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We axiomatize the notion of Cartesian differential categories with a fixpoint operator by introducing
an additional axiom relating the derivative of a fixpoint with the fixpoint of the derivative. We show
how the standard examples of Cartesian differential categories where we can compute least or greatest
fixpoints provide canonical models of this notion.

Cartesian differential categories were introduced by Blute, Cockett, and Seely in [4], and provide the
categorical foundations of multivariable differential calculus. Briefly, a Cartesian differential category
(Definition 1) is a category with finite products that comes equipped with a differential combinator D,
which for every map f : A→ B produces its derivative D[ f ] : A×A→ B, satisfying seven axioms that
are analogues of the fundamental properties of the total derivative, including the chain rule. Cartesian
closed differential categories provide the categorical semantics of the differential λ -calculus, introduced
by Ehrhard and Regnier in [8]. Cartesian (closed) differential categories have been quite successful in
formalizing various notions related to differentiation, and have also found numerous applications in both
mathematics and computer science. Moreover, Cartesian differential categories belong to a larger story of
categorical foundations of differentiation, which include differential categories [5], coherent differential
categories [9], and tangent categories [6].

One aspect that has not yet been studied in full detail is the interaction between fixpoint operators
and differential operators. We present work in progress towards a general account of fixpoint operators
such as parametrized fixpoint operators (Definition 2), Conway operators, and trace operators for various
categorial frameworks of differentiations. In this abstract, we focus on Cartesian differential categories
equipped with a parametrized fixpoint operator. This axiomatization provides a guideline to introducing
differentials to λ -calculi with fixpoint operators such as PCF [12] and the λ -Y-calculus [15].

Related Work: In [9, Theorem 5.29], Ehrhard proves a compatibility relation in a cpo-enriched set-
ting between the least fixpoint operator (in the coKleisli category) and the tangent bundle functor of a
Scott coherent differential category. In [14], Sprunger and Katsumata construct Cartesian differential cat-
egories with delayed trace operators, which are related to trace operators (and hence Conway operators)
but no longer assume the fixpoint axiom.

1 Cartesian Differential Categories

Cartesian differential categories are categories which come equipped with a differential combinator,
which is an operator which sends maps to their derivative. The axioms of a differential combinator
are analogues of the basic properties of the total derivative from multivariable differential calculus. For
a more in-depth introduction to Cartesian differential categories, we refer the reader to the original pa-
per [4].
Definition 1. A Cartesian differential category is a Cartesian left additive category [4, Definition 1.2.1]
C equipped with a differential combinator D, which is a family of functions:

D : C(A,B)→ C(A×A,B)
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satisfying the seven axioms in [4, Definition 2.1.1]. For a morphism f : A→ B, the map D[ f ] : A×A→ B
is called the derivative of f .

Briefly, the axioms of a differential combinator are that: (1) the derivative of a sum is the sum of
the derivatives, (2) derivatives are additive in their second argument, (3) the derivative of identity maps
and projections are projections, (3) the derivative of a pairing is the pairing of the derivatives, (5) the
chain rule for the derivative of a composition, (6) the derivative is linear in its second argument, and
lastly (7) the symmetry of the partial derivatives. There is a sound and complete term logic for Cartesian
differential categories [4, Section 4], which is useful for intuition. So we write:

D[ f ](a,b) :=
d f (x)
dx

(a) ·b

In particular, the chain rule axiom is that:

D[g◦ f ] = D[g]◦ 〈 f ◦π1,D[ f ]〉

which using the term logic is expressed as:

dg( f (x))
dx

(a) ·b =
dg(y)
dy

( f (a)) ·
(
d f (x)
dx

(a) ·b
)

2 Fixpoint Operators and Differentiation

Parametrized fixpoint operators [3, 13] axiomatize the notion of fixpoints for morphisms in context. For
a morphism of type A×X → X , the parameter A is viewed as representing the context of the term, then
taking the parametrized fixpoint gives a morphism of type A→ X . Parametrized fixpoint operators are
axiomatized by two axioms: (1) the fixpoint axiom and (2) a naturality in the context axiom.

