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In this work we develop a categorical perspective on the question of when a context-free grammar,
considered as a system of recursive equations on the languages generated by its non-terminals, has a
unique solution. We arrived at this question in the context of a more open-ended project to develop
a fibrational semantics of cyclic proofs, building on an analogy between cyclic proofs and finite-state
automata under which the subderivations of a proof correspond to the states of a machine, and inference
rules to transitions. Both context-free grammars and finite-state automata are typically “circular”, in the
sense that the production rules of the grammar and the transitions of the automaton most often induce
cycles.

Recently, Melliès and Zeilberger [3, 4] proposed categorical abstractions of the notions of context-
free grammar and of non-deterministic finite state automaton as certain kinds of functors between cate-
gories and operads, under which a generalized context-free grammar (gCFG) is defined as

a functor from a free operad generated by a pointed finite species into an arbitrary operad

while a generalized non-deterministic finite-state automaton (gNDFA) is defined as

a functor satisfying the unique lifting of factorizations and finite fiber properties.

These definitions permit for example to give a clean categorical proof that context-free languages are
closed under intersection with regular languages. Here we focus on generalized context-free grammars,
and consider a related view under which a gCFG is seen as inducing a recursive system of polynomial
equations, which may be interpreted fibrationally.

It is best to illustrate with an example. Consider the following CFGs with labelled production rules:

G1 =
S →a ε

S →b [S]
S →c SS

G2 =
S →d ε

S →e [S]S
(1)

Both grammars generate the same language L = LG1
= LG2

, namely the Dyck language of balanced
brackets. However, they may be seen as implicitly stating two different equations satisfied by this lan-
guage,

L = ε +[L]+LL (2)

L = ε +[L]L (3)

where we have written + for union of languages. As we will explain, such equations can be interpreted
as properties of the initial models of the grammars G1 and G2 in the “refinement system” Subset→ Set
of subsets over sets. At a more elementary level, what we want to emphasize here is that although it is
easy to show that the Dyck language is the minimal solution to both equations, equation (2) has many
solutions (e.g., L = Σ∗), while equation (3) has a unique solution.
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2 A fibrational characterization for unicity of solutions to generalized CF systems

Indeed, there are at least two different ways of interpreting a context-free language as the solution
to a recursive system of constraints. Under the traditional view, the language generated by a grammar
is defined inductively as the smallest language closed under the production rules. This corresponds to
interpreting the languages L1 and L2 generated by G1 and G2 as the smallest languages L1 = µ(F1),L2 =
µ(F2) satisfying the respective inclusions F1(L1) ⊆ L1 and F2(L2) ⊆ L2, where the operators F1,F2 :
P(Σ∗)→ P(Σ∗) are defined by

F1(X) = ε +[X ]+XX F2(X) = ε +[X ]X

On the other hand, one can take the recursive equations (2) and (3) literally and consider their solutions.
In this case, (2) is inadequate for determining the language, but (3) is a perfectly valid (even if circular)
definition since it has a unique solution.

Intuitively, the reason why (3) has a unique solution is because the rule S→e [S]S “consumes” a pair
of letters, so it is not possible to build an infinite derivation of a finite word in G2. On the other hand, it
is possible to iterate rules a and c of G1 to build a “vicious cycle”

S→c SS→a S→c SS→a S . . .

which may be seen as an ill-founded derivation of an arbitrary word, hence explaining why L = Σ∗ is
another solution to (2).

It is possible to formulate the question of unicity of solutions to equations arising from gCFGs in a
very general fibrational framework (adapted from [4, Addendum A]), as a question about interpretations
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of a gCFG p in an arbitrary functor q that is “polynomially closed”, in the sense that it admits push-
forwards and fiberwise coproducts (needed for interpreting equations such as (2) and (3)). One benefit
of doing so is that we can consider “proof-relevant” models of gCFGs in Set→ → Set, under which a
language is interpreted not merely as a subset of words but as an assignment of a family of derivations
to every word. We focus on the question of unicity of solutions in the proof-relevant model Set→→ Set,
since it implies unicity of solutions in the proof-irrelevant model Subset→ Set.

After several attempts at devising conditions for unicity which were sufficient but far from necessary,
we finally arrived at a condition that we call relative nilpotency. The starting point is to consider the base
operad O as being equipped with a non-unital suboperad O+ ⊂ O, whose operations induce a well-
founded ordering on the constants of O. In the case of classical CFGs, O is the operad of spliced
words W[Σ] whose n-ary operations are sequences of n+ 1 words w0− . . .−wn, while O+ is its non-
unital suboperad W[Σ]+ whose n-ary operations are sequences of n+ 1 words containing at least one
non-empty word. This non-unital suboperad induces a well-founded ordering on the constants of W[Σ],
namely on words u, where we declare that u� u1, . . . ,u� un if there exists an operation f = w0− . . .−wn

of W[Σ]+ such that u = f (u1, . . . ,un).
To formulate the relative nilpotency condition, we make use of the composition product from the

theory of species [2], suitably adapted to colored, non-symmetric species (cf. [4, §1.6]). In this setting,
the composition S ◦R of two species with the same underlying set of colors (= non-terminals) is the
species whose n-ary nodes R1, . . . ,Rn→ S consist of formal compositions f • (g1, . . . ,gk) of a k-ary node
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g : S1, . . . ,Sk→ S of S with a k-tuple of nodes f1 : Γ1→ S1, . . . , fk : Γk→ Sk of R, such that Γ1, . . . ,Γk =
R1, . . . ,Rn. Note that the composition product has a unit given by the species I with a single unary node
∗R : R→ R for every color R. We also write R− for the species R− :=R−R(0) obtained by removing all
nullary nodes from any species R. Finally, we write ∆S for the endofunctor ∆S : SpecX → SpecX on the
category of species (with same underlying set of colors X as S) defined by ∆S := R 7→ (R ◦S)−. Then
the relative nilpotency condition on a gCFG p : Free(S)→ O states that

there exists a k such that p(∆k
S I)⊂ O+.

Observe that grammar G1 above does not satisfy the relative nilpotency condition, while G2 satisfies it
with k = 1. We call this “relative” nilpotency because in the special case where O = 1 is the terminal
operad (which has a single color and a single n-ary operation of every arity n), the non-unital suboperad
is trivial O+ = 0, and the condition reduces to the requirement that there exists a k such that ∆k

S I = 0,
which is equivalent to asking that the grammar has no transitive cycles and therefore generates a finite
language.

We note that the problem of characterizing unicity of solution to systems of polynomial equations
induced by context-free grammars was considered in early work of Courcelle,1 and that our relative
nilpotency condition is very similar to one of the necessary and sufficient conditions he states as Proposi-
tion 15.10 of [1]. Indeed, our result may be seen as a modern categorical formulation and generalization
of Courcelle’s. It is worth mentioning that Courcelle [1] developed a broader “unified theory” about re-
cursive definitions, and likewise, we eventually want to deal with other examples including cyclic proofs
as well as recursive definitions in type theory and functional programming. That is one of our main mo-
tivations for using the unifying language of category theory. We were also inspired by Joyal’s Implicit
Species Theorem [2, Thm. 6], which answers a similar question of when a species is uniquely determined
by a system of recursive equations.
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