
Submitted to:
FICS 2024

© D. Hausmann
This work is licensed under the
Creative Commons Attribution License.

Faster Game Solving by Fixpoint Acceleration

Daniel Hausmann*

University of Gothenburg, Sweden

hausmann@chalmers.se

We propose a method for solving parity games with acyclic (DAG) sub-structures by computing
nested fixpoints of a DAG attractor function that lives over the non-DAG parts of the game, thereby
restricting the domain of the involved fixpoint operators. Intuitively, this corresponds to accelerating
fixpoint computation by inlining cycle-free parts during the solution of parity games, leading to
earlier convergence. We also present an economic later-appearence-record construction that takes
Emerson-Lei games to parity games, and show that it preserves DAG sub-structures; it follows that
the proposed method can be used also for the accelerated solution of Emerson-Lei games.

1 Background

The analysis of infinite duration games is of central importance to various problems in theoretical com-
puter science such as formal verification (model checking), logical reasoning (satisfiability checking), or
automated program construction (reactive synthesis). Previous work has shown how fixpoint expressions
can be used to characterize winning in such games, which in turn has enabled the development of sym-
bolic game solving algorithms that circumvent the state-space explosion to some extent and therefore
perform reasonably well in practice in spite of the high complexity of the considered problems.

In this work, we build on the close connection between game solving and fixpoint computation to
obtain a method that accelerates the solution of parity games with acyclic sub-structures. Intuitively, we
base our method on the observation that cycle-free parts in parity games can be dealt with summarily by
using the computation of attractors in place of handling each node individually. In games that are largely
cycle-free, but in which attraction along cycle-free parts can be evaluated without exploring most of their
nodes, this significantly speeds up the game solution process.

The close relation between games and fixpoint expression has been well researched. On one hand, it
has been shown that winning regions in games with various objectives can be characterized by fixpoint
expressions [4, 3, 10, 5]. The result for parity games (e.g. [4]) arguably is the best-known case: it has
been shown that the winning region in parity games with k priorities can be specified by a modal µ-
calculus formula (known as Walukiewicz formulas) with alternation-depth k; this result connects parity
game solving and model checking for the µ-calculus. It corresponds to arrow (1) in the diagram below,
which is meant to illustrate the context of our contribution.

fixpoint expressions parity games Emerson-Lei games

fixpoint games (2)

Walukiewicz formulas (1)

LAR (3)

A fruitful reduction in the converse direction is more recent. Fixpoint games, that is, parity games of
a certain structure (defined in detail below), have been used to characterize the semantics of hierarchical

*Supported by the ERC Consolidator grant D-SynMA (No. 772459)

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Faster Game Solving

fixpoint equation systems in terms of games [2]. While this reduction (corresponding to arrow (2) in
the diagram) incurs blow-up that is exponential in the size of the domain of the equation system, it still
proved helpful since it allows for reasoning about nested least and greatest fixpoints in terms of (strategies
in) parity games. Fixpoint games have also been used to lift the recent breakthrough quasipolynomial
result for parity game solving to the evaluation of general fixpoint equation systems [8].

Later-appearence-record (LAR) constructions have been used to reduce games with richer winning
objectives to parity games; this subsumes in particular the LAR-reduction for Emerson-Lei games (arrow
(3)), which have recently garnered attention due to their succinctness and favorable compositionality
properties.

In this context, the contribution of the current work is two-fold. First, we show how for parity games
with cycle-free sub-structures, Walukiewicz’ construction can be adapted to use multi-step attraction
along cycle-free parts (we call such parts DAGs in games) in place of one-step attraction. In consequence,
the domain of the resulting fixpoint expression can be restricted to the parts of the game that are not cycle-
free, thereby accelerating convergence in the solution of the fixpoint expression. If multi-step attraction
can be evaluated without visiting most cycle-free nodes (which is the case, e.g., when cycle-free parts
encode predicates that can be efficiently evaluated), this trick has been shown to significantly speed up
game solution. Applications can be found in both model checking [6] and satisfiability checking [7] for
generalized µ-calculi in which satisfaction / joint satisfiability of the modalities can be harder to verify
than in the standard µ-calculus.

