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The Societal Impact of Software Failures

• Our society heavily relies on computer systems
• Failure or malfunction of safety-critical systems would lead to human, 

social, economic, and environmental damage
• 1985-1987 – Therac-25 medical accelerator delivered lethal radiation doses to 

patients
• June 4, 1996 – Ariane 5 Flight 501 exploded
• February, 2014 – 1.9 million Prius cars recalled
• April, 2014 – OpenSSL Heartbleed vulnerability disclosed
• June 17, 2016 – Ethereum DAO attacked, over $55M stolen

• Reliability assurance of safety-critical systems is crucial
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Software Verification

• Formally prove or disprove a mathematical proposition 𝑄𝑄:
“The given program satisfies its formal specification”

• Great attentions from industry and academia
• Microsoft’s SLAM & Everest projects, Facebook’s Infer, AWS 
• Turing awards to Hoare logic, temporal logic, model checking, …
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Program & Spec.

let rec mc x =
  if x > 100 then
    x – 10
  else
    mc (mc (x + 11))
in
let n = randi() in
if n ≤ 101 then
  assert (mc n = 91)

Software Verifier

A proof of 𝑄𝑄
or

A counterexample to 𝑄𝑄
(e.g., a program input 

leading to a spec. violation)
or

Unknown



Enabling Technologies

• Program logics & type systems for formal reasoning
• Hoare logic, Separation logic, …
• Dependent refinement type systems, …

• Theorem provers & constraint solvers for automated reasoning
• SAT solvers: satisfiability checkers for propositional formulas
• SMT solvers: satisfiability checkers for predicate formulas over first-order 

theories on integers, reals, lists, arrays, …
• Predicate constraint solvers: satisfiability checkers for logical constraints on 

predicate variables that represent inductive invariants, well-founded 
relations (or ranking functions), Skolem functions (or recurrent sets), …

• Fixed-point logic solvers: validity checkers for fixed-point logic formulas
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This Course
• Introduction to software verification based on fixed-point logics

• How to reduce software verification to validity checking for fixed-point logics?
• How to check validity? Three complementary approaches:

1. Reduction to the constraint-solving problem over predicate variables (MuVal)
2. Reduction to the proof search problem in a cyclic proof system (MuCyc)
3. Reduction to the game-solving problem induced by fixed-point logic formulas (MuStrat)
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Program＋Spec.
{ x >= 0 }
while x >= 0 do
  y := nondet∃ ();
  x := x – y
{ ⊥ }

Verif. Cond. 
Generation

Fixed-point logic 
formula in 𝜇𝜇CLP/HFL
∀𝑥𝑥. 𝑥𝑥 ≥ 0 ⇒ 𝑁𝑁 𝑥𝑥  
where
 𝑁𝑁 𝑥𝑥 =𝜈𝜈 𝑥𝑥 ≥ 0 ∧
∃𝑦𝑦. 𝑁𝑁 𝑥𝑥 − 𝑦𝑦

Verif. Cond. 
Checking

Verified
or

Falsified
or

Unknown

RCaml MuStrat

MuCyc

OCaml

𝜇𝜇CLP/HFL

MuVal

ThrustRust

C C2LTS

CoAR: Verification tools based on fixed-point logics (https://github.com/hiroshi-unno/coar)

https://github.com/hiroshi-unno/coar


Course Schedule

• Wed. 21 May (8:50-10:30)
1. Reduction from software verification to fixed-point logic validity checking
2. Predicate constraint solving for validity checking

• Thu. 22 May (11:20-12:20)
3. Cyclic-proof search for validity checking
4. Game solving for validity checking
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1. Reduction from Software 
Verification to Validity Checking  
for Fixed-Point Logics
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Outline

• Reduction from imperative programs to fixed-point logics
(Mu-Arithmetic [CSL 1999] and 𝜇𝜇CLP [POPL 2023])

• Safety verification
• Termination verification
• Non-termination verification
• Modal 𝜇𝜇-calculus model checking [SAS 2019]

• Reduction from higher-order probabilistic programs to
a higher-order and quantitative fixed-point logic

• Upper bounds verification of weakest pre-expectation [ICFP 2024]
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[CSL 1999] Bradfield. Fixpoint Alternation and the Game Quantifier.
[SAS 2019] Kobayashi et al. Temporal Verification of Programs via First-Order Fixpoint Logic.
[POPL 2023] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.
[ICFP 2024] Kura and Unno. Automated Verification of Higher-Order Probabilistic Programs via a Dependent Refinement Type System.
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[CSL 1999] Bradfield. Fixpoint Alternation and the Game Quantifier.
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Mu-Arithmetic: A First-Order Fixed-Point Logic 
with Integer Arithmetic [CSL 1999]

• We assume that formulas, predicates, and terms are well-sorted
• Least fixpoints 𝝁𝝁𝝁𝝁. 𝝀𝝀𝒙𝒙. 𝝓𝝓 represent inductive predicates, and

greatest fixpoints 𝝂𝝂𝝂𝝂. 𝝀𝝀𝒙𝒙. 𝝓𝝓 represent co-inductive predicates
• We also use (hierarchical) equational form: 𝑋𝑋 𝑥⃗𝑥 =𝜇𝜇 𝜙𝜙 and 𝑋𝑋 𝑥⃗𝑥 =𝜈𝜈 𝜙𝜙
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(formulas) 𝜙𝜙 ∷= ⊥ | ⊤ | ¬𝜙𝜙 | 𝜙𝜙1 ∧ 𝜙𝜙2 | 𝜙𝜙1 ∨ 𝜙𝜙2 | ∀𝑥𝑥. 𝜙𝜙 | ∃𝑥𝑥. 𝜙𝜙 | 𝑃𝑃 𝑡𝑡  | 𝑝𝑝 𝑡𝑡
(predicates) 𝑃𝑃 ∷= 𝑋𝑋 | 𝝁𝝁𝝁𝝁. 𝝀𝝀𝒙𝒙. 𝝓𝝓 | 𝝂𝝂𝝂𝝂. 𝝀𝝀𝒙𝒙. 𝝓𝝓 (terms) 𝑡𝑡 ∷= 𝑥𝑥 | 𝑓𝑓 𝑡𝑡

constant and function 
symbols: 𝑛𝑛 ∈ 𝕫𝕫, +, and ×

predicate 
variables

predicate symbols:
> and =

Least fixed-point
(𝑋𝑋 occurs only 
positively in 𝜙𝜙)

Greatest fixed-point
(𝑋𝑋 occurs only 
positively in 𝜙𝜙)

term 
variables



𝝁𝝁CLP: A First-Order Fixed-Point Logic Modulo 
Background Theories 𝑇𝑇 [POPL 2023]

• We assume that formulas, predicates, and terms are well-sorted
• Least fixpoints 𝝁𝝁𝝁𝝁. 𝝀𝝀𝒙𝒙. 𝝓𝝓 represent inductive predicates, and

greatest fixpoints 𝝂𝝂𝝂𝝂. 𝝀𝝀𝒙𝒙. 𝝓𝝓 represent co-inductive predicates
• We also use (hierarchical) equational form: 𝑋𝑋 𝑥⃗𝑥 =𝜇𝜇 𝜙𝜙 and 𝑋𝑋 𝑥⃗𝑥 =𝜈𝜈 𝜙𝜙
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(formulas) 𝜙𝜙 ∷= ⊥ | ⊤ | ¬𝜙𝜙 | 𝜙𝜙1 ∧ 𝜙𝜙2 | 𝜙𝜙1 ∨ 𝜙𝜙2 | ∀𝑥𝑥. 𝜙𝜙 | ∃𝑥𝑥. 𝜙𝜙 | 𝑃𝑃 𝑡𝑡  | 𝑝𝑝 𝑡𝑡
(predicates) 𝑃𝑃 ∷= 𝑋𝑋 | 𝝁𝝁𝝁𝝁. 𝝀𝝀𝒙𝒙. 𝝓𝝓 | 𝝂𝝂𝝂𝝂. 𝝀𝝀𝒙𝒙. 𝝓𝝓 (terms) 𝑡𝑡 ∷= 𝑥𝑥 | 𝑓𝑓 𝑡𝑡

constant and function 
symbols of 𝑇𝑇

predicate 
variables

predicate symbols of 𝑇𝑇

Least fixed-point
(𝑋𝑋 occurs only 
positively in 𝜙𝜙)

Greatest fixed-point
(𝑋𝑋 occurs only 
positively in 𝜙𝜙)

term 
variables



Example Formulas of Mu-Arithmetic
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𝜇𝜇𝑋𝑋. 𝜆𝜆𝑥𝑥. 𝑥𝑥 = 0 ∨ 𝑋𝑋 𝑥𝑥 − 1 𝑛𝑛
⇔ 𝜆𝜆𝑥𝑥. 𝑥𝑥 = 0 ∨ 𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑥𝑥 = 0 ∨ 𝑋𝑋 𝑥𝑥 − 1 𝑥𝑥 − 1 𝑛𝑛
⇔ 𝑛𝑛 = 0 ∨ 𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑥𝑥 = 0 ∨ 𝑋𝑋 𝑥𝑥 − 1 𝑛𝑛 − 1
⇔ 𝑛𝑛 = 0 ∨ 𝑛𝑛 − 1 = 0 ∨ 𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑥𝑥 = 0 ∨ 𝑋𝑋 𝑥𝑥 − 1 𝑛𝑛 − 2
⇔ 𝑛𝑛 = 0 ∨ 𝑛𝑛 = 1 ∨ 𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑥𝑥 = 0 ∨ 𝑋𝑋 𝑥𝑥 − 1 𝑛𝑛 − 2
⇔ 𝑛𝑛 = 0 ∨ 𝑛𝑛 = 1 ∨ 𝑛𝑛 = 2 ∨ ⋯ ∨ 𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑥𝑥 = 0 ∨ 𝑋𝑋 𝑥𝑥 − 1 𝑘𝑘
⇔ ∃𝑧𝑧 ≥ 0. 𝑛𝑛 = 𝑧𝑧 ⇔ 𝑛𝑛 ≥ 0

𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝑥𝑥 ≥ 0 ∧ 𝑋𝑋 𝑥𝑥 + 1 𝑛𝑛
⇔ 𝑛𝑛 ≥ 0 ∧ 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝑥𝑥 ≥ 0 ∧ 𝑋𝑋 𝑥𝑥 + 1 𝑛𝑛 + 1
⇔ 𝑛𝑛 ≥ 0 ∧ 𝑛𝑛 + 1 ≥ 0 ∧ ⋯ ∧ 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝑥𝑥 ≥ 0 ∧ 𝑋𝑋 𝑥𝑥 + 1 𝑘𝑘
⇔ ∀𝑧𝑧 ≥ 0. 𝑛𝑛 + 𝑧𝑧 ≥ 0 ⇔ 𝑛𝑛 ≥ 0



Example Formulas of Mu-Arithmetic
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𝜈𝜈𝑋𝑋. 𝜆𝜆𝑥𝑥. 𝑥𝑥 = 0 ∨ 𝑋𝑋 𝑥𝑥 − 1 𝑛𝑛
⇔ 𝑛𝑛 = 0 ∨ 𝜈𝜈𝑋𝑋. 𝜆𝜆𝜆𝜆. 𝑥𝑥 = 0 ∨ 𝑋𝑋 𝑥𝑥 − 1 𝑛𝑛 − 1
⇔ 𝑛𝑛 = 0 ∨ 𝑛𝑛 = 1 ∨ ⋯ ∨ 𝜈𝜈𝑋𝑋. 𝜆𝜆𝜆𝜆. 𝑥𝑥 = 0 ∨ 𝑋𝑋 𝑥𝑥 − 1 𝑘𝑘
⇔ 𝑛𝑛 = 0 ∨ 𝑛𝑛 = 1 ∨ ⋯ ∨ ⊤ ⇔ ⊤

𝜇𝜇𝑋𝑋. 𝜆𝜆𝜆𝜆. 𝑥𝑥 ≥ 0 ∧ 𝑋𝑋 𝑥𝑥 + 1 𝑛𝑛
⇔ 𝑛𝑛 ≥ 0 ∧ 𝜇𝜇𝑋𝑋. 𝜆𝜆𝜆𝜆. 𝑥𝑥 ≥ 0 ∧ 𝑋𝑋 𝑥𝑥 + 1 𝑛𝑛 + 1
⇔ 𝑛𝑛 ≥ 0 ∧ 𝑛𝑛 + 1 ≥ 0 ∧ ⋯ ∧ 𝜇𝜇𝑋𝑋. 𝜆𝜆𝜆𝜆. 𝑥𝑥 ≥ 0 ∧ 𝑋𝑋 𝑥𝑥 + 1 𝑘𝑘
⇔ 𝑛𝑛 ≥ 0 ∧ 𝑛𝑛 + 1 ≥ 0 ∧ ⋯ ∧ ⊥ ⇔ ⊥



Example: Fixpoint Alternation

• Q1. During the evaluation of g 1, does the call to f eventually invoke 
g recursively, and does the call to g repeat this infinitely often?

𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝜇𝜇𝜇𝜇. 𝜆𝜆𝑦𝑦. 𝑦𝑦 = 0 ∧ 𝐺𝐺 10 ∨ 𝑦𝑦 ≠ 0 ∧ 𝐹𝐹 𝑦𝑦 − 1 𝑥𝑥 1

• Q2. During the evaluation of f 1, is f not recursively called infinitely?
𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑦𝑦 = 0 ∧ 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝐹𝐹 𝑥𝑥 10 ∨ 𝑦𝑦 ≠ 0 ∧ 𝐹𝐹 𝑦𝑦 − 1 1
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let rec f y = if y = 0 then g 10 else f (y - 1)
and g x = f x

𝐺𝐺 1 where
𝐺𝐺 𝑥𝑥 =𝜈𝜈 𝐹𝐹 𝑥𝑥
𝐹𝐹 𝑦𝑦 =𝜇𝜇 𝑦𝑦 = 0 ∧ 𝐺𝐺 10 ∨ 𝑦𝑦 ≠ 0 ∧ 𝐹𝐹 𝑦𝑦 − 1

𝐹𝐹 1 where
𝐹𝐹 𝑦𝑦 =𝜇𝜇 𝑦𝑦 = 0 ∧ 𝐺𝐺 10 ∨ 𝑦𝑦 ≠ 0 ∧ 𝐹𝐹 𝑦𝑦 − 1
𝐺𝐺 𝑥𝑥 =𝜈𝜈 𝐹𝐹 𝑥𝑥

⇔ 𝐹𝐹 10



Example: Fixpoint Alternation (cont.)

• Q1. During the evaluation of g 1, does the call to f eventually invoke g 
recursively, and does the call to g repeat this infinitely often?
𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝜇𝜇𝜇𝜇. 𝜆𝜆𝑦𝑦. 𝑦𝑦 = 0 ∧ 𝐺𝐺 10 ∨ 𝑦𝑦 ≠ 0 ∧ 𝐹𝐹 𝑦𝑦 − 1 𝑥𝑥 1

⇔ 𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑦𝑦 = 0 ∧ 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝜇𝜇𝜇𝜇. ⋯  10 ∨ 𝑦𝑦 ≠ 0 ∧ 𝐹𝐹 𝑦𝑦 − 1 1
⇔ 𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑦𝑦 = 0 ∧ 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝜇𝜇𝜇𝜇. ⋯  10 ∨ 𝑦𝑦 ≠ 0 ∧ 𝐹𝐹 𝑦𝑦 − 1 0
⇔ 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝜇𝜇𝜇𝜇. ⋯  10 ⇔ 𝜇𝜇𝐹𝐹. ⋯  10 ⇔ 𝜇𝜇𝜇𝜇. ⋯  0
⇔ 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝜇𝜇𝜇𝜇. ⋯  10 ⇔ ⊤
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This is not used!

This is called indefinitely!



Example: Fixpoint Alternation (cont.)

• Q2. During the evaluation of f 1, is f not recursively called infinitely?
𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑦𝑦 = 0 ∧ 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝐹𝐹 𝑥𝑥 10 ∨ 𝑦𝑦 ≠ 0 ∧ 𝐹𝐹 𝑦𝑦 − 1 1  

⇔ 𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑦𝑦 = 0 ∧ 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝐹𝐹 𝑥𝑥  10 ∨ 𝑦𝑦 ≠ 0 ∧ 𝐹𝐹 𝑦𝑦 − 1 0
⇔ 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝜇𝜇𝜇𝜇. ⋯ 𝑥𝑥  10 ⇔ 𝜇𝜇𝐹𝐹. ⋯  10 ⇔ 𝜇𝜇𝜇𝜇. ⋯  0
⇔ 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝜇𝜇𝜇𝜇. ⋯ 𝑥𝑥  10 ⇔ ⊥
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Both are called indefinitely!Both are called indefinitely!



Example: Partial Correctness Verification
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𝑥𝑥 = 𝑥𝑥0
𝑦𝑦 = 0;
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝑦𝑦 ← 𝑦𝑦 + 1;
 𝑥𝑥 ← 𝑥𝑥 − 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
𝑦𝑦 = 𝑥𝑥0

If the initial state satisfies
the pre-condition 𝑥𝑥 = 𝑥𝑥0
and the loop terminates

the post-condition 𝑦𝑦 = 𝑥𝑥0 is 
satisfied by the resulting state

Pre-
condition

Post-
condition

∀𝑥𝑥0, 𝑥𝑥, 𝑦𝑦. 𝑅𝑅 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ∧ 𝑥𝑥 = 0 ⇒ 𝑦𝑦 = 𝑥𝑥0  where

𝑅𝑅 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 =𝜇𝜇 𝑥𝑥 = 𝑥𝑥0 ∧ 𝑦𝑦 = 0 ∨ ∃𝑥𝑥𝑥, 𝑦𝑦𝑦. 𝑅𝑅 𝑥𝑥0, 𝑥𝑥𝑥, 𝑦𝑦𝑦 ∧ 𝑥𝑥′ ≠ 0 ∧
𝑥𝑥 = 𝑥𝑥′ − 1 ∧ 𝑦𝑦 = 𝑦𝑦′ + 1

Verification Condition in Mu-Arithmetic:



Example: Partial Correctness Verification
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𝑥𝑥 = 𝑥𝑥0
𝑦𝑦 = 0;
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝑦𝑦 ← 𝑦𝑦 + 1;
 𝑥𝑥 ← 𝑥𝑥 − 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
𝑦𝑦 = 𝑥𝑥0

If the initial state satisfies
the pre-condition 𝑥𝑥 = 𝑥𝑥0
and the loop terminates

the post-condition 𝑦𝑦 = 𝑥𝑥0 is 
satisfied by the resulting state

Pre-
condition

Post-
condition

∀𝑥𝑥0, 𝑥𝑥, 𝑦𝑦. 𝑅𝑅 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ∧ 𝑥𝑥 = 0 ⇒ 𝑦𝑦 = 𝑥𝑥0  where
𝑅𝑅 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 =𝜇𝜇 𝑥𝑥 = 𝑥𝑥0 ∧ 𝑦𝑦 = 0 ∨ 𝑅𝑅 𝑥𝑥0, 𝑥𝑥 + 1, 𝑦𝑦 − 1 ∧ 𝑥𝑥 + 1 ≠ 0

Verification Condition in Mu-Arithmetic:



Example: Partial Correctness Verification
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𝑥𝑥 = 𝑥𝑥0
𝑦𝑦 = 0;
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝑦𝑦 ← 𝑦𝑦 + 1;
 𝑥𝑥 ← 𝑥𝑥 − 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
𝑦𝑦 = 𝑥𝑥0

If the initial state satisfies
the pre-condition 𝑥𝑥 = 𝑥𝑥0
and the loop terminates

the post-condition 𝑦𝑦 = 𝑥𝑥0 is 
satisfied by the resulting state

Pre-
condition

Post-
condition

∀𝑥𝑥0, 𝑥𝑥, 𝑦𝑦. 𝑥𝑥 = 𝑥𝑥0 ∧ 𝑦𝑦 = 0 ⇒ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦  where
𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 =𝜈𝜈 𝑥𝑥 = 0 ⇒ 𝑦𝑦 = 𝑥𝑥0 ∧ 𝑥𝑥 ≠ 0 ⇒ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥 − 1, 𝑦𝑦 + 1

Verification Condition in Mu-Arithmetic:



