Basics of (co)algebras

Daniela Petrişan

Université Paris Cité, IRIF, France

EPIT'25, Aussois, 19 May 2025

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

Coalgebra – a brief history

- dual of algebra in the work of Arbib and Manes, in their category theoretic approach to dynamical systems and automata
- Park and Milner invent bisimulation as a notion of behavioural equivalence for concurrent processes
- Aczel's theory of non-well-founded sets : Aczel and Mendler generalise Park and Milner's notion of bisimulation to the level of arbitrary coalgebras
- abstract theory of systems
- disclaimer: nothing new in this tutorial !
- excellent references on the theory of coalgebra by Rutten, Jacobs, Kurz, etc...

Algebras

Algebras are classically presented as sets with operations.

Consider the set of natural numbers $\ensuremath{\mathbb{N}}$ equipped with the operations

zero: $1 \rightarrow \mathbb{N}$ succ: $\mathbb{N} \rightarrow \mathbb{N}$ zero(*) = 0succ(n) = n + 1

These form an algebra [zero, succ]: $1 + \mathbb{N} \rightarrow \mathbb{N}$.

Algebras

Algebras are classically presented as sets with operations.

Consider the set of natural numbers $\ensuremath{\mathbb{N}}$ equipped with the operations

zero: $1 \rightarrow \mathbb{N}$ succ: $\mathbb{N} \rightarrow \mathbb{N}$ zero(*) = 0succ(n) = n + 1

These form an algebra [zero, succ]: $1 + \mathbb{N} \to \mathbb{N}$. Consider the set {0,1} equipped with the operations

 $zero: 1 \rightarrow \{0, 1\} \qquad \qquad flip: \{0, 1\} \rightarrow \{0, 1\}$ $zero(*) = 0 \qquad \qquad flip(x) = 1 - x$

These form an algebra [zero, flip]: $1 + \{0, 1\} \rightarrow \{0, 1\}$.

Definition. Let $F: \mathcal{C} \to \mathcal{C}$ be a functor. An *F*-algebra is a pair (X, α) consisting of an object *X* of \mathcal{C} and a morphism

 $\alpha : \mathsf{FX} \to \mathsf{X} \, .$

Definition. Let $F: \mathcal{C} \to \mathcal{C}$ be a functor. An *F*-algebra is a pair (X, α) consisting of an object *X* of \mathcal{C} and a morphism

 α : $FX \rightarrow X$.

Example. *M*-algebras, where *M*: Set \rightarrow Set is defined by *MX* = 1 + *X*.

- $(\mathbb{N}, [zero, succ])$
- ($\{0,1\}$,[zero,flip])

Definition. Let $F: \mathcal{C} \to \mathcal{C}$ be a functor. An *F*-algebra is a pair (X, α) consisting of an object *X* of \mathcal{C} and a morphism

 α : $FX \rightarrow X$.

Example. *M*-algebras, where *M*: Set \rightarrow Set is defined by *MX* = 1 + *X*.

- $(\mathbb{N}, [zero, succ])$
- ({0,1},[zero,flip])

Definition. A morphism between two F-algebras (X, α) and (Y, β) is a

C-morphism $f: X \to Y$ such that

$$\begin{array}{ccc} FX & \xrightarrow{Ff} & FY \\ \downarrow^{\alpha} & & \downarrow^{\beta} \\ X & \xrightarrow{f} & Y \end{array}$$

Definition. Let $F: \mathcal{C} \to \mathcal{C}$ be a functor. An *F*-algebra is a pair (X, α) consisting of an object *X* of \mathcal{C} and a morphism

 α : $FX \rightarrow X$.

Example. *M*-algebras, where *M*: Set \rightarrow Set is defined by *MX* = 1 + *X*.

- $(\mathbb{N}, [zero, succ])$
- ({0,1},[zero,flip])

Definition. A morphism between two F-algebras (X, α) and (Y, β) is a

$$C$$
-morphism $f: X \to Y$ such that

$$\begin{array}{ccc} FX & \xrightarrow{Ff} & FY \\ \downarrow^{\alpha} & \qquad \downarrow^{\beta} \\ X & \xrightarrow{f} & Y \end{array}$$

Exercise. Define a morphims of *M*-algebras $(\mathbb{N}, [\text{zero}, \text{succ}]) \rightarrow (\{0, 1\}, [\text{zero}, \text{flip}]).$

Consider a set Σ of operations symbols equipped with an arrity function $\texttt{arity}: \Sigma \to \mathbb{N}.$

Let $\Sigma_n = \operatorname{arity}^{-1}(n)$ denote the set of operation symbols of arity *n*.

