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Coalgebra - a brief history

dual of algebra in the work of Arbib and Manes, in their category
theoretic approach to dynamical systems and automata

Park and Milner invent bisimulation as a notion of behavioural
equivalence for concurrent processes

Aczel's theory of non-well-founded sets : Aczel and Mendler
generalise Park and Milner’s notion of bisimulation to the level
of arbitrary coalgebras

abstract theory of systems
disclaimer: nothing new in this tutorial !

excellent references on the theory of coalgebra by Rutten,
Jacobs, Kurz, etc...
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Algebras

Algebras are classically presented as sets with operations.

Consider the set of natural numbers N equipped with the operations

zero:1 - N succ:N - N

zero(*) =0 succ(n) =n+1

These form an algebra [zero,succ]:1+ N - N.
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Algebras

Algebras are classically presented as sets with operations.
Consider the set of natural numbers N equipped with the operations

zero:1—- N succ:N - N

zero(*) =0 succ(n) =n+1
These form an algebra [zero,succ]:1+ N - N.
Consider the set {0,1} equipped with the operations

zero:1— {0,1} flip:{0,1} - {0,1}

zero(*) =0 flip(x) =1-x

These form an algebra [zero, flip]:1+ {0,1} - {0,1}.
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Algebras for a functor

Definition. Let F:C — C be a functor. An F-algebra is a pair (X, @)
consisting of an object X of C and a morphism

a:FX - X.
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Algebras for a functor

Definition. Let F:C — C be a functor. An F-algebra is a pair (X, @)
consisting of an object X of C and a morphism

a:FX - X.

Example. M-algebras, where M:Set — Set is defined by MX =1+ X.

* (N, [zero,succ])
* ({0,1},[zero,flip])

Definition. A morphism between two F-algebras (X,a) and (Y,3) is a

T Fy

C-morphism f:X — Y such that la lﬁ

X L 5y

Exercise. Define a morphims of M-algebras

(N, [zero,succ]) — ({0,1}, [zero, flip]).
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Algebras for a signature

Consider a set ¥ of operations symbols equipped with an arrity
function arity: ¥ - N.

Let ¥, = arity '(n) denote the set of operation symbols of arity n.
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Algebras for a signature

Consider a set X of operations symbols equipped with an arrity
function arity: ¥ - N.
Let ¥, = arity '(n) denote the set of operation symbols of arity n.
Consider the functor Fyx:Set — Set defined by FxX = [ [ £, x X".

neN

An Fs-algebra is then given by amap a: [ [ £, xA" — A.
neN

To give such an o« means that for all n e N and for all op € ¥, we
given an interpretation of op,:A" — A.

Hence (A,«) is just an algebra in the standard universal algebra
sense...

What if we want to add equations ? We will need to speak about

monads ...
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Coalgebras - the dual of algebras

Definition. Let F:C — C be a functor. An F-coalgebra is a pair (X,¢)
consisting of an object X of C and a morphism

&X - FX.
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Coalgebras - the dual of algebras

Definition. Let F:C — C be a functor. An F-coalgebra is a pair (X,¢)
consisting of an object X of C and a morphism

&X - FX.

Example. Let N denote the set of infinite streams of natural
numbers, that is, N* = {¢ | 0:N — N}. Consider the operations
head:N* - N tail:N¥ - N¥

o+~ o(0) oo =An.o(n+1)

Their pairing
(head, tail):N¥ - N x N¥
equips N“ with a coalgebra structure for the functor Str: Set — Set

defined by Str(X) = N x X.
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Morphisms of coalgebras

Definition. A morphism between two F-coalgebras (X, &) and (Y,() is
a C-morphism f:X — Y such that

X%Y

le L
x -7 Fy
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Morphisms of coalgebras

Definition. A morphism between two F-coalgebras (X, &) and (Y,() is
a C-morphism f:X — Y such that

X%Y

le L
x -7 Fy

Exercise. Consider the Str-coalgebra (N* x N*, (h,t)), where
h:N¥ x N¥ - N t:NY x N¥ - N¥ x N¥
(0,7) > 0(0) (0,7) = (7, 1ail(0))

Define a coalgebra morphism (N“ x N¥ (h,t)) - (N, (head, tail)).
How should we call it ?
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Morphisms of coalgebras
Definition. A morphism between two F-coalgebras (X, &) and (Y,() is
a C-morphism f:X — Y such that

X%Y

le L
x -7 Fy

Exercise. Consider the Str-coalgebra (N* x N*, (h,t)), where
h:NY x N¥ - N t:N¥ x N¥ - N¥ x N
(o,7) ~ c(0) (o,7) ~ (7,tail(0))
Define a coalgebra morphism (N“ x N¥ (h,t)) - (N, (head, tail)).
How should we call it ?

Answer: zip: N¥ x N¥ - N¥
7124



Induction and coinduction



Initial algebras

F-algebras and their morphisms form a category Alg(F).

Definition. Let F:C — C be a functor. An initial F-algebra is an initial
object in the category Alg(F).

