
Submitted to:
SOS 2007

© D. Hausmann, N. Piterman, I. Sağlam & A-K. Schmuck
This work is licensed under the
Creative Commons Attribution License.

Fixpoint Algorithms for Fair Parity/⊥ Games*

Daniel Hausmann
University of Gothenburg,

Gothenburg, Sweden

Nir Piterman
University of Gothenburg,

Gothenburg, Sweden

Irmak Sağlam
Max Planck Institute for Software

Systems (MPI-SWS), Kaiserslautern,
Germany

Anne-Kathrin Schmuck
Max Planck Institute for Software

Systems (MPI-SWS), Kaiserslautern,
Germany

1 Summary

Omega-regular games are a popular abstract modelling formalism for many core computational problems
in the context of correct-by-construction synthesis of reactive software or hardware [8, 13, 4, 12, 15, 10].
However, before using synthesis techniques, the reactive software design problem at hand needs to be
abstractly modelled as a two-player game. In order for the subsequently synthesized software to be
‘correct-by-construction’ this game graph needs to reflect all possible interactions between involved
components in an abstract manner. Building such a game graph with the ‘right’ level of abstraction is a
known severe challenge, in particular, if the synthesized software is interacting with existing components
that already possess certain behavior. Here, part of the modelling challenge amounts to finding the ‘right’
power of both players in the resulting abstract game to ensure that winning strategies do not fail to exist
due to an unnecessarily conservative overapproximation of modeling uncertainty (or the dual problem
due to underapproximation).

In this context, fairness has been adopted as a notion to abstractly model known characteristics of the
involved components in a very concise manner. Fairness assumptions have been used in model checking
[1] and scheduler synthesis for the classical AMBA arbiter [11] or shared resource management [5],
cyber-physical system design [16] and robot motion planning [9]. In all these applications, fairness is
used as an assumption that the synthesized (or verified) component can rely on. In particular, if these
assumptions are modelled by transition fairness over a two-player game arena (V∀,V∃,E) – i.e., by a set
of fair environment edges E f ⊆ E (i.e., with V∀ as their domain) that need to be taken infinitely often
if the source vertex is seen infinitely often along a play – the resulting synthesis games can be solved
efficiently [3, 14].

While most existing work has only looked at fairness as an assumption, all mentioned applications
also naturally allow for scenarios where multiple components with intrinsically fair behavior are interact-
ing with each other in a non-trivial manner. For example, the ability of a concurrent process to eventually
free a shared resource might depend on how fair re-allocation is implemented in other threads. On an
abstract level, the formal reasoning about such scenarios requires to understand how the interactive deci-
sion making of two dependent processes is influenced by intrinsic fairness constraints imposed on their
decisions. Algorithmically, these synthesis questions require fairness restrictions on both players in a
game. This work studies two-player games over finite graphs in which both players are restricted by

*The complete paper including the results given in this short abstract will be published in the conference proceedings of
FoSSaCS’24. The full version is also available at: https://arxiv.org/abs/2310.13612

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2310.13612

2 Fixpoint Algorithms for Fair Parity/⊥ Games

fairness constraints on their edges. We simply call such games fair games. Given a two player game
graph G = (V,E) and a set of fair edges E f ⊆ E a player is said to play fair in G if they choose an edge
e ∈ E f infinitely often whenever the source vertex of e is visited infinitely often. Otherwise, they play
unfair. We equip such games with two ω-regular winning conditions α and β deciding the winner of
mutually-fair and mutually-unfair plays, respectively. Whenever one player plays fair and the other plays
unfair, the fairly playing player wins the game. The resulting games are called fair α/β games.

In this talk we focus on the restriction of fair α/β games where α is a parity condition and β = ⊥
(meaning mutually-unfair plays are losing for ∃-player), called fair parity/⊥ games.

We give two different solution algorithms for fair parity/⊥ games. The first one is based on a 3-step
gadget construction inspired by [6] and the second one is a direct symbolic algorithm that is based on the
gadget construction, which solves the game on the original graph.

Fair Game Arenas. A fair game arena A = (V∃,V∀,E,E f) consists of a set of nodes V = V∃ ∪· V∀,
together with an edge set E ⊆ V ×V partitioned into the set E f ⊆ E of fair edges and E \E f of normal
edges.

