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Coalgebra – a brief history

• dual of algebra in the work of Arbib and Manes, in their category
theoretic approach to dynamical systems and automata

• Park and Milner invent bisimulation as a notion of behavioural
equivalence for concurrent processes

• Aczel’s theory of non-well-founded sets : Aczel and Mendler
generalise Park and Milner’s notion of bisimulation to the level
of arbitrary coalgebras

• abstract theory of systems
• disclaimer: nothing new in this tutorial !
• excellent references on the theory of coalgebra by Rutten,
Jacobs, Kurz, etc...
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Algebras

Algebras are classically presented as sets with operations.

Consider the set of natural numbers N equipped with the operations

zero∶ 1→ N succ∶N→ N

zero(∗) = 0 succ(n) = n + 1

These form an algebra [zero, succ]∶ 1 +N→ N.

Consider the set {0, 1} equipped with the operations

zero∶ 1→ {0, 1} �ip∶{0, 1}→ {0, 1}
zero(∗) = 0 �ip(x) = 1 − x

These form an algebra [zero,�ip]∶ 1 + {0, 1}→ {0, 1}.
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Algebras for a functor

De�nition. Let F∶C → C be a functor. An F-algebra is a pair (X, α)
consisting of an object X of C and a morphism

α∶ FX → X .

Example. M-algebras, where M∶Set→ Set is de�ned by MX = 1 + X.

• (N, [zero, succ])
• ({0, 1}, [zero,�ip])

De�nition. A morphism between two F-algebras (X, α) and (Y, β) is a

C-morphism f ∶X → Y such that
FX FY

X Y

Ff

α β

f

Exercise. De�ne a morphims of M-algebras
(N, [zero, succ])→ ({0, 1}, [zero,�ip]).
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Algebras for a signature

Consider a set Σ of operations symbols equipped with an arrity
function arity∶Σ→ N.

Let Σn = arity−1(n) denote the set of operation symbols of arity n.

Consider the functor FΣ∶Set→ Set de�ned by FΣX =∐
n∈N

Σn × Xn.

An FΣ-algebra is then given by a map α∶∐
n∈N

Σn × An → A.

To give such an α means that for all n ∈ N and for all op ∈ Σn we
given an interpretation of opA∶An → A.

Hence (A, α) is just an algebra in the standard universal algebra
sense...

What if we want to add equations ? We will need to speak about
monads ...
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Coalgebras – the dual of algebras

De�nition. Let F∶C → C be a functor. An F-coalgebra is a pair (X, ξ)
consisting of an object X of C and a morphism

ξ∶X → FX .

Example. Let Nω denote the set of in�nite streams of natural
numbers, that is, Nω = {σ ∣ σ∶N→ N}. Consider the operations

head∶Nω → N tail∶Nω → Nω

σ ↦ σ(0) σ ↦ σ′ = λn.σ(n + 1)

Their pairing
⟨head,tail⟩∶Nω → N ×Nω

equips Nω with a coalgebra structure for the functor Str∶Set→ Set
de�ned by Str(X) = N × X.
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Morphisms of coalgebras

De�nition. A morphism between two F-coalgebras (X, ξ) and (Y, ζ) is
a C-morphism f ∶X → Y such that

X Y

FX FY

f

ξ ζ

Ff

Exercise. Consider the Str-coalgebra (Nω ×Nω, ⟨h,t⟩), where

h∶Nω ×Nω → N t∶Nω ×Nω → Nω ×Nω

(σ, τ)↦ σ(0) (σ, τ)↦ (τ, tail(σ))

De�ne a coalgebra morphism (Nω ×Nω, ⟨h,t⟩)→ (Nω, ⟨head,tail⟩).
How should we call it ?

Answer: zip∶Nω ×Nω → Nω
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Induction and coinduction



Initial algebras

F-algebras and their morphisms form a category Alg(F).

De�nition. Let F∶C → C be a functor. An initial F-algebra is an initial
object in the category Alg(F).

