
Submitted to:
FICS 2024

© F. Bruse, D. Kronenberger & M. Lange
This work is licensed under the
Creative Commons Attribution License.

Characterizing the Exponential-Space Hierarchy Via Partial
Fixpoints

Florian Bruse David Kronenberger Martin Lange
University of Kassel, Germany

{florian.bruse|martin.lange}@uni-kassel.de

The characterization of PSPACE-queries over ordered structures as exactly those expressible in first-
order logic with partial fixpoints (Vardi’82) is one of the classical results in the field of descriptive
complexity. In this paper, we extend this result to characterizations of k-EXPSPACE-queries for
arbitrary k, characterizing them as exactly those expressible in order-k+ 1-higher-order logic with
partial fixpoints. For k > 1, the restriction to ordered structures is no longer necessary due to the high
expressive power of higher-order logic.

1 Introduction

Computational complexity studies the difficulty of computation problems with regards to the consump-
tion of computational resources, most prominently time and space. Descriptive complexity, as a subdo-
main of both computational complexity and formal logic, has taken this study to a more abstract level by
characterizing classes of problems, i.e., complexity classes, through logical definability. This achieves
the characterization of the difficulty, resp. complexity of problems without resorting to measuring the
use of computational resources, as this ultimately depends on the choice of an underlying model of com-
putation like a Turing machine for instance. Descriptive complexity thus manages to characterize the
difficulty of problems through the structure of the problem alone, regardless of an underlying model of
computation. One can argue, though, that the resources used to measure complexity are logical operators
that give the underlying logics their expressiveness, like predicate or fixpoint quantifiers

Descriptive complexity started off with Fagin’s seminal result [3] showing that the well-known com-
plexity class NP coincides with ∃SO, the set of problems definable in existential second-order logic.
Stockmeyer extended this to a characterisation of problems between NP and PSPACE by means of
second-order logic (SO), known as the polynomial hierarchy (PH) [9].

An interesting – and still open – question asks for a logical characterisation of the complexity class P.
This is believed to open ways to tackle the famous P=NP question. One of the major obstacles here is the
lack of a total order on the elements of a structure forming an instance of some computational problem,
like a graph for instance. When processing graphs with a computational model like a Turing machine, it
can be assumed to be totally ordered due to the way that it needs to be represented as an input. For logical
formulas, operating directly on structures and not on string representations thereof, this is not the case.
On the other hand, a total order helps immensely; it enables iteration over all elements of the structure.
Moreover, a logical characterisation of the complexity class P is known when inputs to its problems are
assumed to be explicitly ordered. This is known as the Immerman-Vardi Theorem [5, 10], stating that
the complexity class P on ordered structures is captured by the extension of first-order logic with least
fixpoint quantifiers (FO+LFP).

Fixpoint quantifiers turned out to be a useful tool in descriptive complexity. Immerman lifted the
Immerman-Vardi Theorem to a characterisation of the complexity class EXPTIME by second-order logic

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Characterizing the Exponential-Space Hierarchy Via Partial Fixpoints

with least fixpoint quantifiers (SO+LFP) [6]. Note that the fixpoint quantifiers in SO+LFP are not the
same as the ones in FO+LFP. The LFP in FO+LFP refers to least fixpoints of first-order functions map-
ping tuples of elements to tuples of elements. This can be expressed in SO, i.e. FO+LPF ⊆ SO. The
LFP in SO+LFP refers to fixpoints of second-order functions, mapping predicates to predicates. This
naturally gives rise to the question after characterisations of classes in the exponential-time hierarchy by
means of higher-order logic with fixpoints. Indeed, Freire and Martins [4] showed that for any k ≥ 2,
the class k-EXPTIME of problems solvable in k-fold exponential time is captured by HOk+1+LFP, i.e.
higher-order formulas of order at most k+1 with corresponding least fixpoint quantifiers.

Given the rather complete picture for time complexity, it is natural to ask whether space complexity
is also open to logical characterizations in the same fashion. Another celebrated result in descriptive
complexity, made use of in e.g., the Abiteboul-Vianu Theorem [1], is due to Vardi [10] (not to be confused
with the Immerman-Vardi Theorem, from [5] and also [10]). It states that the class PSPACE on ordered
structures is captured by FO+PFP, i.e., the extension of first-order logic by partial fixpoints.

In this paper we extend the descriptive complexity of classes in the exponential space hierarchy with
the Vardi’s result at the basis, just like Freire and Martins have done for the time hierarchy with the
Immerman-Vardi Theorem at its basis. We show that, for any k ≥ 1, the complexity class k-EXPSPACE
of problems solvable using at most k-fold exponential space, is captured by the logic HOk+1+PFP of
formulas of order at most k+1 with partial fixpoint quantifiers.

2 Preliminaries

Let n,k ∈ N. We write 2n
k for the following: 2n

k = n if k = 0, and 2n
k+1 = 22n

k .