We denote the set of ∃- and ∀-player strategies over A with Σ and Π, respectively; where strategies are
defined as usual. We denote the nodes that have some fair outgoing edges with V fair = {v∈V |E f (v) 6= /0}
and set V fair

i =Vi∩V fair for i ∈ {∃,∀}. We denote all plays over A by plays(A) and a play starting from
v ∈ V , compliant with the strategies s ∈ Σ and t ∈ Π by playv(s, t). For a play ρ , fairi(ρ) holds iff ρ is
fair for player i ∈ {∃,∀}. The winning region of player i is denoted by Wini.

Definition 1 (Fair Parity/⊥ Games). A fair game G = (A,Parity(λ),⊥) consists of a fair game arena A
together with a parity condition given via a coloring λ of the nodes (or edges) of A. Parity(λ)⊆ plays(A)
determines the winner of mutually-fair plays, and ⊥ determines the winner of mutually-unfair plays,
indicating such plays are losing for ∃-player. A play that is i-fair and (1− i)-unfair is won by player i.
Formally, in a fair parity/⊥ game G = (A,Parity(λ),⊥), v ∈Win∃ iff,

∃s ∈ Σ.∀t ∈Π.fair∃(playv(s, t))∧ (fair∀(playv(s, t))⇒ playv(s, t) ∈ Parity(λ)). (1)

1.1 Reduction to Parity Games

We show a linear reduction of fair parity/⊥ games to parity games in the case that α is a parity objective
and β =>. Our reduction works by replacing each fair node in the fair game with a 3-step parity gadget
given in Figure 1. Theorem 1 states this formally.

This construction is inspired by the work of Chatterjee et al. [7] where the qualitative analysis of
stochastic parity games is reduced to solving parity games.

Theorem 1. Let G = (A,Parity(λ),⊥) where A = (V∃,V∀,E,E f) is a fair game arena, V =V∃∪· V∀ and
λ : V → [2k] is the priority function. Then there exists a parity game G′ on the node set V ′ with V ⊆V ′

and |V ′| ≤ n(3k+1) over 2k+1 priorities such that for i ∈ {∃,∀}, Wini(G) =Wini(G′)∩V .

2 Fixpoint Characterization of Winning Regions

In this section, we characterize the winning regions in fair parity/⊥ games by means of fixpoint expres-
sions. Thereby we provide an alternative, symbolic route to solve such games by computing fixpoint
expressions, rather then by reducing to parity games. We start by briefly recalling details on Boolean
fixpoint expressions.

D. Hausmann, N. Piterman, I. Sağlam & A-K. Schmuck 3

v

.v∀,1

vout,1 vout,2

v∀,n-1

vout,n-1 vout,n

v∀,2k+1

vout,2k+1

E(v) E f (v) E(v) E f (v) E(v)

v

.v∀,1

vout,1 vout,2

v∀,n-1

vout,n-1 vout,n

v∀,2k−1

vout,2k−1 vout,2k

E f (v) E(v) E f (v) E(v) E f (v) E(v)

Figure 1: Gadgets for v ∈ V fair
∃ (top) and v ∈ V fair

∀ (bottom) in fair parity/⊥ games. The rectangular nodes are
controlled by ∀-player, and the nodes with round corners are controlled by ∃-player. The number n is always even.
Nodes (vout, i) have priority i.

Fixpoint expressions and fixpoint games. Let U be a finite set, let o be a fixed number and let f :
P(U)o →P(U) be a monotone function, that is, assume that whenever we have sets X j ⊆ U and
Yj ⊆U such that X j ⊆ Yj for all 1 ≤ j ≤ o, then f (X1, . . . ,Xo) ⊆ f (Y1, . . . ,Yo). Then f and o induce the
fixpoint expression

e = ηoXo.ηo−1Xo−1.νX2.µX1. f (X1, . . . ,Xd) (2)

where ηi = ν if i is even and ηi = µ if i is odd. We define the semantics of fixpoint expressions using par-
ity games. Given a fixpoint expression e, the associated fixpoint game Ge = (W∃,W∀,E,Parity-edge(κ))
for the edge-based priority function κ : E → [o] is the following parity game. We put W∃ = U , W∀ =
P(U)o. Moves and priorities are defined by

E(v) = {Z ∈W∀ | v ∈ f (Z)} κ(v,Z) = 0

E(Z) = Z1∪ . . .∪Zo κ(Z,v) = max{i | v ∈ Zi}

for v ∈W∃ and Z = (Z1, . . . ,Zo) ∈W∀. Then we say that v ∈U is contained in e (denoted v ∈ e) if and
only if ∃-player wins the node v in Ge.

Remark. The above game semantics for fixpoint expressions has been shown to be equivalent to the
more traditional Knaster-Tarski semantics [2]; the cited work takes place in a more general setting and
therefore uses slightly more verbose state-based parity games.