That is, an F-algbera a: FA — A is initial if for every F-algebra
B3:FB — B there exists a unique F-algebra morphism u:A — B.

FA -5 FB
e le
A -2, B
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Initial algebras

F-algebras and their morphisms form a category Alg(F).

Definition. Let F:C — C be a functor. An initial F-algebra is an initial
object in the category Alg(F).

That is, an F-algbera a: FA — A is initial if for every F-algebra
B3:FB — B there exists a unique F-algebra morphism u:A — B.

FA -5 FB
e le
A -2, B

Example. (N, [zero,succ]) is the initial algebra for the functor 1+ —.

Exercise. What is the initial algebra for the functor Fs, induced by a

signature ¥ ?
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Induction -~ initial algebras

initial algebra - atmorehiem s arbitrary algebra

+ existence —> definition by induction

* uniqueness —> proof by induction

9/24



Induction -~ initial algebras

initial algebra - et » arbitrary algebra

+ existence —> definition by induction

* uniqueness —> proof by induction

Example. (List(A),[nil,cons]) is the initial algebra for the functor
TX =1+Ax X. To define a map f:List(A) -~ B to some other T-algebra
B, we need to define f inductively on the constructors nil and cons.
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Final coalgebra

F-coalgebras and their morphisms form a category CoAlg(F).

Definition. Let F:C — C be a functor. A final F-coalgebra is an final
object in the category CoAlg(F).

That is, an F-coalgbera &: X — FX is final if for every F-coalgebra
(:Z - FZ there exists a unique F-coalgebra morphism u:Z - X.

z -4, x
el
Fz -5 FX
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Final coalgebra

F-coalgebras and their morphisms form a category CoAlg(F).

Definition. Let F:C — C be a functor. A final F-coalgebra is an final
object in the category CoAlg(F).

That is, an F-coalgbera &: X — FX is final if for every F-coalgebra
(:Z - FZ there exists a unique F-coalgebra morphism u:Z - X.

z -4, x
el
Fz -5 FX

Example. (N“, (head, tail)) is the final coalgebra for the functor Str
defined by Str(X) = N x X.

Exercise. Define a coalgebra structure on N* that induces by

coinduction the function even. Same question for odd.
10/ 24



More examples of (final) coalgebras

« deterministic automata over alphabet A can be seen as
coalgebras
(0,tr):X - 2 x XA

(plus a point 1 - X)
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More examples of (final) coalgebras

« deterministic automata over alphabet A can be seen as
coalgebras

(0,tr):X - 2 x XA
(plus a point 1 - X)
- The final coalgebra for the functor FX = 2 x X* is the automaton
of all languages

(eps,der):2*" — 2 x (24 )*,

where
ceps(L)=1iffeel
 der(L)(a)=a"L
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Partll




Recap
F-algebra for a functor F:C - C F-coalgebra for a functor F:C - C

a:FX =X &EX - FX
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Recap
F-algebra for a functor F:C - C F-coalgebra for a functor F:C - C

a:FX - X &EX—FX

F-algebra morphism F-coalgebra morphism
T Fy x Loy
bl ok
X ——>Y FX —— FY
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Recap
F-algebra for a functor F:C - C F-coalgebra for a functor F:C - C

a:FX =X &EX—FX
F-algebra morphism F-coalgebra morphism
X~ Fy x L5y
bl ok
X ——>Y FX —— FY
initial F-algebra (I, ) final F-coalgebra (9, ()
FI Ff> EY X 3'f> Q0
= b el
f Ff
P ecctsns > Y FX oy FQ )2



Algebras and colagebras in preorders

a category C ‘ a preorder (P, <)
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Algebras and colagebras in preorders

a category C

a functor F:C - C
F-algebra a: FX — X
F-coalgebra &: X — FX

initial F-algebra

a preorder (P, <)
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post-fixed point x < f(x)

least pre-fixed point p.f

13 /24



Algebras and colagebras in preorders

a category C

a functor F:C - C
F-algebra a: FX — X
F-coalgebra &: X — FX
initial F-algebra

final F-coalgebra

a preorder (P, <)

a monotone map f:P — P.
pre-fixed point f(x) < x
post-fixed point x < f(x)
least pre-fixed point p.f

largest post-fixed point v.f

13 /24



Algebras and colagebras in preorders

a category C

a functor F:C - C
F-algebra a: FX — X
F-coalgebra &: X — FX
initial F-algebra

final F-coalgebra

a preorder (P, <)

a monotone map f:P — P.
pre-fixed point f(x) < x
post-fixed point x < f(x)
least pre-fixed point p.f

largest post-fixed point v.f

13 /24



More examples of coalgebras

functor F:Set — Set \ final coalgebra
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More examples of coalgebras

functor F:Set — Set final coalgebra

FX=AxX (head, tail):A“ - A x A¥
FX=1+AxX A" +AY > 1+ Ax (A" +A¥)
FX =P(X) recall Lambek Lemma'!
(Kripke frames)

FX =P (L xX)

(labelled transition systems)

FX =2 x XA (eps,der):2*" — 2 x (24)
(determinisitic automata)

FX =2 x P(X)A

(nondeterminisitic automata)