2.1 Space-bounded Turing Machines

A deterministic Turing machine (DTM) is a tuple M = (Q,Σ,Γ,�,δ ,qinit,qacc,qrej) where Q is a finite
set of states, Σ is a finite, nonempty input alphabet, Γ⊇ Σ is a finite, nonempty tape alphabet, � ∈ Γ\Σ

is the blank symbol, δ : Q×Γ→ Q×Γ×{L,N,R} is the transition function, and qinit,qacc,qrej ∈ Q are
the unique starting, accepting and rejecting states.

A configuration of a DTM is a tuple (q,h, t) where q ∈ Q is the current state, h ∈ N is the head
position, and t : N→ Γ is the tape content. The initial configuration on input word w ∈ Σ∗ is given
by (qinit,0, t) with t(i) = wi if i < |w| and t(i) = � otherwise. The unique accepting and rejecting
configurations are given by (qacc,0, t), resp. (qrej,0, t) where t(i) =� for all i in both cases.

A configuration C = (q′,h′, t ′) is the, necessarily unique, successor configuration of (q,h, t) if (I)
q /∈ {qacc,qrej}, (II) δ (q, t(h)) = (q′,γ,D) for some γ ∈ Γ,D ∈ {L,N,R}, (III) t ′(i) = γ if i = h and
t ′(i) = t(i) otherwise, and (IV) h′ = h−1 if D = L and h > 0, h′ = h if D = N, and h′ = h+1 if D = R. A
(partial) computation of M on input w is a finite or infinite sequence of configurations C0,C1, . . . where
C0 is the initial configuration of M on w, and Ci+1, if it exists, is the successor configuration of Ci. Such
a computation is maximal if it is either infinite or its last configuration is the accepting or the rejecting
configuration. Note that each M has exactly one maximal computation for each w, whence from now on
we talk about the computation of M on w. We say that M accepts w if its unique maximal computation
on w ends with the accepting configuration, and we write L(M) for the set of words accepted by M .
Conversely, M rejects w if its unique maximal computation on w ends in the rejecting configuration or
if it is infinite. In the latter case, we say that the computation diverges.

We say that a non-diverging computation C0, . . . ,Ck on input some w consumes space n, written

F. Bruse, D. Kronenberger & M. Lange 3

spaceM (w) = n, if n = 1+max{hi | Ci = (qi,hi, ti)}. Obviously, if the head never advances beyond
position n− 1, then ti(j) = � for all 0 ≤ i ≤ k and j > n− 1. Let f : N→ N be a function. We say
that M is f -space-bounded if M has no diverging computations on any input and, for all n, we have
max{spaceM (w) | w ∈ Σn} ≤ f (n). We say that M is k-fold-exponential space bounded if there is a
polynomial p(n) such that M is 2p(n)

k -space-bounded.

2.2 Higher-Order Logic with Partial Fixpoints

In order to keeps things notationally simple, we restrict ourselves to the class of labelled transition
systems (LTS), or labelled graphs. Let P = {p,q, . . .} be a set of propositions and let A = {a,b, . . .} be a
set of actions or transition relation or edge relations. An LTS is a tuple T = (S,A, `) where S = {s, t, . . .}
is a finite, nonempty set of states, A⊆ S×A×S is the transition relation and ` : S→ 2P labels each state
by the set of propositions valid in it. We write s a−→ t instead of (s,a, t) ∈ A.

Types. The set of types is defined via the grammar

τ,τ1, . . . ,τn ::= • | τ1, . . . ,τn | (τ)

where • is the ground type or type of individuals of order ord(•) = 1, τ1, . . . ,τn is a compound type
of order ord(τ1, . . . ,τn) = max{ord(τ1), . . . ,ord(τn)}, and where (τ) is a set type of order ord((τ)) =
1+ord(τ).

Given an LTS T = (S,A, `), the semantics JτKT of a type τ is given by

J•KT = S, Jτ1, . . . ,τnKT = Jτ1KT ×·· ·× JτnKT J(τ)KT = 2JτKT
.

We often compress compound and set types by writing e.g., (τ1, . . . ,τn).
The following is straightforward to prove by induction on the structure of types.

Lemma 1. For any τ of order k and any LTS T , with state set S, |JτKT | is k−1-fold exponential in |S|.
Given an LTS as above, and some f : JτKT → JτKT for τ of order at least 2, we define its partial

fixpoint PFP f via

PFP f =

{
F i, if i exists such that F i = F i+1

/0, otherwise,

where F0 = /0 and F i+1 = f (F i). By an obvious counting argument, if there is i such that a nontrivial
partial fixpoint exists, then there already is one bounded by |JτKT |, which, by Lem. 1, is k− 1-fold
exponential in |S| for τ of order k.

