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We prove a cut-elimination theorem for the circular modal µ-calculus. More precisely, we establish
weak infinitary normalization of a cut-elimination procedure for the non-wellfounded system µLK∞

◻
,

using methods from linear logic and its exponential modalities. When sequents are sets of formulas,
we obtain weak normalization for the circular modal µ-calculus by coupling cut-elimination with
regularization.

1 Introduction

Studies on the modal µ-calculus have been extremely fruitful since Kozen’s seminal paper [6], investi-
gating its properties by employing a number of approaches (model-theoretic, proof-theoretic, automata-
theoretic, complexity-theoretic, etc). Still, cut-elimination, despite being a crucial property from a proof-
theoretic perspective, only received partial solutions, either in the form of cut-admissibility statements
(usually deduced from a completeness theorem and therefore non effective) or syntactic cut-elimination
results capturing only a fragment of the calculus [10, 4, 7, 8, 1]. The present work aims at contributing
to syntactic cut-elimination theorems for the modal µ-calculus for non-wellfounded proofs.

Cut-admissibility vs cut-elimination. The treatment of the cut-inference in sequent-based proof-
systems follows two main traditions. First, one can consider cut-free proof systems and establish that the
cut-inference is admissible: in that tradition, the cut-inference lives at the meta level). Alternatively, one
can consider that the cut inference lives at the object-level and is a fundamental piece of proofs, estab-
lishing that it is eliminable thus ensuring the sub-formula property (and its numerous important conse-
quences, ranging from consistency to interpolation properties). This second tradition often comes with
the investigation of a syntactic, or effective, approach to cut-elimination, consisting in a cut-reduction
relation on proofs, shown to be (at least) weakly normalizing, the normal forms being cut-free proofs.
In several settings (most notably LJ and LL), such cut-reductions may have a computational interpreta-
tion, the starting point of Curry-Howard correspondence in the sequent-based framework [5] that can be
extended to classical logic.

In this abstract, we prove a syntactic cut-elimination theorem for the circular modal µ-calculus.
More precisely, we prove the infinitary weak normalization of a cut-elimination procedure for the non-
wellfounded system µLK∞◻ by setting up an intermediary linear logic with the ◻ modality, µLL∞◻ , for
which we prove an infinitary weak normalization theorem, a corollary of which is, by considering the
classical skeletons of linear cut-reductions, the desired normalization result for µLK∞◻ . While the re-
sulting normalization process is infinitary, we can adapt our µLK∞◻ proofs to a system where sequents
are sets of formulas and we can simultaneously use a regularisation procedure on them to get a circular
cut-free representation of it in finitely many steps.
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(a) ⊢ A[µX .A/X],Γ
µr

⊢ µX .A,Γ
(b) ⊢ A[νX .A/X],Γ

νr
⊢ νX .A,Γ

(c) ⊢ A,Γ
◻p

⊢ ◻A,◊Γ

Figure 1: Fragment of µLK∞◻

Background on sequent calculi We first define the different formulas and rules for the different in-
finitary systems that we consider, namely µLK∞, µLK∞◻ , µLL∞, µMALL∞.

Formulas of µLK∞◻ will be the formulas of LK and modalities from modal calculus, together with
fixed points: F,G ∶∶= a ∈A ∣ a� ∣X ∈ V ∣ µX .F ∣ νX .F ∣ ◻F ∣ ◊F ∣F ∨G ∣F ∧G ∣ F ∣T. Formulas of µLK∞

will be the ◻,◊-free formulas of µLK∞. Negation (_)⊥ is not a connective but an operation defined on all
formulas by de Morgan duality, allowing us to define our rules in a one-sided sequent system. Two-sided
sequent calculi, that we shall refer to in few places, can be recovered in a usual way (only two-sided
sequents will we consider the → and ⊸ connectives). Sequents are lists of formulas, and the rules for
these systems will follow the usual rules of LK, with additives and and or, a multiplicative (cut)-rule
and with the addition of rules for µ,ν and for the modality which is depicted in figure 1. We define
pre-proofs of µLK∞ and µLK∞◻ , the trees co-inductively generated by rules of each of these systems.
We add a global validity condition on these pre-proofs in order for them to be valid. This criterion asks
for each infinite branch of the tree to contain a valid thread, that is a sequence of direct sub-formulas,
the minimal (for sub-formula ordering) recurring (that is, which is infinitely often principal) formula is a
ν-formula. A valid pre-proof and is simply called a proof.