In addition to that, we propose a later-appearance-record construction for the transformation of
Emerson-Lei games to parity games (corresponding to arrow (3) in the above diagram) and show that
the reduction preserves cycle-free sub-structures, thereby enabling usage of the proposed acceleration
method also for games with full Emerson-Lei objectives.

2 Games and Fixpoint Expressions

We start by introducing notions of games and fixpoint expressions pertaining to the acceleration method
proposed in Sections 3 and 4 below.

Games. An arena is a graph A = (V∃,V∀,E), consisting of a set V = V∃ ∪V∀ of nodes and a set
E ⊆V ×V of moves; furthermore, the set of nodes is partitioned into the sets V∃ and V∀ of nodes owned
by player ∃ and by player ∀, respectively. We write E(v) = {w ∈ V | (v,w) ∈ E} for the set of nodes
reachable from node v ∈V by a single move. We assume without loss of generality that every node has
at least one outgoing edge, that is, that E(v) 6= /0 for all v ∈ V . A play π = v0v1 . . . on A is a (finite or
infinite) sequence of nodes such that vi+1 ∈ E(vi) for all i≥ 0. By abuse of notation we denote by Aω the
set of infinite plays on A and by A+ the set of finite (nonempty) plays on A. A strategy for player i∈{∃,∀}
is a function σ : V ∗ ·Vi → V that assigns a node σ(πv) ∈ V to every finite play πv that ends in a node
v ∈ Vi. A strategy σ for player i is said to be positional if the prescribed moves depend only on the last
nodes in plays; formally, this is the case if we have σ(πv) = σ(π ′v) for all π,π ′ ∈V ∗ and v ∈Vi. A play
π = v0v1 . . . then is compatible with a strategy σ for player i ∈ {∃,∀} if for all j≥ 0 such that v j ∈Vi, we
have v j+1 =σ(v0v1 . . .v j). A strategy for player i∈ {∃,∀} with memory M is a tuple σ = (M,m0,update :
M×E→M,move : Vi×M→V), where M is some set of memory values, m0 ∈M is the initial memory
value, the update function update assigns the outcome update(m,e) ∈M of updating the memory value
m ∈ M according to the effects of taking the move e ∈ E, and the moving function move prescribes a
single move (v,move(v,m)) ∈ E to every game node v ∈ Vi that is owned by player i, depending on the
memory value m. We extend update to finite plays π by putting update(m,π) = m in the base case that

D. Hausmann 3

π consists of a single node, and by putting update(m,π) = update(update(m,τ),(v,w)) if π is of the
shape τvw, that is, contains at least two nodes. Then we obtain a strategy (without explicit memory)
τσ : V ∗ ·Vi→V from a strategy σ = (M,m0,update : M×E→M,move : Vi×M→V) with memory by
putting, for all v0v1 . . .vi ∈V ∗ ·Vi,

τσ (v0v1 . . .vi) =move(vi,update(m0,v0v1 . . .vi)).

In this work we consider two types of objectives: parity objectives and, more generally, Emerson-Lei
objectives.

Emerson-Lei objectives [9] are specified relative to a coloring function γC : V → 2C (for some set C
of colors) that assigns a set γC(v) ⊆C of colors to every node v ∈ V . A play π = v0v1 . . . then induces
a sequence γC(π) = γC(v0)γC(v1) . . . of sets of colors. Emerson-Lei objectives are given as Boolean for-
mulas ϕC ∈ B({Inf c | c ∈C}) over atoms of the shape Inf(c); throughout, we write Fin(c) for ¬(Inf(c)).
Such formulas are interpreted over infinite sequences γ0γ1 . . . of sets of colors. We put γ0γ1 . . . |= Inf c
if and only if there are infinitely many positions i such that c ∈ γi; satisfaction of Boolean operators is
defined in the usual way. Then a play π on A satisfies the objective ϕC if and only if γC(π) |= ϕC and we
define the Emerson-Lei objective induced by γC and ϕC by putting

αγC,ϕC = {π ∈V ω | γC(π) |= ϕC}.