Syntax. Let V = {X ,Y, . . .} be a set of typed variables, tacitly assumed to contain infinitely many
variables for each type. The set of HO+PFP-formulas is defined by the grammar

ϕ ::= tt | p(X) | a(X ,Y) | X(Y1, . . . ,Yn) | ¬ϕ | ϕ ∨ϕ | ∃(X : τ). ϕ | (PFP(X : τ). ϕ)(Y1, . . . ,Yn)

where p ∈ P, a ∈ A, and X ,Y1, . . . ,Yn, are variables. A formula ϕ is well-formed if the following are
true for ϕ: (I) The variables in terms of the form p(X) or a(X ,Y) are of type •, and (II) in a term of the
form X(Y1, . . . ,Yn) or (PFP(X : τ). ϕ)(Y1, . . . ,Yn), the variable X has type (τ1, . . . ,τn) if Yi has type τi for
1≤ i≤ n. If they are not important, we omit type annotations of the form (X : τ), and we use compressed
notation such as ∃(X ,Y,Z : •).ϕ or ∃(X ,Y,Z : τ,τ ′,τ ′′) where appropriate.

4 Characterizing the Exponential-Space Hierarchy Via Partial Fixpoints

Other derived operators such as ∧,→,∀,ff etc. can be added in the usual way. The notions of
subformula, formula size etc. are also standard. Free and bound variables are defined as usual, with X
being a bound variable in (PFP(X : τ). ϕ)(Y1, . . . ,Yn). We use notation such as ϕ(X : τ,Y : τ ′) etc. to
communicate the names and types of the free variables of a formula, with shorthands as above used if
appropriate.

We say that ϕ has order k if the highest order of a variable that occurs freely or as X in a formula
of the form ∃X . ψ is at most k, and the highest order of a variable X in a subformula of the form
(PFP(X : τ). ϕ)(Y1, . . . ,Yn) is at most k+ 1. We write HOk+PFP for the collection of all formulas of
order at most k.

Semantics. Let T = (S,A, `) be an LTS. A variable assignment η is a function that assigns, to each
variable X ∈ V of type τ , an element of JτKT . Given some X of type τ and some f ∈ JτKT , the update
η [X 7→ f] is defined as η [X 7→ f](X) = f and η [X 7→ f](Y) = η(Y) if Y 6= X .

The semantics of a HO+PFP formula is defined as follows:

T,η |= tt, always

T,η |= p(X), iff p ∈ `(η(x))

T,η |= a(X ,Y), iff η(X) a−→η(Y)

T,η |= X(Y1, . . . ,Yn), iff (η(Y1), . . . ,η(Yn)) ∈ η(X)

T,η |= ¬ϕ , iff T,η 6|= ϕ

T,η |= ϕ1∨ϕ2, iff T,η |= ϕ1 or T,η |= ϕ2

T,η |= ∃(X : τ).ϕ , iff there is f ∈ JτKT s.t. T,η [X 7→ f] |= ϕ

T,η |= (PFP(X : τ)ϕ)(Y1, . . . ,Yn), iff (η(Y1), . . . ,η(Yn)) ∈ PFP ϕ
T
η

where ϕT
η is the function that maps g ∈ JτKT to

{(g1, . . . ,gn) ∈ 2Jτ1KT×···×JτnKT | T,η [X 7→ g,Y1 7→ g1, . . . ,Yn 7→ gn] |= ϕ} ∈ JτKT

if τ = (τ1, . . . ,τn).

2.3 Queries

Let P and A be fixed. A (boolean) query (over P and A) is a function Q that maps, to each finite LTS
T = (S,A, `) a truth value, i.e., either true or false. Alternatively, such a boolean query is just a set of
finite LTS over (over P and A), which we shall identify with Q.

A closed HO+PFP formula ϕ naturally defines a query via

Qϕ = {T | T |= ϕ}.

Conversely, queries can be decided by space-bounded Turing machines. For this, the machine re-
ceives the LTS in question as an input, and either accepts or rejects. The LTS has to be encoded into
some word of the input alphabet for this. Naturally, this introduces a total order on the set of states of the
LTS. It is known that e.g., the expressive power of first-order logic increases in the presence of an order
(this is a classic exercise when introducing Ehrenfeucht-Fraïssé games). However, order is not an issue
in our setting. The classical first-order characterization due to Abiteboul and Vianu is explicitly restricted

F. Bruse, D. Kronenberger & M. Lange 5

to ordered structures, and characterizations for logics beyond existential second-order logic can be done
with an order in mind, as existential second-order logic is strong enough to simply guess an order. This
includes HOk+PFP for k ≥ 2, i.e., the topic of this paper.

Given an LTS T , let 〈T 〉 be some form of polynomial encoding of T into a given input alphabet Σ,
e.g., using adjacency matrices or the like. We say that a Turing machine M decides a query Q if M
halts on any input of the form 〈T 〉, where T is necessarily finite, and accepts exactly those codings where
T ∈Q. A query is a k-EXPSPACE-query if there is M that is k-fold-exponential space bounded and
decides Q.

