
A categorical approach to automata learning and
minimization

Daniela Petrişan

Université Paris Cité, IRIF, France

EPIT’25, Aussois, 20 May 2025

Some references

T. Colcombet and D. Petrişan, Automata minimization: a functorial
approach. Log. Methods Comput. Sci., 16(1), 2020

T. Colcombet, D. Petrisan, R. Stabile, Learning Automata and
Transducers: A Categorical Approach. CSL 2021

J. E. Pin (Ed.) Handbook of Automata Theory, EMS Press, 2021

Further reading:

Q. Aristote, S. van Gool, D. Petrişan, M. Shirmohammadi, Learning
Weighted Automata over Number Rings, Concretely and Categorically
LICS 2025

https://arxiv.org/pdf/2504.16596

2 / 43

https://arxiv.org/pdf/2504.16596

This tutorial is about ...

the interplay between category theory and automata theory.

In particular, we will see how the category-theoretic approach

• provides a unifying framework for modelling various forms of
automata,

• for obtaining generic algorithms for learning algorithms,
• highlights the link between automata learning and
minimization.

3 / 43

This tutorial is about ...

the interplay between category theory and automata theory.

In particular, we will see how the category-theoretic approach

• provides a unifying framework for modelling various forms of
automata,

• for obtaining generic algorithms for learning algorithms,

• highlights the link between automata learning and
minimization.

3 / 43

This tutorial is about ...

the interplay between category theory and automata theory.

In particular, we will see how the category-theoretic approach

• provides a unifying framework for modelling various forms of
automata,

• for obtaining generic algorithms for learning algorithms,
• highlights the link between automata learning and
minimization.

3 / 43

Automata with e�ects

Complete Deterministic Finite Automata

Let’s rewrite the de�nition of a complete DFA...

q0 q1

q2

a

b a

b

b

a
1 {q0,q1,q2} 2q0 χq1,q2

δb

δa

To give a complete DFA over A amounts to give a set Q and the
functions depicted below.

1 Q 2q0 χF

δσ(σ∈A)

4 / 43

Complete Deterministic Finite Automata

Let’s rewrite the de�nition of a complete DFA...

q0 q1

q2

a

b a

b

b

a
1 {q0,q1,q2} 2q0 χq1,q2

δb

δa

To give a complete DFA over A amounts to give a set Q and the
functions depicted below.

1 Q 2q0 χF

δσ(σ∈A)

4 / 43

Deterministic Finite Automata

Let’s rewrite the de�nition of a DFA...

q0 q1

q2

a

b aa 1 {q0,q1,q2} 1/
q0

/
χq1,q2

δb
/

δa
/

To give a DFA over A amounts to give a set Q and the partial
functions depicted below.

1 Q 1/
q0

/
χF

δσ(σ∈A)
/

5 / 43

Deterministic Finite Automata

Let’s rewrite the de�nition of a DFA...

q0 q1

q2

a

b aa 1 {q0,q1,q2} 1/
q0

/
χq1,q2

δb
/

δa
/

To give a DFA over A amounts to give a set Q and the partial
functions depicted below.

1 Q 1/
q0

/
χF

δσ(σ∈A)
/

5 / 43

Nondeterministic Finite Automata

Let’s rewrite the de�nition of an NFA...

q0 q1

q2

a
a,b

b
ba

1 {q0,q1,q2} 1●
q0

●
χq1,q2

δb
●

δa
●

To give an NFA amounts to give a set Q and the relations depicted
below.

1 Q 1●
I

●
χF

δσ(σ∈A)
●

6 / 43

Nondeterministic Finite Automata

Let’s rewrite the de�nition of an NFA...

q0 q1

q2

a
a,b

b
ba

1 {q0,q1,q2} 1●
q0

●
χq1,q2

δb
●

δa
●

To give an NFA amounts to give a set Q and the relations depicted
below.

1 Q 1●
I

●
χF

δσ(σ∈A)
●

6 / 43

Weighted automata over a semiring

q0 q1

q2

2a

3b −b

3a

2b

a

R R{q0,q1,q2} R○
i

○
�n

δb
○

δa
○

e.g., δa(q0) = 3q0 + 2q1,
�n(q1) = �n(q2) = 1, etc...

To give a WA over R amounts to give a free module RQ and the linear
maps depicted below.

R RQ R○
i

○
f

δσ(σ∈A)
○

7 / 43

Weighted automata over a semiring

q0 q1

q2

2a

3b −b

3a

2b

a

R R{q0,q1,q2} R○
i

○
�n

δb
○

δa
○

e.g., δa(q0) = 3q0 + 2q1,
�n(q1) = �n(q2) = 1, etc...

To give a WA over R amounts to give a free module RQ and the linear
maps depicted below.

R RQ R○
i

○
f

δσ(σ∈A)
○

7 / 43

Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

• a �nite set of states Q
• an initial state with an initial output in B∗, or an unde�ned
initial state

• for each a ∈ A a transition function Q→ B∗ ×Q + 1
• for each state in Q, either an output word in B∗ or unde�ned.

0 1

23

ε

a

ba

a∣ab

a∣bab

a∣abb

a∣ab
b∣b

b∣ba

b∣bb∣ab

8 / 43

Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

• a �nite set of states Q
• an initial state with an initial output in B∗, or an unde�ned
initial state

• for each a ∈ A a transition function Q→ B∗ ×Q + 1

• for each state in Q, either an output word in B∗ or unde�ned.

0 1

23

ε

a

ba

a∣ab

a∣bab

a∣abb

a∣ab
b∣b

b∣ba

b∣bb∣ab

8 / 43

Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

• a �nite set of states Q
• an initial state with an initial output in B∗, or an unde�ned
initial state

• for each a ∈ A a transition function Q→ B∗ ×Q + 1
• for each state in Q, either an output word in B∗ or unde�ned.