Consider a set Σ of operations symbols equipped with an arrity function $\texttt{arity}: \Sigma \to \mathbb{N}.$

Let $\Sigma_n = \operatorname{arity}^{-1}(n)$ denote the set of operation symbols of arity n. Consider the functor F_{Σ} : Set \rightarrow Set defined by $F_{\Sigma}X = \coprod_{n \in \mathbb{N}} \Sigma_n \times X^n$. An F_{Σ} -algebra is then given by a map α : $\prod \Sigma_n \times A^n \rightarrow A$.

n∈ℕ

Consider a set Σ of operations symbols equipped with an arrity function $\texttt{arity}: \Sigma \to \mathbb{N}.$

Let $\Sigma_n = \operatorname{arity}^{-1}(n)$ denote the set of operation symbols of arity n. Consider the functor F_{Σ} : Set \rightarrow Set defined by $F_{\Sigma}X = \coprod_{n \in \mathbb{N}} \Sigma_n \times X^n$.

An F_{Σ} -algebra is then given by a map $\alpha : \coprod_{n \in \mathbb{N}} \Sigma_n \times A^n \to A$.

To give such an α means that for all $n \in \mathbb{N}$ and for all $op \in \Sigma_n$ we given an interpretation of $op_A: A^n \to A$.

Hence (\mathbf{A}, α) is just an algebra in the standard universal algebra sense...

Consider a set Σ of operations symbols equipped with an arrity function $\texttt{arity}: \Sigma \to \mathbb{N}.$

Let $\Sigma_n = \operatorname{arity}^{-1}(n)$ denote the set of operation symbols of arity n. Consider the functor F_{Σ} : Set \rightarrow Set defined by $F_{\Sigma}X = \coprod_{n \in \mathbb{N}} \Sigma_n \times X^n$.

An F_{Σ} -algebra is then given by a map $\alpha : \coprod_{n \in \mathbb{N}} \Sigma_n \times A^n \to A$.

To give such an α means that for all $n \in \mathbb{N}$ and for all $op \in \Sigma_n$ we given an interpretation of $op_A: A^n \to A$.

Hence (\mathbf{A}, α) is just an algebra in the standard universal algebra sense...

What if we want to add equations ? We will need to speak about monads ...

Coalgebras – the dual of algebras

Definition. Let $F: \mathcal{C} \to \mathcal{C}$ be a functor. An *F*-coalgebra is a pair (X, ξ) consisting of an object *X* of \mathcal{C} and a morphism

 $\xi{:}X\to FX\,.$

Coalgebras - the dual of algebras

Definition. Let $F: \mathcal{C} \to \mathcal{C}$ be a functor. An *F*-coalgebra is a pair (X, ξ) consisting of an object *X* of \mathcal{C} and a morphism

 $\xi: X \to FX$.

Example. Let \mathbb{N}^{ω} denote the set of infinite streams of natural numbers, that is, $\mathbb{N}^{\omega} = \{ \sigma \mid \sigma : \mathbb{N} \to \mathbb{N} \}.$

Coalgebras – the dual of algebras

Definition. Let $F: \mathcal{C} \to \mathcal{C}$ be a functor. An *F*-coalgebra is a pair (X, ξ) consisting of an object *X* of \mathcal{C} and a morphism

 $\xi: X \to FX$.

Example. Let \mathbb{N}^{ω} denote the set of infinite streams of natural numbers, that is, $\mathbb{N}^{\omega} = \{\sigma \mid \sigma : \mathbb{N} \to \mathbb{N}\}$. Consider the operations

```
\begin{array}{ll} \operatorname{head:} \mathbb{N}^{\omega} \to \mathbb{N} & \qquad \operatorname{tail:} \mathbb{N}^{\omega} \to \mathbb{N}^{\omega} \\ \sigma \mapsto \sigma(\mathbf{0}) & \qquad \sigma \mapsto \sigma' = \lambda n. \sigma(n+1) \end{array}
```

Their pairing

```
(\text{head}, \text{tail}): \mathbb{N}^{\omega} \to \mathbb{N} \times \mathbb{N}^{\omega}
```

equips \mathbb{N}^{ω} with a coalgebra structure for the functor Str: Set \rightarrow Set defined by Str(X) = $\mathbb{N} \times X$.