We now say that a logic L captures a complexity class C over a class of structures (LTS) S if, for
each L -query there is a C -query that yields the same set when restricted to S , and vice versa.
Remark 2. Non-boolean queries are quite common in e.g., the field of database theory. A d-query is then
not a function that maps an LTS to a truth value, but rather one that maps an LTS and a d-tuple of states
to a truth value, or, equivalently, maps every LTS to a set of d-tuples. On the logical side, one now deals
with formulas with free first-order variables. We choose to stick to boolean queries here in order to avoid
the extra coding required to get said free variables encoded into DTM.

2.4 Vardi’s Characterization of PSPACE

We briefly sketch the classical result due to Vardi [10] that first-order logic with partial fixpoints, i.e.,
HO1+PFP, captures PSPACE over the class of ordered LTS. One direction is rather straightforward since
first-order queries can be evaluated in polynomial time, the individual stages of a partial fixpoint only
take polynomial space, and the next stage can be computed from the previous one also in polynomial
time. Since such a partial fixpoint either does not stabilize, or stabilizes after at most exponentially many
iterations, it is sufficient to keep a counter for the number of iterations, which takes polynomially many
bits if it is encoded in binary.

For the other direction, let M = (Q,Σ,Γ,�,δ ,qinit,qacc,qrej) be a p(n)-space-bounded DTM that
decides a query Q over LTS, i.e., it accepts those w = 〈T 〉 such that T ∈Q.

Since M is p(n)-space-bounded, the tape contents and the head position of each configuration of a
computation of M on an input of length n can be represented by a number of at most p(n) and a word
of length p(n) over the tape alphabet of M . The proof rests on three key observations:

• In sufficiently large, ordered LTS, a configuration of M can be represented as a second-order
relation of sufficient arity,

• the operator that computes from such a representation of a configuration its successor configura-
tion, if it exists, can be expressed as a first-order formula, and

• the initial and accepting configurations can be pinned down using first-order logic.
The capturing result is then obtained by observing that M accepts its input w, derived from T , iff the par-
tial fixpoint obtained by feeding a representation of the initial configuration into the operator mentioned
above is nonempty and contains exactly a representation of the accepting configuration.

3 HOk+PFP-Queries are in k−1-EXPSPACE

We begin with the simpler part of the capturing result. We will show that queries definable in HOk+PFP
can be evaluated using at most (k−1)-fold exponential space. This does not even need any special tricks.
Alg. 1 essentially just computes the semantics of an HOk+PFP query ϕ w.r.t. an LTS T and a variable
evaluation η , i.e., it decides whether or not T,η |= ϕ holds.

6 Characterizing the Exponential-Space Hierarchy Via Partial Fixpoints

Algorithm 1 Evaluating HOk+PFP queries in (k−1)-fold exponential space.
1: procedure EVAL(T,η ,ϕ)
2: case ϕ of
3: tt: return true
4: p(X): return p ∈ `(η(X))
5: a(X ,Y): return η(X) a−→η(Y)
6: X(Y1, . . . ,Yn): return (η(Y1), . . . ,η(Yn)) ∈ η(X)
7: ¬ψ: return ¬EVAL(T,η ,ψ)
8: ψ1∨ψ2: return EVAL(T,η ,ψ1)∨EVAL(T,η ,ψ2)
9: ∃(X : τ). ψ:

10: for all f ∈ JτKT do
11: if EVAL(T,η [X 7→ f],ψ) then
12: return true
13: end if
14: end for
15: return false
16: (PFP(X : (τ1, . . . ,τk)). ψ)(Y1, . . . ,Yn):
17: f ← /0
18: cnt← 0
19: while cnt < |J(τ1, . . . ,τk)KT | do
20: f ′← f
21: f ← /0
22: for all (M1, . . . ,Mk) ∈ Jτ1KT ×·· ·× JτkKT do
23: if T,η [Y1 7→M1, . . . ,Yk 7→Mk,X 7→ f ′] |= ψ then
24: f ← f ∪{(M1, . . . ,Mk)}
25: end if
26: end for
27: if f = f ′ then
28: return (η(Y1), . . . ,η(Yn)) ∈ f
29: end if
30: cnt← cnt+1
31: end while
32: return false
33: end case
34: end procedure

F. Bruse, D. Kronenberger & M. Lange 7

Theorem 3. Let k ≥ 2. Evaluating an HOk+PFP query is in (k−1)-EXPSPACE.

Proof. It is not hard to see that algorithm EVAL correctly evaluates an HO+PFP query, as it closely
follows the semantics of HO+PFP. It remains to be seen that the space needed by this procedure is
bounded by a function that is at most (k−1)-fold exponential in the size of the underyling |T | and |ϕ|.