0 1

23

ε

a

ba

a∣ab

a∣bab

a∣abb

a∣ab
b∣b

b∣ba

b∣bb∣ab

8 / 43

Sequential Transducers

Let’s rewrite the de�nition of a sequential transducer with input
alphabet {a,b} and output alphabet B = {a,b}.

q0 q1

q2q3

ε

a

ba

a∣ab

a∣bab

a∣abb

a∣ab
b∣b

b∣ba

b∣bb∣ab

1 {q0,q1,q2,q3} 1⧫
q0

⧫
χq1,q2

δb
⧫

δa
⧫

Note that an arrow X Y⧫ is
actually a function X → 1 + B∗ × Y.

To give a seq. transducer amounts to give a set Q and arrows:

1 Q 1⧫
q0

⧫
χF

δσ(σ∈A)
⧫

9 / 43

Sequential Transducers

Let’s rewrite the de�nition of a sequential transducer with input
alphabet {a,b} and output alphabet B = {a,b}.

q0 q1

q2q3

ε

a

ba

a∣ab

a∣bab

a∣abb

a∣ab
b∣b

b∣ba

b∣bb∣ab

1 {q0,q1,q2,q3} 1⧫
q0

⧫
χq1,q2

δb
⧫

δa
⧫

Note that an arrow X Y⧫ is
actually a function X → 1 + B∗ × Y.

To give a seq. transducer amounts to give a set Q and arrows:

1 Q 1⧫
q0

⧫
χF

δσ(σ∈A)
⧫

9 / 43

Word automata

1 Q 2q0 χF

δσ(σ∈A)

complete DFAs — Set (sets and functions)

1 Q 1/
q0

/
χF

δσ(σ∈A)
/

DFAs — Set● (sets and partial functions)

1 Q 1●
I

●
χF

δσ(σ∈A)
●

NFA — Rel (sets and relations)

R RQ R○
i

○
f

δσ(σ∈A)
○

WAs over R — FreeModR (R-modules and linear maps)

1 Q 1⧫
q0

⧫
χF

δσ(σ∈A)
⧫

Sequential transducers — ?

10 / 43

Word automata

1 Q 2q0 χF

δσ(σ∈A)

complete DFAs — Set (sets and functions)

1 Q 1/
q0

/
χF

δσ(σ∈A)
/

DFAs — Set● (sets and partial functions)

1 Q 1●
I

●
χF

δσ(σ∈A)
●

NFA — Rel (sets and relations)

R RQ R○
i

○
f

δσ(σ∈A)
○

WAs over R — FreeModR (R-modules and linear maps)

1 Q 1⧫
q0

⧫
χF

δσ(σ∈A)
⧫

Sequential transducers — ?

10 / 43

Word automata

1 Q 2q0 χF

δσ(σ∈A)

complete DFAs — Set (sets and functions)

1 Q 1/
q0

/
χF

δσ(σ∈A)
/

DFAs — Set● (sets and partial functions)

1 Q 1●
I

●
χF

δσ(σ∈A)
●

NFA — Rel (sets and relations)

R RQ R○
i

○
f

δσ(σ∈A)
○

WAs over R — FreeModR (R-modules and linear maps)

1 Q 1⧫
q0

⧫
χF

δσ(σ∈A)
⧫

Sequential transducers — ?

10 / 43

Word automata

1 Q 2q0 χF

δσ(σ∈A)

complete DFAs — Set (sets and functions)

1 Q 1/
q0

/
χF

δσ(σ∈A)
/

DFAs — Set● (sets and partial functions)

1 Q 1●
I

●
χF

δσ(σ∈A)
●

NFA — Rel (sets and relations)

R RQ R○
i

○
f

δσ(σ∈A)
○

WAs over R — FreeModR (R-modules and linear maps)

1 Q 1⧫
q0

⧫
χF

δσ(σ∈A)
⧫

Sequential transducers — ?

10 / 43

Word automata

1 Q 2q0 χF

δσ(σ∈A)

complete DFAs — Set (sets and functions)

1 Q 1/
q0

/
χF

δσ(σ∈A)
/

DFAs — Set● (sets and partial functions)

1 Q 1●
I

●
χF

δσ(σ∈A)
●

NFA — Rel (sets and relations)

R RQ R○
i

○
f

δσ(σ∈A)
○

WAs over R — FreeModR (R-modules and linear maps)

1 Q 1⧫
q0

⧫
χF

δσ(σ∈A)
⧫

Sequential transducers — ?

10 / 43

The output category for subsequential transducers

We consider partial actions for the free monoid B∗.

We consider a category T with

• objects: sets X,Y,Z, . . .
• arrows: f ∶X Y⧫ , where f ∶X → B∗ × Y + 1 is a function

How to compose f ∶X Y⧫ and g∶Y Z⧫ ?

g ○ f ∶X Z⧫ (i.e. g ○ f ∶X → B∗ × Z + 1) is given by

g ○ f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uv, z) if f(x) = (u, y) and g(y) = (v, z)
� otherwise.

This is the Kleisli category for the monad T∶Set→ Set given by
T(X) = B∗ × X + 1, which associates to each set X the free partial
action of B∗ on X.

11 / 43

The output category for subsequential transducers

We consider partial actions for the free monoid B∗.

We consider a category T with

• objects: sets X,Y,Z, . . .
• arrows: f ∶X Y⧫ , where f ∶X → B∗ × Y + 1 is a function

How to compose f ∶X Y⧫ and g∶Y Z⧫ ?

g ○ f ∶X Z⧫ (i.e. g ○ f ∶X → B∗ × Z + 1) is given by

g ○ f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uv, z) if f(x) = (u, y) and g(y) = (v, z)
� otherwise.

This is the Kleisli category for the monad T∶Set→ Set given by
T(X) = B∗ × X + 1, which associates to each set X the free partial
action of B∗ on X.

11 / 43

The output category for subsequential transducers

We consider partial actions for the free monoid B∗.

We consider a category T with

• objects: sets X,Y,Z, . . .
• arrows: f ∶X Y⧫ , where f ∶X → B∗ × Y + 1 is a function

How to compose f ∶X Y⧫ and g∶Y Z⧫ ?

g ○ f ∶X Z⧫ (i.e. g ○ f ∶X → B∗ × Z + 1) is given by

g ○ f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uv, z) if f(x) = (u, y) and g(y) = (v, z)
� otherwise.