Next we present a fixpoint characterization of the winning regions in fair parity/⊥ games G =
(A,Parity(λ),⊥) where A = (V∃,V∀,E,E f) is a fair game arena, V = V∃ ∪· V∀ and λ : V → [2k] a pri-
ority function. To be able to write fixpoint expressions over such games we define monotone operators

4 Fixpoint Algorithms for Fair Parity/⊥ Games

on subsets of V by putting

♦X = {v ∈V | E(v)∩X 6= /0} �X = {v ∈V | E(v)⊆ X}
♦ f X = {v ∈V | E f (v)∩X 6= /0} � f X = {v ∈V | E f (v)⊆ X}

for X ⊆V and also put Cpre(X) = (V∃∩♦X)∪ (V∀∩�X). Then Cpre(X) is the set of nodes from which
∃-player can force the game to reach a node from X in one step. Also, we define Ci = {v ∈V | λ (v) = i}
for 1≤ i≤ 2k.

Using this notation, we define a function parity : P(V)2k→P(V) by putting

parity(X1, . . . ,X2k) := (C1∩Cpre(X1))∪ . . .∪ (Ck∩Cpre(X2k))

for (X1, . . . ,X2k) ⊆P(V)2k. This function is monotone and it is well-known (see e.g [17]) that the
fixpoint induced by parity characterizes the winning region in parity games with priorities 1 through 2k.
This formula will still apply to ‘normal’ nodes V n := V \V fair in the fixpoint characterization of fair
parity games.

We follow the gadget constructions from Figure 1 to define the following additional functions. For
1≤ i < k, we first abbreviate

Apre∃(Xi,Xi+1) = ♦Xi∩� f Xi+1 Apre∀(Xi,Xi+1) = ♦ f Xi∩�Xi+1,

encoding nodes (v∀,2i) for v ∈V fair
∃ and v ∈V fair

∀ , respectively. Then, we let Ip = {i | i odd, p < i < 2k}
denote the set of odd priorities that lie strictly between p and 2k, and put

φ
fair
∃,p =

{⋃
i∈Ip

Apre∃(Xi,Xi+1) ∪ ♦X2k+1 p is even⋃
i∈Ip

Apre∃(Xi,Xi+1) ∪ ♦X2k+1∪� f Yp p is odd

and

φ
fair
∀,p =

{⋃
i∈Ip

Apre∀(Xi,Xi+1) p is even⋃
i∈Ip

Apre∀(Xi,Xi+1) ∪�Yp p is odd

Using this notation, the winning region for the existential player in fair parity/⊥ games with priorities
1 through 2k can be characterized by the fixpoint expression induced by 2k+1 and the function χ that is
defined to map (X1, . . . ,X2k+1) ∈P(V)2k+1→P(V) to the set

χ(X1, . . . ,X2k+1) =(V n ∩ parity)∪

(V fair
∃ ∩

⋃
i∈[2k+1]

Ci ∩ φ
fair
∃,i)∪

(V fair
∀ ∩

⋃
i∈[2k+1]

Ci ∩ φ
fair
∀,i)

The full fixpoint expression then is

e = µX2k+1.νX2k.µX2k−1 . . . νX2.µX1.χ(X1, . . . ,Xk) (3)

That is, theorem 2 is the main result of this section.

Theorem 2. Let G = (A,Parity(λ),⊥) where A = (V∃,V∀,E,E f) is a fair game arena, V =V∃∪· V∀ and
λ : V → [2k] is the priority function. Then the fixpoint expression given in (3) characterizes Win∃(G).

D. Hausmann, N. Piterman, I. Sağlam & A-K. Schmuck 5

References
[1] Benjamin Aminof, Thomas Ball & Orna Kupferman (2004): Reasoning About Systems with Transition Fair-

ness. In Franz Baader & Andrei Voronkov, editors: Logic for Programming, Artificial Intelligence, and
Reasoning, 11th International Conference, LPAR 2004, Montevideo, Uruguay, March 14-18, 2005, Proceed-
ings, Lecture Notes in Computer Science 3452, Springer, pp. 194–208, doi:10.1007/978-3-540-32275-7_14.
Available at https://doi.org/10.1007/978-3-540-32275-7_14.

[2] Paolo Baldan, Barbara König, Christina Mika-Michalski & Tommaso Padoan (2019): Fixpoint games on
continuous lattices. Proc. ACM Program. Lang. 3(POPL), pp. 26:1–26:29, doi:10.1145/3290339. Available
at https://doi.org/10.1145/3290339.