First note that the recursion depth in EVAL is bounded by |ϕ|. Hence, it suffices to check that the
space needed within each recursive call is bounded in this way. It is only the last two cases in which
this may not be obvious. So consider the case of ϕ = ∃(X : τ). ψ . Enumerating all elements of JτKT

requires space for one of these elements, plus space either for a counter to abort the enumeration after all
elements have been constructed, or for a second of these elements in case the enumeration can construct,
from one of these elements, a uniquely determined succesor (in a lexicographic ordering for instance).
In both cases, the space needed is logarithmic in |JτKT | which is at most (k−1)-fold exponential in |T |
according to Lemma 1.

The argument for the last case of ϕ = (PFP(X : (τ1, . . . ,τk))ψ)(Y1, . . . ,Yn) is similar. We write τ for
(τ1, . . . ,τk). Note that the order of τ may be up to k+ 1, so |JτKT is k-fold exponential in S. The space
needed to evaluate the partial fixpoint formula is determined by a counter with values up to |JτKT | and
by the two elements f , f ′ ∈ JτKT . Using binary coding, the space needed for the counter is logarithmic in
|JτKT , and individual elements of JτKT take k−1-fold exponential space, too. Hence, the space needed
in this case is also at most (k−1)-fold exponential in |T |.

4 k−1-EXPSPACE-Queries are Expressible in HOk+PFP

4.1 Ordering Higher-Order Relations

Since we want to encode runs of k-fold-exponentially space-bounded Turing machines into formulas of
HOk+1+PFP, we have to be able to encode the tape contents of the Turing machine in question. For such
a space-bounded machine, the tape can be represented by a Γ-word of k-fold exponential length, where
Γ is the tape alphabet of the machine in question. Hence, we have to be able to somehow represent such
a large word or, in other words, we must be able to count to large numbers.

Let p(n) be a polynomial, for the time being one of the form nc for some c ≥ 2. Let A contain a
relation <, and let the types τ0, . . . ,τk be the types defined via τ1 = •c, i.e. •× ·· · × • with c many
repetitions of •, and τi+1 = (τi). We define formulas ϕ1

<, ϕ2
< and ϕ

i+1
< for i≥ 2 via:

ϕ
1
<(X1, . . . ,Xc,Y1, . . . ,Yc : •) =

c∨
i=1

< (Xi,Yi)∧
i−1∧
j=1

¬< (Yj,X j)

ϕ
2
<(X ,Y : τ1) = ∃(Z1, . . . ,Zc : •).Y (Z1, . . . ,Zc)∧¬X(Z1, . . . ,Zc)

∧∀(Z′1, . . . ,Z′c : •).
(
ϕ

1
<(Z

′
1, . . . ,Z

′
c,Z1, . . . ,Zc)

→ X(Z′1, . . . ,Z
′
c)→ Y (Z′1, . . . ,Z

′
c)

ϕ
i+1
< (X ,Y : τi+1) = ∃(Z : τi).Y (Z)∧¬X(Z)∧∀(Z′ : τi).ϕ

i
<(Z

′,Z))→
(
X(Z′)→ Y (Z′)

)
Here, ϕ1

< defines a total order on J•cKT via the lexicographical ordering induced by <. For i ≥ 1, the
formula ϕ

i+1
< then totally orders Jτi+1KT via lexicographical ordering of sets w.r.t. the membership of

elements of τi.

8 Characterizing the Exponential-Space Hierarchy Via Partial Fixpoints

Lemma 4. Let < ∈ A and let T = (S,A, `) be an LTS over A and some P such that < is a total order on
S. Let τk for k ≥ 1 be defined as above. Then the following are true for all k ≥ 1: (I) |JτkKT |= 2|S|k−1, (II)
ϕk
< defines a total order on JτkKT .

Additionally, let ϕ1
=,ϕ

i
= and ϕ1

succ,ϕ
i
succ for i > 1 be defined as

ϕ
1
=(X1, . . . ,Xc,Y1, . . . ,Yc : •) = ¬ϕ

1
<(X1, . . . ,Xc,Y1, . . . ,Yc)∧¬ϕ

1
<(Y1, . . . ,Yc,X1, . . . ,Xc)

ϕ
i
=(X ,Y : τi) = ¬ϕ

i
<(X ,Y)∧¬ϕ

i
<(Y,X)

ϕ
1
succ(X1, . . . ,Xc,Y1, . . . ,Yc : •) = ϕ

1
<((X1, . . . ,Xc,Y1, . . . ,Yc)∧∀(Z1, . . . ,Zc : •).ϕ1

=(X1, . . . ,Xc,Y1, . . . ,Yc)

→ (ϕ1
=(X1, . . . ,Xc,Z1, . . . ,Zc)∨ϕ

1
<(Z1, . . . ,Zc,X1, . . . ,Xc))