Formulas of µLL∞ are: F,G ∶∶= a ∣ a� ∣ X ∣ µX .F ∣ νX .F ∣ F `G ∣ F ⊗G ∣ � ∣ 1 ∣ F ⊕G ∣ F & G ∣ 0 ∣ ⊺ ∣
?F ∣ !F. (with a ∈ A,X ∈ V). Formulas of µMALL∞ will be the ?,!-free formulas of µLL∞. Pre-proofs
of µLL∞ (resp. µMALL∞) will be the trees co-inductively generated by the rules of LL (resp. MALL),
together with the fixed-point rules of Fig. 1.(a–b). Threads, validity and proofs are defined as above.

2 A Linear Modal µ-calculus

To prove the cut-elimination of µLK∞◻ , our approach will consist in encoding it into a new, more struc-
tured system, µLL∞◻ , following the translation from µLK∞ to µLL∞ done in [11] that we recall below.

Linear embedding of µLK∞. Cut-elimination of µLK∞ [11] is proved using a linear translation in
µLL∞, which is described for the two-sided version of the two systems:

(A1∨A2)
●
∶= !(?A1

●
⊕?A2

●
) F● ∶= !0 (µX .A)● ∶= !µX .?A● a● ∶= !a (A1→ A2)

●
∶= !(?A1

●
⊸ ?A2

●
)

(A1∧A2)
●
∶= !(?A1

●&?A2
●
) ⊺

●
∶= !⊺ (νX .A)● ∶= !νX .?A● X● ∶= !X (Γ ⊢ ∆)

●
∶= Γ

●
⊢ ?∆

●.

Note that the succedents the translated sequent are ?-formulas, while the antecedents are !-formulas. We
then translate proofs by corecursion on the rules of the µLK∞ proof.

On the need of structural rules on ◊. To motivate the system µLL∞◻ , we need to understand what
problem will be encountered by the translation of µLK∞◻ in it. Let us consider an example, where we
want to translate an instance of the modal rule:

⊢ A,∆
◻p

⊢ ◻A,◊∆
↝

⊢ !◻A●,◊∆
●

?d
⊢ ?!◻A●,◊∆

●
?d,!p

⊢ ?!◻A●,?!◊∆
●
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Following sequent translation, we should start with the sequent (from bottom to top) ⊢ ?!◻A●,?!◊∆
● and

end up with ⊢ ?A●,?∆
●. Still, in our attempt to translate this rule we are left with an unprovable sequent

where a !-formula is in a context where there are ◊-formulas, not ?-formulas. It would therefore be con-
venient to have promotion contexts possibly prefixed with ◊ From cut-elimination steps of exponentials,
we have that adding ◊-formulas in the context of a promotion imposes to propagate all the structural
rules of ? to ◊. This results in a system that extends µLL∞ with structural rules on ◊ (◊c and ◊w), as
well as the usual modal rule from modal µ-calculus (◻p) and a relaxed constraint on the context of the
promotion rule (!◊p ):

⊢ A,Γ
◻p

⊢ ◻A,◊Γ
,

⊢ ◊A,◊A,Γ
◊c

⊢ ◊A,Γ
, ⊢ Γ

◊w
⊢ ◊A,Γ ,

⊢ A,?Γ,◊∆
!◊p

⊢ !A,?Γ,◊∆
.