Morphisms of coalgebras

Definition. A morphism between two *F*-coalgebras (X, ξ) and (Y, ζ) is a *C*-morphism $f: X \to Y$ such that

Morphisms of coalgebras

Definition. A morphism between two *F*-coalgebras (X, ξ) and (Y, ζ) is a *C*-morphism $f: X \to Y$ such that

Exercise. Consider the Str-coalgebra $(\mathbb{N}^{\omega} \times \mathbb{N}^{\omega}, \langle h, t \rangle)$, where

 $\begin{aligned} & h: \mathbb{N}^{\omega} \times \mathbb{N}^{\omega} \to \mathbb{N} & t: \mathbb{N}^{\omega} \times \mathbb{N}^{\omega} \to \mathbb{N}^{\omega} \times \mathbb{N}^{\omega} \\ & (\sigma, \tau) \mapsto \sigma(\mathbf{0}) & (\sigma, \tau) \mapsto (\tau, \mathsf{tail}(\sigma)) \end{aligned}$

Define a coalgebra morphism $(\mathbb{N}^{\omega} \times \mathbb{N}^{\omega}, \langle h, t \rangle) \rightarrow (\mathbb{N}^{\omega}, \langle head, tail \rangle)$. How should we call it ?

Morphisms of coalgebras

Definition. A morphism between two *F*-coalgebras (X, ξ) and (Y, ζ) is a *C*-morphism $f: X \to Y$ such that

Exercise. Consider the Str-coalgebra $(\mathbb{N}^{\omega} \times \mathbb{N}^{\omega}, \langle h, t \rangle)$, where

$\mathbf{h}:\mathbb{N}^{\omega}\times\mathbb{N}^{\omega}\to\mathbb{N}$	$t:\mathbb{N}^{\omega}\times\mathbb{N}^{\omega}\to\mathbb{N}^{\omega}\times\mathbb{N}^{\omega}$
$(\sigma, \tau) \mapsto \sigma(0)$	$(\sigma, \tau) \mapsto (\tau, tail(\sigma))$

Define a coalgebra morphism $(\mathbb{N}^{\omega} \times \mathbb{N}^{\omega}, \langle h, t \rangle) \rightarrow (\mathbb{N}^{\omega}, \langle head, tail \rangle)$. How should we call it ?

Answer: $zip: \mathbb{N}^{\omega} \times \mathbb{N}^{\omega} \to \mathbb{N}^{\omega}$

Induction and coinduction

Initial algebras

F-algebras and their morphisms form a category Alg(F).

Definition. Let $F: \mathcal{C} \to \mathcal{C}$ be a functor. An initial *F*-algebra is an initial object in the category Alg(*F*).

That is, an *F*-algbera α : *FA* \rightarrow *A* is initial if for every *F*-algebra β : *FB* \rightarrow *B* there exists a unique *F*-algebra morphism u: *A* \rightarrow *B*.

$$FA \xrightarrow{Fu} FB$$

$$\downarrow \alpha \qquad \qquad \downarrow \beta$$

$$A \xrightarrow{\exists ! u} B$$

Initial algebras

F-algebras and their morphisms form a category Alg(F).

Definition. Let $F: \mathcal{C} \to \mathcal{C}$ be a functor. An initial *F*-algebra is an initial object in the category Alg(*F*).

That is, an *F*-algbera α : *FA* \rightarrow *A* is initial if for every *F*-algebra β : *FB* \rightarrow *B* there exists a unique *F*-algebra morphism u: *A* \rightarrow *B*.

$$FA \xrightarrow{Fu} FB$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta}$$

$$A \xrightarrow{\exists !u} B$$

Example. (\mathbb{N} , [zero, succ]) is the initial algebra for the functor 1 + -.

Initial algebras

F-algebras and their morphisms form a category Alg(F).

Definition. Let $F: \mathcal{C} \to \mathcal{C}$ be a functor. An initial *F*-algebra is an initial object in the category Alg(F).