ϕ
i
succ(X ,Y : τi) = ϕ

i
<(X ,Y)∧∀(Z : τi).ϕ<(Z,Y)→ ϕ=(X ,Z)∨ϕ<(Z,X)

expressing equality between elements of JτiKT or the fact that the second argument is the immediate
successor of the first one w.r.t. the total order induced by ϕ i

<.
Finally, for each j ∈ N and i > 1, define the formulas ϕ1

= j, ϕ i
= j via

ϕ
1
=0(X1, . . . ,Xc : •) = ∀(Y1, . . . ,Yc : •).ϕ1

<(X1, . . . ,Xc,Y1, . . . ,Yc)∨ϕ
1
=(X1, . . . ,Xc,Y1, . . . ,Yc)

ϕ
1
= j+1(X1, . . . ,Xc : •) = ∃(Y1, . . . ,Yc : •).ϕ1

= j(Y1, . . . ,Yc)∧ϕ
1
succ(X1, . . . ,Xc,Y1, . . . ,Yc)

ϕ
i
=0(X : τi) = ∀(Y : τi).ϕ

i
<(X ,Y)∨ϕ

i
=(X ,Y)

ϕ
i
= j+1(X : τi) = ∃(Y : τi).ϕ

i
= j(X ,Y)∧ϕ

i
succ(X ,Y)

where ϕ0
= j and ϕ i

= j express that (X1, . . . ,Xc), resp. X is the j+1st element of the total order induced by

ϕ
0]
< , resp. ϕ i

<, if such an element exists. Clearly, the size of these formulas is linear in j.

4.2 The Reduction

Let k ≥ 1 and let M = (Q,Σ,Γ,�,δ ,qinit,qacc,qrej) be a 2k
p(n)-space-bounded DTM that decides a query

QM over ordered LTS, i.e., it accepts those w = 〈T 〉 for which T ∈Q. W.l.o.g. p(n) = c ·nc−1 for some
c, whence also for n≥ c we have p(n)≤ nc. We also assume that M rejects all inputs that do not encode
an LTS ordered by a relation <.

We have to build a HOk+1+PFP formula ϕ(X1, . . . ,Xd) such that T |= ϕ iff T ∈QM and T is ordered
by <.

Encoding Configurations. Let τ = •,τk+1,τk+1,•. Let T be an LTS ordered by < such that its
state set satisfies |S| ≥ max{c, |Q|, |Γ|}. Hence, |S|c ≥ p(|S|). W.l.o.g. Q and Γ are ordered, i.e,
Q = {q0, . . . ,q|Q|−1} and Γ = {γ0, . . . ,γ|Γ|−1}. Since S is ordered by <, for each qi ∈ Q and for each
γ j ∈ Γ, there are unique states sq and sγ , given as the i+1st, resp. j+1st states in the total order <. An
element of JτKT has the form (s,H, I,s′) with s,s′ ∈ J•KT = S and H, I ∈ Jτk+1KT .

Definition 5. Let M ∈ J(τ)KT . We say that M encodes a configuration C = (q,h, t) of M if the following
are true:

1. For all (s,H, I,s′) ∈M, we have that s = sq.

2. For all (s,H, I,s′),(t,H ′, I′, t ′) ∈M, we have s = t and H = H ′ and H is the h+1st element in the
total order induced by ϕ

k+1
< .

F. Bruse, D. Kronenberger & M. Lange 9

3. For each I ∈ Jτk+1KT , there is exactly one tuple of the form (s,H, I,s′) in M.

4. If j ≤ 2p(|S|)
k , if I is the j+1st element in the total order induced by ϕ

k+1
< , and if (s,H, I,s′) ∈M,

then s′ = sγ for some γ ∈ Γ and t(j) = γ .

The intuition here is the following: Since all tuples in M agree on sq and H, this uniquely determines
q and h. Moreover, since for each I ∈ Jτk+1KT , there is exactly one tuple of the form (s,H, I,s′) in M,
this defines a function Jτk+1KT → Γ, and since Jτk+1KT is linearly ordered via ϕ

k+1
< and has cardinality

2p(|S|)
k due to Lem. 4, this yields a function {0, . . . ,2|S|

c

k −1} → Γ. Since M is 2p(n))
k -space-bounded, all

configurations of a run of M on input 〈T,(s1, . . . ,sd)〉 have a head position less than 2p(|S|)
k ≤ |Jτk+1KT |

and, consequently, all tape cells of such a configuration with index at least 2p(|S|)
k must contain �. Hence,

such a set in J(τ)KT can encode any configuration M may enter during its run on input 〈T,(s1, . . . ,sd)〉.
Now let w = 〈T 〉. Consider the HOk+1+PFP formula

ϕ
w
init(Yq : •,H : τk+1, I : τk+1,Yγ : •) = ϕ

k+1
=0 (H)∧Yq = sqinit ∧

|w|−1∧
i=0

ϕ
k+1
=i (I)→ Yγ = swi

∧∃(Z : τk+1) ϕ
k+1
=|w|−1(Z)∧ϕ

k+1
< (Z, I)→ Yγ = s�.