Definition 2. For a category C with finite products, a parametrized fixpoint operator fix is a family of
functions

fixX
A : C(A×X ,X)→ C(A,X)

indexed by pairs of objects in C such that:

1. Fixpoint: for all maps f : A×X → X:

f ◦ 〈1A,fixX
A( f )〉= fixX

A( f )

2. Naturality: for all maps g : A→ B and f : B×X → X:

fixX
B( f )◦g = fixX

A( f ◦ (g×1X))

We shall use term calculus notation to write the parametrized fixpoint operator as follows:

fixX
A( f )(a) = µx. f (x,a)

where the variable x is bounded. So in particular, the fixpoint axiom is expressed as:

µx. f (a,x) = f (a,µx. f (a,x))
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So how should a parametrized fixpoint operator and differential operator interact? In particular, what
should the derivative of a parametrized fixpoint be? Well consider the following computation using the
parametrized fixpoint and the chain rule:

dµx. f (u,x)
du

(a) ·b =
d f (u,µx. f (u,x))

du
(a) ·b =

d f (u,v)
d(u,v)

(a,µx. f (a,x)) ·
(

b,
dµx. f (u,x)

du
(a) ·b

)
Thus, our compatibility relation between a parametrized fixpoint operator and differential operator is
asking that dµx. f (u,x)

du (a) ·b to be equal to the second component of the nested fixpoint:

µ(x,y).
(

f (a,x),
d f (u,v)
d(u,v)

(a,x) · (b,y)
)

In a Cartesian differential category equipped with a fixpoint operator, this corresponds to requiring the
following two operations to be equal:

A×X
f−→ X

A
fixX

A ( f )−−−−→ X

A×A
D[fixX

A ( f )]−−−−−→ X

=

A×X
f−→ X

A×X×A×X
〈 f◦π1,D[ f ]〉−−−−−−→ X×X

A×A×X×X c−→ A×X×A×X
〈 f◦π1,D[ f ]〉−−−−−−→ X×X

A×A
fixX×X

A×A (〈 f◦π1,D[ f ]〉◦c)
−−−−−−−−−−−−→ X×X π2−→ X

where c = A×〈π2,π1〉×X : A×A×X×X→ A×X×A×X is the canonical isomorphism swapping the
middle two terms.

Definition 3. A Cartesian differential fixpoint category is a Cartesian differential category equipped with
a parametrized fixpoint operator such that the following equality holds:

D [fix( f )] = π2 ◦fix(〈 f ◦π1,D[ f ]〉 ◦ c) (1)

which in the term calculus is expressed as follows:

dµx. f (u,x)
du

(a) ·b = π2

(
µ(x,y).

(
f (a,x),

d f (u,v)
d(u,v)

(a,x) · (b,y)
))

If the parametrized fixpoint operator is also a Conway operator [13, Definition 2.4], by Bekić’s
property [13, Proposition 2.5] we have that:

µ(x,y).
(

f (a,x),
d f (u,v)
d(u,v)

(a,x) · (b,y)
)
=

(
µx. f (a,x),

dµx. f (u,x)
du

(a) ·b
)

Therefore for a Conway operator, (1) is equivalent to:

dµx. f (u,x)
du

(a) ·b = µy.
d f (u,v)
d(u,v)

(a,µx. f (a,x)) · (b,y) (2)

Since a category with a Conway operator is a traced Cartesian monoidal category [10, Theorem 3.1], we
may call a Cartesian differential fixpoint category with a Conway operator a traced Cartesian differen-
tial category.
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3 Example: Relations

Let Rel be the category of sets and binary relations. The operation mapping a set A to the set of finite
multisets over A, !A := {m : A→N |m has finite support}, can be equipped with a comonad structure on
Rel. The induced co-Kleisli category Rel! is a Cartesian differential category whose differential operator
takes a relation R⊆ !A×B to the relation

DR = {((m, [a]),b) | (m+[a],b) ∈ R} ⊆ !A× !A×B

The category Rel! also has a parametrized fixpoint operator mapping a relation R ⊆ !A× !X ×X to the
relation fixR⊆ !A×X inductively defined as:

fixR :=
∨

n∈N

fixn R

where fix0 R = /0 and fixn+1 R is given by:

{(m0 + · · ·+mk,x) | ∃[x1, . . . ,xk] ∈ !X ,(m0, [x1, . . . ,xk],x) ∈ R,∀1≤ i≤ n,(mi,xi) ∈ fixn R}.