Example: Total Correctness Verification
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∀𝑥𝑥. 𝑥𝑥 ≠ 0 ⇒ 𝑆𝑆 𝑥𝑥  where
𝑆𝑆 𝑥𝑥 =𝜇𝜇 𝑥𝑥 = 0 ⇒ ⊤ ∧ 𝑥𝑥 > 0 ⇒ 𝑆𝑆 𝑥𝑥 − 1 ∧ 𝑥𝑥 < 0 ⇒ 𝑆𝑆 𝑥𝑥 + 1

𝑥𝑥 ≠ 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝐢𝐢𝐢𝐢 𝑥𝑥 > 0 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
 𝑥𝑥 ← 𝑥𝑥 − 1
 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
 𝑥𝑥 ← 𝑥𝑥 + 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊤

If the initial state satisfies 
the pre-condition 𝑥𝑥 ≠ 0

the loop always terminates
and the post-condition ⊤ is 

satisfied by the resulting state

Pre-
condition

Post-
condition Tautology

Verification Condition in Mu-Arithmetic:



Example: Total Correctness Verification
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∀𝑥𝑥. 𝑥𝑥 ≠ 0 ⇒ 𝑆𝑆 𝑥𝑥  where
𝑆𝑆 𝑥𝑥 =𝜇𝜇 𝑥𝑥 > 0 ⇒ 𝑆𝑆 𝑥𝑥 − 1 ∧ 𝑥𝑥 < 0 ⇒ 𝑆𝑆 𝑥𝑥 + 1

𝑥𝑥 ≠ 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝐢𝐢𝐢𝐢 𝑥𝑥 > 0 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
 𝑥𝑥 ← 𝑥𝑥 − 1
 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
 𝑥𝑥 ← 𝑥𝑥 + 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊤

If the initial state satisfies 
the pre-condition 𝑥𝑥 ≠ 0

the loop always terminates
and the post-condition ⊤ is 

satisfied by the resulting state

Pre-
condition

Post-
condition Tautology

Verification Condition in Mu-Arithmetic:



Example: Partial Correctness Verification with 
Finitely-Branching Angelic Non-Determinism
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𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝐢𝐢𝐢𝐢 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛  ∃ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
 𝑥𝑥 ← 𝑥𝑥 − 1
 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
 𝑥𝑥 ← 𝑥𝑥 + 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥

If the initial state satisfies 
the pre-condition 𝑥𝑥 > 0

there is an execution of 
the program such that

the post-condition ⊥ is 
satisfied when the while 

loop terminates 

Non-det. 
branching

Contradiction

Pre-
condition

Post-
condition

Verification Condition in Mu-Arithmetic:



Example: Partial Correctness Verification with 
Finitely-Branching Angelic Non-Determinism
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∀𝑥𝑥. 𝑥𝑥 > 0 ⇒ 𝑆𝑆 𝑥𝑥  where
𝑆𝑆 𝑥𝑥 =𝜈𝜈 𝑥𝑥 = 0 ⇒ ⊥ ∧ 𝑥𝑥 ≠ 0 ⇒ 𝑆𝑆 𝑥𝑥 − 1 ∨ 𝑆𝑆 𝑥𝑥 + 1

𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝐢𝐢𝐢𝐢 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛  ∃ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
 𝑥𝑥 ← 𝑥𝑥 − 1
 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
 𝑥𝑥 ← 𝑥𝑥 + 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥

If the initial state satisfies 
the pre-condition 𝑥𝑥 > 0

there is an execution of 
the program such that

Non-det. 
branching

Contradiction

Pre-
condition

Post-
condition

Verification Condition in Mu-Arithmetic:

the while loop
never terminates 



Example: Partial Correctness Verification with 
Finitely-Branching Angelic Non-Determinism
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∀𝑥𝑥. 𝑥𝑥 > 0 ⇒ 𝑆𝑆 𝑥𝑥  where
𝑆𝑆 𝑥𝑥 =𝜈𝜈 𝑥𝑥 ≠ 0 ∧ 𝑆𝑆 𝑥𝑥 − 1 ∨ 𝑆𝑆 𝑥𝑥 + 1

𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝐢𝐢𝐢𝐢 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛  ∃ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
 𝑥𝑥 ← 𝑥𝑥 − 1
 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
 𝑥𝑥 ← 𝑥𝑥 + 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥

If the initial state satisfies 
the pre-condition 𝑥𝑥 > 0

there is an execution of 
the program such that

Non-det. 
branching

Contradiction

Pre-
condition

Post-
condition

Verification Condition in Mu-Arithmetic:

the while loop
never terminates 



Example: Partial Correctness Verification with 
Infinitely-Branching Angelic Non-Determinism
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∀𝑥𝑥. 𝑥𝑥 > 0 ⇒ 𝑆𝑆 𝑥𝑥  where
𝑆𝑆 𝑥𝑥 =𝜈𝜈 𝑥𝑥 ≤ 0 ⇒ ⊥ ∧ 𝑥𝑥 > 0 ⇒ ∃𝑟𝑟. 𝑆𝑆 𝑟𝑟 − 𝑥𝑥

𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 > 0 𝐝𝐝𝐝𝐝
 𝑥𝑥 ← 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐢𝐢𝐢𝐢𝐢𝐢  ∃ − 𝑥𝑥
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥

If the initial state satisfies 
the pre-condition 𝑥𝑥 > 0

there is an execution of 
the program such that

the while loop
never terminates 

Non-det. 
integer

Contradiction

Pre-
condition

Post-
condition

Verification Condition in Mu-Arithmetic:



Example: Partial Correctness Verification with 
Infinitely-Branching Angelic Non-Determinism
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∀𝑥𝑥. 𝑥𝑥 > 0 ⇒ 𝑆𝑆 𝑥𝑥  where
𝑆𝑆 𝑥𝑥 =𝜈𝜈 𝑥𝑥 > 0 ∧ ∃𝑟𝑟. 𝑆𝑆 𝑥𝑥, 𝑟𝑟 − 𝑥𝑥

𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 > 0 𝐝𝐝𝐝𝐝
 𝑥𝑥 ← 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐢𝐢𝐢𝐢𝐢𝐢  ∃ − 𝑥𝑥
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥

If the initial state satisfies 
the pre-condition 𝑥𝑥 > 0

there is an execution of 
the program such that

the while loop
never terminates 

Non-det. 
integer

Contradiction

Pre-
condition

Post-
condition

Verification Condition in Mu-Arithmetic:



Key Advantages of 𝝁𝝁CLP for Verification

1. Can naturally encode a wide variety of verification problems
by exploiting the modularity in both the program and the specification

2. Closed under complement: the complement of each (co-)inductive 
predicate is obtained by taking the standard De Morgan’s dual:

¬ 𝜇𝜇𝜇𝜇. 𝜆𝜆𝑥⃗𝑥. 𝜙𝜙 ⇔ 𝜈𝜈𝜈𝜈. 𝜆𝜆𝑥⃗𝑥. ¬ ¬𝑌𝑌/𝑋𝑋 𝜙𝜙
¬ 𝜈𝜈𝑋𝑋. 𝜆𝜆𝑥⃗𝑥. 𝜙𝜙 ⇔ 𝜇𝜇𝑌𝑌. 𝜆𝜆𝑥⃗𝑥. ¬ ¬𝑌𝑌/𝑋𝑋 𝜙𝜙

⇒ By utilizing this, we present a novel 𝝁𝝁CLP validity checking method MuVal
 that solves the primal and dual problems in parallel
 by exchanging useful information to reduce each others’ solution spaces
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𝜇𝜇CLP Encoding of Various Verification Problems

• Can exploit the modularity of both the program and the specification 
by expressing each loop and (recursive) function in the program, as 
well as each subformula of the property, as separate (possibly 
mutually dependent) (co-)inductive predicates

• Modular (non-)termination verification of imperative programs [POPL 2023]

• Omega-regular model checking of labeled transition systems [POPL 2023]

• Modal 𝜇𝜇-calculus model checking of imperative programs [SAS 2019]

• Omega-regular model checking of first-order recursive programs [SAS 2019]
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[SAS 2019] Kobayashi et al. Temporal Verification of Programs via First-Order Fixpoint Logic.
[POPL 2023] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.



𝜇𝜇CLP Encoding of Various Verification Problems

• Can exploit the modularity of both the program and the specification 
by expressing each loop and (recursive) function in the program, as 
well as each subformula of the property, as separate (possibly 
mutually dependent) (co-)inductive predicates

• Modular (non-)termination verification of imperative programs [POPL 2023]

• Omega-regular model checking of labeled transition systems [POPL 2023]

• Modal 𝜇𝜇-calculus model checking of imperative programs [SAS 2019]

• Omega-regular model checking of first-order recursive programs [SAS 2019]

21 May 2025  EPIT, Aussois, France 29

[SAS 2019] Kobayashi et al. Temporal Verification of Programs via First-Order Fixpoint Logic.
[POPL 2023] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.



Running Example (from [Urban+’13,’14]):
assume (x2 <= 3);
while (x1 >= 0 && x2 >= 0) {
  if (nondet()) {
    while (x2 != 3 && nondet()) { x2 = x2 + 1; }
    x1 = x1 - 1; }
  x2 = x2 - 1; }
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Modular 
Encoding for
Termination

The weakest precondition for the 
termination of the outer loop

The weakest precondition for the 
termination of the inner loop

The strongest postcondition of 
the inner loop

See the paper for a formal 
definition of this sound 
and complete modular 

encoding for termination



Running Example (from [Urban+’13,’14]):
assume (x2 <= 3);
while (x1 >= 0 && x2 >= 0) {
  if (nondet()) {
    while (x2 != 3 && nondet()) { x2 = x2 + 1; }
    x1 = x1 - 1; }
  x2 = x2 - 1; }
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Modular 
Encoding for
Termination

The weakest precondition for the 
termination of the outer loop

The weakest precondition for the 
termination of the inner loop

The complement of the strongest 
postcondition of the inner loop

See the paper for a formal 
definition of this sound 
and complete modular 

encoding for termination
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De Morgan’s Dual

𝝁𝝁CLP encoding of the termination verification problem

𝝁𝝁CLP encoding of the non-termination verification problem

The complement of 𝑁𝑁𝑁𝑁: the strongest 
postcondition of the inner loop

The complement of 𝐼𝐼: The weakest precondition 
for the non-termination of the outer loop

The complement of 𝐽𝐽: The weakest precondition 
for the non-termination of the inner loop



𝜇𝜇CLP Encoding of Various Verification Problems

• Can exploit the modularity of both the program and the specification 
by expressing each loop and (recursive) function in the program, as 
well as each subformula of the property, as separate (possibly 
mutually dependent) (co-)inductive predicates

• Modular (non-)termination verification of imperative programs [POPL 2023]

• Omega-regular model checking of labeled transition systems [POPL 2023]

• Modal 𝜇𝜇-calculus model checking of imperative programs [SAS 2019]

• Omega-regular model checking of first-order recursive programs [SAS 2019]
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[SAS 2019] Kobayashi et al. Temporal Verification of Programs via First-Order Fixpoint Logic.
[POPL 2023] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.



Example 1
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Initial state: 𝑥𝑥 ↦ 0, 𝑦𝑦 ↦ 0
Code: 

0 ↦ 𝑥𝑥 ≔ 𝑥𝑥 − 1; 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 1,
1 ↦ 𝑦𝑦 ≔ 𝑦𝑦 + 1; 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 0

Specification:
𝑋𝑋 =𝜈𝜈 𝑥𝑥 + 𝑦𝑦 ≥ 0 ∧ □𝑌𝑌
𝑌𝑌 =𝜈𝜈 □𝑋𝑋

𝜇𝜇CLP: 𝑋𝑋 0 0,0  where
𝑋𝑋 0 𝑥𝑥, 𝑦𝑦 =𝜈𝜈 𝑥𝑥 + 𝑦𝑦 ≥ 0 ∧ 𝑌𝑌 1 𝑥𝑥 − 1, 𝑦𝑦
𝑌𝑌 1 𝑥𝑥, 𝑦𝑦 =𝜈𝜈 𝑋𝑋 0 𝑥𝑥, 𝑦𝑦 + 1



Example 2
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Initial state: 𝑥𝑥 ↦ 0
Code: 

0 ↦ 𝑥𝑥 ≔ ∗; 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 1,

1 ↦ 𝐢𝐢𝐢𝐢 𝑥𝑥 ≤ 0 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 0 

𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝑥𝑥 ≔ 𝑥𝑥 − 1;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 1
Specification:

𝑋𝑋 =𝜈𝜈 𝑥𝑥 ≥ 0 ∧ ⋄ 𝑋𝑋

𝜇𝜇CLP: 𝑋𝑋 0 0  where
𝑋𝑋 0 𝑥𝑥 =𝜈𝜈 𝑥𝑥 ≥ 0 ∧ ∃𝑟𝑟. 𝑋𝑋 1 𝑟𝑟

𝑋𝑋 1 𝑥𝑥 =𝜈𝜈
𝑥𝑥 = 0 ∧ 𝑋𝑋 0 𝑥𝑥 ∨

𝑥𝑥 > 0 ∧  𝑋𝑋 1 𝑥𝑥 − 1



Outline

• Reduction from imperative programs to fixed-point logics
(Mu-Arithmetic [CSL 1999] and 𝜇𝜇CLP [POPL 2023])

• Safety verification
• Termination verification
• Non-termination verification
• Modal 𝜇𝜇-calculus model checking [SAS 2019]

• Reduction from higher-order probabilistic programs to
a higher-order and quantitative fixed-point logic

• Upper bounds verification of weakest pre-expectation [ICFP 2024]
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[CSL 1999] Bradfield. Fixpoint Alternation and the Game Quantifier.
[SAS 2019] Kobayashi et al. Temporal Verification of Programs via First-Order Fixpoint Logic.
[POPL 2023] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.
[ICFP 2024] Kura and Unno. Automated Verification of Higher-Order Probabilistic Programs via a Dependent Refinement Type System.



Running Example
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Program: random walk

let rec rw x = if x ≥ 0 
then y ← uniform[0,1];

(rw ( x + 3 ·y − 2))✓

else ( )

0 x

0
x − 2  x + 1

Specification: “(the expected cost of rw 1) ≤ 6”

where (the expected cost) = (the expected number of ✓).



Expected Cost Analysis via CPS Transformation
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functional 
(probabilistic) program

HFL formula

CPS

rw : real → unit

let rec rw x = if x ≥ 0
then y ← uniform[0,1]; (rw ( x + 3 ·y − 2))✓

else ()

rw ′ : real → (unit → [0, ∞]) → [0, ∞] 

let fix rw ′ x k = if x ≥ 0

then unif(λy.1 + rw ′ ( x + 3 ·y − 2) k) 

else k ()

(expected cost of rw x) = rw ′ x (λr.0) [Avanzini et al., ICFP’21]

CPS = Continuation-Passing Style, HFL = (generalized) Higher-order Fixed-point Logic



Generic Weakest Precondition via CPS (1/2)
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• Expected cost

• (Weakest pre-expectation)

[Avanzini et al., ICFP’21]

[Kura, 2023]
[Aguirre et al., 2022]

Generic weakest preconditions

• Expected cost

• Higher moments of cost

• Weakest pre-expectation
• Conditional weakest 

pre-expectation

• . . .

generalize



Generic Weakest Precondition via CPS (2/2)

• There are general category-theoretic frameworks for WPs
• CPS ∼=  WP holds for various kinds of effectful programs.

Input            continuation
cps[M ] : X  →  (Y →  A n s )  →  Ans

M  : X  →  Y
wp[M ] : (Y →  P r op )  →  ( X  →  Prop)

Postcondition             weakest precondition

Our verification framework supports generic WPs.
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∼=



Course Schedule

• Wed. 21 May (8:50-10:30)
1. Reduction from software verification to fixed-point logic validity checking
2. Predicate constraint solving for validity checking

• Thu. 22 May (11:20-12:20)
3. Cyclic-proof search for validity checking
4. Game solving for validity checking
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2. Predicate Constraint Solving
for Validity Checking
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Overview of Our 𝜇𝜇CLP-based Framework [POPL 2023mod] 

4321 May 2025  EPIT, Aussois, France

Constrained 
Horn Clauses 

(CHCs)

Constraint 
Logic Program 

(CLP)

𝝁𝝁CLP pfwCSP

Reduce

Reduce

Extend
𝜇𝜇+𝜈𝜈+∀+∃

Extend 
∨+WF+𝜆𝜆

(Non)Termination/
LTL/CTL/modal-𝜇𝜇  calc. 
Verification Problems

Modularly 
Encode

Safety Verification 
Problems Encode

[AAAI 2020, CAV 2021rel]This Work

Theorem Proving Constraint Satisfaction

[CAV 2017]

𝚷𝚷𝟏𝟏
𝟎𝟎-complete 𝚷𝚷𝟏𝟏

𝟎𝟎-complete

𝚺𝚺𝟐𝟐
𝟏𝟏-complete𝚫𝚫𝟐𝟐

𝟏𝟏-complete



Overview of Our HFL-based Framework [ICFP 2024] 
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functional 
(probabilistic) program

HFL formula + specification
as refinement type

CHC[adm, ∫] constraint

SAT or UNSAT

CPS

constraint solving

A uniform framework for

• expected cost

• cost moment

• weakest pre-expectation

• conditional weakest 
pre-expectation

• (other WP-based verification)

CPS = Continuation-Passing Style, HFL = (generalized) Higher-order Fixed-point Logic



Outline

• Classes of predicate constraint solving problems
• Reduction from validity checking for Mu-Arithmetic and 𝜇𝜇CLP [POPL 2023mod]

• Reduction from validity checking for the quantitative variant of HFL [ICFP 2024]

• CounterExample Guided Inductive Synthesis (CEGIS)
for predicate constraint solving [AAAI 2020, CAV 2021rel, CAV 2021dt, ICFP 2024]
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[POPL 2023mod] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.
[ICFP 2024] Kura and Unno. Automated Verification of Higher-Order Probabilistic Programs via a Dependent Refinement Type System.
[AAAI 2020] Satake et al. Probabilistic Inference for Predicate Constraint Satisfaction.
[CAV 2021rel] Unno et al. Constraint-based Relational Verification.
[CAV 2021dt] Kura et al. Decision Tree Learning in CEGIS-Based Termination Analysis.
[POPL 2023opt] Gu et al. Optimal CHC Solving via Termination Proofs.



Outline

• Classes of predicate constraint solving problems
• Reduction from validity checking for Mu-Arithmetic and 𝜇𝜇CLP [POPL 2023mod]

• Reduction from validity checking for the quantitative variant of HFL [ICFP 2024]

• CounterExample Guided Inductive Synthesis (CEGIS) 
for predicate constraint solving [AAAI 2020, CAV 2021rel, CAV 2021dt, ICFP 2024]
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[POPL 2023mod] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.
[ICFP 2024] Kura and Unno. Automated Verification of Higher-Order Probabilistic Programs via a Dependent Refinement Type System.
[AAAI 2020] Satake et al. Probabilistic Inference for Predicate Constraint Satisfaction.
[CAV 2021rel] Unno et al. Constraint-based Relational Verification.
[CAV 2021dt] Kura et al. Decision Tree Learning in CEGIS-Based Termination Analysis.
[POPL 2023opt] Gu et al. Optimal CHC Solving via Termination Proofs.