It is of polynomial size and expresses that the tuple encoded in the variables Yq,H, I,Yγ is in the unique set
that encodes the initial configuration of M on input w. We use shorthand such as Yq = sqinit to abbreviate
ϕ1
= j(Yq) if qinit is the j+1st state w.r.t. < on S.

The Partial Fixpoint. Consider the formula

ψtrans(X ,Yq,H, I,Yγ) = ∃(Y ′q,H ′, I′,Y ′γ : •,τk+1,τk+1,•).
∃(Y ′′q ,H ′′, I′′,Y ′′γ : •,τk+1,τk+1,•).
X(Y ′q,H

′, I′,Y ′γ)∧X(Y ′′q ,H
′′, I′′,Y ′′γ)∧ϕ

k+1
= (H ′, I′′)∧ϕ

k+1
= (I, I′)

∧¬ϕ
k+1
= (H, I)→ ϕ

1
=(Yγ ,Y ′γ)

∧
∧

(q′,γ,q′′,γ ′,L)∈δ

Y ′q = sq′ ∧Y ′γ = sγ → Y = sq′′ ∧ϕ
k+1
succ(H,H ′)∧ϕ

k+1
= (H, I)→ Yγ = sγ ′

∧
∧

(q′,γ,q′′,γ ′,N)∈δ

Y ′q = sq′ ∧Y ′γ = sγ → Y = sq′′ ∧ϕ
k+1
= (H,H ′)∧ϕ

k+1
= (H, I)→ Yγ = sγ ′

∧
∧

(q′,γ,q′′,γ ′,R)∈δ

Y ′q = sq′ ∧Y ′γ = sγ → Y = sq′′ ∧ϕ
k+1
succ(H

′,H)∧ϕ
k+1
= (H, I)→ Yγ = sγ ′

where by abuse of syntax we write (q′,γ,q′′,γ ′,L) ∈ δ instead of δ (q′,γ) = (q′′,γ ′,L) etc.

Lemma 6. Assume that M ∈ J(τ)KT with τ = (•,τk+1,τk+1,•) as before encodes some configuration
C of the computation of M on input w, and assume that M′ of the same type encodes the successor
configuration of C.

Let s,s′ ∈ S and MH ,MI ∈ Jτk+1KT . Then

T,η [X 7→M,Yq 7→ s,H 7→MH , I 7→ IH ,Yγ 7→ s′] |= ψtrans iff (s,MH ,MI,s′) ∈M′.

The intuition here is that ψtrans defines the encoding of a successor of some configuration C from the
encoding of C itself. The first existential quantifier requires the existence of a tuple in X that encodes

10 Characterizing the Exponential-Space Hierarchy Via Partial Fixpoints

the value of the tape at the same position as the new tuple will, i.e., they both must have the same third
component, and the second quantifier requires the existence of a tuple that encodes the content of the
tape at the head position. The third line enforces these properties. The fourth line fixes tape contents
not under the head. The last three lines, separated for the ease of notation, enforce that both the state
transition and the new content of the tape at the old head position obey the transition function.

We now have the required machinery to encode a computation of M on input w into HOk+1+PFP.
Let

ψ(X ,Yq,H, I,Yγ) = ϕtrans(X ,Yq,H, I,Yγ)

∨∀(Y ′q,H ′, I′,Y ′γ : •,τk+1,τk+1,•).¬X(Y ′q,H
′, I′,Y ′γ)∧ϕ

w
init(Yq,H, I,Yγ)

ϕM = ϕ
<∧∃(Y ′q,H ′, I′,Y ′γ : •,τk+1,τk+1,•). Y ′q = sqacc ∧ (PFP(X : (τ).ψ)(Y ′q,H

′, I′,Y ′γ).

where ϕ< expresses that < is a total order.
Lemma 7. Let p(n)= cnc−1 and let M be a 2p(n)

k -space-bounded DTM that decides a query over ordered
LTS. Let Q be its state set and let Γ be its tape alphabet. Let T be an LTS ordered by < and such that its
state set satisfies |S| ≥max{|Q|, |Γ|,c}. Let w = 〈T 〉. Then

T |= ϕM ,w iff w ∈ L(M).

This follows from the previous lemmas. ψ stipulates that either X is empty, and a tuple is in its
“return value” iff it is in the encoding of the initial configuration, using ϕw

init, or it defers to ϕtrans. The
formula ϕM then encodes the unique run of M on input w, by asking whether a tuple containing the
accepting state is contained in the partial fixpoint of ψ . This is the case if and only if the machine halts
in the accepting state, due to Lem. 6 and our observations on ϕw

init.
We omit the tedious, but standard argument that ϕw

init can be rewritten into some ϕinit not depending
on w that internalizes the translation from T to 〈T 〉.
Theorem 8. HOk+1+PFP captures k-EXPSPACE over ordered LTS for k ≥ 2.