An Emerson-Lei game is a tuple G = (A,α), where A = (V∃,V∀,E) is an arena and α is an Emerson-
Lei objective. A strategy σ is winning for player ∃ at some node v ∈ V if all plays that start at v and
are compatible with σ satisfy the objective α . A strategy τ for player ∀ is defined winning dually. The
winning region WinG of player ∃ in the game G is the set of nodes for which there is a winning strategy
for player ∃.

As a special case, we define parity games to be Emerson-Lei games (A,α) where α is the Emerson-
Lei objective induced by a coloring function γ : V → 2{p1,...,pk} that assings exactly one of the colors
{p1, . . . , pk} to each game node, and the formula∨

i even Inf(pi)∧
∧

j>iFin(p j),

expressing that for some even i, color pi is visited infinitely often and no color p j such that j is larger
than i is visited infinitely often. We denote such games by (V∃,V∀,E,Ω : V → N), where Ω is a priority
function, assigning to each node v ∈V the number Ω(v) = i such that γ(v) = {pi}.

Fixpoint Expressions. Let U be a set, k a natural number (we assume without loss of generality that
k is even) and let f : P(U)k→P(U) be a monotone function (such that f (W1, . . . ,Wk)⊆ f (W1, . . . ,Wk)
whenever Wi ⊆W ′i for all 1≤ i≤ k). This data induces a fixpoint expression

e = νXk.µXk−1.µX1. f (X1, . . . ,Xk).

The semantics of such fixpoint expressions is defined as usual, following the Knaster-Tarski fixpoint
theorem. Formally, we put

LFPg =
⋂
{W ⊆U | g(W)⊆W} GFPg =

⋃
{W ⊆U |W ⊆ G(W)}

for monotone functions g : P(U)→P(U) and define

JeKi(Xi+1, . . .Xk) =

{
LFP(λXi.JeKi−1(Xi,Xi+1, . . .Xk)) if i is odd
GFP(λXi.JeKi−1(Xi,Xi+1, . . .Xk)) if i is even

4 Faster Game Solving

for 1 ≤ i ≤ k and Xi+1, . . . ,Xk ⊆ V , where JeK0(X1, . . .Xk) = f (X1, . . .Xk). Then we say that v ∈ V is
contained in e (denoted v ∈ e) if and only if v ∈ JeKk; by abuse of notation, we denote JeKk just by e.

Relation between Games and Fixpoint Expressions. The winning region in parity games can be
specified by a fixpoint expression over the underlying game arena. To see how this works, let G =
(V∃,V∀,E,Ω) be a parity game and define the following notation. Let Ω−1(i) = {v ∈ V | Ω(v) = i}
denote the set of nodes that have priority i. The controllable predecessor function Cpre : P(V)→P(V)
that computes one-step attraction for player ∃ in G is defined, for X ⊆V , by putting

Cpre(X) = {v ∈V∃ | E(v)∩X 6= /0}∪{v ∈V∀ | E(v)⊂ X}.

The characterization then is given by the fixpoint expression

parityG = νXk.µXk−1.µX1.
∨

1≤i≤k

Ω
−1(i)∧Cpre(Xi). (1)

The characterization result (e.g. [4]) then is stated as follows.

Lemma 1. We have WinG = parityG.

Similar fixpoint characterizations of winning regions have been given for games with more involved
objectives, including GR[1] conditions [3], Rabin and Streett objectives [10], and most recently, also
for full Emerson-Lei objectives [5]. While the characterizations of winning according to these more
general objectives involve fixpoint expressions of a more general format (given by hierarchical systems
of fixpoint equations) than the one we have defined above, the fixpoint for the winning region in parity
games will be sufficient for the purposes of this work. All mentioned fixpoint characterizations of win-
ning regions allow for (symbolic) solution of games by computing nested fixpoints, using for instance
standard fixpoint iteration [12], or using more recent techniques that employ universal trees to obtain
quasipolynomial algorithms to compute nested fixpoints [8, 1].