Constraint-based Verification with
Constrained Horn Clauses (CHCs)

4721 May 2025  EPIT, Aussois, France

Target Program 𝓟𝓟 & Specification 𝝍𝝍
Constraint 
Generation

𝓒𝓒 is Sat (𝓟𝓟 satisfies 𝝍𝝍),
𝓒𝓒 is Unsat (𝓟𝓟 violates 𝝍𝝍),

or Unknown

Constraint 
Solving

CHCs Constraints 𝓒𝓒 on Predicate Variables

Verification intermediary 
independent of particular 
target and method 

RustHorn [Matsushita+’20,…]
JayHorn [Kahsai+’16,…]
SeaHorn [Gurfinkel+’15,…]
RCaml [PPDP09,…]

SPACER [Komuravelli+ ’14,…] 
Eldarica [Hojjat+ ’18,…]
Hoice [Champion+ ’18,…]
PCSat [AAAI20,CAV21,…]



CHCs: Constrained Horn Clauses (see e.g., [Bjørner+ ’15] )
• A finite set 𝓒𝓒 of Horn-clauses of either form:

where 𝑋𝑋0, 𝑋𝑋1 … , 𝑋𝑋𝑚𝑚 are predicate variables,
𝑡𝑡0, … , 𝑡𝑡𝑚𝑚 are sequences of terms of a first-order theory 𝑇𝑇,

    𝜙𝜙 is a formula of 𝑇𝑇 without predicate variables.
• 𝓒𝓒 is satisfiable (modulo 𝑇𝑇) if there is an interpretation 𝜌𝜌 of predicate variables such 

that 𝜌𝜌 ⊨ ⋀𝓒𝓒
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𝑋𝑋0 𝑡𝑡0 ⟸ 𝑋𝑋1 𝑡𝑡1 ∧ ⋯ ∧ 𝑋𝑋𝑚𝑚 𝑡𝑡𝑚𝑚 ∧ 𝜙𝜙
⊥ ⟸ 𝑋𝑋1 𝑡𝑡1 ∧ ⋯ ∧ 𝑋𝑋𝑚𝑚 𝑡𝑡𝑚𝑚 ∧ 𝜙𝜙or



𝑥𝑥 = 𝑥𝑥0
𝑦𝑦 = 0;
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝑦𝑦 ← 𝑦𝑦 + 1;
 𝑥𝑥 ← 𝑥𝑥 − 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
𝑦𝑦 = 𝑥𝑥0
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If the initial state satisfies
the pre-condition 𝑥𝑥 = 𝑥𝑥0
and the loop terminates

the post-condition 𝑦𝑦 = 𝑥𝑥0 is 
satisfied by the resulting state

Prog. & Spec. CHCs SAT or UNSAT

Constraint Generation Constraint Solving

Example Program and Partial Correctness Specification:

Pre-
condition

Post-
condition



Input:
𝑥𝑥 = 𝑥𝑥0

𝑦𝑦 = 0;
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝑦𝑦 ← 𝑦𝑦 + 1;
 𝑥𝑥 ← 𝑥𝑥 − 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
𝑦𝑦 = 𝑥𝑥0
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Output 𝓒𝓒:

① 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ⟸ 𝑥𝑥 = 𝑥𝑥0 ∧ 𝑦𝑦 = 0 ,
② 𝑆𝑆 𝑥𝑥0, 𝑥𝑥 − 1, 𝑦𝑦 + 1

⟸ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ∧ 𝑥𝑥 ≠ 0,
③  𝑦𝑦 = 𝑥𝑥0 ⟸ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ∧ 𝑥𝑥 = 0

Prog. & Spec. CHCs SAT or UNSAT

Constraint Generation Constraint Solving

represents a loop invariant

𝓒𝓒 is satisfiable, witnessed by a 
solution 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ≡ 𝑥𝑥0 = 𝑥𝑥 + 𝑦𝑦



Input:
𝑥𝑥 = 𝑥𝑥0

𝑦𝑦 = 0;
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝑦𝑦 ← 𝑦𝑦 + 1;
 𝑥𝑥 ← 𝑥𝑥 − 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
𝑦𝑦 = 𝑥𝑥0
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Output 𝓒𝓒:

① 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ⟸ 𝑥𝑥 = 𝑥𝑥0 ∧ 𝑦𝑦 = 0 ,
② 𝑆𝑆 𝑥𝑥0, 𝑥𝑥 − 1, 𝑦𝑦 + 1

⟸ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ∧ 𝑥𝑥 ≠ 0,
③  𝑦𝑦 = 𝑥𝑥0 ⟸ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ∧ 𝑥𝑥 = 0

Prog. & Spec. CHCs SAT or UNSAT

Constraint Generation Constraint Solving

represents a loop invariant

𝓒𝓒 is satisfiable, witnessed by a 
solution 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ≡ 𝑥𝑥0 = 𝑥𝑥 + 𝑦𝑦

∀𝑥𝑥0, 𝑥𝑥, 𝑦𝑦. 𝑥𝑥 = 𝑥𝑥0 ∧ 𝑦𝑦 = 0 ⇒ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦  where
𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 =𝜈𝜈 𝑥𝑥 = 0 ⇒ 𝑦𝑦 = 𝑥𝑥0 ∧ 𝑥𝑥 ≠ 0 ⇒ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥 − 1, 𝑦𝑦 + 1



Limitations of the class of CHCs

• Basically limited to verification of ∀linear-time safety properties
• Safety vs. liveness properties

• Safety is a class of properties of the form “something bad will never happen”
• Examples (absence of): assertion failure, division-by-zero, array boundary violation, …

• Liveness is a class of properties of the form “something good will eventually happen”
• Examples: termination, deadlock freedom, …

• Linear-time vs. branching-time properties
• The target program 𝑷𝑷 may exhibit non-determinism caused by user input, scheduling, …
• Linear-time verification concerns properties of the set of execution traces of 𝑷𝑷

• ∀Linear-time: any execution of 𝑷𝑷 satisfies the specification? 
• ∃Linear-time: some execution of 𝑷𝑷 satisfies the specification?

• Branching-time verification concerns properties of the computation tree of 𝑷𝑷
• Allows arbitrary alternation of ∀ and ∃ and subsumes both ∀ and ∃ linear-time verification
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pCSP: Predicate Constraint Satisfaction Problem [AAAI 2020]

• Generalize the class of CHCs with non-Horn clauses 
• A finite set 𝓒𝓒 of clauses of the form:

  where 𝑋𝑋1, … , 𝑋𝑋ℓ, 𝑋𝑋ℓ+1, … , 𝑋𝑋𝑚𝑚 are predicate variables,
𝑡𝑡1, … , 𝑡𝑡𝑚𝑚 are sequences of terms of a first-order theory 𝑇𝑇,

 𝜙𝜙 is a formula of 𝑇𝑇 without predicate variables
• 𝓒𝓒 is satisfiable (modulo 𝑇𝑇) if there is an interpretation 𝜌𝜌 of predicate variables

such that 𝜌𝜌 ⊨ ⋀𝓒𝓒

• Applicable to (finitely-) branching-time safety verification 
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𝓒𝓒 is CHCs if ℓ ≤ 1 for all clause in 𝓒𝓒

𝑋𝑋1 𝑡𝑡1 ∨ ⋯ ∨ 𝑋𝑋ℓ 𝑡𝑡ℓ ⟸ 𝑋𝑋ℓ+1 𝑡𝑡ℓ+1 ∧ ⋯ ∧ 𝑋𝑋𝑚𝑚 𝑡𝑡𝑚𝑚 ∧ 𝜙𝜙



𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝐢𝐢𝐢𝐢 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛  ∃ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
 𝑥𝑥 ← 𝑥𝑥 − 1
 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
 𝑥𝑥 ← 𝑥𝑥 + 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥
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If the initial state satisfies 
the pre-condition 𝑥𝑥 > 0

there is an execution of 
the program such that

the post-condition ⊥ is 
satisfied when the while 

loop terminates 

Prog. & Spec. pCSP SAT or UNSAT

Constraint Generation Constraint Solving

Example Program and Specification:

Non-det. 
branching

Contradiction

Pre-
condition

Post-
condition
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𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝐢𝐢𝐢𝐢 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛  ∃ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
 𝑥𝑥 ← 𝑥𝑥 − 1
 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
 𝑥𝑥 ← 𝑥𝑥 + 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥
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If the initial state satisfies 
the pre-condition 𝑥𝑥 > 0

there is an execution of 
the program such that

the while loop
never terminates 

Prog. & Spec. pCSP SAT or UNSAT

Constraint Generation Constraint Solving

Example Program and Specification:

Non-det. 
branching

Contradiction

Pre-
condition

Post-
condition
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Input:
𝑥𝑥 > 0

𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝐢𝐢𝐢𝐢 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛  ∃ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
 𝑥𝑥 ← 𝑥𝑥 − 1
 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
 𝑥𝑥 ← 𝑥𝑥 + 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥
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Output 𝓒𝓒:

① 𝑆𝑆 𝑥𝑥 ⟸ 𝑥𝑥 > 0,
② 𝑆𝑆 𝑥𝑥 − 1 ∨ 𝑆𝑆 𝑥𝑥 + 1

        ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0,
③  ⊥ ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 = 0

Prog. & Spec. pCSP SAT or UNSAT

Constraint Generation Constraint Solving
represents a loop invariant

preserved by some execution 
(i.e., recurrent set)

𝓒𝓒 is beyond 
CHCs!

𝓒𝓒 is satisfiable, witnessed by 
a solution 𝑆𝑆 𝑥𝑥 ≡ 𝑥𝑥 > 0 56



Input:
𝑥𝑥 > 0

𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝐢𝐢𝐢𝐢 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛  ∃ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
 𝑥𝑥 ← 𝑥𝑥 − 1
 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
 𝑥𝑥 ← 𝑥𝑥 + 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥
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Output 𝓒𝓒:

① 𝑆𝑆 𝑥𝑥 ⟸ 𝑥𝑥 > 0,
② 𝑆𝑆 𝑥𝑥 − 1 ∨ 𝑆𝑆 𝑥𝑥 + 1

        ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0,
③  ⊥ ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 = 0

Prog. & Spec. pCSP SAT or UNSAT

Constraint Generation Constraint Solving
represents a loop invariant

preserved by some execution 
(i.e., recurrent set)

𝓒𝓒 is beyond 
CHCs!

𝓒𝓒 is satisfiable, witnessed by 
a solution 𝑆𝑆 𝑥𝑥 ≡ 𝑥𝑥 > 0 57

∀𝑥𝑥. 𝑥𝑥 > 0 ⇒ 𝑆𝑆 𝑥𝑥  where
𝑆𝑆 𝑥𝑥 =𝜈𝜈 𝑥𝑥 = 0 ⇒ ⊥ ∧ 𝑥𝑥 ≠ 0 ⇒ 𝑆𝑆 𝑥𝑥 − 1 ∨ 𝑆𝑆 𝑥𝑥 + 1



pfwCSP: pCSP with Functional and Well-founded 
Predicates [CAV 2021rel] (cf. ∀∃CHCs with dwf [Beyene+’13])

• A finite set 𝓒𝓒 of clauses with a map 𝓚𝓚 from predicate variables 𝑋𝑋 in 𝓒𝓒 to ⋆, 𝜆𝜆, ⇓
• 𝑋𝑋 is ordinary predicate if 𝓚𝓚 𝑋𝑋 = ⋆
• 𝑋𝑋 is functional predicate if 𝓚𝓚 𝑋𝑋 = 𝜆𝜆
• 𝑋𝑋 is well-founded predicate if 𝓚𝓚 𝑋𝑋 = ⇓

• 𝓒𝓒 is satisfiable (modulo 𝑇𝑇) if there is a predicate interpretation 𝜌𝜌 such that
• 𝜌𝜌 ⊨ ⋀𝓒𝓒
• ∀𝑋𝑋. 𝓚𝓚 𝑋𝑋 = 𝜆𝜆 ⟹  𝜌𝜌 𝑋𝑋  characterizes a total function
• ∀𝑋𝑋. 𝓚𝓚 𝑋𝑋 = ⇓ ⟹  𝜌𝜌 𝑋𝑋  represents a well-founded relation

• Applicable to (infinitely-) branching-time safety & liveness verification 
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𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 > 0 𝐝𝐝𝐝𝐝
 𝑥𝑥 ← 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐢𝐢𝐢𝐢𝐢𝐢  ∃ − 𝑥𝑥
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥
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If the initial state satisfies 
the pre-condition 𝑥𝑥 > 0

there is an execution of 
the program such that

the while loop
never terminates 

Prog. & Spec. pfwCSP SAT or UNSAT

Constraint Generation Constraint Solving

Example Program and Specification:

Non-det. 
integer

Contradiction

Pre-
condition

Post-
condition

59



Input:

𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 > 0 𝐝𝐝𝐝𝐝
 𝑥𝑥 ← 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐢𝐢𝐢𝐢𝐢𝐢  ∃ − 𝑥𝑥
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥
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Output 𝓒𝓒:

① 𝑆𝑆 𝑥𝑥 ⟸ 𝑥𝑥 > 0,

② ∃𝑟𝑟. 𝑆𝑆 𝑟𝑟 − 𝑥𝑥

        ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 > 0,
③  ⊥ ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 ≤ 0

Prog. & Spec. pfwCSP SAT or UNSAT

Constraint Generation Constraint Solving
represents a loop invariant

preserved by some execution 
(i.e., recurrent set)

𝓒𝓒 is beyond pCSP but can 
be encoded in pfwCSP 

using a functional pred. 
var. that characterizes

a Skolem function for 𝒓𝒓
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Input:

𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 > 0 𝐝𝐝𝐝𝐝
 𝑥𝑥 ← 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐢𝐢𝐢𝐢𝐢𝐢  ∃ − 𝑥𝑥
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥
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Output 𝓒𝓒:

① 𝑆𝑆 𝑥𝑥 ⟸ 𝑥𝑥 > 0,
② 𝑆𝑆 𝑟𝑟 − 𝑥𝑥 ⟸ 𝑇𝑇𝜆𝜆 𝑥𝑥, 𝑟𝑟

∧ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 > 0,
③  ⊥ ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 ≤ 0

Prog. & Spec. pfwCSP SAT or UNSAT

Constraint Generation Constraint Solving

characterizes a Skolem 
function mapping 𝑥𝑥 to 𝑟𝑟
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𝓒𝓒 is satisfiable, witnessed by a solution 
𝑆𝑆 𝑥𝑥 ≡ 𝑥𝑥 > 0, 𝑇𝑇𝜆𝜆 𝑥𝑥, 𝑟𝑟 ≡ 𝑟𝑟 = 𝑥𝑥 + 1



Input:

𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 > 0 𝐝𝐝𝐝𝐝
 𝑥𝑥 ← 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐢𝐢𝐢𝐢𝐢𝐢  ∃ − 𝑥𝑥
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥
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Output 𝓒𝓒:

① 𝑆𝑆 𝑥𝑥 ⟸ 𝑥𝑥 > 0,

② ∃𝑟𝑟. 𝑆𝑆 𝑟𝑟 − 𝑥𝑥

        ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 > 0,
③  ⊥ ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 ≤ 0

Prog. & Spec. pfwCSP SAT or UNSAT

Constraint Generation Constraint Solving
represents a loop invariant

preserved by some execution 
(i.e., recurrent set)
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∀𝑥𝑥. 𝑥𝑥 > 0 ⇒ 𝑆𝑆 𝑥𝑥  where
𝑆𝑆 𝑥𝑥 =𝜈𝜈 𝑥𝑥 ≤ 0 ⇒ ⊥ ∧ 𝑥𝑥 > 0 ⇒ ∃𝑟𝑟. 𝑆𝑆 𝑟𝑟 − 𝑥𝑥



𝑥𝑥 ≠ 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝐢𝐢𝐢𝐢 𝑥𝑥 > 0 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
 𝑥𝑥 ← 𝑥𝑥 − 1
 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
 𝑥𝑥 ← 𝑥𝑥 + 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊤
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If the initial state satisfies 
the pre-condition 𝑥𝑥 ≠ 0

the loop always terminates
and the post-condition ⊤ is 

satisfied by the resulting state

Prog. & Spec. pfwCSP SAT or UNSAT

Constraint Generation Constraint Solving

Example Program and Total Correctness Specification:

Pre-
condition

Post-
condition

63

Tautology



Input:

𝑥𝑥 ≠ 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝐢𝐢𝐢𝐢 𝑥𝑥 > 0 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
 𝑥𝑥 ← 𝑥𝑥 − 1
 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
 𝑥𝑥 ← 𝑥𝑥 + 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊤
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Output 𝓒𝓒:

① 𝑆𝑆 𝑥𝑥 ⟸ 𝑥𝑥 ≠ 0,
② 𝑆𝑆 𝑥𝑥 − 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 > 0,
③ 𝑆𝑆 𝑥𝑥 + 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 < 0,
④  𝑇𝑇⇓ 𝑥𝑥, 𝑥𝑥 − 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 > 0,
⑤  𝑇𝑇⇓ 𝑥𝑥, 𝑥𝑥 + 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 < 0,

Prog. & Spec. pfwCSP SAT or UNSAT

Constraint Generation Constraint Solving

represents a loop invariant
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represents a well-
founded relation for  

termination of the loop
𝓒𝓒 is satisfiable, witnessed by a solution 
𝑆𝑆 𝑥𝑥 ≡ ⊤, 𝑇𝑇⇓ 𝑥𝑥, 𝑥𝑥′ ≡ 𝑥𝑥 > 𝑥𝑥′ ≥ 0 



Input:

𝑥𝑥 ≠ 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝
 𝐢𝐢𝐢𝐢 𝑥𝑥 > 0 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
 𝑥𝑥 ← 𝑥𝑥 − 1
 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
 𝑥𝑥 ← 𝑥𝑥 + 1
𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊤
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Output 𝓒𝓒:

① 𝑆𝑆 𝑥𝑥 ⟸ 𝑥𝑥 ≠ 0,
② 𝑆𝑆 𝑥𝑥 − 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 > 0,
③ 𝑆𝑆 𝑥𝑥 + 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 < 0,
④  𝑇𝑇⇓ 𝑥𝑥, 𝑥𝑥 − 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 > 0,
⑤  𝑇𝑇⇓ 𝑥𝑥, 𝑥𝑥 + 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 < 0,

Prog. & Spec. pfwCSP SAT or UNSAT

Constraint Generation Constraint Solving

represents a loop invariant
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represents a well-
founded relation for  

termination of the loop
𝓒𝓒 is satisfiable, witnessed by a solution 
𝑆𝑆 𝑥𝑥 ≡ ⊤, 𝑇𝑇⇓ 𝑥𝑥, 𝑥𝑥𝑥 ≡ 𝑥𝑥 > 𝑥𝑥′ ≥ 0 

∀𝑥𝑥. 𝑥𝑥 ≠ 0 ⇒ 𝑆𝑆 𝑥𝑥  where
𝑆𝑆 𝑥𝑥 =𝜇𝜇 𝑥𝑥 > 0 ⇒ 𝑆𝑆 𝑥𝑥 − 1 ∧ 𝑥𝑥 < 0 ⇒ 𝑆𝑆 𝑥𝑥 + 1



CHC[adm, ∫]: An Extension of CHCs for 
Generalized HFL 

To support generalized HFL, we need to extend CHC
let fix rw ′  x  k =  if x  ≥  0 ←  fixed point fix 

then unif(λy.1 +  rw ′  ( x  +  3 · y −  2)  k)  ←  integration unif 
else k ( )

The extension CHC[adm, ∫] has

• admissible predicate variables for fixed points,

• integrable predicate variables for integration operators
(These are explained later.)
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Summary
• pfwCSP: an extension of CHCs with non-Horn clauses and functional, 

well-founded predicate variables, with wide applications to:
• Validity checking for Mu-Arithmetic, 𝝁𝝁CLP, HFL [CAV 2021dt, POPL 2023mod, ICFP 2024]

• Dependent refinement type inference [PPDP 2009, …, POPL 2024, ICFP 2024, PLDI 2025]

• Relational program verification [CAV 2021rel, VMCAI 2024]

• Program equivalence, NI, co-termination, generalized NI, …
• Optimality checking for solutions of CHCs [POPL 2023opt]

• CHC[adm, ∫]: an extension of CHCs for generalized HFL
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[CAV 2021dt] Kura et al. Decision Tree Learning in CEGIS-Based Termination Analysis.
[POPL 2023mod] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.
[ICFP 2024] Kura and Unno. Automated Verification of Higher-Order Probabilistic Programs via a Dependent Refinement Type System.
[PLDI 2025] Ogawa et al. Thrust: A Prophecy-based Refinement Type System for Rust.
[PPDP 2009] Unno and Kobayashi. Dependent Type Inference with Interpolants.
[POPL 2024] Kawamata et al. Answer Refinement Modification: Refinement Type System for Algebraic Effects and Handlers.
[CAV 2021rel] Unno et al. Constraint-based Relational Verification.
[VMCAI 2024] Unno. Automating Relational Program Verification.
[POPL 2023opt] Gu et al. Optimal CHC Solving via Termination Proofs.