3 Cut-elimination theorems

An infinitary normalization theorem (for fair reduction sequences) of µMALL∞ is proved in [2]. The
condition of fairness ensures that each possible reduction is fired in finite time. The next paragraphs give
extensions to this result in other systems.

Cut-elimination of µLL∞. We recall the cut-elimination theorem for µLL∞ [11], where a translation
from µLL∞ into µMALL∞, is used. Exponential formulas are encoded by:

(?A)● = µX .(A●⊕(�⊕(X `X))) (!A)● = νX .(A●&(1&(X ⊗X))),

from which we can get the derivability of the four exponential rules (?d
●),(?w

●),(?c
●) and (!p

●). The
proof of cut-elimination of µLL∞ is then done by exploiting the cut-elimination theorem of µMALL∞.
Using the following translation for the modal rule:

⊢ A,Γ
!◊p

⊢ ◻A,◊Γ
↝

⊢ A●,Γ●
(µ,⊕1

)
⋆

⊢ A●,(◊Γ)
●

1
⊢ 1

(◊w
●
)
⋆

⊢ 1,(◊Γ)
●

⊢ (◻A)●,(◊Γ)
●

⊢ (◻A)●,(◊Γ)
●

⊗

⊢ (◻A)●⊗(◻A)●,(◊Γ)
●,(◊Γ)

●

(◊c
●
)
⋆

⊢ (◻A)●⊗(◻A)●,(◊Γ)
●

&×2
⊢ A●&(1 &((◻A)●⊗(◻A)●)),(◊Γ)

●

ν
⊢ (◻A)●,(◊Γ)

●

we can adapt the proof of µLL∞ cut-elimination and get a proof of cut-elimination for µLK∞◻ . Instead,
we use the µLL∞cut-elimination theorem as a lemma, making our approach more modular and more
easy to adapt to future extensions of µLL∞ validity condition or variants of its cut-elimination proof.

Cut-elimination of µLL∞◻ . We now give a translation of µLL∞◻ into µLL∞ using directly the results of
[11] to deduce µLL∞◻ cut-elimination in a more modular way. The translation for formulas will simply
be the following one: (◊A)○ ∶= ?A○ and (◻A)○ ∶= !A○.

To extend this translation to µLL∞◻ proofs, we need to translate the structural rules for ◊, ◊c and ◊w,
which can be done easily using the contraction and the weakening of ?. We also need the translation of
the modal rule, which simply coincides with LL functorial promotion and is thus derivable in LL:

⊢ A,Γ
◻

⊢ ◻A,◊Γ
↝

⊢ A○,Γ○
(?d)

⋆

⊢ A○,?Γ
○

!p
⊢ !A○,?Γ

○
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We notice that this translation preserves validity both ways. We have to make sure (mcut)-reduction
sequences are robust under this translation. In fact, we even haveto make sure that one-step reduction-
rules is simulated by a finite number of reduction steps in the translation. This is the object of the lemma
and of the corollary, which is followed by our final theorem:

Lemma 1. Consider a µLL∞◻ reduction step π → π
′. There exist a finite number of µLL∞ proofs

θ0, . . . ,θn such that π
○ ∶= θ0, π

′○ = θn, and θ0→ . . .→ θn.

Corollary 1. For every fair µLL∞◻ reduction sequence (πi)i∈N, there exists a fair µLL∞ reduction se-
quence (θi)i∈N and an extraction ε such that for each i, π

○
i = θε(i).

Theorem 1. Every fair cut-reduction sequence of µLL∞◻ converges to a µLL∞◻ proof.