This is the Kleisli category for the monad T∶Set→ Set given by
T(X) = B∗ × X + 1, which associates to each set X the free partial
action of B∗ on X.

11 / 43

The output category for subsequential transducers

We consider partial actions for the free monoid B∗.

We consider a category T with

• objects: sets X,Y,Z, . . .
• arrows: f ∶X Y⧫ , where f ∶X → B∗ × Y + 1 is a function

How to compose f ∶X Y⧫ and g∶Y Z⧫ ?

g ○ f ∶X Z⧫ (i.e. g ○ f ∶X → B∗ × Z + 1) is given by

g ○ f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uv, z) if f(x) = (u, y) and g(y) = (v, z)
� otherwise.

This is the Kleisli category for the monad T∶Set→ Set given by
T(X) = B∗ × X + 1, which associates to each set X the free partial
action of B∗ on X.

11 / 43

Word automata

1 Q 2q0 χF

δσ(σ∈A)

complete DFAs — Set (sets and functions)

1 Q 1/
q0

/
χF

δσ(σ∈A)
/

DFAs — Set● (sets and partial functions)

1 Q 1●
q0

●
χF

δσ(σ∈A)
●

NFA — Rel (sets and relations)

R RQ R○
i

○
f

δσ(σ∈A)
○

WAs over R — FreeModR (R-modules and linear maps)

1 Q 1⧫
q0

⧫
χF

δσ(σ∈A)
⧫

Sequential transducers — T

I Q Oi f

δσ(σ∈A)

(C, I,O)-automata — C

12 / 43

Word automata as functors

Word automata on A∗ are functors A∶I → C , where the input
category I is freely generated by

in states out▷

a (a∈A)

◁

The data given by the functor A is a tuple ⟨Q, i, f , (δa)a∈A⟩, where

• Q is an object of C.
• i∶ I→ Q is the «initial» arrow, for some object I of C
• f ∶Q→ F is the «�nal» arrow, for some object F of C
• δa∶Q→ Q is the «transition» arrow for each a ∈ A

The language accepted by A is a map LA∶A∗ → C(I, F) that associates
to a word w = a1 . . .an the composite morphism

i δa1 δa2 δan f
13 / 43

Word automata as functors

Word automata on A∗ are functors A∶I → C , where the input
category I is freely generated by

in states out▷

a (a∈A)

◁

The data given by the functor A is a tuple ⟨Q, i, f , (δa)a∈A⟩, where

• Q is an object of C.
• i∶ I→ Q is the «initial» arrow, for some object I of C
• f ∶Q→ F is the «�nal» arrow, for some object F of C
• δa∶Q→ Q is the «transition» arrow for each a ∈ A

The language accepted by A is a map LA∶A∗ → C(I, F) that associates
to a word w = a1 . . .an the composite morphism

I Q Q . . . Q Fi δa1 δa2 δan f
13 / 43

Automata and languages as functors

An automaton A accepts a language L when the next diagram
commutes

in out O C

in states out I

▷w◁ ∶ w∈A∗ L

▷

a

◁

A

For every language L∶O → C we consider
a category AutoL of automata accepting L.

O can be seen as an “observation” subcategory of I .

Much of the ensuing theory can be developed independently on the
precise shape of I .

14 / 43

Automata and languages as functors

An automaton A accepts a language L when the next diagram
commutes

in out O C

in states out I

▷w◁ ∶ w∈A∗ L

▷

a

◁

A

For every language L∶O → C we consider
a category AutoL of automata accepting L.

O can be seen as an “observation” subcategory of I .

Much of the ensuing theory can be developed independently on the
precise shape of I . 14 / 43

The output categories we have seen so far

What do these categories have in common ?

• Set – the category of sets and functions
• Set● – the category of sets and partial functions
• Rel – the category of sets and relations
• Vec – the category of vector spaces and linear transformations
• T – the category of free partial actions of some free monoid B∗

and their morphisms

Answer. They are categories of free algebras (aka Kleisli categories)
for monads specifying some e�ect:

• the identity monad
• the Maybe monad (aka option)
• the powerset monad – non-determinism
• the monad of partial free actions of B∗.

15 / 43

The output categories we have seen so far

What do these categories have in common ?

• Set – the category of sets and functions
• Set● – the category of sets and partial functions
• Rel – the category of sets and relations
• Vec – the category of vector spaces and linear transformations
• T – the category of free partial actions of some free monoid B∗

and their morphisms

Answer. They are categories of free algebras (aka Kleisli categories)
for monads specifying some e�ect:

• the identity monad
• the Maybe monad (aka option)
• the powerset monad – non-determinism
• the monad of partial free actions of B∗.

15 / 43

Changing output categories

Adjunctions – Recap

Having an adjunction

C � D
F

U

means we have isomorphisms C(X,UY) ≅ D(FX,Y) natural in both X
and Y.

f ∶ FX → Y yields f♭∶X → UY

g∶X → UY yields g♯∶ FX → Y

16 / 43

Adjunctions – example 1

Exercise. Describe an adjunction between Set and Set●.

Set � Set●
F

U

means we have isomorphisms Set(X,UY) ≅ Set●(FX,Y) natural in
both X and Y.

f ∶ FX Y/ in Set● yields f♭∶X → UY in Set

g∶X → UY in Set yields g♯∶ FX Y/ in Set●

17 / 43

Adjunctions – example 1

Exercise. Describe an adjunction between Set and Set●.

Set � Set●
F

U

means we have isomorphisms Set(X,UY) ≅ Set●(FX,Y) natural in
both X and Y.

Answer. FX = X, UX = 1 + X...

f ∶X Y/ in Set● yields f♭∶X → 1 + Y in Set

g∶X → 1 + Y in Set yields g♯∶X Y/ in Set●

18 / 43

Adjunctions – example 2

Exercise. Describe an adjunction between Set and Rel.

Set � Rel
F

U

means we have isomorphisms Set(X,UY) ≅ Rel(FX,Y) natural in both
X and Y.

f ∶ FX Y● in Rel yields f♭∶X → UY in Set

g∶X → UY in Set yields g♯∶ FX Y● in Rel

19 / 43

Adjunctions – example 2

Exercise. Describe an adjunction between Set and Rel.