Outline

• Classes of predicate constraint solving problems
• Reduction from validity checking for Mu-Arithmetic and 𝝁𝝁CLP [POPL 2023mod]

• Reduction from validity checking for the quantitative variant of HFL [ICFP 2024]

• CounterExample Guided Inductive Synthesis (CEGIS) 
for predicate constraint solving [AAAI 2020, CAV 2021rel, CAV 2021dt, ICFP 2024]
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[POPL 2023mod] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.
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Example 1: Reduction of 𝝁𝝁CLP Validity to 
pfwCSP Satisfiability
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① 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ⟸ 𝑥𝑥 = 𝑥𝑥0 ∧ 𝑦𝑦 = 0,
② 𝑆𝑆 𝑥𝑥0, 𝑥𝑥 − 1, 𝑦𝑦 + 1 ⟸ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ∧ 𝑥𝑥 ≠ 0,
③  𝑦𝑦 = 𝑥𝑥0 ⟸ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 ∧ 𝑥𝑥 = 0

∀𝑥𝑥0, 𝑥𝑥, 𝑦𝑦. 𝑥𝑥 = 𝑥𝑥0 ∧ 𝑦𝑦 = 0 ⇒ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦  where
𝑆𝑆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 =𝜈𝜈 𝑥𝑥 = 0 ⇒ 𝑦𝑦 = 𝑥𝑥0 ∧ 𝑥𝑥 ≠ 0 ⇒ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥 − 1, 𝑦𝑦 + 1

Knaster-Tarski:
⊨ 𝑆𝑆 ⇒ 𝐹𝐹 𝑆𝑆

⊨ 𝑆𝑆 ⇒ 𝜈𝜈𝜈𝜈
𝐹𝐹 ≜ 𝜆𝜆𝑆𝑆. 𝜆𝜆 𝑥𝑥0, 𝑥𝑥, 𝑦𝑦 .

𝑥𝑥 = 0 ⇒ 𝑦𝑦 = 𝑥𝑥0 ∧
𝑥𝑥 ≠ 0 ⇒ 𝑆𝑆 𝑥𝑥0, 𝑥𝑥 − 1, 𝑦𝑦 + 1



Example 2: Reduction of 𝝁𝝁CLP Validity to 
pfwCSP Satisfiability
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Knaster-Tarski:

⊨ 𝐹𝐹 𝑆𝑆 ⇒ 𝑆𝑆
⊨ 𝜇𝜇𝜇𝜇 ⇒ 𝑆𝑆

𝐹𝐹 ≜ 𝜆𝜆𝑆𝑆. 𝜆𝜆𝜆𝜆.
𝑥𝑥 > 0 ⇒ 𝑆𝑆 𝑥𝑥 − 1 ∧

𝑥𝑥 < 0 ⇒ 𝑆𝑆 𝑥𝑥 + 1

① 𝑆𝑆 𝑥𝑥 ⟸ 𝑥𝑥 ≠ 0,
② 𝑆𝑆 𝑥𝑥 − 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 > 0,
③ 𝑆𝑆 𝑥𝑥 + 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 < 0,
④  𝑇𝑇⇓ 𝑥𝑥, 𝑥𝑥 − 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 > 0,
⑤  𝑇𝑇⇓ 𝑥𝑥, 𝑥𝑥 + 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 < 0

∀𝑥𝑥. 𝑥𝑥 ≠ 0 ⇒ 𝑆𝑆 𝑥𝑥  where
𝑆𝑆 𝑥𝑥 =𝜇𝜇 𝑥𝑥 > 0 ⇒ 𝑆𝑆 𝑥𝑥 − 1 ∧ 𝑥𝑥 < 0 ⇒ 𝑆𝑆 𝑥𝑥 + 1



Example 2: Reduction of 𝝁𝝁CLP Validity to 
pfwCSP Satisfiability
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Knaster-Tarski:
⊨ 𝑆𝑆 ⇒ 𝐺𝐺 𝑆𝑆

⊨ 𝑆𝑆 ⇒ 𝜈𝜈𝐺𝐺
①  𝑆𝑆 𝑥𝑥 ⟸ 𝑥𝑥 ≠ 0,
②  𝑆𝑆 𝑥𝑥 − 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 > 0,
③  𝑆𝑆 𝑥𝑥 + 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 < 0,
④  𝑇𝑇⇓ 𝑥𝑥, 𝑥𝑥 − 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 > 0,
⑤  𝑇𝑇⇓ 𝑥𝑥, 𝑥𝑥 + 1 ⟸ 𝑆𝑆 𝑥𝑥 ∧ 𝑥𝑥 < 0

∀𝑥𝑥. 𝑥𝑥 ≠ 0 ⇒ 𝑆𝑆 𝑥𝑥  where
𝑆𝑆 𝑥𝑥 =𝜇𝜇 𝑥𝑥 > 0 ⇒ 𝑆𝑆 𝑥𝑥 − 1 ∧ 𝑥𝑥 < 0 ⇒ 𝑆𝑆 𝑥𝑥 + 1

Use 𝐺𝐺 ≜ 𝜆𝜆𝑆𝑆. 𝜆𝜆𝑥𝑥.
𝑥𝑥 > 0 ⇒ 𝑇𝑇⇓ 𝑥𝑥, 𝑥𝑥 − 1 ∧ 𝑆𝑆 𝑥𝑥 − 1 ∧

𝑥𝑥 < 0 ⇒ 𝑇𝑇⇓ 𝑥𝑥, 𝑥𝑥 + 1 ∧ 𝑆𝑆 𝑥𝑥 + 1s.t. 𝜈𝜈𝐺𝐺 ⇔ 𝜇𝜇𝜇𝜇 ⇒ 𝜇𝜇𝜇𝜇



Sound and Complete Reduction of
𝝁𝝁CLP Validity to pfwCSP Satisfiability
1. Eliminate existential quantifiers via Skolemization using functional predicates
2. Replace inductive predicates 𝜇𝜇𝜇𝜇 with equivalent co-inductive predicates 𝜈𝜈𝜈𝜈 where 𝐺𝐺 

is obtained from 𝐹𝐹 by inserting guards (for checking the well-foundedness 
between the formal and actual arguments) for each recursion site
• E.g. Let 𝐹𝐹 𝑥𝑥 =𝜇𝜇 𝑥𝑥 = 0 ∨ 𝐹𝐹 𝑥𝑥 − 1  and 𝐺𝐺 𝑥𝑥 =𝜈𝜈 𝑥𝑥 = 0 ∨ 𝐺𝐺 𝑥𝑥 − 1 ∧ 𝑊𝑊𝑊𝑊 𝑥𝑥, 𝑥𝑥 − 1 . 

𝜈𝜈𝐺𝐺 ⇔ 𝜇𝜇𝜇𝜇 ⇒ 𝜇𝜇𝜇𝜇 for any w.f. rel. 𝑊𝑊𝑊𝑊 and 𝜇𝜇𝜇𝜇 ⇔ 𝜇𝜇𝜇𝜇 for some w.f. rel. 𝑊𝑊𝑊𝑊
• Inspired by the deductive system [LICS 2018] for a first-order fixed-point logic and 

binary reachability analysis for reducing termination verification to safety 
verification using (disjunctively) well-founded relations [PLDI 2006, …]

3. Replace each co-inductive predicate 𝑋𝑋 with a predicate variable 𝑋𝑋 that represents 
an unknown under-approximation (or postfixpoint) of 𝑋𝑋 to be synthesized
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[LICS 2018] Nanjo et al. A Fixpoint Logic and Dependent Effects for Temporal Property Verification.
[PLDI 2006] Cook et al. Termination Proofs for Systems Code.
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Reduce

𝜇𝜇CLP encoding the termination verification problem

The corresponding pfwCSP
Predicate variable that represents 

an under-approximation of 𝐼𝐼

Well-founded predicate variable that 
represents the guard for the recursion on  𝐼𝐼
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Reduce

𝜇𝜇CLP encoding the non-termination verification problem

The corresponding pfwCSP
Functional predicate variable that represents 

the Skolem function for ∃𝑥𝑥1 Functional predicate variable that 
represents the Skolem function for ∃𝑥𝑥2′



MuVal: A 𝝁𝝁CLP Validity Checking Method
• The reduction to pfwCSP coupled with PCSat [AAAI 2020, CAV 2021rel], an existing CEGIS-

based pfwCSP solver, already gives a method for checking 𝝁𝝁CLP validity
• We further improve the method to Modular Primal-Dual Parallel Solving

• The primal and dual pfwCSP problems are constructed and solved in parallel
• PCSat is extended to synthesize lower-bounds for (co-)inductive predicates that 

can be used as upper-bounds of the corresponding dual predicates
• Exchange each others’ bounds to reduce each others’ solution spaces
Note that the bounds are synthesized and exchanged modularly,
at granularity of individual (co-)inductive predicates
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Overall Flow
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Input 𝝁𝝁CLP validity problem instance
𝝓𝝓, 𝑷𝑷

Dualize

Primal Solver

PCSAT [U.+ ‘20,’21]

Cand. Sol.

SAT

Valid

UNSAT

¬ 𝝓𝝓, 𝑷𝑷

Dual Solver

PCSAT [U.+ ‘20,’21]

Cand. Sol.

SAT UNSAT

UBUB

Invalid

ToPfwCSP ToPfwCSP

𝑪𝑪𝒑𝒑, 𝒌𝒌𝒑𝒑 𝑪𝑪𝒅𝒅, 𝒌𝒌𝒅𝒅

LOWERBOUNDSCHECKLOWERBOUNDSCHECK 



𝑁𝑁𝑁𝑁

Intuition behind Exchanging Upper Bounds
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𝑃𝑃

𝜈𝜈𝜈𝜈𝜈𝜈
𝜈𝜈𝜈𝜈𝜈𝜈 ⇔ ¬ 𝜇𝜇𝜇𝜇

𝑃𝑃, 𝑁𝑁𝑁𝑁 represent lower bounds 
synthesized by PCSat: 
𝑃𝑃 ⇒ 𝜇𝜇𝑃𝑃 and 𝑁𝑁𝑁𝑁 ⇒ 𝜈𝜈𝜈𝜈𝜈𝜈

Therefore,
𝜇𝜇𝜇𝜇 ⇒ ¬ 𝑁𝑁𝑁𝑁

and
𝜈𝜈𝜈𝜈𝜈𝜈 ⇒ ¬ 𝑃𝑃

𝜇𝜇𝜇𝜇
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The primal pfwCSP

The primal solver found a candidate 
solution 𝐽𝐽 𝑥𝑥2 ↦ 𝑥𝑥2 = 3, 𝐽𝐽⇓ ↦ ⋯ , which 
is a partial solution for 𝐽𝐽 since it satisfies 
clause (3). We thus learned:

𝑥𝑥2 = 3 ⇒ 𝐽𝐽 𝑥𝑥2  and 𝑁𝑁𝐽𝐽 𝑥𝑥2 ⇒ 𝑥𝑥2 ≠ 3
Send 𝑁𝑁𝑁𝑁 𝑥𝑥2 ⇒ 𝑥𝑥2 ≠ 3 to the dual solver!

The dual solver then uses that 
information to learn 𝐽𝐽 𝑥𝑥2 ⇒ 𝑥𝑥2 ≤ 3.
Send 𝐽𝐽 𝑥𝑥2 ⇒ 𝑥𝑥2 ≤ 3 to the primal solver.

The primal solver then uses it to obtain an 
actual solution, thus proving termination:



Implementation and Evaluation
• Implemented MuVal in OCaml 5, using Z3 as the backend SMT solver

• Support integers, reals, and algebraic data types as background theories
• Evaluated with

1. (Non-)termination verification benchmarks from TermComp ’21 (C Integer)
2. Temporal verification benchmarks

• LTL verification benchmarks from [Cook&Koskinen’13]
• CTL verification benchmarks from [Dietsch+’15]
• MuArith (= 𝜇𝜇CLP over integer arithmetic) benchmarks from [Kobayashi+’19]

• Contain CTL* and modal-𝜇𝜇 calculus model checking problems of infinite state systems
• Termination verification benchmarks from [Urban+’13,’14] modularly encoded as 𝜇𝜇CLP
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Evaluation with TermComp Benchmarks
• MuVal-parallel: MuVal with primal-dual 

parallel solving (but without exchange of 
learned upper-bounds)

• AProVE: The winner of the C Integer track in 
2018, 2020, and 2021

• iRankFinder [Ben-Amram&Genaim’14]
• UltimateAutomizer [Heizmann+’14]
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Evaluation with TermComp Benchmarks
• Mu2CHC: A MuArith validity checker based on a reduction to CHCs [Kobayashi+’19]
• MuVal-parallel-exc: MuVal-parallel + exchange of learned upper-bounds
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Evaluation with Temporal Verification Benchmarks
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The paper also presents 
a comparison with 
UltimateLTLAutomizer
[Dietsch+‘15]



Summary
• 𝛍𝛍CLP: A first-order fixpoint logic modulo background theories
• MuVal: A modular primal-dual method for checking 𝝁𝝁CLP validity

• Reduce 𝝁𝝁CLP validity to pfwCSP satisfiability
• Solve the primal pfwCSP and the dual pfwCSP in parallel

by exchanging each others’ bounds to reduce each others’ solution spaces
• Implementation and evaluation with a wide variety of temporal verification problems

• Obtained competitive results to the state-of-the-art tools:
AProVE and UltimateLTLAutomizer
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Outline

• Classes of predicate constraint solving problems
• Reduction from validity checking for Mu-Arithmetic and 𝜇𝜇CLP [POPL 2023mod]

• Reduction from validity checking for the quantitative variant of HFL [ICFP 2024]

• CounterExample Guided Inductive Synthesis (CEGIS) 
for predicate constraint solving [AAAI 2020, CAV 2021rel, CAV 2021dt, ICFP 2024]
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[POPL 2023mod] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.
[ICFP 2024] Kura and Unno. Automated Verification of Higher-Order Probabilistic Programs via a Dependent Refinement Type System.
[AAAI 2020] Satake et al. Probabilistic Inference for Predicate Constraint Satisfaction.
[CAV 2021rel] Unno et al. Constraint-based Relational Verification.
[CAV 2021dt] Kura et al. Decision Tree Learning in CEGIS-Based Termination Analysis.
[POPL 2023opt] Gu et al. Optimal CHC Solving via Termination Proofs.



Overview of Our HFL-based Framework [ICFP 2024] 

21 May 2025  EPIT, Aussois, France 85

functional 
(probabilistic) program

HFL formula + specification
as refinement type

CHC[adm, ∫] constraint

SAT or UNSAT

CPS

constraint solving

[Kura, 2023]
[Avanzini et al., ICFP’21]

Our contributions:
1. Refinement type 

system for HFL

2. Implementation 
of type checking 
and inference

CPS = Continuation-Passing Style, HFL = (generalized) Higher-order Fixed-point Logic



Specification
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functional 
(probabilistic) program

HFL formula
CPS

+ specification
as refinement type

CHC[adm, ∫] constraint

constraint solving

SAT or UNSAT



Expected Cost Analysis via CPS Transformation
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functional 
(probabilistic) program

HFL formula

CPS

rw : real → unit

let rec rw x = if x ≥ 0
then y ← uniform[0,1]; (rw ( x + 3 ·y − 2))✓

else ()

rw ′ : real → (unit → [0, ∞]) → [0, ∞] 

let fix rw ′ x k = if x ≥ 0

then unif(λy.1 + rw ′ ( x + 3 ·y − 2) k) 

else k ()

(expected cost of rw x) = rw ′ x (λr.0) [Avanzini et al., ICFP’21]



Specification
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HFL formula + specification
as refinement type

Specification: “(the expected cost of rw 1) ≤ 6.”

=

(rw ′ = CPSed rw)

=

“If x = 1 and k = λr.0, then rw ′ x k ≤ 6.”

Refinement Type:
rw ′ : { x : real | x = 1 } → (unit → { r : Prop | r = 0 } )

→ { r : Prop | r ≤ 6 }



Type Checking and Inference
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functional 
(probabilistic) program

HFL formula
CPS

+ specification
as refinement type

CHC[adm, ∫] constraint

constraint solving

SAT or UNSAT



Type Checking and Inference
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We extend the standard algorithm [Unno and Kobayashi, PPDP’09]

HFL formula + specification
as refinement type

CHC[adm, ∫] constraint

1. Infer simple types.

2. Generate templates for 
refinement types.

3. Generate CHC constraints 
using typing rules.



Step 1: Inferring Simple Types
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Example

(λx. x + 1) 42 : { y : int | y ≥ 0 }

Apply the Hindley–Milner type inference algorithm to obtain

sty : (subterms) → (simple types)

For example,

λx.x + 1 : int → int, 42 : int, . . .



Step 2: Generating Refinement Type Templates

Replace simple types with refinement type templates

For example,

λx .x  + 1  : (x  : { x  : int | P 1 ( x ) } )  →  { y  : int | P2(x,  y ) }

where P1  and P2  are fresh predicate variables
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Step 3: Generating CHC Constraints
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(λx. x + 1) 42 : { y : int | y ≥ 0 }

is well-typed if
⇒ P2(x, x + 1)
⇒ P1(x)
⇒ y ≥ 0

P1(x) 
x = 42 

P2(42, y)

is satisfiable.

pre-/post-condition of λx.x  + 1

argument of the function application 

return value of the function application

λx.x  + 1    :    (x  : { x : int | P 1 ( x ) } ) → { y : int | P2(x, y ) }



Refinement Type System for HFL: Theory

• A uniform framework applicable to
• effectful programs in general

e.g. probabilistic programs,
• specifications described by the generic weakest precondition

e.g. expected cost, cost moment, ...

• Soundness theorem using category theory [Kura, FoSSaCS’21].

• Key typing rules:

• Fixed points (≠ recursion)

• Integration operators
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Typing Rule for Fixed Points
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⊥∈ 𝐴𝐴 For any 𝜔𝜔-chain 𝑥𝑥0 ≤ 𝑥𝑥1 ≤ ⋯, ∀𝑖𝑖. 𝑥𝑥𝑖𝑖 ∈ 𝐴𝐴 ⇒ sup
𝑖𝑖

𝑥𝑥𝑖𝑖 ∈ 𝐴𝐴

We use the Scott induction
Admissibility is explicitly required because P r o p  is a non-flat domain

Γ̇ , f  : (x  : σ̇) → { v  : Prop | ϕ} ⊢ M  : (x  : σ̇) → { v  : Prop | ϕ}
ϕ is admissible w.r.t. v

Γ˙ ⊢ fix f . M  : (x  : σ̇) → { v  : Prop | ϕ}

Definition
A subset 𝐴𝐴 ⊆ 𝑋𝑋 of an ωcpo 𝑋𝑋 is admissible if



Fixed Points in HFL (1/3)

Program: coin flip

let rec coin x  =  if b e r n ( 1 / 2 )  then (coin ( ) )✓  else ( )

Expected cost (CPS):
let fix coin ′  x  k =  1 / 2 · ( 1 +c oi n ′  ( )  k + k  ( ) )  in coin ′  ( )  (λr .0)

Expected cost (simplified):
let fix coin′′   =  1 / 2 ·   (1  +  coin ′′ ) in coin′′

This is the lfp of F (c) : =  1 / 2 ·   (1  + c) w.r.t. ([0, ∞ ] ,  ≤)
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Fixed Points in HFL (2/3)
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The least fixed point is 1

0.5· (1 +

0.5· (1 +
0) = 0.5

0.5) = 0.75
0.5· (1 + 0.75) = 0.875

   ⋮
0.5· (1 + 1) = 1



Fixed Points in HFL (3/3)

We have

coin ′′   : 𝑟𝑟 ∶ Prop |  𝑟𝑟 < 1  ⊢ 1 / 2 ·  (1+ coin ′′ ) : 𝑟𝑟 ∶ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  |  𝑟𝑟 < 1

but we can reject

⊢ fix coin ′′ . 1 / 2 ·  (1+coin ′′ ) : 𝑟𝑟 ∶ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  |  𝑟𝑟 < 1

because 𝑟𝑟 < 1 is not admissible (not closed under sup)
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Typing Rule for Integration Operators

Our HFL has integration operators to reason about
continuous distributions (e.g. uniform distribution)

unif : (real →  P r o p )  →  P r o p  ( = 𝜆𝜆 𝜆𝜆 . ∫0
1 𝑓𝑓 𝑓𝑓  d 𝑥𝑥 )

The following rule can reason about upper bounds.