Cut-elimination of µLK∞◻ . We extend the translation for µLK∞◻ to obtain a translation into µLL∞◻ .
Modalities will be translated as: (◻A)● ∶= !◻ !?A● (◊A)● ∶= !◊?A●.
We give the translation of (one of) the modal rules (the other rules being translated as for µLK∞):

∆ ⊢ A,Γ
◻

◻∆ ⊢ ◻A,◊Γ
↝

∆
●
⊢ ?A●,?Γ

●

!d,?p
!?∆
●
⊢ ?A●,?Γ

●

!p
!?∆
●
⊢ !?A●,?Γ

●

◻p
◻!?∆

●
⊢ ◻!?A●,◊?Γ

●

?d, !
◊

p
◻!?∆

●
⊢ ?!◻ !?A●,?!◊?Γ

●

!d
!◻ !?∆

●
⊢ ?!◻ !?A●,?!◊?Γ

●

Proof validity and translation of cut-elimination steps are robust to this translation (both ways), we have:

Theorem 2. The (mcut)-reduction system µLK∞◻ is an infinitary weak-normalizing reduction relation.

Proof. Consider a µLK∞◻ proof π and a fair reduction sequence σL from π
●. By theorem 1, σL converges

to a cut-free µLL∞◻ proof. Forgetting the linear information of the proofs , we get a µLK∞◻ reduction
sequence σK (possibly with useless steps) that converges to a valid, cut-free µLK∞◻ proof.

4 Finitary circular cut-elimination for µLK∞◻

The infinitary cut-elimination theorem for non-wellfounded µLK∞◻ proofs, established in the previous
section, can be extended to circular µLK∞◻ proofs, achieving a true weak-normalization (that is, finitary)
result by allowing both cut-reduction and back-edge introduction rules. We briefly sketch this now:

1) First notice that, while the infinitary weak-normalization result of the previous section was estab-
lished for sequents being lists of formulas, it transfers to a similar infinitary cut-elimination result for
µLK∞◻ presented with sequents as sets of formulas, as is usual.

2) Second, it is well-known that non-wellfounded cut-free proofs for µLK∞◻ with sequents as sets
can be regularized, by discarding a sub-tree and replacing it with a back-edge, while preserving validity
(this is due to the fact that only finitely many distinct sequents can occur in such a derivation).

3) Finally, by inlining the two processes (that is, introducing back-edges eagerly even though the sub-
proof still contains cuts but ensuring they are not above any cut inference), one gets the (finitary) weak
normalization to cut-free circular proofs of the modal µ-calculus. The normalizing reduction system
contains two types of reductions: (i) cut-reduction steps and (ii) back-edge introduction rules.
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5 Conclusion

We have introduced a new logical system called µLL∞◻ and proved a cut-elimination theorem for it.
Using this result and a linear translation into µLL∞◻ , we proved a cut-elimination theorem for the system
µLK∞◻ from which a finitary weak normalization for circular fragment of µLK∞◻ can then be extracted.

This result about µLL∞◻ is in fact an instance of a more general cut-elimination result that can be
proved for a large class of non-wellfounded systems with so-called super-exponential linear logic (using
the construction from [3]) without the digging rule. More precisely, the above results work with a sub-
exponential system inspired by the work of Nigam & Miller [9], with a promotion rule acting on signed
exponentials and structural rules authorized only on some signed exponentials:

⊢ A,?e1A1, . . . ,?enAn e ≤g ei
!

⊢ !eA,?e1A1, . . . ,?enAn
,
⊢ A,A1, . . . ,An e ≤ f ei ! f
⊢ !eA,?e1A1, . . . ,?enAn

, ⊢ Γ e ∈W w
⊢ ?eA,Γ

,
⊢ ?eA,?eA,Γ e ∈ C

c
⊢ ?eA,Γ

,
⊢ A,Γ e ∈ D

d
⊢ ?eA,Γ

µLL∞◻ is an instance of this system (i) with two signatures e and e′, with ! ∶= !e and ◻ = !e′ , (ii) e′ ≤g

e, e ≤g e, e′ ≤ f e′,, (iii) e,e′ ∈W , e,e′ ∈ C and e ∈ D. A natural continuation will therefore be to fully
treat this more general sub-exponential setting, hopefully capturing the digging rule as well.
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