That is, an F-algbera α∶ FA→ A is initial if for every F-algebra
β∶ FB→ B there exists a unique F-algebra morphism u∶A→ B.

FA FB

A B

α

Fu

β

∃!u

Example. (N, [zero, succ]) is the initial algebra for the functor 1 + −.

Exercise. What is the initial algebra for the functor FΣ, induced by a
signature Σ ?
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Induction ∼ initial algebras

initial algebra arbitrary algebra∃! morphism

• existence —> de�nition by induction
• uniqueness —> proof by induction

Example. (List(A), [nil, cons]) is the initial algebra for the functor
TX = 1 + A × X. To de�ne a map f ∶ List(A)→ B to some other T-algebra
B, we need to de�ne f inductively on the constructors nil and cons.
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Final coalgebra

F-coalgebras and their morphisms form a category CoAlg(F).

De�nition. Let F∶C → C be a functor. A �nal F-coalgebra is an �nal
object in the category CoAlg(F).

That is, an F-coalgbera ξ∶X → FX is �nal if for every F-coalgebra
ζ ∶Z → FZ there exists a unique F-coalgebra morphism u∶Z → X.

Z X

FZ FX

ζ

∃!u

ξ

Fu

Example. (Nω, ⟨head,tail⟩) is the �nal coalgebra for the functor Str
de�ned by Str(X) = N × X.

Exercise. De�ne a coalgebra structure on Nω that induces by
coinduction the function even. Same question for odd.
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More examples of (�nal) coalgebras

• deterministic automata over alphabet A can be seen as
coalgebras

⟨o, tr⟩∶X → 2 × XA

(plus a point 1→ X)

• The �nal coalgebra for the functor FX = 2 × XA is the automaton
of all languages

⟨eps,der⟩∶2A∗ → 2 × (2A∗)A ,

where
• eps(L) = 1 i� ε ∈ L
• der(L)(a) = a−1L
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Part II



Recap
F-algebra for a functor F∶C → C

α∶ FX → X

F-coalgebra for a functor F∶C → C

ξ∶X → FX

F-algebra morphism

FX FY

X Y

Ff

α β

f

F-coalgebra morphism

X Y

FX FY

f

ξ ζ

Ff

initial F-algebra (I, α)

FI FY

I Y

Ff

α β

∃! f

�nal F-coalgebra (Ω, ζ)

X Ω

FX FΩ

∃! f

ξ ζ

Ff
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Algebras and colagebras in preorders

a category C a preorder (P,≤)

a functor F∶C → C a monotone map f ∶P→ P.

F-algebra α∶ FX → X pre-�xed point f(x) ≤ x

F-coalgebra ξ∶X → FX post-�xed point x ≤ f(x)

initial F-algebra least pre-�xed point µ.f

�nal F-coalgebra largest post-�xed point ν.f
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More examples of coalgebras

functor F∶Set→ Set �nal coalgebra

FX = A × X ⟨head,tail⟩∶Aω → A × Aω

FX = 1 + A × X A∗ + Aω → 1 + A × (A∗ + Aω)
FX = P(X) recall Lambek Lemma !
(Kripke frames)
FX = P(L × X)
(labelled transition systems)

FX = 2 × XA ⟨eps,der⟩∶2A∗ → 2 × (2A∗)A

(determinisitic automata)

FX = 2 ×P(X)A

(nondeterminisitic automata)
FX = (O × X)I causal functions I∗ → O∗

(Mealy machines)
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Behaviours of systems

A �nal coalgebra ν.F — when it exists —
captures the possible behaviours

of the systems modelled as F-coalgebras.
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Computing initial algebras as colimits

Theorem. Let C be a category with an initial object 0 and colimits of
ω-chains. Assume F preserves such colimits. Then the colimit of the
chain

0 F0 F20 . . .
! F! F2!

carries a structure of an initial F-algebra.

Exercise. Take Σ = {e ∶ 0,m ∶ 2} be a signature. Compute the colimit
of the initial chain of the associated functor FΣ.
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Computing initial algebras as colimits: example

Exercise. Take Σ = {e ∶ 0,m ∶ 2} be a signature. Compute the colimit
of the initial chain of the associated functor FΣ.