For the converse direction, that is, going from fixpoints to games, it has recently been shown (in a
more general framework than the one used in this work, see [2] for details) that the semantics of fixpoint
expressions can be equivalently given in terms of parity games. The fixpoint game that is associated with
a fixpoint expression

e = νXk.µXk−1.µX1. f (X1, . . . ,Xk)

over U is the parity game Ge = (V∃,V∀,E,Ω : V → {1, . . . ,k}) played over the sets V∃ = U and V∀ =
P(U)k∪(U×[k]) of nodes; moves and priorities are given by the following table, abbreviating (U1, . . . ,Uk)
by U .

node owner priority allowed moves
u ∈U ∃ 0 {U ∈P(U)k | v ∈ f (U)}

U ∈P(U)k ∀ 0 {(u, i) ∈U× [k] | u ∈Vi}
(u, i) ∈U× [k] ∀ i {u}

When the game reaches a node u ∈U , player ∃ thus has to provide a tuple U ∈P(U)k such that f (U).
Player ∀ in turn can challenge the provided tuple by moving to any (u′, i) such that u′ ∈ Ui, and then
continuing the with u′ ∈U . Crucially, such a sequence triggers the priority i which is and even number
if Xi belongs to a greatest fixpoint in e, and odd otherwise. We observe that the number of nodes in Ge is
exponential in |U |; however, player ∃ owns only |U | of these nodes.

D. Hausmann 5

Lemma 2 ([2]). We have e =WinGe .

While fixpoint games enable reasoning about fixpoint expressions by reasoning about parity games,
the exponential size of fixpoint games makes it unfeasible to evaluate fixpoint expressions by solving the
associated fixpoint games.

3 Game Arenas with DAG Sub-structures

In this section we introduce notions related to cycle-free sub-structures in (parity) games that will be
central to the upcoming acceleration result.

Definition 3. Let G = (V∀,V∃,E) be a game arena. A set W ⊆ V of nodes is a DAG (directed acyclic
graph) if it does not contain an E-cycle; then there is no play of G that eventually stays within W forever.
A DAG is not necessarily connected, that is, it may consist of several subgames of G. Given a DAG
W ⊆ V , we write V ′ = V \W and refer to the set V ′ as real nodes (with respect to W). A DAG is
positional if for each existential player node w ∈W ∩V∃ in it, there is exactly one real node v ∈V ′ from
which w is reachable without visiting any other real node.

We will be interested in parity games over game arenas with DAG structures, and in the computa-
tion of attraction (alternating reachability) within such DAGs. To this end, we introduce the following
notation of DAG attraction in parity games.

Definition 4. Let G = (V∀,V∃,E,Ω) be a parity game with priorities {1, . . . ,k}. Given a DAG W and k
sets V = (V1, . . . ,Vk) of real nodes and a real node v ∈ V ′, we say that player ∃ can attract to V from v
within W if there is a positional strategy σ for player ∃ such that for all plays π that start at v and adhere
to σ , the first node v′ in π such that v′ 6= v and v′ ∈V ′ is contained in Vp, where p is the maximal priority
that is visited by the part of π that leads from v to v′.

Given a DAG W , we define the DAG attractor function DAttrW : P(V ′)k→P(V ′) by

DAttrW (V) = {v ∈V | player ∃ can attract to V from v within W} (2)

for V = (V1, . . . ,Vk) ∈P(V ′)k. We assume a bound tAttrW on the runtime of computing, for any input
V ∈P(V ′)k, the dag attractor of V through W .

We always have tAttrW ≤ |E|, using a least fixpoint computation to check for alternating reachability,
thereby possibly exploring all DAG edges of the game. The method that we propose in the next section
can play out its strength best in parity games that have large DAGs that can be efficiently evaluated (more
formally, this typically means that we have both |V ′|< log |V | and tAttrW < log |V |).

4 Large-step Solving for Parity Games

In this section we show that a parity game with DAG sub-structure W can be solved by computing a
fixpoint of the DAG attractor function, using V ′ = V \W as domain of the fixpoint computation, rather
than V .

So let G = (V∃,V∀,E,Ω) be a parity game with (positional) DAG W . Recall (from Lemma 1) that the
winning region in G is given by

WinG = νXk.µXk−1.µX1.
∨

1≤i≤k

Ω
−1(i)∧Cpre(Xi),

6 Faster Game Solving

where Cpre operates on subsets Xi of V . We show that

WinG∩V ′ = νYk.µYk−1.µY1.DAttrW (Y1, . . . ,Yk), (3)

pointing out that DAttrW (Y1, . . . ,Yk) is a function over subsets Y1, . . .Yk of V ′. Therefore Equation (3)
shows how attention can be reduced to non-DAG nodes (from V ′) when solving G; however, the price
for this is that the function DAttrW of which the fixpoint is computed is complex since it computes
multi-step attraction within a DAG in place of one-step attraction as encoded by Cpre.