Set � Rel
F

U

means we have isomorphisms Set(X,UY) ≅ Rel(FX,Y) natural in both
X and Y.

Answer. FX = X, UX = PX...

f ∶X Y● in Rel yields f♭∶X → PY in Set

g∶X → PY in Set yields g♯∶X Y● in Rel

20 / 43

Adjunctions – example 3

The above adjunctions are all standard in category theory:
They are adjunctions between Set and the Kleisli category for a
monad.

Set � Kl(T)
F

U

with F identity on objects and UX = TX.

21 / 43

Getting rid of e�ects – or lifting adjunctions

Suppose we have the ‘same’ language interpreted in two di�erent
categories related by an adjunction F ⊣ U :

LC∶A∗ → C(X,UY) and LD∶A∗ → D(FX,Y).

Auto(LC) � Auto(LD)

C � D

States States
F

U

22 / 43

Lifting adjunctions – completing DFAs

Suppose we have the ‘same’ regular language interpretted in two
di�erent categories (Set and Rel) related by an adjunction F ⊣ U :

LSet∶A∗ → Set(1,2) and LSet● ∶A∗ → Set●(1, 1).

Auto(LSet) � Auto(LSet●)

Set � Set●

inclusion

States States
completion

F

U

Corollary 1. The completion of a DFA is a right adjoint to inclusions
of complete DFA in DFA.

23 / 43

Lifting adjunctions – determinization

Suppose we have the ‘same’ regular language interpretted in two
di�erent categories (Set and Rel) related by an adjunction F ⊣ U :

LSet∶A∗ → Set(1,U1) and LRel∶A∗ → Rel(F1, 1).

Auto(LSet) � Auto(LRel)

Set � Rel

States States
F

U

Corollary 1. The determinization of NFA is a right adjoint to
inclusions of DFA in NFA.

Corollary 2. Initial automata for free in Kleisli valued automata.

24 / 43

Lifting adjunctions – determinization

Suppose we have the ‘same’ regular language interpretted in two
di�erent categories (Set and Rel) related by an adjunction F ⊣ U :

LSet∶A∗ → Set(1,U1) and LRel∶A∗ → Rel(F1, 1).

Auto(LSet) � Auto(LRel)

Set � Rel

States States
F

U

Corollary 1. The determinization of NFA is a right adjoint to
inclusions of DFA in NFA.

Corollary 2. Initial automata for free in Kleisli valued automata. 24 / 43

Automata in a category:
minimization

DFA Minimization

Given a language L ⊆ A∗ and a word u ∈ A∗ the left quotient u−1L is
the set

{v ∈ A∗ ∣ uv ∈ L}

The Myhill-Nerode equivalence is de�ned by

u ≅L v i� u−1L = v−1L

Theorem (Myhill-Nerode). A language L is regular i� it has only
�nitely many left quotients i� ≅L has �nite index.

Proof. ⇒ If an automaton A = (Q,q0, F, (δa)a∈A) accepts a language L,
then the automaton (Q, δu(q0), F, (δa)a∈A) accepts u−1L.

⇐ Consider the Nerode automaton of L, that is (Q,q0, F, (δa)a∈A),
where
• Q = {u−1L ∣ u ∈ A∗},
• q0 = L

• F = {u−1L ∣ u ∈ L} and
• δa(u−1L) = (ua)−1L.

25 / 43

DFA Minimization

Given a language L ⊆ A∗ and a word u ∈ A∗ the left quotient u−1L is
the set

{v ∈ A∗ ∣ uv ∈ L}

The Myhill-Nerode equivalence is de�ned by

u ≅L v i� u−1L = v−1L

Theorem (Myhill-Nerode). A language L is regular i� it has only
�nitely many left quotients i� ≅L has �nite index.

Proof. ⇒ If an automaton A = (Q,q0, F, (δa)a∈A) accepts a language L,
then the automaton (Q, δu(q0), F, (δa)a∈A) accepts u−1L.

⇐ Consider the Nerode automaton of L, that is (Q,q0, F, (δa)a∈A),
where
• Q = {u−1L ∣ u ∈ A∗},
• q0 = L

• F = {u−1L ∣ u ∈ L} and
• δa(u−1L) = (ua)−1L.

25 / 43

DFA Minimization

Given a language L ⊆ A∗ and a word u ∈ A∗ the left quotient u−1L is
the set

{v ∈ A∗ ∣ uv ∈ L}

The Myhill-Nerode equivalence is de�ned by

u ≅L v i� u−1L = v−1L

Theorem (Myhill-Nerode). A language L is regular i� it has only
�nitely many left quotients i� ≅L has �nite index.

Proof. ⇒ If an automaton A = (Q,q0, F, (δa)a∈A) accepts a language L,
then the automaton (Q, δu(q0), F, (δa)a∈A) accepts u−1L.

⇐ Consider the Nerode automaton of L, that is (Q,q0, F, (δa)a∈A),
where
• Q = {u−1L ∣ u ∈ A∗},
• q0 = L

• F = {u−1L ∣ u ∈ L} and
• δa(u−1L) = (ua)−1L.

25 / 43

DFA Minimization

Given a language L ⊆ A∗ and a word u ∈ A∗ the left quotient u−1L is
the set

{v ∈ A∗ ∣ uv ∈ L}

The Myhill-Nerode equivalence is de�ned by

u ≅L v i� u−1L = v−1L

Theorem (Myhill-Nerode). A language L is regular i� it has only
�nitely many left quotients i� ≅L has �nite index.

Proof. ⇒ If an automaton A = (Q,q0, F, (δa)a∈A) accepts a language L,
then the automaton (Q, δu(q0), F, (δa)a∈A) accepts u−1L.

⇐ Consider the Nerode automaton of L, that is (Q,q0, F, (δa)a∈A),
where
• Q = {u−1L ∣ u ∈ A∗},
• q0 = L

• F = {u−1L ∣ u ∈ L} and
• δa(u−1L) = (ua)−1L.

25 / 43

DFA Minimization

How do we minimize an automaton A?