Γ˙ ⊢M  : ( x  : { x  : real | 0 ≤  x  ≤  1 } )  →  { v  : P r o p  | v ≤  N  x }
Γ˙ ⊢ u n i f ( M  )  : { v  : P r o p  | v ≤  u n i f ( N  ) }

N  should be simple so that we can easily compute u n i f ( N  )
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Refinement Type System for HFL: Implementation
We extend RCaml(type checking and inference) and PCSat¶

λ-calculus &
refinement type

RCaml CHC
constraint

PCSat SAT / 
UNSAT

generalized HFL
& refinement type

CHC[adm, ∫]
constraint

• fixed points
• integration

• admissible predicate variables
• integrable predicate variables

¶Available from https://github.com/hiroshi-unno/coar

https://github.com/hiroshi-unno/coar


Experimental Results
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Problem Benchmark Time (sec)
lics16_rec3 timeout

Weakest pre-expectation lics16_rec3_ghost 1.270
lics16_coins 3.110
random_walk 2.761
random_walk_unif 7.508
coin_flip 0.718

Expected cost analysis coin_flip_unif 0.884
icfp21_walk 3.532
icfp21_coupons timeout
lics16_fact 3.383

Cost moment analysis                                                                                       coin_flip_ord2 1.135

coin_flip_ord3 4.040
Conditional weakest pre-expectation                                                                                                toplas18_ex4.4 timeout

two_coin_conditioning 1.079



Invariant Synthesis
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Program:

let rec rw x = if x ≥ 0 

then y ← uniform[0,1];

(rw ( x + 3 ·y − 2))✓

else ()

Benchmark: random_walk_unif

RCaml inferred an invariant automatically:
rw ′ : { x : real | true} → (unit → { r : Prop | r = 0 } )

→ { r : Prop | r ≤ |2x + 4|}



Summary
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functional 
(probabilistic) program

HFL formula + specification
as refinement type

CHC[adm, ∫] constraint

SAT or UNSAT

CPS

constraint solving

Our tool:

• We proposed a uniform verification 
framework

• We used existing results about
C P S ∼= W P

• We proposed a refinement type system 
for the (generalized) HFL

• We extended the class of CHC and a 
CHC solver

• We implemented a type checker

https://github.com/hiroshi-unno/coar
https://github.com/hiroshi-unno/coar
https://github.com/hiroshi-unno/coar
https://github.com/hiroshi-unno/coar
https://github.com/hiroshi-unno/coar
https://github.com/hiroshi-unno/coar


Outline

• Classes of predicate constraint solving problems
• Reduction from validity checking for Mu-Arithmetic and 𝜇𝜇CLP [POPL 2023mod]

• Reduction from validity checking for the quantitative variant of HFL [ICFP 2024]

• CounterExample Guided Inductive Synthesis (CEGIS) 
for predicate constraint solving [AAAI 2020, CAV 2021rel, CAV 2021dt, ICFP 2024]
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[POPL 2023mod] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.
[ICFP 2024] Kura and Unno. Automated Verification of Higher-Order Probabilistic Programs via a Dependent Refinement Type System.
[AAAI 2020] Satake et al. Probabilistic Inference for Predicate Constraint Satisfaction.
[CAV 2021rel] Unno et al. Constraint-based Relational Verification.
[CAV 2021dt] Kura et al. Decision Tree Learning in CEGIS-Based Termination Analysis.
[POPL 2023opt] Gu et al. Optimal CHC Solving via Termination Proofs.



Challenges in Predicate Constraint Solving

• Undecidable in general even for decidable theories
• The search space of solutions is often very large (or unbounded), 

high-dimensional, and non-smooth
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To address these challenges, we integrate deductive & inductive reasoning 
techniques within the framework of CounterExample Guided Inductive 
Synthesis (CEGIS) [ASPLOS 2006], with an expectation that
a general solution form can be inductively learned and
then the details are deductively completed 

[ASPLOS 2006] Solar-Lezama et al. Combinatorial Sketching for Finite Programs.



CounterExample Guided Inductive Synthesis 
(CEGIS) [ASPLOS 2006]

• Iteratively accumulate example instances 𝓔𝓔 of the given 𝓒𝓒 
through the two phases for each iteration:

• Synthesis Phase by Learner
• Find a candidate solution 𝜌𝜌 that satisfies 𝓔𝓔

• Validation Phase by Teacher
• Check if the candidate 𝜌𝜌 also satisfies 𝓒𝓒 (with an SMT solver)

• If yes, return 𝜌𝜌 as a genuine solution of 𝓒𝓒
• If no, repeat the procedure with new example instances witnessing non-

satisfaction of 𝓒𝓒 by 𝜌𝜌 (i.e., counterexamples) added
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[ASPLOS 2006] Solar-Lezama et al. Combinatorial Sketching for Finite Programs.



Example Run of CEGIS

Learner
Example Instances 𝓔𝓔:

∅

Teacher
Constraints 𝓒𝓒:

• 𝑋𝑋 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝑋𝑋 𝑥𝑥 − 1 ∨ 𝑋𝑋 𝑥𝑥 + 1
        ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥ ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 = 0
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Starting from
the empty set

(𝓒𝓒 is a black box)

Is the candidate 𝑋𝑋 𝑥𝑥 ↦ ⊤  genuine?



Example Run of CEGIS

Learner
Example Instances 𝓔𝓔:

∅

Teacher
Constraints 𝓒𝓒:

• 𝑋𝑋 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝑋𝑋 𝑥𝑥 − 1 ∨ 𝑋𝑋 𝑥𝑥 + 1
        ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥ ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 = 0
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No. 𝑋𝑋 𝑥𝑥 ↦ ⊤ is not.
The 3rd clause is violated when 𝑥𝑥 = 0

⊥ ⟸ 𝑋𝑋 0 ∧ 0 = 0



Example Run of CEGIS

Learner
Example Instances 𝓔𝓔:

¬𝑋𝑋 0

Teacher
Constraints 𝓒𝓒:

• 𝑋𝑋 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝑋𝑋 𝑥𝑥 − 1 ∨ 𝑋𝑋 𝑥𝑥 + 1
        ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥ ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 = 0
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Is the cand. 𝑋𝑋 𝑥𝑥 ↦ 𝑥𝑥 < 0  genuine?



Example Run of CEGIS

Learner
Example Instances 𝓔𝓔:

¬𝑋𝑋 0

Teacher
Constraints 𝓒𝓒:

• 𝑋𝑋 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝑋𝑋 𝑥𝑥 − 1 ∨ 𝑋𝑋 𝑥𝑥 + 1
        ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥ ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 = 0
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𝑋𝑋 1 ⟸ 1 > 0

No. 𝑋𝑋 𝑥𝑥 ↦ 𝑥𝑥 < 0 is not.
The 1st clause is violated when 𝑥𝑥 = 1



Example Run of CEGIS

Learner
Example Instances 𝓔𝓔:

¬𝑋𝑋 0
 
𝑋𝑋 1

Teacher
Constraints 𝓒𝓒:

• 𝑋𝑋 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝑋𝑋 𝑥𝑥 − 1 ∨ 𝑋𝑋 𝑥𝑥 + 1
        ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥ ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 = 0
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Is the cand. 𝑋𝑋 𝑥𝑥 ↦ 𝑥𝑥 = 1  genuine?



Example Run of CEGIS

Learner
Example Instances 𝓔𝓔:

¬𝑋𝑋 0
𝑋𝑋 0 ∨ 𝑋𝑋 2 ⟸ 𝑋𝑋 1

𝑋𝑋 1

Teacher
Constraints 𝓒𝓒:

• 𝑋𝑋 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝑋𝑋 𝑥𝑥 − 1 ∨ 𝑋𝑋 𝑥𝑥 + 1
        ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥ ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 = 0
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No. 𝑋𝑋 𝑥𝑥 ↦ 𝑥𝑥 = 1 is not.
The 2nd clause is violated when 𝑥𝑥 = 1



Example Run of CEGIS

Learner
Example Instances 𝓔𝓔:

¬𝑋𝑋 0
𝑋𝑋 0 ∨ 𝑋𝑋 2 ⟸ 𝑋𝑋 1

𝑋𝑋 1

Teacher
Constraints 𝓒𝓒:

• 𝑋𝑋 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝑋𝑋 𝑥𝑥 − 1 ∨ 𝑋𝑋 𝑥𝑥 + 1
        ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥ ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 = 0
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Is the cand. 𝑋𝑋 𝑥𝑥 ↦ 𝑥𝑥 ≥ 1  genuine?



Example Run of CEGIS

Learner
Example Instances 𝓔𝓔:

¬𝑋𝑋 0
𝑋𝑋 0 ∨ 𝑋𝑋 2 ⟸ 𝑋𝑋 1

𝑋𝑋 1

Teacher
Constraints 𝓒𝓒:

• 𝑋𝑋 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝑋𝑋 𝑥𝑥 − 1 ∨ 𝑋𝑋 𝑥𝑥 + 1
        ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥ ⟸ 𝑋𝑋 𝑥𝑥 ∧ 𝑥𝑥 = 0
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Yes. 𝑋𝑋 𝑥𝑥 ↦ 𝑥𝑥 ≥ 1  satisfies 𝓒𝓒!



CEGIS vs. Online Supervised Learning

• Similarities
• Learner trains a model on the examples 𝓔𝓔 to obtain 𝜌𝜌
• 𝜌𝜌 is required to generalize to 𝓒𝓒 (𝜌𝜌 shouldn’t overfit 𝓔𝓔)

• Differences
• 𝓔𝓔 is usually assumed to have no noise & 𝓒𝓒 is hard constraints
• 𝜌𝜌 is required to exactly satisfy 𝓔𝓔 (or has no chance to satisfy 𝓒𝓒)
• 𝜌𝜌 should be efficiently handled by Teacher (i.e., an SMT solver)
• Sampling of 𝓔𝓔 from 𝓒𝓒 is not i.i.d (depends on 𝜌𝜌 and Teacher)
• 𝓔𝓔 may contain not only positive/negative examples but also arbitrary clause 

ones (cf. weakly-supervised learning)
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Despite the differences, machine learning 
techniques turned out to be quite useful!



Machine Learning for CEGIS

• Adapt ML models and learning algorithms to implement Learner
• Piecewise affine classifiers (or templates) [Garg+’14, CAV 2021rel]
• Decision trees [Saha+’15, Garg+’16, Champion+’18, Ezudheen+’18, Zhu+’18, CAV 2021dt]

• Support vector machines [Sharma+’12, Zhu+’18, CAV 2021dt]
• Neural networks [Chang+’19, Zhao+’20, Ryan’20, Abate+’21, SAS 2021]
• Geometric concept learning [Sharma+’13, Padhi+’16]
• Graphical models and probabilistic inference

• Metropolis Hastings MCMC sampler [Sharma+’14]
• Survey propagation [AAAI 2020]

• Reinforcement learning [Si’18, arXiv 2021]
• Ensemble learning [Padhi+’20]
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Template-based Synthesis

1. Prepare a solution template with unknown coefficients,
2. Generate constraints on them, and
3. Solve them using an SMT solver
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Examples: 𝓔𝓔 = 𝑋𝑋 0 , 𝑋𝑋 0 ⇒ 𝑋𝑋 1 , ¬𝑋𝑋 −1

Solution Template: 𝑋𝑋 𝑥𝑥 ↦ 𝑐𝑐1 ⋅ 𝑥𝑥 + 𝑐𝑐2 ≥ 0

Coeff. Constraints: 𝑐𝑐2 ≥ 0, 𝑐𝑐2 ≥ 0 ⇒ 𝑐𝑐1 + 𝑐𝑐2 ≥ 0 , −𝑐𝑐1 + 𝑐𝑐2 < 0 

A Candidate Solution: 𝜌𝜌 = 𝑋𝑋 𝑥𝑥 ↦ 𝑥𝑥 ≥ 0

Satisfying Assignment: 𝑐𝑐1 ↦ 1, 𝑐𝑐2 ↦ 0



Templates used in Synthesis

• Design predicate templates to ensure they characterize well-founded 
relations, total functions, admissible predicates, and integrable 
predicates, satisfying their respective definitional conditions

• For well-founded predicates, lexicographic piecewise affine ranking function 
templates are used

• For ordinary, functional, admissible, and integrable predicates, piecewise 
affine (in)equality templates are used but their form is restricted to satisfy 
their respective definitional conditions
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Stratified Template Families

• Our method combines CEGIS with stratified template families of 
ordinary/functional/well-founded/admissible/integrable predicates

• Search for solutions in a stratified manner: Starting from simple templates, 
iteratively update them to expressive ones, if needed, according to the family

• To achieve not only efficiency but also relatively completeness
• The data-driven nature of CEGIS is a good match: the stratified search 

accelerates the convergence by avoiding the overfitting problem [Padhi+ ’19] of 
expressive templates to counterexamples
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Decision Tree Learning of Ordinary Predicates

1. Consistently label atoms in 𝓔𝓔 with +/− using a SAT solver
2. Generate a set 𝑄𝑄 of predicates used in classification
3. Classify atoms in 𝓔𝓔 with 𝑄𝑄 using a decision tree learner
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Examples: 𝓔𝓔 = 𝑋𝑋 0 , 𝑋𝑋 0 ⇒ 𝑋𝑋 1 , ¬𝑋𝑋 −1

Labeling: 𝑋𝑋 0 ↦ +, 𝑋𝑋 1 ↦ +, 𝑋𝑋 −1 ↦ −

Classifier: 𝜌𝜌 = 𝑋𝑋 𝑥𝑥 ↦ 𝑥𝑥 ≥ 0

Predicates: 𝑄𝑄 = 𝑥𝑥 ≥ 0, 𝑥𝑥 ≤ 0, 𝑥𝑥 ≥ 1,
𝑥𝑥 ≥ −1, 𝑥𝑥 ≤ 1, 𝑥𝑥 ≤ −1



Decision Tree Learning of Other Predicates

• Dedicated and sophisticated techniques are required for
• Well-founded predicates [CAV 2021dt]

• Functional predicates [CAV 2015, TACAS 2016]
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[CAV 2015] Saha et al. Learning Guarded Affine Functions.
[TACAS 2016] Neider et al. Synthesizing Piece-Wise Functions by Learning Classifiers.



Template-based Synthesis
vs. Decision Tree Learning
• Template-based Synthesis (TB)

•  Fixes the shape of solution (updated upon failure)
•  Flexibly find necessary predicates via SMT solving
•  Atoms in 𝓔𝓔 are consistently labeled using 𝓔𝓔 as an SMT formula

• Decision Tree Learning (DT)
•  Fixes the predicates of solution (updated upon failure)
•  Flexibly adjust the shape by heuristics based on information gain
•  Atoms in 𝓔𝓔 are consistently labeled using 𝓔𝓔 as a SAT formula

• The information about the arguments of predicate variables is not sufficiently utilized
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Results of CHC-COMP 2025

• Cited from: https://chc-comp.github.io/2025/CHC-
COMP%202025%20Report%20-%20SPIN.pdf 
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Summary

• CEGIS-based predicate constraint solving methods integrate 
deductive and inductive reasoning for efficiency

• Deductive reasoning by theorem proving (e.g., SAT, SMT)
• Inductive reasoning by machine learning (e.g., decision tree learning)

• Our pfwCSP and CHC[adm, ∫] solver PCSat is available from: 
https://github.com/hiroshi-unno/coar 
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Course Schedule

• Wed. 21 May (8:50-10:30)
1. Reduction from software verification to fixed-point logic validity checking
2. Predicate constraint solving for validity checking

• Thu. 22 May (11:20-12:20)
3. Cyclic-proof search for validity checking
4. Game solving for validity checking
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3. Cyclic-Proof Search
for Validity Checking

21 May 2025  EPIT, Aussois, France 126



Outline

• Software model-checking (that is an instance of 𝜇𝜇CLP validity checking) 
as cyclic-proof search [POPL 2022, PLDI 2024]

• Various existing software model-checking techniques can be interpreted as 
different strategies for proof search in a cyclic proof system

• Relational verification (that is another instance of 𝜇𝜇CLP validity checking) 
as cyclic-proof search [CAV 2017]

• New and powerful approach to relational verification
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Outline

• Software model-checking (that is an instance of 𝝁𝝁CLP validity checking) 
as cyclic-proof search [POPL 2022, PLDI 2024]

• Various existing software model-checking techniques can be interpreted as 
different strategies for proof search in a cyclic proof system

• Relational verification (that is another instance of 𝜇𝜇CLP validity checking) 
as cyclic-proof search [CAV 2017]

• New and powerful approach to relational verification
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This work
A precise connection between software model checking and cyclic proof search

Known Software model-checking problem
                ⟷ CLP validity / CHC satisfiability problem
New

    Software model-checking algorithms 
         = proof search heuristics
 (Internal states of algorithms = partially constructed proofs)

[Ball+ 2001] [Henzinger+ 2002, 2004]
[McMillan 2006] [Cimatti&Griggio 2012] 
[Hoder&Bjørner 2012] [Cimatti+ 2014]
[Birgmeier+ 2014] [Komuravelli+ 2013, 2014] ...

[Brotherston and Simpson 2011]
[Sprenger and Dam 2003] ...
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Our aim from the viewpoint of software model-checking

Providing a unified account for model-checking algorithms in terms of logic

• To understand behaviors of many algorithms from simple declarative principles 
based on a single common structure

• To compare different algorithms
• Property-directed reachability (PDR)   ≈    Efficient game solving algorithm

• To develop new algorithms
• Refutationally complete variant of PDR

[Bradley 2011] [Een+ 2011]
[Cimatti&Griggio 2012]

[Farzan&Kincaid 2017]

partially constructed proofs
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Our aim from the viewpoint of cyclic proof search

Importing ideas and techniques of software model-checking to cyclic proof search

• Finding an appropriate cut formula is crucial for cyclic proof search
• Cut-elimination fails for cyclic proof systems [Kimura+ 2020] [Oda+ 2025] ...