We make this intuition precise and prove the main result (that is, Equation (3)) as follows.

Lemma 5. Let G be a parity game with priorities 1 to k and set V of nodes, and let W be a positional
DAG in G and let m := |V \W |. Then WinG∩V ′ can be computed with O(mlogk) computations of a DAG
attractor; if k < logm, then WinG∩V ′ can be computed with a number of DAG attractor computations
that is polynomial in m.

Proof. Put V ′ = V \W . First we show that the winning regions in G can be computed as a fixpoint
expression (with alternation-depth k) of the DAG attractor function given in Equation (2). Without loss
of generality, assume that k is an even number.

We define the fixpoint expression

d = νXk.µXk−1.µX1.DAttrW (X1, . . . ,Xk),

noting that the fixpoint variables Xi in d range over subsets of V ′ rather than over subsets of V . It has
been shown in [8] how universal trees can be used to compute the nested fixpoint d with O(mlogk) (that
is, quasipolynomially many) iterations of the function DAttrW . The same paper shows that if k < logm,
then d can be computed with a polynomial (in m) number of computations of a dag attractor. It remains
to show that d is the winning region (restricted to V ′) of player ∃ in G.

⇒ Let s be a strategy with which player ∃ wins from all nodes in their winning region in Gd . We
define a positional strategy t for player ∃ in G. The definition proceeds in steps that lead from a
real node to the next real nodes. Given a real node v ∈ V ′ that is contained in the winning region
of player ∃ in Gd , we have s(v) =V ∈P(V ′)k+1 such that player ∃ can attract to V from v within
W . For the dag part of G that starts at v, define the strategy t to simply use the positional strategy
that attracts to V from v within W .
To see that t is a winning strategy, let π be a play of G that is compatible with t. Then π induces
a play τ of Gd that is compatible with s: For any two positions i and i′ such that i < i′, both
π(i) and π(i′) are real nodes and there is no i < j < i′ such that π(j) is a real node, let p be the
maximal priority that is visited by the partial play from π(i) to π(i′). By construction we have
s(π(i)) = (V0, . . . ,Vp, . . . ,Vk) where Vp contains π(i′). Thus the partial play of G that leads from
π(i) to π(i′) induces the partial play τi = π(i)s(π(i))(π(i′), p)π(i′) of Gd . We define τ to be the
concatenation of all partial plays τi. By construction, τ is compatible with s; as s is a winning
strategy, player ∃ wins τ . Furthermore, the maximal priorities that are visited infinitely often in τ

and π agree. Thus player ∃ wins π , as required.

⇐ Let t be a positional strategy for player ∃ in G with which they win from all nodes in their winning
region. We define a positional strategy s for player ∃ in Gd as follows. For each node v ∈ V ′ that
is contained in the winning region of player ∃ in G, t yields a positional strategy that attracts from
v to some V = (V0, . . . ,Vk) ∈P(V ′)k+1 within W : For all v′ and all 0≤ p≤ k such that there is a
partial play of G that is compatible with t, starts at v, ends at v′, and in between visits only nodes

D. Hausmann 7

from W , and in which the maximal priority that is visited is p, add v′ to Vp. Put s(v) = V . As v
attracts from v to V within W by construction, s is a valid strategy.
To see that s is a winning strategy, let τ be a play of Gd that starts a real node from the winning
region of player ∃ in G and that is compatible with s. For each partial subplay vis(vi)(vi+1, pi)vi+1
of τ , we define πi to be some partial play of G that is compatible with t, starts at vi, ends at vi+1, and
in between visits only nodes from W , and in which the maximal priority that is visited is pi. Such
a play exists by construction of s. Let π denote the concatenation of all πi. Again, the maximal
priorities that are visited infinitely often in τ and π agree. As t is a winning strategy, player ∃ wins
both τ and π .