That is, an *F*-algbera α : *FA* \rightarrow *A* is initial if for every *F*-algebra β : *FB* \rightarrow *B* there exists a unique *F*-algebra morphism u: *A* \rightarrow *B*.

$$FA \xrightarrow{Fu} FB$$

$$\downarrow \alpha \qquad \qquad \downarrow \beta$$

$$A \xrightarrow{\exists !u} B$$

Example. (\mathbb{N} , [zero, succ]) is the initial algebra for the functor 1 + -.

Exercise. What is the initial algebra for the functor F_{Σ} , induced by a signature Σ ?

Induction ~ initial algebras

- existence —> definition by induction
- uniqueness —> proof by induction

Induction ~ initial algebras

- existence —> definition by induction
- uniqueness —> proof by induction

Example. (List(A), [nil, cons]) is the initial algebra for the functor $TX = 1 + A \times X$. To define a map $f: List(A) \rightarrow B$ to some other *T*-algebra *B*, we need to define *f* inductively on the constructors *nil* and *cons*.

Final coalgebra

F-coalgebras and their morphisms form a category CoAlg(F).

Definition. Let $F: \mathcal{C} \to \mathcal{C}$ be a functor. A final *F*-coalgebra is an final object in the category CoAlg(F).

That is, an *F*-coalgbera $\xi: X \to FX$ is final if for every *F*-coalgebra $\zeta: Z \to FZ$ there exists a unique *F*-coalgebra morphism $u: Z \to X$.

$$Z \xrightarrow{\exists ! u} X$$

$$\downarrow \zeta \qquad \qquad \downarrow \xi$$

$$FZ \xrightarrow{Fu} FX$$

Final coalgebra

F-coalgebras and their morphisms form a category CoAlg(F).

Definition. Let $F: \mathcal{C} \to \mathcal{C}$ be a functor. A final *F*-coalgebra is an final object in the category CoAlg(F).

That is, an *F*-coalgbera $\xi: X \to FX$ is final if for every *F*-coalgebra $\zeta: Z \to FZ$ there exists a unique *F*-coalgebra morphism $u: Z \to X$.

$$Z \xrightarrow{\exists ! u} X$$

$$\downarrow \zeta \qquad \qquad \downarrow \xi$$

$$FZ \xrightarrow{Fu} FX$$

Example. $(\mathbb{N}^{\omega}, \langle \text{head}, \text{tail} \rangle)$ is the final coalgebra for the functor Str defined by $\text{Str}(X) = \mathbb{N} \times X$.

Exercise. Define a coalgebra structure on \mathbb{N}^{ω} that induces by coinduction the function even. Same question for odd.

More examples of (final) coalgebras

• deterministic automata over alphabet A can be seen as coalgebras

$$\langle o, tr \rangle : X \to 2 \times X^A$$

(plus a point $1 \rightarrow X$)

More examples of (final) coalgebras

• deterministic automata over alphabet A can be seen as coalgebras

$$\langle o, tr \rangle : X \to 2 \times X^A$$

(plus a point $1 \rightarrow X$)

• The final coalgebra for the functor $FX = 2 \times X^A$ is the automaton of all languages

$$\langle eps, der \rangle : 2^{A^*} \rightarrow 2 \times (2^{A^*})^A$$
,

where

- eps(L) = 1 iff $\epsilon \in L$
- $der(L)(a) = a^{-1}L$

Part II

Recap

F-algebra for a functor $F: \mathcal{C} \to \mathcal{C}$ *F*-coalgebra for a functor $F: \mathcal{C} \to \mathcal{C}$

 $\alpha: FX \to X$

 $\xi: X \to FX$

Recap

F-algebra for a functor $F: \mathcal{C} \to \mathcal{C}$ *F*-coalgebra for a functor $F: \mathcal{C} \to \mathcal{C}$

 $\alpha: FX \to X$

 $\xi: X \to FX$

F-algebra morphism

F-coalgebra morphism

Recap

F-algebra for a functor $F: \mathcal{C} \to \mathcal{C}$ *F*-coalgebra for a functor $F: \mathcal{C} \to \mathcal{C}$

 α : FX \rightarrow X

 $\xi: X \to FX$

F-algebra morphism

$$\begin{array}{ccc} FX & \xrightarrow{Ff} & FY \\ \downarrow^{\alpha} & \qquad \downarrow^{\beta} \\ X & \xrightarrow{f} & Y \end{array}$$

initial F-algebra (I, α)