• Software model-checking community has developed
   highly-efficient algorithms to find an appropriate cut formula

• Existing proof search strategies for cyclic proof system ≈ bounded model-checking + covering
E.g. [Brotherston+ 2011] [Chu+ 2015] [Ta+ 2016] for entailment checking in separation logic
       [Unno+ 2017] for relational verification
       [Tellez&Brotherston 2020] for temporal verification
       [Itzhaky+ 2021] for program synthesis
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Outline
• Background

• Software model-checking

• Proof systems for inductive definitions

• Key observation

• Software model-checking as cyclic proof search
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Software model-checking
Algorithmic analysis of programs to prove properties of their executions
         [Jhala&Majumdar 2009]

Let us focus on safety verification of a while program
 Input  Set of states  𝐷𝐷
   Initial states  𝐼𝐼 ⊆ 𝐷𝐷
   Bad states  𝐵𝐵 ⊆ 𝐷𝐷
   Transition relation 𝑇𝑇 ⊆ 𝐷𝐷 × 𝐷𝐷 
 Output Whether 𝐵𝐵 is unreachable from 𝐼𝐼 via 𝑇𝑇

• ¬∃𝑠𝑠0𝑠𝑠1 … 𝑠𝑠𝑛𝑛 ∈ 𝐷𝐷. 𝐼𝐼 𝑠𝑠0 ∧ 𝑇𝑇 𝑠𝑠0, 𝑠𝑠1 ∧ ⋯ ∧ 𝑇𝑇 𝑠𝑠𝑛𝑛−1, 𝑠𝑠𝑛𝑛 ∧ 𝐵𝐵 𝑠𝑠𝑛𝑛

Usually infinite, e.g. 𝐷𝐷 = ℤ𝑛𝑛

¬ 𝐼𝐼 𝐵𝐵
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Inductive invariant
A witness of the safety of a given system
Def  A subset 𝑃𝑃 ⊆ 𝐷𝐷 is a (safe) inductive invariant if

• all initial states are 𝑃𝑃     𝐼𝐼 𝑥𝑥 ⟹ 𝑃𝑃 𝑥𝑥
• 𝑃𝑃 contains no bad state    𝑃𝑃 𝑥𝑥 ⟹ ¬𝐵𝐵 𝑥𝑥
• 𝑃𝑃 is closed under the transition relation  𝑃𝑃 𝑥𝑥 ∧ 𝑇𝑇 𝑥𝑥, 𝑦𝑦 ⟹ 𝑃𝑃 𝑦𝑦

Example 𝐷𝐷 = ℤ, 𝐼𝐼 = 0 , 𝐵𝐵 = −3 , 𝑇𝑇 = { 𝑛𝑛, 𝑛𝑛 + 2 ∣ 𝑛𝑛 ∈ ℤ }

• 𝑃𝑃1 =  2𝑛𝑛 𝑛𝑛 ∈ ℤ, 𝑛𝑛 ≥ 0 is an inductive invariant
• 𝑃𝑃2 =  𝑛𝑛 ∈ ℤ 𝑛𝑛 ≥ 0 is an inductive invariant

Set of states  𝐷𝐷
Initial states  𝐼𝐼 ⊆ 𝐷𝐷
Bad states  𝐵𝐵 ⊆ 𝐷𝐷
Transition relation 𝑇𝑇 ⊆ 𝐷𝐷 × 𝐷𝐷 

𝐼𝐼𝐵𝐵
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Inductive invariant
A witness of the safety of a given system
Def  A subset 𝑃𝑃 ⊆ 𝐷𝐷 is a (safe) inductive invariant if

• all initial states are 𝑃𝑃     𝐼𝐼 𝑥𝑥 ⟹ 𝑃𝑃 𝑥𝑥
• 𝑃𝑃 contains no bad state    𝑃𝑃 𝑥𝑥 ⟹ ¬𝐵𝐵 𝑥𝑥
• 𝑃𝑃 is closed under the transition relation  𝑃𝑃 𝑥𝑥 ∧ 𝑇𝑇 𝑥𝑥, 𝑦𝑦 ⟹ 𝑃𝑃 𝑦𝑦

Example 𝐷𝐷 = ℤ, 𝐼𝐼 = 0 , 𝐵𝐵 = −3 , 𝑇𝑇 = { 𝑛𝑛, 𝑛𝑛 + 2 ∣ 𝑛𝑛 ∈ ℤ }

• 𝑷𝑷𝟏𝟏 =  𝟐𝟐𝟐𝟐 𝒏𝒏 ∈ ℤ, 𝒏𝒏 ≥ 𝟎𝟎 is an inductive invariant
• 𝑃𝑃2 =  𝑛𝑛 ∈ ℤ 𝑛𝑛 ≥ 0 is an inductive invariant

Set of states  𝐷𝐷
Initial states  𝐼𝐼 ⊆ 𝐷𝐷
Bad states  𝐵𝐵 ⊆ 𝐷𝐷
Transition relation 𝑇𝑇 ⊆ 𝐷𝐷 × 𝐷𝐷 

𝐼𝐼𝐵𝐵
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Inductive invariant
A witness of the safety of a given system
Def  A subset 𝑃𝑃 ⊆ 𝐷𝐷 is a (safe) inductive invariant if

• all initial states are 𝑃𝑃     𝐼𝐼 𝑥𝑥 ⟹ 𝑃𝑃 𝑥𝑥
• 𝑃𝑃 contains no bad state    𝑃𝑃 𝑥𝑥 ⟹ ¬𝐵𝐵 𝑥𝑥
• 𝑃𝑃 is closed under the transition relation  𝑃𝑃 𝑥𝑥 ∧ 𝑇𝑇 𝑥𝑥, 𝑦𝑦 ⟹ 𝑃𝑃 𝑦𝑦

Example 𝐷𝐷 = ℤ, 𝐼𝐼 = 0 , 𝐵𝐵 = −3 , 𝑇𝑇 = { 𝑛𝑛, 𝑛𝑛 + 2 ∣ 𝑛𝑛 ∈ ℤ }

• 𝑃𝑃1 =  2𝑛𝑛 𝑛𝑛 ∈ ℤ, 𝑛𝑛 ≥ 0 is an inductive invariant
• 𝑷𝑷𝟐𝟐 =  𝒏𝒏 ∈ ℤ 𝒏𝒏 ≥ 𝟎𝟎 is an inductive invariant

Set of states  𝐷𝐷
Initial states  𝐼𝐼 ⊆ 𝐷𝐷
Bad states  𝐵𝐵 ⊆ 𝐷𝐷
Transition relation 𝑇𝑇 ⊆ 𝐷𝐷 × 𝐷𝐷 

𝐼𝐼𝐵𝐵
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Inductive invariant
A witness of the safety of a given system
Def  A subset 𝑃𝑃 ⊆ 𝐷𝐷 is a (safe) inductive invariant if

• all initial states are 𝑃𝑃     𝐼𝐼 𝑥𝑥 ⟹ 𝑃𝑃 𝑥𝑥
• 𝑃𝑃 contains no bad state    𝑃𝑃 𝑥𝑥 ⟹ ¬𝐵𝐵 𝑥𝑥
• 𝑃𝑃 is closed under the transition relation  𝑃𝑃 𝑥𝑥 ∧ 𝑇𝑇 𝑥𝑥, 𝑦𝑦 ⟹ 𝑃𝑃 𝑦𝑦

Prop  If an inductive invariant 𝑃𝑃 ⊆ 𝐷𝐷 exists, the system never reaches a bad state

Model-checkers search for inductive invariants in a variety of clever ways
• It is relatively easy to check if a given 𝑃𝑃 ⊆ 𝐷𝐷 is indeed an inductive invariant

Set of states  𝐷𝐷
Initial states  𝐼𝐼 ⊆ 𝐷𝐷
Bad states  𝐵𝐵 ⊆ 𝐷𝐷
Transition relation 𝑇𝑇 ⊆ 𝐷𝐷 × 𝐷𝐷 
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A Logical Formalization
The set of reachable states is the least solution 𝝁𝝁𝝁𝝁 for 𝑃𝑃 in

• Defining a property as the least solution of an equation   =  inductive definition

Example 𝐷𝐷 = ℤ, 𝐼𝐼 = 0 , 𝑇𝑇 = { 𝑛𝑛, 𝑛𝑛 + 2 ∣ 𝑛𝑛 ∈ ℤ }

𝐼𝐼𝐵𝐵
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A Logical Formalization
The set of reachable states is the least solution 𝝁𝝁𝝁𝝁 for 𝑃𝑃 in

• Defining a property as the least solution of an equation   =  inductive definition

Example 𝐷𝐷 = ℤ, 𝐼𝐼 = 0 , 𝑇𝑇 = { 𝑛𝑛, 𝑛𝑛 + 2 ∣ 𝑛𝑛 ∈ ℤ }

𝐼𝐼𝐵𝐵
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A Logical Formalization
The set of reachable states is the least solution 𝝁𝝁𝝁𝝁 for 𝑃𝑃 in

• Defining a property as the least solution of an equation   =  inductive definition

Example 𝐷𝐷 = ℤ, 𝐼𝐼 = 0 , 𝑇𝑇 = { 𝑛𝑛, 𝑛𝑛 + 2 ∣ 𝑛𝑛 ∈ ℤ }

𝐼𝐼𝐵𝐵
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A Logical Formalization
The set of reachable states is the least solution 𝝁𝝁𝝁𝝁 for 𝑃𝑃 in

• Defining a property as the least solution of an equation   =  inductive definition

Example 𝐷𝐷 = ℤ, 𝐼𝐼 = 0 , 𝑇𝑇 = { 𝑛𝑛, 𝑛𝑛 + 2 ∣ 𝑛𝑛 ∈ ℤ }

𝐼𝐼𝐵𝐵
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A Logical Formalization
The set of reachable states is the least solution 𝝁𝝁𝝁𝝁 for 𝑃𝑃 in

• Defining a property as the least solution of an equation   =  inductive definition

Example 𝐷𝐷 = ℤ, 𝐼𝐼 = 0 , 𝑇𝑇 = { 𝑛𝑛, 𝑛𝑛 + 2 ∣ 𝑛𝑛 ∈ ℤ }

𝐼𝐼𝐵𝐵

142



A Logical Formalization
The set of reachable states is the least solution 𝝁𝝁𝝁𝝁 for 𝑃𝑃 in

• Defining a property as the least solution of an equation   =  inductive definition

Prop The system never reaches a bad state if and only if 𝝁𝝁𝝁𝝁 𝒙𝒙 ⊨ ¬𝑩𝑩 𝒙𝒙
• Simply because 𝜇𝜇𝜇𝜇 is the set of reachable states

Proof systems for inductive definitions are usable to prove 𝜇𝜇𝜇𝜇 𝑥𝑥 ⊢ ¬𝐵𝐵 𝑥𝑥  
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Outline
• Background

• Software model-checking

• Proof systems for inductive definitions

• Key observation

• Software model-checking as cyclic proof search
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Classical proof rule for inductive definitions
Due to Martin-Löf (1972)

The premises require that 𝝋𝝋 𝒙𝒙  is an inductive invariant
• Initial states satisfy 𝜑𝜑   𝐼𝐼 𝑥𝑥 ⊢ 𝜑𝜑 𝑥𝑥
• 𝜑𝜑 is closed under the transition ∃𝑦𝑦. 𝜑𝜑 𝑦𝑦 ∧ 𝑇𝑇 𝑦𝑦, 𝑥𝑥 ⊢ 𝜑𝜑 𝑥𝑥
• 𝜑𝜑 has no bad state   𝜑𝜑 𝑥𝑥 ⊢ ¬𝐵𝐵 𝑥𝑥

This rule cannot be used to describe processes searching for inductive invariants
• This rule is applicable only after an inductive invariant 𝝋𝝋 is found
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Cyclic proof system
A proof system in which proofs may have cycles

• Cycle   ≈   use of induction hypothesis

A rule for inductive definition just expands the definition
• Applicable without knowing an inductive invariant

[Brotherston&Simpson 2011]
[Sprenger&Dam 2003] ...
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Outline
• Background

• Software model-checking

• Proof systems for inductive definitions

• Key observation

• Software model-checking as cyclic proof search
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Key observation
To establish a precise connection between model-checking and proof search,

• "all reachable states are not bad" is inappropriate,

• A state 𝑥𝑥 is reachable if ∃𝑦𝑦0𝑦𝑦1 … 𝑦𝑦𝑛𝑛−1. 𝐼𝐼 𝑦𝑦0 ∧ 𝑇𝑇 𝑦𝑦0, 𝑦𝑦1 ∧ ⋯ ∧ 𝑇𝑇 𝑦𝑦𝑛𝑛−1, 𝑥𝑥
   (cf. strongest post-condition, backward reachability checking)

• but the dual formalization "all initial states are safe" should be used

• A state 𝑥𝑥 is safe if ¬∃𝑦𝑦1 … 𝑦𝑦𝑛𝑛. 𝑇𝑇 𝑥𝑥, 𝑦𝑦1 ∧ ⋯ ∧ 𝑇𝑇 𝑦𝑦𝑛𝑛−1, 𝑦𝑦𝑛𝑛 ∧ 𝐵𝐵 𝑦𝑦𝑛𝑛
   (cf. weakest pre-condition, forward reachability checking)

greatest solution
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Goal-oriented proof search
A bottom-up proof-search

• An intermediate state is a proof with unproved leaves

1. Start from the tree consisting only of the goal sequent

2. Choose an unproved leaf and select an appropriate proof rule for it

3. Iterate this process until there are no unproved leaves

?

?
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Symbolic execution
Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

?
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Symbolic execution
Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

??

152



Symbolic execution
Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

??

An SMT solver can automatically (dis)prove
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Symbolic execution
Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

?SMT
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Symbolic execution
Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

?
SMT
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Symbolic execution
Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

?

SMT
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Symbolic execution
Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

?

SMT
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Symbolic execution
Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

?

SMT
One-step 
transition
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Symbolic execution
Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

?

SMT

Next states of 𝑰𝑰 are safe

Initial states are not bad
One-step 
transition
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Symbolic execution
Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

?

SMT

Generalize to arbitrary set 𝜑𝜑

Next states of 𝝋𝝋 are safe

Current states are not bad
One-step 
transition
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Symbolic execution
Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

A derived rule:

?

SMT
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Symbolic execution
Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

A derived rule:

?

SMT
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Bounded model-checking [Biere+ 1999]

Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

𝒌𝒌 iterations of (SE) rule coincide with model-checking within 𝒌𝒌 steps

?

SMT
SMT

SMT

SMT

163



Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

Trying to make cycles after 𝒌𝒌-th iteration of (SE) rule

SMT

SMT

SMT

SMT ?
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Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

Trying to make cycles after 𝒌𝒌-th iteration of (SE) rule

SMT

SMT

SMT

SMT

if 𝝋𝝋𝒌𝒌+𝟏𝟏 𝒙𝒙 = 𝝋𝝋𝟐𝟐 𝒙𝒙
?

Forward criterion [Sheeran+ 2000]
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Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

Trying to make cycles after 𝒌𝒌-th iteration of (SE) rule

SMT

SMT

SMT

SMT

if 𝝋𝝋𝒌𝒌+𝟏𝟏 𝒙𝒙 = 𝝋𝝋𝟐𝟐 𝒙𝒙

Forward criterion [Sheeran+ 2000]
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Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

Trying to make cycles after 𝒌𝒌-th iteration of (SE) rule

SMT

SMT

SMT

SMT ?

Induction hypothesis

Induction hypothesis

Induction hypothesis

Forward criterion [Sheeran+ 2000]
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Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

Trying to make cycles after 𝒌𝒌-th iteration of (SE) rule

SMT

SMT

SMT

SMT

Induction hypothesis

Induction hypothesis

Induction hypothesis

?
?

168



Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

Trying to make cycles after 𝒌𝒌-th iteration of (SE) rule

SMT

SMT

SMT

SMT

SMT
?

Induction hypothesis

Induction hypothesis
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Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

Trying to make cycles after 𝒌𝒌-th iteration of (SE) rule

SMT

SMT

SMT

SMT

SMT ?

Induction hypothesis

Induction hypothesis
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Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

Trying to make cycles after 𝒌𝒌-th iteration of (SE) rule

SMT

SMT

SMT

SMT

SMT

??

Induction hypothesis

Induction hypothesis
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Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

Trying to make cycles after 𝒌𝒌-th iteration of (SE) rule

SMT

SMT

SMT

SMT

SMT

?

Induction hypothesis

Induction hypothesis
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Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form 𝜑𝜑 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥

Trying to make cycles after 𝒌𝒌-th iteration of (SE) rule

SMT

SMT

SMT

SMT

SMT

Induction hypothesis

Induction hypothesis

Induction hypothesis 173



More aggressive use of (Cut)

Question  How to select the cut formula 𝝍𝝍?
Let Ξ be a finite set of formulas (closed under certain logical operations)
Heuristic 2  Let the cut formula be the strongest 𝜓𝜓 ∈ Ξ s.t. ∃𝑥𝑥. 𝜑𝜑 𝑥𝑥 ∧ 𝑇𝑇 𝑥𝑥, 𝑦𝑦 ⊢ 𝜓𝜓 𝑦𝑦

Predicate abstraction [Ball+2001] [Graf&Saïdi 1997] 174



IMPACT [McMillan 2006]

Heuristic 3  Tentatively choose ⊤ as the cut formula
Heuristic 4  When the proof attempt fails, strengthen the cut formulas as follows

• Replace cut formula 𝝋𝝋𝒊𝒊 with 𝝋𝝋𝒊𝒊 ∧ 𝑸𝑸𝒊𝒊 and solve the constraints on 𝑸𝑸𝒊𝒊

?
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IMPACT [McMillan 2006]
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Heuristic 4  When the proof attempt fails, strengthen the cut formulas as follows
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IMPACT [McMillan 2006]

Heuristic 3  Tentatively choose ⊤ as the cut formula
Heuristic 4  When the proof attempt fails, strengthen the cut formulas as follows
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IMPACT [McMillan 2006]

Heuristic 3  Tentatively choose ⊤ as the cut formula
Heuristic 4  When the proof attempt fails, strengthen the cut formulas as follows

• Replace cut formula 𝝋𝝋𝒊𝒊 with 𝝋𝝋𝒊𝒊 ∧ 𝑸𝑸𝒊𝒊 and solve the constraints on 𝑸𝑸𝒊𝒊

?SMT SMT

179



IMPACT [McMillan 2006]

Heuristic 3  Tentatively choose ⊤ as the cut formula
Heuristic 4  When the proof attempt fails, strengthen the cut formulas as follows

• Replace cut formula 𝝋𝝋𝒊𝒊 with 𝝋𝝋𝒊𝒊 ∧ 𝑸𝑸𝒊𝒊 and solve the constraints on 𝑸𝑸𝒊𝒊

SMT SMT
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IMPACT [McMillan 2006]

Heuristic 3  Tentatively choose ⊤ as the cut formula
Heuristic 4  When the proof attempt fails, strengthen the cut formulas as follows

• Replace cut formula 𝝋𝝋𝒊𝒊 with 𝝋𝝋𝒊𝒊 ∧ 𝑸𝑸𝒊𝒊 and solve the constraints on 𝑸𝑸𝒊𝒊

SMT
?

?
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IMPACT [McMillan 2006]

Heuristic 3  Tentatively choose ⊤ as the cut formula
Heuristic 4  When the proof attempt fails, strengthen the cut formulas as follows

• Replace cut formula 𝝋𝝋𝒊𝒊 with 𝝋𝝋𝒊𝒊 ∧ 𝑸𝑸𝒊𝒊 and solve the constraints on 𝑸𝑸𝒊𝒊

SMT
?

?
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IMPACT [McMillan 2006]

Heuristic 3  Tentatively choose ⊤ as the cut formula
Heuristic 4  When the proof attempt fails, strengthen the cut formulas as follows

• Replace cut formula 𝝋𝝋𝒊𝒊 with 𝝋𝝋𝒊𝒊 ∧ 𝑸𝑸𝒊𝒊 and solve the constraints on 𝑸𝑸𝒊𝒊

SMT
?

?

A solution of this constraint set is called an interpolant
183



Property-directed reachability
Heuristic 5  In strengthening, keep as many cut formulas unchanged as possible

In the paper we discuss

• how to obtain a PDR-like process from Heuristic 5

• how to derive a refutationally complete variant of PDR using MBP

• unexpected connection between Heuristic 5 and a game solving algorithm
[Farzan&Kincaid 2017]

[Bradley 2011] [Een+ 2011]
[Cimatti&Griggio 2012] ...

184



Property-directed reachability
Heuristic 5  In strengthening, keep as many cut formulas unchanged as possible

In the paper we discuss

• how to obtain a PDR-like process from Heuristic 5

• how to derive a refutationally complete variant of PDR using MBP

• unexpected connection between Heuristic 5 and a game solving algorithm
[Farzan&Kincaid 2017]

[Bradley 2011] [Een+ 2011]
[Cimatti&Griggio 2012] ...

maximally conservative
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MuCyc [PLDI 2024]

• Implementation of an extension of the refutationally complete variant of PDR
• Available from:

https://github.com/hiroshi-unno/coar

186

Results of CHC-COMP 2025

https://github.com/hiroshi-unno/coar


Summary
Software model-checking algorithms can be seen as cyclic proof search strategies

• The connection is rather straightforward
     once the goal sequent is appropriately set

• Several algorithms can be reconstructed from simple proof-search heuristics
• The usefulness of the connection is demonstrated by

• revealing an unexpected connection:  PDR ≈ an efficient game solving algorithm
• developing a refutationally complete variant of PDR

"All initial states are safe"
 𝐼𝐼 𝑥𝑥 ⊢ 𝜈𝜈𝜈𝜈 𝑥𝑥
 where 𝜈𝜈𝜈𝜈 𝑥𝑥 ⇔

𝜈𝜈
 ¬𝐵𝐵 𝑥𝑥 ∧ ∀𝑦𝑦. 𝑇𝑇 𝑥𝑥, 𝑦𝑦 ⇒ 𝜈𝜈𝜈𝜈 𝑦𝑦
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Outline

• Software model-checking as cyclic-proof search
• Interpretation of various existing software model-checking techniques as 

different strategies for proof search in a cyclic proof system [POPL 2022]

• (If time permits) Proof refinement for Spacer [PLDI 2024]

• Relational verification via cyclic-proof search [CAV 2017]

22 May 2025  EPIT, Aussois, France 188

[POPL 2022] Tsukada and Unno. Software Model-Checking as Cyclic-Proof Search.
[PLDI 2024] Tsukada and Unno. Inductive Approach to Spacer.
[CAV 2017] Unno et al. Automating Induction for Solving Horn Clauses.