In case that m < logn and tAttrW ∈ O(logn) (that is, DAG attractability can be decided without
exploring most of the DAG nodes), this trick leads to exponentially faster game solving.

5 Large-step Solving for Emerson-Lei Games

In this section, we show how games with an Emerson-Lei objective can be transformed to equivalent
parity games, using an economic variant of the later-appearance-record (LAR) construction; we also
show that this transformation preserves dag sub-structures. Thereby we enable usage of the acceleration
method for parity games from the previous section also for Emerson-Lei games.

The LAR reduction annotates game nodes with permutations that act as a memory and record the
order in which colors have been recently visited; this allows to identify the set of colors that is visited
infinitely often. A parity condition is used to check whether this set satisfies the Emerson-Lei objective.
A slight difference to previous LAR constructions for Emerson-Lei automata and games [11, 9] is that
our reduction moves at most one color within the LAR in each game step, thereby allowing to bound the
branching of memory updates along DAG parts of games.

Before we present the formal reduction, we first fix a set C of colors and introduce notation for
permutations over C. We let Π(C) denote the set of permutations over C, and for a permutation π ∈Π(C)
and a position 1 ≤ i ≤ |C|, we let π(i) ∈C denote the element at the i-th position of π . Let π0 be some
fixed element of Π(C). For D ⊆C and π ∈ Π(C), we let π@D denote the permutation that is obtained
from π by moving the element of D that occurs at the right-most position in π to the front of π; for
instance, for C = {a,b,c,d} and π = (a,d,c,b) ∈Π(C), we have π@{a,d}= π@{d}= (d,a,c,b) and
(d,a,c,b)@{a,d} = π . Crucially, restricting the reordering to single colors, rather than sets of colors,
ensures that for each π ∈Π(C), there are only |C| many π ′ such that π@D = π ′ for some D⊆C. Given
a permutation π ∈ Π(C) and an index 1 ≤ i ≤ |C|, we furthermore let π[i] denote the set of colors that
occur in one of the first i positions in π .
Definition 6. Let G = (V∃,V∀,E,γC,ϕC) be an Emerson-Lei game with set C of colors. We define the
parity game

P(G) = (V∃×Π(C),V∀×Π(C),E ′,Ω)

by putting E ′(v,π) = {(w,π@γC(v,w)) | (v,w) ∈ E} for (v,π) ∈V ×Π(C), and

Ω(v,π) =

{
2p π[p] |= ϕC

2p+1 π[p] 6|= ϕC

for (v,π) ∈V ×Π(C). Here, p denotes the right-most position in π that contains some color from γC(v).

8 Faster Game Solving

Lemma 7. For all v ∈V , we have v ∈WinG if and only if (v,π0) ∈WinP(G).

Proof. For a finite play τ = (v0,π0)(v1,π1) . . .(vn,πn) of P(G), we let p(τ) denote the right-most position
in π0 such that π0(p(τ))∈ γC(v0v1 . . .vn). By slight abuse of notation, we let Ω(τ) denote the maximal Ω-
priority that is visited in τ , having Ω(τ)= 2(p(τ)) if π0[p(τ)] |=ϕC and Ω(τ)= 2(p(τ))+1 if π0[p(τ)] 6|=
ϕC.

⇒ Let σ = (Π(C),updateσ ,moveσ) be a strategy with memory Π(C) for player ∃ in G with which
they win every node from their winning region. It has been shown in a previous LAR reduction
for Emerson-Lei games [9] that winning strategies with this amount of memory always exist. We
define a strategy ρ = (Π(C),updateρ ,moveρ) with memory Π(C) for player ∃ in P(G) by putting
updateρ(π,((v,π ′),(w,π ′′)))= updateσ (π,(v,w)) and moveρ((v,π ′),π)= (w,π@γC(v,w)) where
w = moveρ(v,π). Thus ρ updates the memory and picks moves just as σ does, but also updates
the permutation component in P(G) according to the taken moves; hence ρ is a valid strategy.