This fixpoint operator and the differential operator verify (1), and therefore Rel! is a Cartesian differential
fixpoint category. Moreover, the fixpoint operator is a Conway operator, and therefore Rel! is a traced
Cartesian differential category.

The extensions of the relational models to weighted relations or matrices over a continuous semi-
ring [11] are also instances of Cartesian differential fixpoint categories. In general, (1) holds for a
Cartesian differential category where the fixpoint operator is computed as a least or greatest fixpoint
operator in an ordered-enriched setting. We also aim to extend our results to guarded fixpoint operators
to accommodate for Cartesian differential categories based on metric spaces [1], where fixpoints can be
computed via the Banach fixpoint theorem.

Future Work

1. One objective is to find and study other examples of Cartesian differential fixpoint categories or
traced Cartesian differential categories. One possible way of constructing more examples is via
the Faa di Bruno construction [7], which is a way of constructing cofree Cartesian differential
categories.

2. An important source of examples of Cartesian differential categories are the coKleisli categories
of differential categories [5] (the latter of which provide the categorical semantics of Differential
Linear Logic). The relational model above is such an example. In certain cases, there are interest-
ing differential categories that are compact closed, and therefore have a canonical trace. Thus it is
natural to study differential categories that are also traced, and try to provide a unified setting for
the interactions between fixpoints, trace and differentiation.

3. Cartesian differential categories axiomatize differential calculus over Euclidean spaces, while tan-
gent categories [6] axiomatize differential calculus over smooth manifolds. In a Cartesian dif-
ferential category, the differential combinator induces a functor T : C→ C, called the tangent
bundle functor, defined on object as T(A) = A×A and on maps as T( f ) = 〈 f ◦π1,D[ f ]〉. If the
parametrized fixpoint operator satisfies the additional Bekić’s axiom [2], we can reformulate the
differential axiom (1) as

T(fix( f )) = fix(T( f )◦ c)

giving us a notion of tangent fixpoint category.
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[2] Hans Bekić. Definable operations in general algebras, and the theory of automata and flowcharts. Program-

ming Languages and Their Definition: H. Bekić (1936–1982), pages 30–55, 2005.
[3] Stephen L Bloom, Zoltán Ésik, Stephen L Bloom, and Zoltán Ésik. Iteration theories. Springer, 1993.
[4] R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. Cartesian differential categories. Theory and Applications

of Categories, 22(23):622–672, 2009.
[5] R.F. Blute, J.R.B. Cockett, and R.A.G. Seely. Differential categories. Mathematical Structures in Computer

Science, 16(06):1049–1083, 2006.
[6] J Robin B Cockett and Geoff SH Cruttwell. Differential structure, tangent structure, and SDG. Applied

Categorical Structures, 22:331–417, 2014.
[7] J Robin B Cockett and Robert AG Seely. The Faa di Bruno construction. Theory and applications of

categories, 25(15):394–425, 2011.
[8] T. Ehrhard and L. Regnier. The differential lambda-calculus. Theoretical Computer Science, 309(1):1–41,

2003.
[9] Thomas Ehrhard. A coherent differential PCF. Logical Methods in Computer Science, 19, 2023.

[10] M. Hasegawa. Recursion from cyclic sharing: traced monoidal categories and models of cyclic lambda
calculi. In Typed Lambda Calculi and Applications, pages 196–213, Berlin, Heidelberg, 1997. Springer.

[11] Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. Weighted relational models of typed
lambda-calculi. In 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 301–310.
IEEE, 2013.

[12] Gordon D. Plotkin. LCF considered as a programming language. Theoretical computer science, 5(3):223–
255, 1977.

[13] Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators. In Proceedings
Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No. 99CB36332), pages 30–41. IEEE,
2000.

[14] D. Sprunger and S. Katsumata. Differentiable causal computations via delayed trace. In 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE, 2019.

[15] Rick Statman. On the lambda Y calculus. In Proceedings 17th Annual IEEE Symposium on Logic in Com-
puter Science, pages 159–166. IEEE, 2002.


	Cartesian Differential Categories
	Fixpoint Operators and Differentiation
	Example: Relations