Relational Program Verification
• Verification of properties that relate multiple executions of one or more programs
• Clarkson and Schneider formalized such properties as sets of sets of program traces 

and coined the term hyperproperties [CSF 2008]

• An important trend in formal methods with wide applications including security

18921 May 2025  EPIT, Aussois, France

[CSF 2008] Clarkson, Schneider. Hyperproperties.



Verification of Algebraic Specifications
Verification of an implementation of an abstract data type with algebraic specs.
• Arithmetic operations with algebraic specifications:

• equivalence, associativity, commutativity, distributivity, idempotency, monotonicity, 
invertibility, symmetry, transitivity, …

• List operations with algebraic specifications such as:
• append (take xs n) (drop xs n) = xs

• Try out a web interface of our relational verifier from http://lfp.dip.jp/rcaml/

19021 May 2025  EPIT, Aussois, France

http://lfp.dip.jp/rcaml/


Variants of Program Equivalence
• Functional (i.e., input-output) equivalence

• Termination-insensitive: 𝑓𝑓 =𝐷𝐷𝐷𝐷𝐷𝐷 𝑔𝑔 ≜ ∀𝑥𝑥, 𝑦𝑦1, 𝑦𝑦2. 𝑓𝑓 𝑥𝑥 ⇓ 𝑦𝑦1 ∧ 𝑔𝑔 𝑥𝑥 ⇓ 𝑦𝑦2 ⟹ 𝑦𝑦1 = 𝑦𝑦2

• Termination-sensitive:
𝑓𝑓 =𝐷𝐷𝐷𝐷𝐷𝐷 𝑔𝑔 ≜ 𝑓𝑓 =𝐷𝐷𝐷𝐷𝐷𝐷 𝑔𝑔 ∧ ∀𝑥𝑥. 𝑓𝑓 𝑥𝑥 ⇑ ⟹ ¬∃𝑦𝑦. 𝑔𝑔 𝑥𝑥 ⇓ 𝑦𝑦 ∧ ∀𝑥𝑥. 𝑔𝑔 𝑥𝑥 ⇑ ⟹ ¬∃𝑦𝑦. 𝑓𝑓 𝑥𝑥 ⇓ 𝑦𝑦

• Non-det. & Termination-sensitive: 𝑓𝑓 =𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆 𝑔𝑔 ≜ ∀𝑥𝑥. 𝑦𝑦 ∣ 𝑓𝑓 𝑥𝑥 ⇓ 𝑦𝑦 = 𝑦𝑦 ∣ 𝑔𝑔 𝑥𝑥 ⇓ 𝑦𝑦
• Probabilistic & Termination-sensitive: 𝑓𝑓 =𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑔𝑔 ≜ ∀𝑥𝑥, 𝑦𝑦. Pr 𝑓𝑓 𝑥𝑥 ⇓ 𝑦𝑦 = Pr 𝑔𝑔 𝑥𝑥 ⇓ 𝑦𝑦

• Trace equivalence: 𝑝𝑝 =𝑇𝑇𝑇𝑇 𝑞𝑞 ≜ 𝑇𝑇𝑇𝑇 𝑝𝑝 = 𝑇𝑇𝑇𝑇 𝑞𝑞

• Bisimilarity: 𝑝𝑝 ∼𝑏𝑏𝑏𝑏𝑏𝑏 𝑞𝑞 ≜ there is a strong bisimulation 𝑅𝑅 such that 𝑝𝑝, 𝑞𝑞 ∈ 𝑅𝑅

• Observational equivalence: 𝑝𝑝 =𝑂𝑂𝑂𝑂𝑂𝑂 𝑞𝑞 ≜ ∀𝐶𝐶, 𝑦𝑦. 𝐶𝐶 𝑝𝑝 ⇓ 𝑦𝑦 ⟺ 𝐶𝐶 𝑞𝑞 ⇓ 𝑦𝑦
• Captures non-trivial interactions between contexts 𝐶𝐶 and higher-order, object-oriented, 

and effectful (e.g., non-det., probabilistic, stateful, exception-raising, …) programs
• In security applications, attackers’ capabilities are reflected in the definition of contexts 𝐶𝐶

19121 May 2025  EPIT, Aussois, France

The set of finite and infinite execution traces of 𝑞𝑞

An execution of 𝑓𝑓 𝑥𝑥 terminates and returns 𝑦𝑦1

𝑓𝑓 𝑥𝑥 has a diverging execution



Variants of Program Refinement
• Functional (i.e., input-output) refinement:

• Termination-insensitive: 𝑓𝑓 ≤𝑇𝑇𝐼𝐼 𝑔𝑔 ≜ ∀𝑥𝑥, 𝑦𝑦. 𝑓𝑓 𝑥𝑥 ⇓ 𝑦𝑦 ⟹ 𝑔𝑔 𝑥𝑥 ⇓ 𝑦𝑦
• If 𝑓𝑓 ≤𝑇𝑇𝐼𝐼 𝑔𝑔, then ⊨ 𝑃𝑃𝑃𝑃𝑃𝑃  𝑔𝑔 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  implies ⊨ 𝑃𝑃𝑃𝑃𝑃𝑃  𝑓𝑓 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

• Termination-sensitive: 𝑓𝑓 ≤𝑇𝑇𝑇𝑇 𝑔𝑔 ≜ 𝑓𝑓 ≤𝑇𝑇𝑇𝑇 𝑔𝑔 ∧ ∀𝑥𝑥. 𝑓𝑓 𝑥𝑥 ⇑  ⟹ 𝑔𝑔 𝑥𝑥 ⇑
• If 𝑓𝑓 ≤𝑇𝑇𝑇𝑇 𝑔𝑔, then ⊨ 𝑃𝑃𝑃𝑃𝑃𝑃  𝑔𝑔 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  implies ⊨ 𝑃𝑃𝑃𝑃𝑃𝑃  𝑓𝑓 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  (i.e., termination is also transferred)

• Trace refinement: 𝑝𝑝 ≤𝑇𝑇𝑇𝑇 𝑞𝑞 ≜ 𝑇𝑇𝑇𝑇 𝑝𝑝 ⊆ 𝑇𝑇𝑇𝑇 𝑞𝑞
• If 𝑝𝑝 ≤𝑇𝑇𝑇𝑇 𝑞𝑞, then trace properties of 𝑞𝑞 can be transferred to 𝑝𝑝

• Similarity: 𝑝𝑝 ≤𝑠𝑠𝑠𝑠𝑠𝑠 𝑞𝑞 ≜ there is a strong simulation 𝑅𝑅 such that 𝑝𝑝, 𝑞𝑞 ∈ 𝑅𝑅
• If 𝑝𝑝 ≤𝑠𝑠𝑠𝑠𝑠𝑠 𝑞𝑞, then trace (but branching-time) properties of 𝑞𝑞 can be migrated to 𝑝𝑝
• If 𝑝𝑝 ∼𝑏𝑏𝑏𝑏𝑏𝑏 𝑞𝑞, then branching-time (but hyper-) properties of 𝑞𝑞 can be migrated to 𝑝𝑝

19221 May 2025  EPIT, Aussois, France

Useful to transfer properties and proofs!



Program Refinement as Generalized Model Checking
• Program refinement verification ⊨ 𝑝𝑝 ≤ 𝑞𝑞 generalizes ordinary model checking 𝑝𝑝 ⊨ 𝜙𝜙

• A specification of 𝒑𝒑 is given as a program 𝒒𝒒 instead of a logical formula 𝜙𝜙
• 𝑞𝑞 can encode the given 𝜙𝜙 (if the programming language is expressive enough)
• 𝑞𝑞 can be a reference implementation (cf. seL4 Project) or

an abstract model represented as a highly non-deterministic program
• This motivates me to investigate entailment checking problems 𝜓𝜓1 ⊨ 𝜓𝜓2 in

a first-order fixpoint logic modulo theories we call 𝜇𝜇CLP [CAV 2017, LICS 2018, POPL 2023]

• Relational verification boils down to entailment checking in 𝝁𝝁𝝁𝝁𝝁𝝁𝝁𝝁

19322 May 2025  EPIT, Aussois, France

[CAV 2017] Unno et al. Automating Induction for Solving Horn Clauses.
[LICS 2018] Nanjo et al. A Fixpoint Logic and Dependent Effects for Temporal Property Verification.
[POPL 2023] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.



Example: Functional Program & Relational Spec.
(* recursive function to compute “x × y” *)
let rec mult x y =
  if y = 0 then 0 else x + mult x (y - 1)

(* tail recursive function to compute “x × y + a” *)
let rec mult_acc x y a =
  if y = 0 then a else mult_acc x (y - 1) (a + x)

(* functional equivalence of mult and mult_acc *)
let main x y a = assert (mult x y + a = mult_acc x y a)

19422 May 2025  EPIT, Aussois, France



CHCs Constraint Generation
based on Dependent Refinement Types [PPDP 2009]

19522 May 2025  EPIT, Aussois, France

let rec mult x y =
if y = 0 then 0
else x + mult x (y - 1)

let rec mult_acc x y a =
if y = 0 then a
else mult_acc x (y - 1) (a + x)

let main x y a =
  assert (mult x y + a
              = mult_acc x y a)

[PPDP 2009] Unno, Kobayashi. 
Dependent Type Inference 
with Interpolants.



CHC Solving via Entailment Checking in 𝝁𝝁CLP

19622 May 2025  EPIT, Aussois, France

The CHCs on the right is satisfiable if and only if
the following 𝝁𝝁𝐂𝐂𝐂𝐂𝐂𝐂 entailment holds

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑠𝑠1 , 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊨ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

where

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑧𝑧 = 0 ∨

𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑧𝑧 = 𝑥𝑥 + 𝑟𝑟

𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑟𝑟 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑟𝑟 = 𝑎𝑎 ∨

𝑦𝑦 ≠ 0 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑟𝑟



𝝁𝝁CLP: A First-Order Fixed-Point Logic Modulo 
Background Theories 𝑇𝑇 [POPL 2023]

• We assume that formulas, predicates, and terms are well-sorted
• Least fixpoints 𝝁𝝁𝝁𝝁. 𝝀𝝀𝒙𝒙. 𝝓𝝓 represent inductive predicates, and

greatest fixpoints 𝝂𝝂𝝂𝝂. 𝝀𝝀𝒙𝒙. 𝝓𝝓 represent co-inductive predicates
• We also use (hierarchical) equational form: 𝑋𝑋 𝑥⃗𝑥 =𝜇𝜇 𝜙𝜙 and 𝑋𝑋 𝑥⃗𝑥 =𝜈𝜈 𝜙𝜙
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(formulas) 𝜙𝜙 ∷= ⊥ | ⊤ | ¬𝜙𝜙 | 𝜙𝜙1 ∧ 𝜙𝜙2 | 𝜙𝜙1 ∨ 𝜙𝜙2 | ∀𝑥𝑥. 𝜙𝜙 | ∃𝑥𝑥. 𝜙𝜙 | 𝑃𝑃 𝑡𝑡  | 𝑝𝑝 𝑡𝑡
(predicates) 𝑃𝑃 ∷= 𝑋𝑋 | 𝝁𝝁𝝁𝝁. 𝝀𝝀𝒙𝒙. 𝝓𝝓 | 𝝂𝝂𝝂𝝂. 𝝀𝝀𝒙𝒙. 𝝓𝝓 (terms) 𝑡𝑡 ∷= 𝑥𝑥 | 𝑓𝑓 𝑡𝑡

constant and function 
symbols of 𝑇𝑇

predicate 
variables

predicate symbols of 𝑇𝑇

Least fixed-point
(𝑋𝑋 occurs only 
positively in 𝜙𝜙)

Greatest fixed-point
(𝑋𝑋 occurs only 
positively in 𝜙𝜙)

term 
variables
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𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑠𝑠1 , 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑧𝑧 = 0 ∨

𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑧𝑧 = 𝑥𝑥 + 𝑟𝑟

𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑟𝑟 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑟𝑟 = 𝑎𝑎 ∨

𝑦𝑦 ≠ 0 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑟𝑟

?
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𝑦𝑦 = 0 ∧ 𝑠𝑠1 = 0, 𝑦𝑦 = 0 ∧ 𝑠𝑠2 = 𝑎𝑎 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2  ⋯
𝑦𝑦 = 0 ∧ 𝑠𝑠1 = 0, 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

 ⋯ , 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑠𝑠1 , 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑧𝑧 = 0 ∨

𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑧𝑧 = 𝑥𝑥 + 𝑟𝑟

𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑟𝑟 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑟𝑟 = 𝑎𝑎 ∨

𝑦𝑦 ≠ 0 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑟𝑟

? ??SMT
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⋯  𝑦𝑦 = 0 ∧ 𝑠𝑠1 = 0, 𝑦𝑦 ≠ 0 ∧ ⋯ ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2
𝑦𝑦 = 0 ∧ 𝑠𝑠1 = 0, 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

 ⋯ , 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑠𝑠1 , 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑧𝑧 = 0 ∨

𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑧𝑧 = 𝑥𝑥 + 𝑟𝑟

𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑟𝑟 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑟𝑟 = 𝑎𝑎 ∨

𝑦𝑦 ≠ 0 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑟𝑟

SMT ??SMT
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⋮  𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑠𝑠1 = 𝑥𝑥 + 𝑟𝑟, 𝑦𝑦 = 0 ∧ 𝑠𝑠2 = 𝑎𝑎 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2  ⋯
𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑠𝑠1 = 𝑥𝑥 + 𝑟𝑟, 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑠𝑠1 , 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑧𝑧 = 0 ∨

𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑧𝑧 = 𝑥𝑥 + 𝑟𝑟

𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑟𝑟 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑟𝑟 = 𝑎𝑎 ∨

𝑦𝑦 ≠ 0 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑟𝑟

?SMT
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⋮  ⋮  𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑠𝑠1 = 𝑥𝑥 + 𝑟𝑟, 𝑦𝑦 ≠ 0 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2
𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑠𝑠1 = 𝑥𝑥 + 𝑟𝑟, 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑠𝑠1 , 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑧𝑧 = 0 ∨

𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑧𝑧 = 𝑥𝑥 + 𝑟𝑟

𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑟𝑟 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑟𝑟 = 𝑎𝑎 ∨

𝑦𝑦 ≠ 0 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑟𝑟

?
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⋮  
⋮  𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 , 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑠𝑠2 ⊢ 𝑦𝑦 ≠ 0 ∧ 𝑠𝑠1 = 𝑥𝑥 + 𝑟𝑟 ⇒ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑠𝑠1 = 𝑥𝑥 + 𝑟𝑟, 𝑦𝑦 ≠ 0 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2
𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑠𝑠1 = 𝑥𝑥 + 𝑟𝑟, 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑠𝑠1 , 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑧𝑧 = 0 ∨

𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑧𝑧 = 𝑥𝑥 + 𝑟𝑟

𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑟𝑟 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑟𝑟 = 𝑎𝑎 ∨

𝑦𝑦 ≠ 0 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑟𝑟

?
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⋮  
⋮  

𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 , 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑠𝑠2 ⊢ 𝑟𝑟 + 𝑎𝑎 + 𝑥𝑥 = 𝑠𝑠2 𝑟𝑟 + 𝑎𝑎 + 𝑥𝑥 = 𝑠𝑠2 ⊢ ⋯
𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 , 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑠𝑠2 ⊢ 𝑦𝑦 ≠ 0 ∧ 𝑠𝑠1 = 𝑥𝑥 + 𝑟𝑟 ⇒ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑠𝑠1 = 𝑥𝑥 + 𝑟𝑟, 𝑦𝑦 ≠ 0 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2
𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑠𝑠1 = 𝑥𝑥 + 𝑟𝑟, 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑠𝑠1 , 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑧𝑧 = 0 ∨

𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑧𝑧 = 𝑥𝑥 + 𝑟𝑟

𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑟𝑟 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑟𝑟 = 𝑎𝑎 ∨

𝑦𝑦 ≠ 0 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑟𝑟

?SMT?

𝑦𝑦 ↦ 𝑦𝑦 − 1, 𝑠𝑠1 ↦ 𝑟𝑟, 𝑎𝑎 ↦ 𝑎𝑎 + 𝑥𝑥

QED



Proof-Search Heuristics

• Use the following rule application strategy:
• Select some 𝑃𝑃 𝑡𝑡  and apply UNFOLD
• Try to make a cycle whenever a new sequent is added
• If failed, apply VALID

• VALID rule uses
• SMT solvers: provide efficient and powerful reasoning about data structures 

(e.g., integers, reals, algebraic data structures) but predicates are abstracted 
as uninterpreted ones 

• CHC solvers: provide bit costly but powerful reasoning about inductive 
predicates
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A Prototype Entailment Checker MuCyc
http://lfp.dip.jp/rcaml/ 
• Use Z3 and SPACER respectively as the backend SMT and CHC solvers

• Integrated with a dependent refinement type based CHC generation tool RCaml for OCaml

• Currently support entailments in

• The fragment corresponding to CHCs: 𝑃𝑃1 𝑥𝑥1 , … , 𝑃𝑃𝑛𝑛 𝑥𝑥𝑛𝑛 ⊨ 𝜙𝜙 and

• 𝑃𝑃1 𝑥𝑥1 , … , 𝑃𝑃𝑛𝑛 𝑥𝑥𝑛𝑛 ⊨ 𝑄𝑄 𝑦⃗𝑦 , which is useful for program refinement verification and proving 
lemmas to prove entailments in the above fragment (cf. commutativity proof of mult)

• Can prove and then exploit lemmas which are:

• User-supplied,

• Heuristically conjectured from the given constraints, or

• Automatically generated by an abstract interpreter

• Can generate a counterexample (if any)
20622 May 2025  EPIT, Aussois, France

http://lfp.dip.jp/rcaml/


Experiments on IsaPlanner Benchmark Set
• 85 (mostly) relational verification problems of

total functions on inductively defined data structures

20722 May 2025  EPIT, Aussois, France

Inductive Theorem Prover #Successfully Proved
RCaml 68
Zeno 82 [Sonnex+ ’12]

HipSpec 80 [Claessen+ ’13]

CVC4 80 [Reynolds+ ’15]

ACL2s 74 (according to [Sonnex+ ’12])

IsaPlanner 47 (according to [Sonnex+ ’12])

Dafny 45 (according to [Sonnex+ ’12])

Support automatic 
lemma discovery &
goal generalization



Experiments on Benchmark Programs with 
Advanced Language Features & Side-Effects
• 30 (mostly) relational verification problems for:

• Complex integer functions: Ackermann, McCarthy91
• Nonlinear real functions: dyn_sys
• Higher-order functions: fold_left, fold_right, repeat, find, ...
• Exceptions: find
• Non-terminating functions: mult, sum, …
• Non-deterministic functions: randpos
• Imperative procedures: mult_Ccode

20822 May 2025  EPIT, Aussois, France
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• 28 (2 required lemmas) successfully proved by MuCyc

• 3 proved by CHC constraint solver 𝝁𝝁Z PDR
• 2 proved by inductive theorem prover CVC4 (if inductive 

predicates are encoded using uninterpreted functions)



Summary
• The integration of SMT solving, CHC solving, and cyclic-proof search resulted in an 

automated relational verifier across programs in various paradigms with advanced 
language features and side-effects

• Current limitations
• Limited support for automatic lemma discovery and goal generalization
• Does not support the full fragment of 𝝁𝝁CLP

21022 May 2025  EPIT, Aussois, France



Course Schedule

• Wed. 21 May (8:50-10:30)
1. Reduction from software verification to fixed-point logic validity checking
2. Predicate constraint solving for validity checking

• Thu. 22 May (11:20-12:20)
3. Cyclic-proof search for validity checking
4. Game solving for validity checking
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4. Game Solving
for Validity Checking
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Outline

• A unified primal-dual framework for verification methods based on 
the concept of Lagrangians [POPL 2025]

• We derive a validity checking method for 𝜇𝜇CLP based on game solving by 
analyzing, organizing, and integrating existing software verification and game 
solving techniques within the framework

21 May 2025  EPIT, Aussois, France 213

[POPL 2025] Tsukada et al. A Primal-Dual Perspective on Program Verification Algorithms.