• remove all states that are not accessible from the initial state.
We obtain the reachable sub-automaton Reach(A).

• Merge all states that accept the same language, we obtain the
observable quotient Obs(Reach(A)).

There are several algorithms for minimizing automata:
Moore, Hopcroft, Brzozowski.

26 / 43

DFA Minimization

How do we minimize an automaton A?

• remove all states that are not accessible from the initial state.
We obtain the reachable sub-automaton Reach(A).

• Merge all states that accept the same language, we obtain the
observable quotient Obs(Reach(A)).

There are several algorithms for minimizing automata:
Moore, Hopcroft, Brzozowski.

26 / 43

Minimization of C-automata

• What does it mean for a C-automaton to be minimal?
• What are su�cient conditions on C so that a minimal
automaton for a language exists?

• Can we compute the minimal automaton e�ectively?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton
of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

27 / 43

Minimization of C-automata

• What does it mean for a C-automaton to be minimal?
• What are su�cient conditions on C so that a minimal
automaton for a language exists?

• Can we compute the minimal automaton e�ectively?

A DFA is minimal when it divides any other automaton accepting the
same language.

Here divides = «is a quotient of a sub-automaton
of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

27 / 43

Minimization of C-automata

• What does it mean for a C-automaton to be minimal?
• What are su�cient conditions on C so that a minimal
automaton for a language exists?

• Can we compute the minimal automaton e�ectively?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton
of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

27 / 43

Minimization of C-automata

• What does it mean for a C-automaton to be minimal?
• What are su�cient conditions on C so that a minimal
automaton for a language exists?

• Can we compute the minimal automaton e�ectively?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton
of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

27 / 43

Three more category-theoretic notions

• An initial object in a category C is an object X such that for any
object A of C there is a unique morphism !∶X → A.
Question: what is the initial object in Set? And in Rel?

• A �nal object in a category C is an object Y such that for any
object A of C there is a unique morphism !∶A→ Y.

Question: what is the �nal object in Set? And in Rel?

• A factorization system provides the category-theoretic
generalizations for the notions of “quotients” and “subobjects”,
de�nition on next slide...

28 / 43

Three more category-theoretic notions

• An initial object in a category C is an object X such that for any
object A of C there is a unique morphism !∶X → A.
Question: what is the initial object in Set? And in Rel?

• A �nal object in a category C is an object Y such that for any
object A of C there is a unique morphism !∶A→ Y.
Question: what is the �nal object in Set? And in Rel?

• A factorization system provides the category-theoretic
generalizations for the notions of “quotients” and “subobjects”,
de�nition on next slide...

28 / 43

Three more category-theoretic notions

• An initial object in a category C is an object X such that for any
object A of C there is a unique morphism !∶X → A.
Question: what is the initial object in Set? And in Rel?

• A �nal object in a category C is an object Y such that for any
object A of C there is a unique morphism !∶A→ Y.
Question: what is the �nal object in Set? And in Rel?

• A factorization system provides the category-theoretic
generalizations for the notions of “quotients” and “subobjects”,
de�nition on next slide...

28 / 43

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

left Kan ext?

O C

right Kan extension?

I

L

Min(L)?Min(L)

Ainit(L)

Afinal(L)

If the category of automata accepting L has

• an initial object Ainit(L), when C has copowers
• a �nal object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

29 / 43

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

left Kan ext? O C

right Kan extension?

I

L

Min(L)?Min(L)

Ainit(L)

Afinal(L)

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers
• a �nal object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

29 / 43

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

left Kan ext?

O C right Kan extension?

I

L

Min(L)?Min(L)

Ainit(L)

Afinal(L)

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers

• a �nal object Afinal(L), and,

when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

29 / 43

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

left Kan ext?

O C

right Kan extension?

I

L

Min(L)?Min(L)

Ainit(L)

Afinal(L)

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers

• a �nal object Afinal(L), and,

when C has powers

• a factorization system

when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .
29 / 43

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

left Kan ext?

O C

right Kan extension?

I

L

Min(L)?Min(L)

Ainit(L)

Afinal(L)

If the category of automata accepting L has

• an initial object Ainit(L), when C has copowers
• a �nal object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .
29 / 43

Factorization systems

Factorization systems are a generalization of the next situation:
Every function f ∶X → Y can we written as a composite

X Z Ye m

with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

• E and M contain the isomorphisms and are closed under
composition;

• every morphism f ∶X → Y can we written as a composite m ○ e
with e ∈ E and m ∈ M;

• the decomposition is functorial, i.e. any two decompositions
are isomorphic

30 / 43

Factorization systems

Factorization systems are a generalization of the next situation:
Every function f ∶X → Y can we written as a composite

X Z Ye m

with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

• E and M contain the isomorphisms and are closed under
composition;

• every morphism f ∶X → Y can we written as a composite m ○ e
with e ∈ E and m ∈ M;

• the decomposition is functorial, i.e. any two decompositions
are isomorphic

30 / 43

Factorization systems

Factorization systems are a generalization of the next situation:
Every function f ∶X → Y can we written as a composite

X Z Ye m

with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

• E and M contain the isomorphisms and are closed under
composition;

• every morphism f ∶X → Y can we written as a composite m ○ e
with e ∈ E and m ∈ M;

• the decomposition is functorial, i.e. any two decompositions
are isomorphic

30 / 43

Factorization systems

Factorization systems are a generalization of the next situation:
Every function f ∶X → Y can we written as a composite

X Z Ye m

with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

• E and M contain the isomorphisms and are closed under
composition;

• every morphism f ∶X → Y can we written as a composite m ○ e
with e ∈ E and m ∈ M;

• the decomposition is functorial, i.e. any two decompositions
are isomorphic

30 / 43

Factorization systems

Factorization systems are a generalization of the next situation:
Every function f ∶X → Y can we written as a composite

X Z Ye m

with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

• E and M contain the isomorphisms and are closed under
composition;

• every morphism f ∶X → Y can we written as a composite m ○ e
with e ∈ E and m ∈ M;

• the decomposition is functorial, i.e. any two decompositions
are isomorphic

30 / 43

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L), when C has copowers
• a �nal object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

31 / 43

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers
• a �nal object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

31 / 43

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers

• a �nal object Afinal(L), and,

when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

31 / 43

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers

• a �nal object Afinal(L), and,

when C has powers

• a factorization system

when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

31 / 43

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L), when C has copowers
• a �nal object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

31 / 43

Trivial example: minimizing DFAs

The initial automaton Ainit for Set-automata accepting a language L
is the following :

1 A∗ 2ε

w↦wa

L?