We show that ρ wins a node (v,π) in P(G) whenever v is in the winning region of player ∃ in
G. To this end, let τ = (v0,π0)(v1,π1) . . . be a play of P(G) that starts at (v0,π0) = (v,π) and is
compatible with ρ . By construction, π = v0v1 . . . is a play that is compatible with σ . Since σ is a
winning strategy for player ∃, we have γC(π) |= ϕC. There is a number i such that all colors that
appear in π from position i on occur infinitely often. Let p be the number of colors that appear
infinitely often in π . It follows by definition of π@D for D⊆C (which moves the single right-most
element of π that is contained in D to the very front of π), that there is a position j ≥ i such that
the left-most p elements of π j are exactly the colors occuring infinitely often in π (and all colors
to the right of π j(p) are never visited from position j on). It follows that from position j on, τ

never visits a priority larger than 2p. To see that τ infinitely often visits priority 2p we note that
π ′j[p] |= ϕC for any j′ > j, so it suffices to show that p infinitely often is the rightmost position
in the permutation component of τ that is visited. This is the case since, from position j on, the
p-th element in the permutation component of τ cycles fairly through all colors that are visited
infinitely often by π .

⇐ Let ρ be a positional strategy for player ∃ in P(G) with which they win every node from their
winning region. We define a strategy σ = (Π(C),updateσ ,moveσ) with memory Π(C) for player
∃ in G by putting updateσ (π,(v,w)) = π@γC(v,w) and moveσ (v,π) = w where w is such that
ρ(v,π) = (w,π@γC(v,w)). Thus σ updates the memory and picks moves just as plays that follow
ρ do.

We show that σ wins a node v in G whenever (v,π) is in the winning region of player ∃ in P(G).
To this end, let π = v0v1 . . . be a play of G that starts at v0 = v and is compatible with σ . By con-
struction, π induces a play τ = (v0,π0)(v1,π1) . . . with (v0,π0) = (v,π) and πi+1 = πi@γC(vi,vi+1)
for i≥ 0 that is compatible with ρ . Since ρ is a winning strategy for player ∃, the maximal priority
in it is even (say 2p). Again, p is the position such that the left-most p elements in the permutation
component of ρ from some point on contain exactly the colors that are visited infinitely often by
π . It follows that γC(π) |= ϕC.

The LAR reduction from Definition 6 preserves DAG sub-structures:

Lemma 8. Let G be an Emerson-Lei games with set C of colors. If W is a (positional) DAG in G, then
W ×Π(C) is a (positional) DAG in P(G).

D. Hausmann 9

Proof. The claims follows immediately since the LAR reduction just annotates game nodes with addi-
tional memory, meaning that each game node v in G is replaced with copies (v,π) in P(G) so that all
cycles in P(G) have corresponding cycles in G.

6 Conclusion

We have presented a method for solving parity games with DAG sub-structures by computing nested
fixpoints over the non-DAG nodes only, thereby intuivitely accelerating fixpoint computation by sum-
marizing cycle-free parts during the solution of parity games. This can significantly reduce the domain
of the game solving process, and in cases where DAG sub-structures in addition can be evaluated with-
out exploring all nodes in them, it improves the time complexity of parity game solving. Furthermore,
we have proposed a later-appearence-record construction with linear branching on the memory values
that transforms Emerson-Lei games to parity games, and have shown that this transformation preserves
DAG sub-structures, enabling usage of the proposed method also for the solution of games with general
Emerson-Lei objectives.

References
[1] André Arnold, Damian Niwinski, and Pawel Parys. A quasi-polynomial black-box algorithm for fixed

point evaluation. In Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference
on Computer Science Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (Virtual Conference),
volume 183 of LIPIcs, pages 9:1–9:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL:
https://doi.org/10.4230/LIPIcs.CSL.2021.9, doi:10.4230/LIPICS.CSL.2021.9.

[2] Paolo Baldan, Barbara König, Christina Mika-Michalski, and Tommaso Padoan. Fixpoint games on contin-
uous lattices. Proc. ACM Program. Lang., 3(POPL):26:1–26:29, 2019. doi:10.1145/3290339.

[3] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1)
designs. J. Comput. Syst. Sci., 78(3):911–938, 2012. doi:10.1016/j.jcss.2011.08.007.

[4] Florian Bruse, Michael Falk, and Martin Lange. The fixpoint-iteration algorithm for parity games. In Inter-
national Symposium on Games, Automata, Logics and Formal Verification, GandALF 2014, volume 161 of
EPTCS, pages 116–130, 2014. doi:10.4204/EPTCS.161.12.