[3] Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck & Sadegh Soudjani (2023):
Fast Symbolic Algorithms for Omega-Regular Games under Strong Transition Fairness. TheoretiCS 2,
doi:10.46298/theoretics.23.4. Available at https://doi.org/10.46298/theoretics.23.4.

[4] J.R. Büchi & L.H. Landweber (1969): Solving Sequential Conditions by Finite-State Strategies. Trans. Amer.
Math. Soc. 138, pp. 295–311.

[5] Krishnendu Chatterjee, Luca de Alfaro, Marco Faella, Rupak Majumdar & Vishwanath Raman (2013): Code
aware resource management. Formal Methods Syst. Des. 42(2), pp. 146–174, doi:10.1007/s10703-012-0170-
4. Available at https://doi.org/10.1007/s10703-012-0170-4.

[6] Krishnendu Chatterjee, Marcin Jurdziński & Thomas A Henzinger (2003): Simple stochastic parity games.
In: International Workshop on Computer Science Logic, Springer, pp. 100–113.

[7] Krishnendu Chatterjee, Marcin Jurdzinski & Tom Henzinger (2003): Simple Stochastic Parity Games. In: In
Proceedings of the International Conference for Computer Science Logic (CSL), pp. 100–113. Available at
http://chess.eecs.berkeley.edu/pubs/729.html.

[8] Alonzo Church (1963): Application of recursive arithmetic to the problem of circuit synthesis. Journal of
Symbolic Logic 28(4).

[9] Nicolás D’Ippolito, Natalia Rodríguez & Sebastian Sardiña (2018): Fully Observable Non-deterministic
Planning as Assumption-Based Reactive Synthesis. J. Artif. Intell. Res. 61, pp. 593–621,
doi:10.1613/jair.5562. Available at https://doi.org/10.1613/jair.5562.

[10] Philipp J. Meyer, Salomon Sickert & Michael Luttenberger (2018): Strix: Explicit Reactive Synthesis Strikes
Back! In: 30th International Conference on Computer Aided Verification, Lecture Notes in Computer Science
10981, Springer, pp. 578–586.

[11] Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2006): Synthesis of Reactive(1) Designs. In: Proceedings of
the 7th International Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI’06,
Springer-Verlag, Berlin, Heidelberg, p. 364–380.

[12] A. Pnueli & R. Rosner (1988): A Framework for the Synthesis of Reactive Modules. In: Proc. Intl. Conf. on
Concurrency: Concurrency 88, Lecture Notes in Computer Science 335, pp. 4–17.

[13] M.O. Rabin (1969): Decidability of Second Order Theories and Automata on Infinite Trees. Trans. Amer.
Math. Soc. 141, pp. 1–35.

[14] Irmak Sağlam & Anne-Kathrin Schmuck (2023): Solving Odd-Fair Parity Games. In: 42th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science. (to appear).

[15] S. Schewe & B. Finkbeiner (2006): Bounded Synthesis. In: 4th Int. Symp. on Automated Technology for
Verification and Analysis, Lecture Notes in Computer Science 4218, Springer, pp. 245–259.

[16] John G Thistle & RP Malhamé (1998): Control of ω-automata under state fairness assumptions. Systems &
control letters 33(4), pp. 265–274.

[17] Igor Walukiewicz (2002): Monadic second-order logic on tree-like structures. Theor. Comput. Sci.
275(1-2), pp. 311–346, doi:10.1016/S0304-3975(01)00185-2. Available at https://doi.org/10.1016/
S0304-3975(01)00185-2.

https://doi.org/10.1007/978-3-540-32275-7_14
https://doi.org/10.1007/978-3-540-32275-7_14
https://doi.org/10.1145/3290339
https://doi.org/10.1145/3290339
https://doi.org/10.46298/theoretics.23.4
https://doi.org/10.46298/theoretics.23.4
https://doi.org/10.1007/s10703-012-0170-4
https://doi.org/10.1007/s10703-012-0170-4
https://doi.org/10.1007/s10703-012-0170-4
http://chess.eecs.berkeley.edu/pubs/729.html
https://doi.org/10.1613/jair.5562
https://doi.org/10.1613/jair.5562
https://doi.org/10.1016/S0304-3975(01)00185-2
https://doi.org/10.1016/S0304-3975(01)00185-2
https://doi.org/10.1016/S0304-3975(01)00185-2

	1 Summary
	1.1 Reduction to Parity Games

	2 Fixpoint Characterization of Winning Regions