The �nal automaton Afinal for Set-automata accepting a language L
is the following :

1 2A∗ 2L

K↦a−1K

ε?

32 / 43

Trivial example: minimizing DFAs

The initial automaton Ainit for Set-automata accepting a language L
is the following :

1 A∗ 2ε

w↦wa

L?

The �nal automaton Afinal for Set-automata accepting a language L
is the following :

1 2A∗ 2L

K↦a−1K

ε?

32 / 43

Trivial example: minimizing DFAs accepting L

The unique map from the initial to the �nal automaton is given by
!∶A∗ → 2A∗ , de�ned by w ↦ w−1L.

A∗

1 Q 2

2A∗

L?

reachedState

L

ε

i f

acceptedLanguage

ε?

33 / 43

Trivial example: minimizing DFAs accepting L

The unique map from the initial to the �nal automaton is given by
!∶A∗ → 2A∗ , de�ned by w ↦ w−1L.

A∗

1 Min(L) 2

2A∗

L?

reachedState

L

ε

i f

acceptedLanguage

ε?

33 / 43

Another trivial example

R-weighted automata, i.e. (Vec,R,R)-automata
accepting a (Vec,R,R)-language

⊕
u∈A∗

R

R Q R

∏
u∈A∗

R

L?

reachedState

L

ε

i F

acceptedLanguage

ε?

34 / 43

Another trivial example

R-weighted automata, i.e. (Vec,R,R)-automata
accepting a (Vec,R,R)-language

⊕
u∈A∗

R

R Min(L) R

∏
u∈A∗

R

L?

reachedState

L

ε

i F

acceptedLanguage

ε?

34 / 43

The minimal transducer in a picture

We obtain Min(L) – the minimal subsequential transducer as
obtained by Cho�rut!

In fact it also works if we replace B∗ by a trace
monoid.

A∗

1 Min(L) 1

Irr(A∗,B∗)

L?

L

ε

i f

ε?

35 / 43

The minimal transducer in a picture

We obtain Min(L) – the minimal subsequential transducer as
obtained by Cho�rut! In fact it also works if we replace B∗ by a trace
monoid.

A∗

1 Min(L) 1

Irr(A∗,B∗)

L?

L

ε

i f

ε?

35 / 43

Minimal Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identi�ed simple su�cient conditions on C so that
minimization of C-automata is guaranteed!

36 / 43

Minimal Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identi�ed simple su�cient conditions on C so that
minimization of C-automata is guaranteed!

36 / 43

Minimal Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identi�ed simple su�cient conditions on C so that
minimization of C-automata is guaranteed!

36 / 43

Minimal Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identi�ed simple su�cient conditions on C so that
minimization of C-automata is guaranteed!

36 / 43

Minimal Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identi�ed simple su�cient conditions on C so that
minimization of C-automata is guaranteed!

36 / 43

Minimal Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identi�ed simple su�cient conditions on C so that
minimization of C-automata is guaranteed!

36 / 43

Learning

The L∗-algorithm

• Goal: learn a regular language of words L.

• The algorithm interacts with a teacher who knows L by asking
two types of queries:

1. Membership queries: Does a word belong to the language ?
2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L.

If no, the teacher
provides a counter-example.

• The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

37 / 43

The L∗-algorithm

• Goal: learn a regular language of words L.
• The algorithm interacts with a teacher who knows L by asking
two types of queries:

1. Membership queries: Does a word belong to the language ?
2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L.

If no, the teacher
provides a counter-example.

• The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

37 / 43

The L∗-algorithm

• Goal: learn a regular language of words L.
• The algorithm interacts with a teacher who knows L by asking
two types of queries:
1. Membership queries: Does a word belong to the language ?

2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L.

If no, the teacher
provides a counter-example.

• The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

37 / 43

The L∗-algorithm

• Goal: learn a regular language of words L.
• The algorithm interacts with a teacher who knows L by asking
two types of queries:
1. Membership queries: Does a word belong to the language ?
2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L.

If no, the teacher
provides a counter-example.

• The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

37 / 43

The L∗-algorithm

• Goal: learn a regular language of words L.
• The algorithm interacts with a teacher who knows L by asking
two types of queries:
1. Membership queries: Does a word belong to the language ?
2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L. If no, the teacher
provides a counter-example.

• The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

37 / 43

The L∗-algorithm

• Goal: learn a regular language of words L.
• The algorithm interacts with a teacher who knows L by asking
two types of queries:
1. Membership queries: Does a word belong to the language ?
2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L. If no, the teacher
provides a counter-example.

• The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

37 / 43

The L∗-algorithm: some de�nitions

• At each step, we maintain a pair of sets of words (Q,T), starting
with ({ε},{ε}).
• Q —> potential states for the hypothesis automaton
• T —> test words used to de�ne an equivalence relation coarser
than the Myhill-Nerode equivalence.

• the T-equivalence relation: w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
• closedness : ∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa.
• consistency : ∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a
• When (Q,T) is closed and consistent it is possible to build a
hypothesis automaton H(Q,T)

38 / 43

The L∗-algorithm: some de�nitions

• At each step, we maintain a pair of sets of words (Q,T), starting
with ({ε},{ε}).
• Q —> potential states for the hypothesis automaton
• T —> test words used to de�ne an equivalence relation coarser
than the Myhill-Nerode equivalence.

• the T-equivalence relation: w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L

• closedness : ∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa.
• consistency : ∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a
• When (Q,T) is closed and consistent it is possible to build a
hypothesis automaton H(Q,T)

38 / 43

The L∗-algorithm: some de�nitions

• At each step, we maintain a pair of sets of words (Q,T), starting
with ({ε},{ε}).
• Q —> potential states for the hypothesis automaton
• T —> test words used to de�ne an equivalence relation coarser
than the Myhill-Nerode equivalence.