F-coalgebra morphism

final *F*-coalgebra (Ω, ζ)

12 / 24

a category C a preorder (P, \leq)

a category C a preorder (P, \leq)

a functor $F: \mathcal{C} \to \mathcal{C}$

a monotone map $f: P \rightarrow P$.

a category Ca preorder (P, \leq) a functor $F: C \rightarrow C$ a monotone map $f: P \rightarrow P$.F-algebra $\alpha: FX \rightarrow X$ pre-fixed point $f(x) \leq x$

a category ${\mathcal C}$	a preorder (P, \leq)
a functor $F: \mathcal{C} \to \mathcal{C}$	a monotone map $f: P \rightarrow P$.
<i>F</i> -algebra α : <i>FX</i> \rightarrow <i>X</i>	pre-fixed point $f(x) \le x$
<i>F</i> -coalgebra ξ : <i>X</i> \rightarrow <i>FX</i>	post-fixed point $x \leq f(x)$

a category ${\mathcal C}$	a preorder (P, \leq)
a functor $F: \mathcal{C} \to \mathcal{C}$	a monotone map $f: P \rightarrow P$.
F -algebra α : $FX \rightarrow X$	pre-fixed point $f(x) \le x$
F-coalgebra $\xi: X \to FX$	post-fixed point $x \leq f(x)$
initial F-algebra	least pre-fixed point μ . f

a category ${\mathcal C}$	a preorder (P, \leq)
a functor $F: \mathcal{C} \to \mathcal{C}$	a monotone map $f: P \rightarrow P$.
F -algebra α : $FX \rightarrow X$	pre-fixed point $f(x) \le x$
F -coalgebra $\xi: X \to FX$	post-fixed point $x \leq f(x)$
initial F-algebra	least pre-fixed point μ . f
final F-coalgebra	largest post-fixed point <i>v.f</i>

a category $\mathcal C$	a preorder (P, \leq)
a functor $F: \mathcal{C} \to \mathcal{C}$	a monotone map $f: P \rightarrow P$.
F -algebra α : $FX \rightarrow X$	pre-fixed point $f(x) \le x$
F -coalgebra $\xi: X \to FX$	post-fixed point $x \leq f(x)$
initial F-algebra	least pre-fixed point μ . f
final F-coalgebra	largest post-fixed point ν . f

functor $F: Set \rightarrow Set$

final coalgebra

functor F : Set \rightarrow Set	final coalgebra
$FX = A \times X$	$(\texttt{head},\texttt{tail}): A^{\omega} \rightarrow A \times A^{\omega}$

functor F : Set \rightarrow Set	final coalgebra
$FX = A \times X$	$(\texttt{head},\texttt{tail}): A^{\omega} \rightarrow A \times A^{\omega}$
$FX = 1 + A \times X$	$A^* + A^\omega \to 1 + A \times \left(A^* + A^\omega\right)$

functor F : Set \rightarrow Set	final coalgebra
$FX = A \times X$	$(\texttt{head},\texttt{tail}): A^{\omega} \rightarrow A \times A^{\omega}$
$FX = 1 + A \times X$	$A^* + A^\omega \to 1 + A \times \left(A^* + A^\omega\right)$
$FX = \mathcal{P}(X)$	

functor F : Set \rightarrow Set	final coalgebra
$FX = A \times X$	$(\texttt{head},\texttt{tail}): A^{\omega} \rightarrow A \times A^{\omega}$
$FX = 1 + A \times X$	$A^* + A^\omega \to 1 + A \times \left(A^* + A^\omega\right)$
$FX = \mathcal{P}(X)$	recall Lambek Lemma !
(Kripke frames)	

functor F : Set \rightarrow Set	final coalgebra
$FX = A \times X$	$(\texttt{head},\texttt{tail}): A^{\omega} \rightarrow A \times A^{\omega}$
$FX = 1 + A \times X$	$A^* + A^\omega \to 1 + A \times \left(A^* + A^\omega\right)$
$FX = \mathcal{P}(X)$	recall Lambek Lemma !
(Kripke frames)	
$FX = \mathcal{P}(L \times X)$	
(labelled transition systems)	