FX = (0 x X)' causal functions I* — O~

(Mealy machines)
14 [ 24



Behaviours of systems

A final coalgebra v.F — when it exists —
captures the possible behaviours
of the systems modelled as F-coalgebras.
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Computing initial algebras as colimits

Theorem. Let C be a category with an initial object 0 and colimits of

w-chains. Assume F preserves such colimits. Then the colimit of the

chain

| 2]
0 ' v Fo F F21

|
— FPo ——

carries a structure of an initial F-algebra.
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Computing initial algebras as colimits

Theorem. Let C be a category with an initial object 0 and colimits of
w-chains. Assume F preserves such colimits. Then the colimit of the

chain

! F

2]
0 > FO !

|
— FPo ——

carries a structure of an initial F-algebra.

Exercise. Take ¥ = {e:0,m: 2} be a signature. Compute the colimit
of the initial chain of the associated functor Fy.
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Computing initial algebras as colimits: example

Exercise. Take © = {e: 0,m: 2} be a signature. Compute the colimit
of the initial chain of the associated functor Fs.

Recall Fx:Set — Set is defined by FX = {e} + {m} x X x X.

The initial chain 0 —— Fo — F20 —F'5 .. isthen:

g — let — fem(ee)) s L.

where the maps F"! are just inclusions. The colimit of this chain is
the set of terms over the signature X and is the carrier of the initial
Fs-algebra.
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Computing final coalgebras as limits

Theorem. Let C be a category with an final object 1 and limits of
w®P-chains. Assume F preserves such limits. Then the limit of the
chain

T P« — F1— ..

carries a structure of an final F-coalgebra.
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Congruences and bisimulations




F-congruence

Let F:Set — Set be a functor. Let (A, «) and (B, 3) be two F-algebras.
A relation R c A x B is called an F-congruence if there exists an
F-algebra structure 4: F(R) — R such that the projections 7:R - A
and m,:R — B are F-algebra morphisms.

V \
l/ \lﬁ

Exercise. Show that a congruence on (N, [zero, succ]) is a relation
R c N x N such that (0,0) e Rand (n,m) € R implies

(succ(n),succ(m)) € R.
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F-bisimulation

Let F:Set — Set be a functor. Let (X,£) and (Y, () be two
F-coalgebras. A relation Rc X x Y is called an F-bisimulation if there
exists an F-coalgebra structure +:R — FR such that the projections
m:R - X and m,: R — Y are F-coalgebra morphisms.

FX FYy

Coinduction proof principle. Every bisimulation on a final

F-coalgebra X — F(X) is contained in the diagonal on X.
20/ 24



Example: bisimulation for labelled transition systems

A labelled transition system is a coalgebra &:X — P(L x X).

Note that (I,x') € £(x) means x —— x' .
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Example: bisimulation for labelled transition systems

A labelled transition system is a coalgebra &:X — P(L x X).

Note that (I,x') € £(x) means x —— x' .

Xk//////’x;;\\\\ﬁY
¢ P(Lxm)/ \P“Xﬂz)lC

P(L x X) P(LxY)

Exercise. Prove that this is equivalent to the standard notion of
bisimulation. Recall that R < X x Y is a bisimulation iff V(x,y) € R

- if x — X then3y'eYst y —— y and (y,y)eR.

cif y —' 5y then3Ix eXst x —— x' and (x,x) €R. 1) 2



Example: bisimulation of stream systems

/A : R\
(Oxvt"xd AV Xm l(ovlfy)

AxX AxY

Arelation R c X x Y is a bisimulation iff for all (x,y) € R we have
ox(x) = oy(y) and (trx(x),try(y)) € R.
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Several notions of bisimulations

» F-bisimulations are sometimes called Aczel-Mendler
bisimulations.
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Several notions of bisimulations

» F-bisimulations are sometimes called Aczel-Mendler
bisimulations.

+ A relation that is compatible for a suitable extension of F to the
category of sets and relation — sometimes called
Hermida-Jacobs bisimulations

S. Staton, Relating coalgebraic notions of bisimulation, 2011.
https://arxiv.org/abs/1101.4223
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Several notions of bisimulations

« F-bisimulations are sometimes called Aczel-Mendler
bisimulations.

+ A relation that is compatible for a suitable extension of F to the
category of sets and relation — sometimes called
Hermida-Jacobs bisimulations

« A relation satisfying a ‘congruence’ condition, proposed by
Aczel and Mendler

« A relation which is the kernel of a common compatible
refinement of the two coalgebras

S. Staton, Relating coalgebraic notions of bisimulation, 2011.
https://arxiv.org/abs/1101.4223
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Further reading

In this tutorial we just scratched the surface...

* J. Rutten, The Method of Coalgebra: exercises in coinduction,
2019
https://ir.cwi.nl/pub/28550/rutten.pdf

- B.Jacobs and J. Rutten, A tutorial on (co)algebras and
(co)induction, 1997

« A. Kurz, Coalgebras and Modal Logic, 2001,
https://alexhkurz.github.io/papers/cml.pdf
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