• the T-equivalence relation: w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
• closedness : ∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa.

• consistency : ∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a
• When (Q,T) is closed and consistent it is possible to build a
hypothesis automaton H(Q,T)

38 / 43

The L∗-algorithm: some de�nitions

• At each step, we maintain a pair of sets of words (Q,T), starting
with ({ε},{ε}).
• Q —> potential states for the hypothesis automaton
• T —> test words used to de�ne an equivalence relation coarser
than the Myhill-Nerode equivalence.

• the T-equivalence relation: w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
• closedness : ∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa.
• consistency : ∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a

• When (Q,T) is closed and consistent it is possible to build a
hypothesis automaton H(Q,T)

38 / 43

The L∗-algorithm: some de�nitions

• At each step, we maintain a pair of sets of words (Q,T), starting
with ({ε},{ε}).
• Q —> potential states for the hypothesis automaton
• T —> test words used to de�ne an equivalence relation coarser
than the Myhill-Nerode equivalence.

• the T-equivalence relation: w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
• closedness : ∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa.
• consistency : ∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a
• When (Q,T) is closed and consistent it is possible to build a
hypothesis automaton H(Q,T)

38 / 43

L∗-revisited

• At the (Q,T) stage of the algorithm the learner only has access
to a fragment of the language:

LQ,T ∶ QAT ∪QT A∗ 2L

• This can be represented by a notion of (Q,T)-biautomaton

1 Q1 Q2 2▷q

(q∈Q)

a (a∈A)

ε

t◁
(t∈T)

such that the following coherence diagrams commute
Q1 Q2

1 Q2 Q1 2
Q1 Q2

a t◁▷q

▷qa

a

εε at◁

39 / 43

L∗-revisited

• At the (Q,T) stage of the algorithm the learner only has access
to a fragment of the language:

LQ,T ∶ QAT ∪QT A∗ 2L

• This can be represented by a notion of (Q,T)-biautomaton

1 Q1 Q2 2▷q

(q∈Q)

a (a∈A)

ε

t◁
(t∈T)

such that the following coherence diagrams commute
Q1 Q2

1 Q2 Q1 2
Q1 Q2

a t◁▷q

▷qa

a

εε at◁

39 / 43

Minimal (Q,T)-biautomaton and the hypothesis automaton

Closure and consistency for the pair (Q,T) can be encoded
categorically via the minimal (Q,T)-biautomaton.

We obtain a generic FunL∗ algorithm that instantiates to

• Angluin’s original algorithm,
• the weighted automata over �elds variant of L∗

• the sequential transducer variant

Further details: Thomas Colcombet, Daniela Petrisan, Riccardo Stabile:
Learning Automata and Transducers: A Categorical Approach. CSL 2021

40 / 43

Minimal (Q,T)-biautomaton and the hypothesis automaton

Closure and consistency for the pair (Q,T) can be encoded
categorically via the minimal (Q,T)-biautomaton.

We obtain a generic FunL∗ algorithm that instantiates to

• Angluin’s original algorithm,
• the weighted automata over �elds variant of L∗

• the sequential transducer variant

Further details: Thomas Colcombet, Daniela Petrisan, Riccardo Stabile:
Learning Automata and Transducers: A Categorical Approach. CSL 2021

40 / 43

Perspectives

Minimization/learning for free ?

Are there some conditions on a monad T so that Kl(T) has all the
required properties required for the existence of
minimization/learning of Kl(T)-automata ?

Move to Eilenberg-Moore algebras when Kl(T) is not good enough,
e.g., to the category of join sup-semilattices.

We see a Rel-valued automaton as a JSL-valued automaton.

Extension to tree automata

Weighted automata over number rings –> see
https://arxiv.org/pdf/2504.16596

Learning nominal automata, building on Victor Iwaniack’s work on
automata in toposes.

41 / 43

https://arxiv.org/pdf/2504.16596

Minimization/learning for free ?

Are there some conditions on a monad T so that Kl(T) has all the
required properties required for the existence of
minimization/learning of Kl(T)-automata ?

Move to Eilenberg-Moore algebras when Kl(T) is not good enough,
e.g., to the category of join sup-semilattices.

We see a Rel-valued automaton as a JSL-valued automaton.

Extension to tree automata

Weighted automata over number rings –> see
https://arxiv.org/pdf/2504.16596

Learning nominal automata, building on Victor Iwaniack’s work on
automata in toposes.

41 / 43

https://arxiv.org/pdf/2504.16596

Minimization/learning for free ?

Are there some conditions on a monad T so that Kl(T) has all the
required properties required for the existence of
minimization/learning of Kl(T)-automata ?

Move to Eilenberg-Moore algebras when Kl(T) is not good enough,
e.g., to the category of join sup-semilattices.

We see a Rel-valued automaton as a JSL-valued automaton.

Extension to tree automata

Weighted automata over number rings –> see
https://arxiv.org/pdf/2504.16596

Learning nominal automata, building on Victor Iwaniack’s work on
automata in toposes.

41 / 43

https://arxiv.org/pdf/2504.16596

Minimization/learning for free ?

Are there some conditions on a monad T so that Kl(T) has all the
required properties required for the existence of
minimization/learning of Kl(T)-automata ?

Move to Eilenberg-Moore algebras when Kl(T) is not good enough,
e.g., to the category of join sup-semilattices.

We see a Rel-valued automaton as a JSL-valued automaton.

Extension to tree automata

Weighted automata over number rings –> see
https://arxiv.org/pdf/2504.16596

Learning nominal automata, building on Victor Iwaniack’s work on
automata in toposes.

41 / 43

https://arxiv.org/pdf/2504.16596

Minimization/learning for free ?

Are there some conditions on a monad T so that Kl(T) has all the
required properties required for the existence of
minimization/learning of Kl(T)-automata ?

Move to Eilenberg-Moore algebras when Kl(T) is not good enough,
e.g., to the category of join sup-semilattices.

We see a Rel-valued automaton as a JSL-valued automaton.

