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Non-wellfounded proof theory studies proofs as possibly infinite (but finitely branching) trees, where
logical consistency is maintained by means of global conditions called progressing (or validity) criteria
(see, e.g., [13, 6]). In this setting, the so-called regular (also called cyclic) proofs receive a special
attention, in that they admit a finite description given in terms of (possibly cyclic) directed graphs.

In joint work with Das [3, 4], the second author presented non-wellfounded proof systems charac-
terising the complexity classes P (the problems decidable in polynomial time), ELEMENTARY (the
problems decidable in elementary time), and P/poly (the problems decidable in non-uniform polynomial
time) 1. These systems recast in a non-wellfounded proof-theoretic setting the principle of safe recursion
introduced by the celebrated work of Bellantoni and Cook [2], a cornerstone of Implicit Computational
Complexity (ICC). Intuitively, ICC studies characterisations of complexity classes without reference to a
specific underlying machine model or to explicit bounds on computational resources, unlike conventional
complexity theory.

In this talk we follow an alternative route to P and P/poly based on linear logic [8]. Roughly, linear
logic (LL) is a refinement of both classical and intuitionistic logic that allows a fine-grained control over
computational resources, implemented via the so-called exponential modalities (denoted by ! and ?).
Linear logic has inspired a variety of methods for taming complexity in the style of ICC. The key idea is
to weaken the inference rules for the exponential modality ! to induce a bound on cut-elimination, hence
reducing the computational strength of the system (see, e.g., [8, 9, 5]).

Continuing this tradition, in a series of papers [11, 12] Mazza introduced parsimonious logic, a
variant of linear logic where the exponential modality ! satisfies Milner’s law (i.e., !A ˛ A⊗ !A) and
invalidates the implications !A ⊸ !!A (digging) and !A ⊸ !A⊗ !A (contraction). Computationally, this
allows us to interpret the proof of a formula !A as a stream over (a finite set of) proofs of A, i.e., as a
greatest fixed point.

In [12], Mazza and Terui studied the system nuPL∀ℓ, a second-order extension of parsimonious
logic that implements a proof-theoretic counterpart of the notion of non-uniformity from computational
complexity, and proved that the system characterises P/poly. As a straightforward consequence of this
result, the fully uniform version of this system, called PL∀ℓ, captures the class P.

In this talk we investigate non-wellfounded versions of the systems PL∀ℓ and nuPL∀ℓ, that we denote
rPLL∞

2 and wrPLL∞
2 , where proof-theoretical non-uniformity is modelled by weak regularity, a relaxation

of the regularity condition for non-wellfounded proofs. The proof-theory of the propositional formulation
of rPLL∞

2 and wrPLL∞
2 has already been studied in a previous work by the present authors [1], where a

continuous cut-elimination result for these systems is established.
As our main contribution, we prove that rPLL∞

2 and wrPLL∞
2 duly characterise the complexity classes

P and P/poly, respectively. First, we show a polynomial modulus of continuity for cut-elimination, from

1More precisely, P/poly is the class of functions computable in polynomial time by Turing machines with access to poly-
nomial advice or, equivalently, decidable by non-uniform families of polynomial-size circuits.
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which we infer that wrPLL∞
2 is sound for P/poly (and that rPLL∞

2 is sound for P). Completeness requires
a series of intermediate steps. We first introduce the type system nuPTA2, which implements some
restricted form of oracle-based computation. Then we show an encoding of polynomial time Turing
machines with (polynomial) advice in nuPTA2, essentially by adapting standard methods from [10, 7]
to the setting of non-uniform computation. This allows us to prove that nuPTA2 is complete for P/poly.
Thirdly, we define a translation from nuPTA2 to nuPL∀ℓ. Finally, we show that computation over strings
in nuPL∀ℓ can be simulated within wrPLL∞

2 . We then apply a similar completeness argument for rPLL∞
2 .

On a technical side, we stress that wrPLL∞
2 and rPLL∞

2 are free of the so-called co-absorption rule
from parsimonious logic, which expresses computationally the “push" operation on streams. Therefore,
as a byproduct of our results, we show that co-absorption is not essential for establishing the characteri-
sation theorems in [12].
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