[5] Daniel Hausmann, Mathieu Lehaut, and Nir Piterman. Symbolic reactive synthesis for the safety and
el-fragment of LTL. CoRR, abs/2305.02793, 2023. URL: https://doi.org/10.48550/arXiv.2305.
02793, arXiv:2305.02793, doi:10.48550/ARXIV.2305.02793.

[6] Daniel Hausmann and Lutz Schröder. Game-based local model checking for the coalgebraic mu-calculus.
In Wan J. Fokkink and Rob van Glabbeek, editors, 30th International Conference on Concurrency Theory,
CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands, volume 140 of LIPIcs, pages 35:1–35:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.
CONCUR.2019.35, doi:10.4230/LIPICS.CONCUR.2019.35.

[7] Daniel Hausmann and Lutz Schröder. Optimal satisfiability checking for arithmetic \mu -calculi. In Mikolaj
Bojanczyk and Alex Simpson, editors, Foundations of Software Science and Computation Structures - 22nd
International Conference, FOSSACS 2019, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume 11425 of
Lecture Notes in Computer Science, pages 277–294. Springer, 2019. doi:10.1007/978-3-030-17127-8\
_16.

[8] Daniel Hausmann and Lutz Schröder. Quasipolynomial computation of nested fixpoints. In Jan Friso Groote
and Kim Guldstrand Larsen, editors, Tools and Algorithms for the Construction and Analysis of Systems -
27th International Conference, TACAS 2021, Held as Part of the European Joint Conferences on Theory and

https://doi.org/10.4230/LIPIcs.CSL.2021.9
https://doi.org/10.4230/LIPICS.CSL.2021.9
https://doi.org/10.1145/3290339
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.4204/EPTCS.161.12
https://doi.org/10.48550/arXiv.2305.02793
https://doi.org/10.48550/arXiv.2305.02793
http://arxiv.org/abs/2305.02793
https://doi.org/10.48550/ARXIV.2305.02793
https://doi.org/10.4230/LIPIcs.CONCUR.2019.35
https://doi.org/10.4230/LIPIcs.CONCUR.2019.35
https://doi.org/10.4230/LIPICS.CONCUR.2019.35
https://doi.org/10.1007/978-3-030-17127-8_16
https://doi.org/10.1007/978-3-030-17127-8_16

10 Faster Game Solving

Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings,
Part I, volume 12651 of Lecture Notes in Computer Science, pages 38–56. Springer, 2021. doi:10.1007/
978-3-030-72016-2_3.

[9] Paul Hunter and Anuj Dawar. Complexity bounds for regular games. In 30th International Symposium on
Mathematical Foundations of Computer Science, volume 3618 of Lecture Notes in Computer Science, pages
495–506. Springer, 2005. doi:10.1007/11549345_43.

[10] Nir Piterman and Amir Pnueli. Faster solutions of rabin and streett games. In 21th IEEE Symposium on Logic
in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings, pages 275–284. IEEE
Computer Society, 2006. doi:10.1109/LICS.2006.23.

[11] Florian Renkin, Alexandre Duret-Lutz, and Adrien Pommellet. Practical ”paritizing” of emerson-lei au-
tomata. In Dang Van Hung and Oleg Sokolsky, editors, Automated Technology for Verification and Anal-
ysis - 18th International Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings,
volume 12302 of Lecture Notes in Computer Science, pages 127–143. Springer, 2020. doi:10.1007/

978-3-030-59152-6_7.
[12] Helmut Seidl. Fast and simple nested fixpoints. Universität Trier, Mathematik/Informatik, Forschungsbericht,

96-05, 1996.

https://doi.org/10.1007/978-3-030-72016-2_3
https://doi.org/10.1007/978-3-030-72016-2_3
https://doi.org/10.1007/11549345_43
https://doi.org/10.1109/LICS.2006.23
https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1007/978-3-030-59152-6_7

	Background
	Games and Fixpoint Expressions
	Game Arenas with DAG Sub-structures
	Large-step Solving for Parity Games
	Large-step Solving for Emerson-Lei Games
	Conclusion