functor F : Set \rightarrow Set	final coalgebra
$FX = A \times X$	$(\texttt{head},\texttt{tail}): A^{\omega} \to A \times A^{\omega}$
$FX = 1 + A \times X$	$A^* + A^\omega \to 1 + A \times \left(A^* + A^\omega\right)$
$FX = \mathcal{P}(X)$	recall Lambek Lemma !
(Kripke frames)	
$FX = \mathcal{P}(L \times X)$	
(labelled transition systems)	
$FX = 2 \times X^A$	$\langle eps, der \rangle : 2^{A^*} \rightarrow 2 \times (2^{A^*})^A$
(determinisitic automata)	

functor F : Set \rightarrow Set	final coalgebra
$FX = A \times X$	$(\texttt{head},\texttt{tail}): A^{\omega} \to A \times A^{\omega}$
$FX = 1 + A \times X$	$A^* + A^\omega \to 1 + A \times \left(A^* + A^\omega\right)$
$FX = \mathcal{P}(X)$	recall Lambek Lemma !
(Kripke frames)	
$FX = \mathcal{P}(L \times X)$	
(labelled transition systems)	
FX = 2 × X ^A (determinisitic automata)	$\langle eps, der \rangle : 2^{A^*} \rightarrow 2 \times (2^{A^*})^A$
$FX = 2 \times \mathcal{P}(X)^A$ (nondeterminisitic automata)	

functor F : Set \rightarrow Set	final coalgebra
$FX = A \times X$	$(\text{head}, \texttt{tail}): A^{\omega} \to A \times A^{\omega}$
$FX = 1 + A \times X$	$A^* + A^{\omega} \rightarrow 1 + A \times (A^* + A^{\omega})$
$FX = \mathcal{P}(X)$	recall Lambek Lemma !
(Kripke frames)	
$FX = \mathcal{P}(L \times X)$	
(labelled transition systems)	
$FX = 2 \times X^A$	$\langle eps, der \rangle : 2^{A^*} \rightarrow 2 \times (2^{A^*})^A$
(determinisitic automata)	
$FX = 2 \times \mathcal{P}(X)^A$	
(nondeterminisitic automata)	
$FX = (O \times X)^{l}$	causal functions $I^* \rightarrow O^*$
(Mealy machines)	

Behaviours of systems

A final coalgebra ν .*F* — when it exists captures the possible behaviours of the systems modelled as *F*-coalgebras.

Computing initial algebras as colimits

Theorem. Let C be a category with an initial object o and colimits of ω -chains. Assume F preserves such colimits. Then the colimit of the chain

$$o \xrightarrow{!} Fo \xrightarrow{F!} F^2 o \xrightarrow{F^2!} \cdots$$

carries a structure of an initial F-algebra.

Computing initial algebras as colimits

Theorem. Let C be a category with an initial object o and colimits of ω -chains. Assume F preserves such colimits. Then the colimit of the chain

$$\mathsf{D} \xrightarrow{!} \mathsf{Fo} \xrightarrow{\mathsf{Fl}} \mathsf{F}^2\mathsf{O} \xrightarrow{\mathsf{F}^2!} \cdots$$

carries a structure of an initial F-algebra.

Exercise. Take $\Sigma = \{e : 0, m : 2\}$ be a signature. Compute the colimit of the initial chain of the associated functor F_{Σ} .

Computing initial algebras as colimits: example

Exercise. Take $\Sigma = \{e : 0, m : 2\}$ be a signature. Compute the colimit of the initial chain of the associated functor F_{Σ} .

Recall F_{Σ} : Set \rightarrow Set is defined by $FX = \{e\} + \{m\} \times X \times X$.

The initial chain $o \xrightarrow{!} Fo \xrightarrow{F!} F^2o \xrightarrow{F^2!} \dots$ is then:

$$\varnothing \stackrel{!}{\longrightarrow} \{e\} \stackrel{F!}{\longrightarrow} \{e, m(e, e)\} \stackrel{F^2!}{\longrightarrow} \ldots$$

where the maps $F^n!$ are just inclusions. The colimit of this chain is the set of terms over the signature Σ and is the carrier of the initial F_{Σ} -algebra.

Computing final coalgebras as limits

Theorem. Let C be a category with an final object 1 and limits of ω^{op} -chains. Assume F preserves such limits. Then the limit of the chain

$$1 \xleftarrow[]{} F1 \xleftarrow[]{} F^2 1 \xleftarrow[]{} \cdots \cdots$$

carries a structure of an final F-coalgebra.