Recall FΣ∶Set→ Set is de�ned by FX = {e} + {m} × X × X.

The initial chain 0 F0 F20 . . .
! F! F2! is then:

∅ {e} {e,m(e,e)} . . .
! F! F2!

where the maps Fn! are just inclusions. The colimit of this chain is
the set of terms over the signature Σ and is the carrier of the initial
FΣ-algebra.
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Computing �nal coalgebras as limits

Theorem. Let C be a category with an �nal object 1 and limits of
ωop-chains. Assume F preserves such limits. Then the limit of the
chain

1 F1 F21 . . .
! F!

carries a structure of an �nal F-coalgebra.
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Congruences and bisimulations



F-congruence

Let F∶Set→ Set be a functor. Let (A, α) and (B, β) be two F-algebras.
A relation R ⊆ A × B is called an F-congruence if there exists an
F-algebra structure γ∶ F(R)→ R such that the projections π1∶R→ A
and π2∶R→ B are F-algebra morphisms.

FR

FA R FB

A B

Fπ1 Fπ2γ

α
π1 π2

β

Exercise. Show that a congruence on (N, [zero, succ]) is a relation
R ⊆ N ×N such that (0,0) ∈ R and (n,m) ∈ R implies
(succ(n), succ(m)) ∈ R.
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F-bisimulation

Let F∶Set→ Set be a functor. Let (X, ξ) and (Y, ζ) be two
F-coalgebras. A relation R ⊆ X × Y is called an F-bisimulation if there
exists an F-coalgebra structure γ∶R→ FR such that the projections
π1∶R→ X and π2∶R→ Y are F-coalgebra morphisms.

R

X FR Y

FX FY

π1 π2γ

ξ
Fπ1 Fπ2

ζ

Coinduction proof principle. Every bisimulation on a �nal
F-coalgebra X → F(X) is contained in the diagonal on X.
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Example: bisimulation for labelled transition systems

A labelled transition system is a coalgebra ξ∶X → P(L × X).
Note that (l, x′) ∈ ξ(x) means x x′l .

R

X P(L × R) Y

P(L × X) P(L × Y)

π1 π2γ

ξ
P(L×π1) P(L×π2)

ζ

Exercise. Prove that this is equivalent to the standard notion of
bisimulation. Recall that R ⊆ X × Y is a bisimulation i� ∀(x, y) ∈ R

• if x x′l then ∃ y′ ∈ Y s.t. y y′l and (y, y′) ∈ R.

• if y y′l then ∃ x′ ∈ X s.t. x x′l and (x, x′) ∈ R.
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Example: bisimulation of stream systems

R

X A × R Y

A × X A × Y

π1 π2γ

⟨oX,trX⟩
1A×π1 1A×π2 ⟨oY ,trY⟩

A relation R ⊆ X × Y is a bisimulation i� for all (x, y) ∈ R we have
oX(x) = oY(y) and (trX(x), trY(y)) ∈ R.
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Several notions of bisimulations

• F-bisimulations are sometimes called Aczel-Mendler
bisimulations.

• A relation that is compatible for a suitable extension of F to the
category of sets and relation – sometimes called
Hermida-Jacobs bisimulations

• A relation satisfying a ‘congruence’ condition, proposed by
Aczel and Mendler

• A relation which is the kernel of a common compatible
re�nement of the two coalgebras

S. Staton, Relating coalgebraic notions of bisimulation, 2011.
https://arxiv.org/abs/1101.4223
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Further reading

In this tutorial we just scratched the surface...

• J. Rutten, The Method of Coalgebra: exercises in coinduction,
2019
https://ir.cwi.nl/pub/28550/rutten.pdf

• B. Jacobs and J. Rutten, A tutorial on (co)algebras and
(co)induction, 1997

• A. Kurz, Coalgebras and Modal Logic, 2001,
https://alexhkurz.github.io/papers/cml.pdf
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