One direction is by Thm. 3, the other direction is by the previous Lem. 7 plus the observation that LTS
that are smaller than in the requirements of the lemma can be enumerated in a constant-size formula.

5 Conclusion

We have shown that, over ordered structures, the queries expressible in HOk+1+PFP are exactly those
decided by a 2p(n)

k -space-bounded DTM, i.e., that HOk+1+PFP captures k-EXPSPACE over ordered
structures for k ≥ 0, extending the same result by Vardi for k = 0 [10].

It should be noted that the requirement that the structures in question be ordered can be removed
for k ≥ 1, as HO2+PFP and above possess sufficient expressive power to “guess” an order, cf. Fagin’s
Theorem [3].

Our result has applications in descriptive complexity. Otto’s Theorem [8] characterizes bisimulation-
invariant P-queries as exactly those expressible in the polyadic modal mu-calculus. Contrary to Immer-
man’s and Vardi’s charaterization [5, 10] of PTIME, the crucial requirement that the LTS be ordered is
absent from this result, since an order can be recuperated in the bisimulation-invariant setting. However,
the result makes use of the Immerman-Vardi Theorem. We have extended this result to a characterization
of bisimulation-invariant k-EXPTIME [2] using Freire and Martin’s characterization of k-EXPTIME [4],
i.e., their generalization of the Immerman-Vardi Theorem. The results of this paper open up a similar
characterization of the bisimulation-invariant exponential-space hierarchy, following from the second
author’s Master’s thesis [7].

F. Bruse, D. Kronenberger & M. Lange 11

References
[1] S. Abiteboul & V. Vianu (1995): Computing with First-Order Logic. J. Comput. Syst. Sci. 50(2), pp. 309–

335, doi:10.1006/JCSS.1995.1025. Available at https://doi.org/10.1006/jcss.1995.1025.
[2] F. Bruse, D. Kronenberger & M. Lange (2022): Capturing Bisimulation-Invariant Exponential-Time Com-

plexity Classes. In P. Ganty & D. Della Monica, editors: Proc. 13th Int. Symp. on Games, Automata, Logics
and Formal Verification, GandALF 2022, EPTCS 370, pp. 17–33, doi:10.4204/EPTCS.370.2. Available at
https://doi.org/10.4204/EPTCS.370.2.

[3] R. Fagin (1974): Generalized First-Order Spectra and Polynomial-Time Recognizable Sets. Complexity and
Computation 7, pp. 43–73.

[4] C. M. Freire & A. T. Martins (2011): The Descriptive Complexity of the Deterministic Exponential Time
Hierarchy. In: Proc. 5th Workshop on Logical and Semantic Frameworks with Applications, LSFA’10, 269,
pp. 71–82, doi:10.1016/j.entcs.2011.03.006.

[5] N. Immerman (1986): Relational Queries Computable in Polynomial Time. Information and Control 68(1-3),
pp. 86–104, doi:10.1016/S0019-9958(86)80029-8.

[6] N. Immerman (1987): Languages That Capture Complexity Classes. SIAM Journal of Computing 16(4), pp.
760–778.

[7] D. Kronenberger (2018): Capturing Bisimulation-Invariant Complexity Classes by Polyadic Higher-Order
Fixpoint Logic. Master’s thesis, University of Kassel.

[8] M. Otto (1999): Bisimulation-invariant PTIME and higher-dimensional µ-calculus. Theor. Comput. Sci.
224(1-2), pp. 237–265, doi:10.1016/S0304-3975(98)00314-4.

[9] L. J. Stockmeyer (1976): The polynomial-time hierarchy. TCS 3(1), pp. 1–22.
[10] M. Y. Vardi (1982): The Complexity of Relational Query Languages (Extended Abstract). In H. R. Lewis,

B. B. Simons, W. A. Burkhard & L. H. Landweber, editors: Proceedings of the 14th Annual ACM Sym-
posium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, ACM, pp. 137–146,
doi:10.1145/800070.802186.

https://doi.org/10.1006/JCSS.1995.1025
https://doi.org/10.1006/jcss.1995.1025
https://doi.org/10.4204/EPTCS.370.2
https://doi.org/10.4204/EPTCS.370.2
https://doi.org/10.1016/j.entcs.2011.03.006
https://doi.org/10.1016/S0019-9958(86)80029-8
https://doi.org/10.1016/S0304-3975(98)00314-4
https://doi.org/10.1145/800070.802186

	Introduction
	Preliminaries
	Space-bounded Turing Machines
	Higher-Order Logic with Partial Fixpoints
	Queries
	Vardi's Characterization of PSPACE

	HO-k+PFP-Queries are in k-1-EXPSPACE
	k-1-EXPSPACE-Queries are Expressible in HO-k+PFP
	Ordering Higher-Order Relations
	The Reduction

	Conclusion