Congruences and bisimulations

F-congruence

Let $F: \text{Set} \to \text{Set}$ be a functor. Let (A, α) and (B, β) be two F-algebras. A relation $R \subseteq A \times B$ is called an F-congruence if there exists an F-algebra structure $\gamma: F(R) \to R$ such that the projections $\pi_1: R \to A$ and $\pi_2: R \to B$ are F-algebra morphisms.

Exercise. Show that a congruence on $(\mathbb{N}, [zero, succ])$ is a relation $R \subseteq \mathbb{N} \times \mathbb{N}$ such that $(0, 0) \in R$ and $(n, m) \in R$ implies $(succ(n), succ(m)) \in R$.

F-bisimulation

Let $F: \text{Set} \to \text{Set}$ be a functor. Let (X, ξ) and (Y, ζ) be two *F*-coalgebras. A relation $R \subseteq X \times Y$ is called an *F*-bisimulation if there exists an *F*-coalgebra structure $\gamma: R \to FR$ such that the projections $\pi_1: R \to X$ and $\pi_2: R \to Y$ are *F*-coalgebra morphisms.

Coinduction proof principle. Every bisimulation on a final *F*-coalgebra $X \rightarrow F(X)$ is contained in the diagonal on *X*.

Example: bisimulation for labelled transition systems

A labelled transition system is a coalgebra $\xi: X \to \mathcal{P}(L \times X)$. Note that $(l, x') \in \xi(x)$ means $x \xrightarrow{l} x'$.

Example: bisimulation for labelled transition systems

A labelled transition system is a coalgebra $\xi: X \to \mathcal{P}(L \times X)$. Note that $(l, x') \in \xi(x)$ means $x \xrightarrow{l} x'$.

Exercise. Prove that this is equivalent to the standard notion of bisimulation. Recall that $R \subseteq X \times Y$ is a bisimulation iff $\forall (x, y) \in R$

• if
$$x \longrightarrow x'$$
 then $\exists y' \in Y$ s.t. $y \longrightarrow y'$ and $(y, y') \in R$.

• if
$$y \longrightarrow y'$$
 then $\exists x' \in X$ s.t. $x \longrightarrow x'$ and $(x, x') \in R$. $_{21/24}$

Example: bisimulation of stream systems

A relation $R \subseteq X \times Y$ is a bisimulation iff for all $(x, y) \in R$ we have $o_X(x) = o_Y(y)$ and $(tr_X(x), tr_Y(y)) \in R$.

• *F*-bisimulations are sometimes called Aczel-Mendler bisimulations.

- *F*-bisimulations are sometimes called Aczel-Mendler bisimulations.
- A relation that is compatible for a suitable extension of F to the category of sets and relation – sometimes called Hermida-Jacobs bisimulations

S. Staton, Relating coalgebraic notions of bisimulation, 2011. https://arxiv.org/abs/1101.4223

- *F*-bisimulations are sometimes called Aczel-Mendler bisimulations.
- A relation that is compatible for a suitable extension of F to the category of sets and relation – sometimes called Hermida-Jacobs bisimulations
- A relation satisfying a 'congruence' condition, proposed by Aczel and Mendler

S. Staton, Relating coalgebraic notions of bisimulation, 2011. https://arxiv.org/abs/1101.4223

- *F*-bisimulations are sometimes called Aczel-Mendler bisimulations.
- A relation that is compatible for a suitable extension of F to the category of sets and relation – sometimes called Hermida-Jacobs bisimulations
- A relation satisfying a 'congruence' condition, proposed by Aczel and Mendler
- A relation which is the kernel of a common compatible refinement of the two coalgebras

S. Staton, Relating coalgebraic notions of bisimulation, 2011. https://arxiv.org/abs/1101.4223

Further reading

In this tutorial we just scratched the surface...

• J. Rutten, The Method of Coalgebra: exercises in coinduction, 2019

https://ir.cwi.nl/pub/28550/rutten.pdf

- B. Jacobs and J. Rutten, A tutorial on (co)algebras and (co)induction, 1997
- A. Kurz, Coalgebras and Modal Logic, 2001, https://alexhkurz.github.io/papers/cml.pdf