Extension to tree automata

Weighted automata over number rings –> see
https://arxiv.org/pdf/2504.16596

Learning nominal automata, building on Victor Iwaniack’s work on
automata in toposes.

41 / 43

https://arxiv.org/pdf/2504.16596

More details for learning

Minimal (Q,T)-biautomaton and the hypothesis automaton
We can compute the minimal (Q,T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪QA)/∼T 2▷qmin
amin

εmin

t◁min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L

▷ qmin(∗) = [q]∼T∪AT amin([q]∼T∪AT) = [qa]∼T t◁min ([q]∼T) = LQ,T(qt)
εmin([q]∼T∪AT) = [q]∼T t◁min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q,T) is closed
• εmin is injective i� (Q,T) is consistent
• If εmin is an isomorphism we merge the
two states of the (Q,T)-biautomaton
and obtain H(Q,T).

* under mild assumptions

Q = T ∶= {ε}
repeat
while (Q,T) not closed and consistent
if (Q,T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q,T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q,T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q,T)

42 / 43

Minimal (Q,T)-biautomaton and the hypothesis automaton
We can compute the minimal (Q,T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪QA)/∼T 2▷qmin
amin

εmin

t◁min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
▷ qmin(∗) = [q]∼T∪AT

amin([q]∼T∪AT) = [qa]∼T t◁min ([q]∼T) = LQ,T(qt)
εmin([q]∼T∪AT) = [q]∼T t◁min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q,T) is closed
• εmin is injective i� (Q,T) is consistent
• If εmin is an isomorphism we merge the
two states of the (Q,T)-biautomaton
and obtain H(Q,T).

* under mild assumptions

Q = T ∶= {ε}
repeat
while (Q,T) not closed and consistent
if (Q,T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q,T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q,T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q,T)

42 / 43

Minimal (Q,T)-biautomaton and the hypothesis automaton
We can compute the minimal (Q,T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪QA)/∼T 2▷qmin
amin

εmin

t◁min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
▷ qmin(∗) = [q]∼T∪AT amin([q]∼T∪AT) = [qa]∼T

t◁min ([q]∼T) = LQ,T(qt)

εmin([q]∼T∪AT) = [q]∼T

t◁min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q,T) is closed
• εmin is injective i� (Q,T) is consistent
• If εmin is an isomorphism we merge the
two states of the (Q,T)-biautomaton
and obtain H(Q,T).

* under mild assumptions

Q = T ∶= {ε}
repeat
while (Q,T) not closed and consistent
if (Q,T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q,T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q,T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q,T)

42 / 43

Minimal (Q,T)-biautomaton and the hypothesis automaton
We can compute the minimal (Q,T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪QA)/∼T 2▷qmin
amin

εmin

t◁min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
▷ qmin(∗) = [q]∼T∪AT amin([q]∼T∪AT) = [qa]∼T t◁min ([q]∼T) = LQ,T(qt)

εmin([q]∼T∪AT) = [q]∼T t◁min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q,T) is closed
• εmin is injective i� (Q,T) is consistent
• If εmin is an isomorphism we merge the
two states of the (Q,T)-biautomaton
and obtain H(Q,T).

* under mild assumptions

Q = T ∶= {ε}
repeat
while (Q,T) not closed and consistent
if (Q,T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q,T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q,T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q,T)

42 / 43

Minimal (Q,T)-biautomaton and the hypothesis automaton
We can compute the minimal (Q,T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪QA)/∼T 2▷qmin
amin

εmin

t◁min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
▷ qmin(∗) = [q]∼T∪AT amin([q]∼T∪AT) = [qa]∼T t◁min ([q]∼T) = LQ,T(qt)

εmin([q]∼T∪AT) = [q]∼T t◁min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q,T) is closed
• εmin is injective i� (Q,T) is consistent
• If εmin is an isomorphism we merge the
two states of the (Q,T)-biautomaton
and obtain H(Q,T).

* under mild assumptions

Q = T ∶= {ε}
repeat
while (Q,T) not closed and consistent
if (Q,T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q,T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q,T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q,T)

42 / 43

Minimal (Q,T)-biautomaton and the hypothesis automaton
We can compute the minimal (Q,T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪QA)/∼T 2▷qmin
amin

εmin

t◁min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
▷ qmin(∗) = [q]∼T∪AT amin([q]∼T∪AT) = [qa]∼T t◁min ([q]∼T) = LQ,T(qt)

εmin([q]∼T∪AT) = [q]∼T t◁min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q,T) is closed
• εmin is injective i� (Q,T) is consistent

• If εmin is an isomorphism we merge the
two states of the (Q,T)-biautomaton
and obtain H(Q,T).

* under mild assumptions

Q = T ∶= {ε}
repeat
while (Q,T) not closed and consistent
if (Q,T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q,T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q,T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q,T)

42 / 43

Minimal (Q,T)-biautomaton and the hypothesis automaton
We can compute the minimal (Q,T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪QA)/∼T 2▷qmin
amin

εmin

t◁min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
▷ qmin(∗) = [q]∼T∪AT amin([q]∼T∪AT) = [qa]∼T t◁min ([q]∼T) = LQ,T(qt)

εmin([q]∼T∪AT) = [q]∼T t◁min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q,T) is closed
• εmin is injective i� (Q,T) is consistent
• If εmin is an isomorphism we merge the
two states of the (Q,T)-biautomaton
and obtain H(Q,T).

* under mild assumptions

Q = T ∶= {ε}
repeat
while (Q,T) not closed and consistent
if (Q,T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q,T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q,T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q,T)

42 / 43

The FunL∗-algorithm

input: teacher of the target language L in a catgeory C
output: Min(L)
Q ∶= T ∶= {ε}
repeat
while εmin is not an isomorphism do Iso = E ∩M
if εmin /∈ E then (E,M) fact. system
add QA to Q

if εmin /∈ M then
add AT to T

ask an equivalence query for the hypothesis automaton H(Q,T)
if the answer is no then
add the counterexample and all its pre�xes to Q

until the answer is yes
return H(Q,T)

43 / 43

	Automata with effects
	Changing output categories
	Automata in a category: minimization
	Learning
	Perspectives
	More details for learning

