers: A Categorical Approach. CSL 2021

40/ 43



Perspectives




Minimization/learning for free ?

Are there some conditions on a monad T so that KI(T) has all the
required properties required for the existence of
minimization/learning of KI(T)-automata ?
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Minimization/learning for free ?

Are there some conditions on a monad T so that KI(T) has all the
required properties required for the existence of
minimization/learning of KI(T)-automata ?

Move to Eilenberg-Moore algebras when KI(T) is not good enough,
e.g., to the category of join sup-semilattices.

We see a Rel-valued automaton as a JSL-valued automaton.
Extension to tree automata

Weighted automata over number rings —> see
https://arxiv.org/pdf/2504.16596

Learning nominal automata, building on Victor lwaniack’s work on
automata in toposes.
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More details for learning




Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category” using off-the-shelf results from (Colcombet,P., 2017).

a .
>Qmin min < min
1 — Q/~roar —— (QUQA)/~y — 2

Emin

Recallw~rviffYueT. wuel <vuel

* under mild assumptions
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Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category” using off-the-shelf results from (Colcombet,P., 2017).

a .
>Amin min < min
1 — Q/~roar —— (QUQA)/~y — 2
Emin
Recallw~rviffYueT. wuel <vuel
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* emin IS surjective iff (Q, T) is closed oot
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(¥qeQ.YacA.3peQ.p~r qa)
if (Q,T) is not consistent enlarge T
(vg,q'€Q.YaeA. g~rq' = qa~rq'a)
ask an equivalence query for #(Q,T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return H(Q,T)
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We can compute the minimal (Q, T)-biautomaton in an arbitrary
category” using off-the-shelf results from (Colcombet,P., 2017).
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Emin
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Emin([q]~mm) = [Q]~r t < pin ([qa]~r) = LQ,T(qat)
* £min IS surjective iff (Q,T) is closed oot
5. 0.0 5 . . . while (Q, T) not closed and consistent
* emin 1S Injective iff (Q,T) Is consistent if (Q,7) is not closed enlarge @
(¥qeQ.vaeA.3peQ.p~r qa)
* If epin Is @an isomorphism we merge the f(Q.1) T not consistent enterge T
4.q'cQ.¥acA. g~rq' > qa~rqa
two states of the (Q, T)-biautomaton el SIe U HIE)
if the answer is no then
and Obtai n H(Q T) add the counterexample and its
9 0

prefixes to Q
until the answer is yes
return H(Q,T)
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The FunL*-algorithm

input: teacher of the target language L in a catgeory C
output: Min(L)
Q:=Ti={e}
repeat
while ,,;, is not an isomorphism do Iso=EnM
if cin ¢ E then (E,M) fact. system
add QAto Q
if cin ¢ M then
addATto T
ask an equivalence query for the hypothesis automaton #(Q,T)
if the answer is no then
add the counterexample and all its prefixes to Q
until the answer is yes
return H(Q,T)
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