Duality in verification algorithms

• Many algorithms in verification have a primal-dual “feel”
  – duality between “proofs” and “counterexamples”

• CEGAR, ICE Learning, IC3/PDR
• CDCL, CDCL(T), MBQI

• Recent algorithms exploit formal duality
• [POPL’22] Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken.

                  Induction Duality: Primal-Dual Search for Invariants.

• [POPL’23] Hiroshi Unno, Tachio Terauchi, Yu Gu, Eric Koskinen.
                   Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.
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Our contribution

• Lagrangian-based unifying framework for primal-dual algorithms
• Inspired by linear programming
• Captures many verification algorithms

• CEGAR, ICE-learning, primal-dual Houdini, termination verification 
algorithms, and quantified SMT solving

• Interesting theoretical properties

• Interesting comparisons between existing algorithms

• Derivation of a new validity checking method for 𝜇𝜇CLP
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Generalized Lagrangian duality
• Linear optimization:

𝐿𝐿: ℝ𝑛𝑛 × ℝ𝑚𝑚 → ℝ
𝐿𝐿 𝑥𝑥, 𝜆𝜆 = 𝑓𝑓 𝑥𝑥 + 𝜆𝜆, 𝑔𝑔 𝑥𝑥  

sup𝜆𝜆inf𝑥𝑥𝐿𝐿 𝑥𝑥, 𝜆𝜆 = 𝐿𝐿 𝑥𝑥∗, 𝜆𝜆∗ = inf𝑥𝑥sup𝜆𝜆𝐿𝐿 𝑥𝑥, 𝜆𝜆
• Generalization:

• Let 𝑋𝑋, 𝑌𝑌 be general sets, and (𝑍𝑍, ≤) a totally-ordered complete lattice
𝐿𝐿: 𝑋𝑋 × 𝑌𝑌 → 𝑍𝑍

sup𝑦𝑦inf𝑥𝑥𝐿𝐿 𝑥𝑥, 𝑦𝑦 = inf𝑥𝑥sup𝑦𝑦𝐿𝐿 𝑥𝑥, 𝑦𝑦
sup𝑦𝑦inf𝑥𝑥𝐿𝐿 𝑥𝑥, 𝑦𝑦 ≤ inf𝑥𝑥sup𝑦𝑦𝐿𝐿 𝑥𝑥, 𝑦𝑦
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Strong duality
(May not hold)

Weak duality
Always holds
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Lagrangian duality for program verification

𝐿𝐿: 𝑋𝑋 × 𝑌𝑌 → 𝑍𝑍
sup
y∈𝑌𝑌

inf
𝑥𝑥∈𝑋𝑋

𝐿𝐿(𝑥𝑥, 𝑦𝑦) ≤ inf
x∈𝑋𝑋

sup
𝑦𝑦∈𝑌𝑌

𝐿𝐿 𝑥𝑥, 𝑦𝑦

• 𝑋𝑋 – space of possible (partial, abstract) counterexamples
• 𝑌𝑌 – space of possible (partial) proofs

• 𝐿𝐿 𝑥𝑥, 𝑦𝑦 = �−1 if 𝑥𝑥 is a counterexample that shows 𝑦𝑦 isn′t a valid proof 
1 otherwise

• 2-player game: 𝑋𝑋 player tries to minimize 𝐿𝐿 with a good counterexample
                            𝑌𝑌 player tries to maximize 𝐿𝐿 with a good proof
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Primal-dual procedure

218

𝑥𝑥

𝑦𝑦

𝐿𝐿 = 1

𝐿𝐿 = −1
let 𝑥𝑥 ∈ 𝑋𝑋, 𝑦𝑦 ∈ 𝑌𝑌
while T:
    if inf

x′∈𝑋𝑋
𝐿𝐿 𝑥𝑥′, 𝑦𝑦 ≥ 0:

        return (dual!, 𝑦𝑦)
    update 𝑥𝑥 s.t. 𝐿𝐿 𝑥𝑥, 𝑦𝑦 < 0 
    if sup

y′∈𝑌𝑌
𝐿𝐿 𝑥𝑥, 𝑦𝑦′ ≤ 0:

        return (primal!, 𝑥𝑥)
    update 𝑦𝑦 s.t. 𝐿𝐿 𝑥𝑥, 𝑦𝑦 > 0 
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Primal-dual procedure

219

𝑥𝑥

𝑦𝑦

𝐿𝐿 = 1

𝐿𝐿 = −1

𝐿𝐿 = 1

let 𝑥𝑥 ∈ 𝑋𝑋, 𝑦𝑦 ∈ 𝑌𝑌
while T:
    if inf

x′∈𝑋𝑋
𝐿𝐿 𝑥𝑥′, 𝑦𝑦 ≥ 0:

        return (dual!, 𝑦𝑦)
    update 𝑥𝑥 s.t. 𝐿𝐿 𝑥𝑥, 𝑦𝑦 < 0 
    if sup

y′∈𝑌𝑌
𝐿𝐿 𝑥𝑥, 𝑦𝑦′ ≤ 0:

        return (primal!, 𝑥𝑥)
    update 𝑦𝑦 s.t. 𝐿𝐿 𝑥𝑥, 𝑦𝑦 > 0 
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Monotonicity and progress

220

𝐿𝐿: 𝑋𝑋 × 𝑌𝑌 → 𝑍𝑍
sup
y∈𝑌𝑌

inf
𝑥𝑥∈𝑋𝑋

𝐿𝐿(𝑥𝑥, 𝑦𝑦) ≤ inf
x∈𝑋𝑋

sup
𝑦𝑦∈𝑌𝑌

𝐿𝐿 𝑥𝑥, 𝑦𝑦

• 𝑋𝑋 – space of possible (partial, abstract) counterexamples
• 𝑌𝑌 – space of possible (partial) proofs
• If 𝑋𝑋 or 𝑌𝑌 (or both) have a lattice structure and L is monotone on Y or anti-monotone 

on X then we can ensure progress
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Primal-dual procedure

221

let 𝑥𝑥 ∈ 𝑋𝑋, 𝑦𝑦 ∈ 𝑌𝑌
while T:
    if inf

x′∈𝑋𝑋
𝐿𝐿 𝑥𝑥′, 𝑦𝑦 ≥ 0:

        return (dual!, 𝑦𝑦)
    update 𝑥𝑥 s.t. 𝐿𝐿 𝑥𝑥, 𝑦𝑦 < 0 
    if sup

y′∈𝑌𝑌
𝐿𝐿 𝑥𝑥, 𝑦𝑦′ ≤ 0:

        return (primal!, 𝑥𝑥)
    update 𝑦𝑦 s.t. 𝐿𝐿 𝑥𝑥, 𝑦𝑦 > 0 
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Primal-dual procedure
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Theorems
• (Partial) correctness
• Progress under monotonicity
• Termination via stratification

let 𝑥𝑥 ∈ 𝑋𝑋, 𝑦𝑦 ∈ 𝑌𝑌
while T:
    if inf

x′∈𝑋𝑋
𝐿𝐿 𝑥𝑥′, 𝑦𝑦 ≥ 0:

        return (dual!, 𝑦𝑦)
    update 𝑥𝑥 s.t. 𝐿𝐿 𝑥𝑥, 𝑦𝑦 < 0 
    if sup

y′∈𝑌𝑌
𝐿𝐿 𝑥𝑥, 𝑦𝑦′ ≤ 0:

        return (primal!, 𝑥𝑥)
    update 𝑦𝑦 s.t. 𝐿𝐿 𝑥𝑥, 𝑦𝑦 > 0 
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Example: CEGAR (counterexample guided 
abstraction refinement)
• Let 𝐴𝐴 ∈ 𝒫𝒫𝑓𝑓𝑓𝑓𝑓𝑓 𝑃𝑃  be a finite set of predicates

• Partition the state space 𝑆𝑆 to 2 𝐴𝐴  equivalence classes of states
• Check the abstract system for safety

• Safe  terminate (original system is safe)
• Not safe  Refine 𝐴𝐴 or terminate (original system not safe)

223

𝑠𝑠1 ≈𝐴𝐴 𝑠𝑠2𝐼𝐼 ∋ 𝑠𝑠0 𝑠𝑠3 ≈𝐴𝐴 𝑠𝑠4 𝑠𝑠5 ≈𝐴𝐴 𝑠𝑠6 𝑠𝑠7 ∈ 𝐵𝐵
≉𝐴𝐴∪ 𝑝𝑝
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Example: CEGAR (counterexample guided 
abstraction refinement)

• 𝑋𝑋 = 𝑆𝑆∗, 𝑌𝑌 = 𝒫𝒫𝑓𝑓𝑓𝑓𝑓𝑓 𝑃𝑃  ordered by ⊆

• 𝐿𝐿CEGAR 𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛 , 𝐴𝐴 = �−1 if 𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛  is an abs. cex. trace to A
1 otherwise

224

𝑠𝑠1 ≈𝐴𝐴 𝑠𝑠2𝐼𝐼 ∋ 𝑠𝑠0 𝑠𝑠3 ≈𝐴𝐴 𝑠𝑠4 𝑠𝑠5 ≈𝐴𝐴 𝑠𝑠6 𝑠𝑠7 ∈ 𝐵𝐵
≉𝐴𝐴∪ 𝑝𝑝
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Example: ICE learning / CEGIS

• Let 𝑆𝑆+ ∈ 𝒫𝒫𝑓𝑓𝑓𝑓𝑓𝑓(𝑆𝑆) be a finite set of initial states,
       𝑆𝑆− ∈ 𝒫𝒫𝑓𝑓𝑓𝑓𝑓𝑓(𝑆𝑆) a finite set of bad states, and
       𝑆𝑆→ ∈ 𝒫𝒫𝑓𝑓𝑓𝑓𝑓𝑓(𝑆𝑆 × 𝑆𝑆) a finite set of transitions

• Find a predicate 𝑝𝑝 ∈ 𝑃𝑃 that satisfies 𝑆𝑆+, 𝑆𝑆→, 𝑆𝑆−

• Check if 𝑝𝑝 is an inductive invariant for the original system
• If yes, terminate (original system is safe)
• If not, refine 𝑆𝑆+, 𝑆𝑆→, 𝑆𝑆−

225

+ −
+

+
−

[CAV 2021] Unno et al. Constraint-Based Relational Verification.
[CAV 2014] Garg et al. ICE: A Robust Framework for Learning Invariants.
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Example: ICE learning / CEGIS

• 𝑋𝑋 = 𝒫𝒫𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆 × 𝒫𝒫𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆 × 𝑆𝑆 × 𝒫𝒫𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆
• ordered by ⊆×⊆×⊆

• 𝑌𝑌 =  𝑃𝑃

• 𝐿𝐿ICE 𝑆𝑆+, 𝑆𝑆→, 𝑆𝑆− , 𝑝𝑝 = � 1 if 𝑝𝑝 is an inductive invariant for 𝑆𝑆+, 𝑆𝑆→, 𝑆𝑆−
−1 otherwise
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+ −
+

+
−
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Example: primal-dual Houdini

• Primal-dual Houdini [POPL 2022] uses a dual transition system that represents incremental 
induction proofs

• 𝑋𝑋 = 𝒫𝒫𝑓𝑓𝑓𝑓𝑓𝑓(𝑆𝑆), 𝑌𝑌 = 𝒫𝒫𝑓𝑓𝑓𝑓𝑓𝑓(𝑃𝑃)
• 𝐿𝐿pdH 𝑥𝑥, 𝑦𝑦 =

�
−1 if no subset of 𝑦𝑦 is a safe inductive invariant for the TS reduced to 𝑥𝑥

1 if no subset of 𝑥𝑥 is a safe inductive invariant for the dual TS reduced to 𝑦𝑦
0 otherwise

• Well-definedness of this Lagrangian is non-trivial
• It uses three values and not just two
• The Lagrangian is symmetric, and the algorithm makes monotonic progress on both 

sides

22721 May 2025  EPIT, Aussois, France
[POPL 2022] Padon et al. Induction Duality: Primal-Dual Search for Invariants.



Lagrangians for Termination

• Termination is typically proven with ranking functions
• ICE for termination [CAV 2021rel, CAV2021dt]

• CEGAR for termination? How to make progress on the side of proofs?
• Disjunctive well-founded relations (transition invariants) [LICS 2004]
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[CAV 2021rel] Unno et al. Constraint-based Relational Verification.
[CAV 2021dt] Kura et al. Decision Tree Learning in CEGIS-Based Termination Analysis.
[LICS 2004] Podelski and Rybalchenko. Transition Invariants.



Lagrangian for Quantified Formulas

• Consider a formula
• Define 𝑋𝑋 and 𝑌𝑌 to be strategies (Skolem functions) for universal and existential quantifiers

• Strong duality:     sup
y∈𝑌𝑌

inf
𝑥𝑥∈𝑋𝑋

𝐿𝐿(𝑥𝑥, 𝑦𝑦) = inf
x∈𝑋𝑋

sup
𝑦𝑦∈𝑌𝑌

𝐿𝐿(𝑥𝑥, 𝑦𝑦) = �−1 if the formula is false
1 if the formula is true

• What about monotonicity and progress?
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Strategy Skeletons [IJCAI 2016]

• Rather than Skolem functions, let X and Y represent sets of possible 
functions represented by Strategy Skeletons

• Roughly, a set of finite terms
• Then, the obtained Lagrangian is anti-monotone (on X) and 

monotone on Y, and the algorithm of [IJCAI 2016] can be seens as an 
instance of the primal-dual Lagrangian-based procedures

• Interestingly, strong duality holds
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[IJCAI 2016] Farzan and Kincaid. Linear Arithmetic Satisfiability via Strategy Improvement.
21 May 2025  EPIT, Aussois, France



Lagrangian for Fixed-Point Logic Formulas

• Consider a formula
• Define 𝑋𝑋 and 𝑌𝑌 to be strategies (ranking functions) for 𝜈𝜈 and 𝜇𝜇 operators,

as well as strategies (Skolem functions) for ∀ and ∃ quantifiers)

• What about monotonicity and progress?
• Strategy skeletons for quantifiers and disjunctively well-founded relations for fixpoint operators
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∀𝑧𝑧. 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑦𝑦 = 0 ∨ 𝐵𝐵 𝑦𝑦 − 1 𝑥𝑥 ∧ 𝐴𝐴 𝑥𝑥 + 1 𝑧𝑧

𝑋𝑋 = Skolem funcion for 𝑧𝑧 × ranking function for 𝜈𝜈𝜈𝜈 = 𝕫𝕫 × 𝔑𝔑
𝑌𝑌 = ranking function for 𝜇𝜇𝜇𝜇 = 𝔑𝔑

𝐿𝐿: 𝑋𝑋 × 𝑌𝑌 → −1,1 is given by
𝐿𝐿 𝑠𝑠𝑧𝑧, 𝑟𝑟𝐴𝐴 , 𝑟𝑟𝐵𝐵 = 1 ⇔ 𝑟𝑟𝐵𝐵  strategy defeats 𝑠𝑠𝑧𝑧, 𝑟𝑟𝐴𝐴  strategy



An example play of the game using

𝑠𝑠𝑧𝑧 = 1, 𝑟𝑟𝐴𝐴 𝑥𝑥 = max 3 − 𝑥𝑥, 0  𝑟𝑟𝐵𝐵 𝑥𝑥 = max 𝑥𝑥, 0
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𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑦𝑦 = 0 ∨ 𝐵𝐵 𝑦𝑦 − 1 𝑥𝑥 ∧ 𝐴𝐴 𝑥𝑥 + 1 1
→ 𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑦𝑦 = 0 ∨ 𝐵𝐵 𝑦𝑦 − 1 1 ∧ 𝜈𝜈𝜈𝜈. ⋯ 2
→ 𝜇𝜇𝜇𝜇. 𝜆𝜆𝜆𝜆. 𝑦𝑦 = 0 ∨ 𝐵𝐵 𝑦𝑦 − 1 0 ∧ 𝜈𝜈𝜈𝜈. ⋯ 2
→ 0 = 0 ∧ 𝜈𝜈𝜈𝜈. ⋯ 2
→∗ 𝜈𝜈𝜈𝜈. ⋯ 3
→∗ 𝜈𝜈𝜈𝜈. ⋯ 4
→∗ ⊤ (𝑋𝑋 player, i. e. , the refuter failed!)

𝑟𝑟𝐵𝐵 1 > 𝑟𝑟𝐵𝐵 0

𝑟𝑟𝐴𝐴 2 > 𝑟𝑟𝐴𝐴 3

𝑟𝑟𝐴𝐴 2 > 𝑟𝑟𝐴𝐴 4
𝑟𝑟𝐴𝐴 3 ≯ 𝑟𝑟𝐴𝐴 4



Implementation and Evaluation

• Implemented MuStrat in OCaml 5, using Z3 and SPACER as the 
backend SMT and CHC solvers
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Primal-dual algorithm Makes progress on

CEGAR Proofs

ICE learning Counterexamples

Primal-dual Houdini Both (fully symmetric)

CEGAR for termination Proofs
• using disjunctive rankings [LICS 2004]

Ranking function synthesis [CAV2021dt, CAV 2021rel] Counterexamples

Solving quantified formulas with strategy 
skeletons [IJCAI 2016]

Both
• using strategy skeletons

MuStrat: New algorithm for quantified fixpoint 
logic over arithmetic

Both
• strategy skeletons + disjunctive rankings
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[CAV 2021rel] Unno et al. Constraint-based Relational Verification.
[CAV 2021dt] Kura et al. Decision Tree Learning in CEGIS-Based Termination Analysis.
[LICS 2004] Podelski and Rybalchenko. Transition Invariants.
[IJCAI 2016] Farzan and Kincaid. Linear Arithmetic Satisfiability via Strategy Improvement.



Weak duality vs strong duality

235

𝐿𝐿: 𝑋𝑋 × 𝑌𝑌 → 𝑍𝑍
sup
y∈𝑌𝑌

inf
𝑥𝑥∈𝑋𝑋

𝐿𝐿(𝑥𝑥, 𝑦𝑦) ≤ inf
x∈𝑋𝑋

sup
𝑦𝑦∈𝑌𝑌

𝐿𝐿 𝑥𝑥, 𝑦𝑦

• 𝑋𝑋 – space of possible (partial, abstract) counterexamples
• 𝑌𝑌 – space of possible (partial) proofs
• When does strong duality  sup

y∈𝑌𝑌
inf
𝑥𝑥∈𝑋𝑋

𝐿𝐿(𝑥𝑥, 𝑦𝑦) = inf
x∈𝑋𝑋

sup
𝑦𝑦∈𝑌𝑌

𝐿𝐿 𝑥𝑥, 𝑦𝑦  hold?

• If there is either a valid proof or a counterexample
• Holds in finite-state cases, or in idealized versions
• Analogous to relative completeness
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Summary
• Lagrangian Duality

• General framework for primal-dual verification algorithms
• Inspired by a well-known duality from linear programming
• Captures several existing algorithms
• Sheds new light on existing algorithms, can lead to new algorithms
• Many more details in the paper

• New formulation of primal-dual Houdini
• Lagrangian-based design of new algorithm for quantified fixpoint logic
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Conclusion

1. Reduction from software verification to fixed-point logic validity checking
2. Predicate constraint solving for validity checking
3. Cyclic-proof search for validity checking
4. Game solving for validity checking

• By analyzing, organizing, and integrating existing verification methods based 
on unified logical frameworks grounded in fixed-point logics, predicate 
constraint solving, cyclic-proof search, and game solving, we can derive 
new verification methods that are correct, efficient, and highly extensible
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Ongoing and Future Work

• Cyclic-proof search for the full fragment of 𝜇𝜇CLP
• Lower and upper bounds checking for the full fragment of the 

quantitative extension of HFL
• Nice result for a first-order fragment without fixed-point alternation [arXiv 2025]
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[arXiv 2025] Kura et al. Ranking and Invariants for Lower-Bound Inference in Quantitative Verification of Probabilistic Programs.
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