# The $\mu$-calculus' Alternation Hierarchy is Strict over Non-Trivial Fusion Logics 

Leonardo Pacheco*<br>TU Wien<br>Vienna, Austria<br>leonardo.pacheco@tuwien.ac.at


#### Abstract

The modal $\mu$-calculus is obtained by adding least and greatest fixed-point operators to modal logic. It's alternation hierarchy classifies the $\mu$-formulas by their alternation depth: a measure of the codependence of their least and greatest fixed-point operators. The $\mu$-calculus' alternation hierarchy is strict over the class of all Kripke frames: for all $n$, there is a $\mu$-formula with alternation depth $n+1$ which is not equivalent to any formula with alternation depth $n$. This does not always happen if we restrict the semantics. For example, every $\mu$-formula is equivalent to a formula without fixed-point operators over S 5 frames. We show that the multimodal $\mu$-calculus' alternation hierarchy is strict over non-trivial fusions of modal logics. We also comment on two examples of multimodal logics where the $\mu$-calculus collapses to modal logic.


## 1 Introduction

The modal $\mu$-calculus is obtained by adding least and greatest fixed-point operators to modal logic. One measure of complexity for $\mu$-formulas is their alternation depth, which measures the codependence of least and greatest fixed-point operators. Bradfield [2] showed that the $\mu$-calculus' alternation hierarchy is strict: for all $n \in \mathbb{N}$, there is a formula with alternation depth $n+1$ which is not equivalent over unimodal frames to any formula with alternation depth $n$. On the other hand, Alberucci and Facchini [1] proved that, over S 5 frames, every $\mu$-formula is equivalent to a formula without fixed-point operators. See Chapter 2 of [10] for a survey on the $\mu$-calculus' alternation hierarchy over various classes of frames.

Let $L_{0}$ and $L_{1}$ be modal logics with disjoint signatures. The fusion $L_{0} \otimes L_{1}$ is the smallest modal logic containing both $L_{0}$ and $L_{1}$. If $L_{0}$ and $L_{1}$ are respectively characterized by the Kripke frames in $F_{0}$ and $F_{1}$, then the fusion $L_{0} \otimes L_{1}$ is characterized by frames which are in $F_{i}$ when restricted to the signature of $L_{i}$, for $i=0,1$. Fusion logics are commonly used for multi-agent epistemic logics and on the specification of computer systems. We show that, over fusions of non-trivial classes of frames, the $\mu$-calculus' alternation hierarchy is strict.

Let F be a class of unimodal Kripke frames. We say $\circ \leftarrow \circ \rightarrow 0$ is a subframe of F iff there is some frame $F=\langle W, R\rangle \in \mathrm{F}$ with pairwise different $w_{0}, w_{1}, w_{2} \in W$ such that $w_{0} R w_{1}$ and $w_{0} R w_{2}$. We analogously define $\circ \rightarrow \circ \rightarrow \circ$ is a subframe of $F$ and $\circ \rightarrow \circ$ is a subframe of $F$. We will define multimodal versions $W_{n}$ of the winning region formulas $W_{n}^{\prime}$ to prove:
Main Theorem. Let $\mathrm{F}_{0}, \mathrm{~F}_{1}$, and $\mathrm{F}_{2}$ be classes of unimodal Kripke frames closed under isomorphic copies and disjoint unions. If

$$
\text { 1. } \circ \leftarrow \circ \rightarrow \circ \text { is a subframe of } \mathrm{F}_{0} \text { and } \circ \rightarrow \circ \text { a subframe of } \mathrm{F}_{1} \text {; or }
$$

[^0]2. $\circ \rightarrow \circ \rightarrow \circ$ is a subframe of $\mathrm{F}_{0}$ and $\circ \rightarrow \circ$ a subframe of $\mathrm{F}_{1}$;
then the $\mu$-calculus' alternation hierarchy is strict over $\mathrm{F}_{0} \otimes \mathrm{~F}_{1}$. If
3. $\circ \rightarrow \circ$ is a subframe of $\mathrm{F}_{0}, \mathrm{~F}_{1}$, and $\mathrm{F}_{2}$;
then the $\mu$-calculus' alternation hierarchy is strict over $\mathrm{F}_{0} \otimes \mathrm{~F}_{1} \otimes \mathrm{~F}_{2}$.
Corollary. Let $\left\{\mathrm{L}_{0}, \mathrm{~L}_{1}\right\} \subseteq\{\mathrm{K}, \mathrm{K} 4, \mathrm{~S} 4, \mathrm{KD} 45, \mathrm{~S} 5, \mathrm{GL}\}$, then the $\mu$-calculus' alternation hierarchy is strict over $\mathrm{L}_{0} \otimes \mathrm{~L}_{1}$.

While the hypotheses of the Main Theorem looks ad hoc, we conjecture that they are optimal.
Conjecture. Let $\mathrm{F}_{0}$ and $\mathrm{F}_{1}$ be classes of unimodal Kripke frames closed under isomorphic copies and disjoint unions. Suppose $\circ \rightarrow \circ$ is a subframe of $\mathrm{F}_{0}$ and $\mathrm{F}_{1}$. Then every $\mu$-formula is equivalent to one with alternation depth 1 over $\mathrm{F}_{0} \otimes \mathrm{~F}_{1}$.

As a counterpoint, we comment on two multimodal logics where the $\mu$-calculus collapses to modal logic. GLP is a provability logic which contains countably many modal operators; its fixed-point property was proved by Ignatiev [6]. IS5 is an intuitionistic version of $S 5$ which can be thought as fragment of a bimodal logic; the $\mu$-calculus' collapse to modal logic over IS5 was proved by Pacheco [11].

Outline In Section 2, we review some basic definitions. In Sections 3, 4, and 5, we give a detailed proof of Item 1 of the Main Theorem: we first show that evaluation games for the $\mu$-calculus are also parity games; then define the formulas $W_{n}$ and show how parity games can be encoded as multimodal Kripke models; and, at last, show that $W_{n}$ is not equivalent to any formula with lower alternation depth. In Section6, we sketch how to modify the proof to show Items 2 and 3 of the Main Theorem. In Section 7. we describe two examples of multimodal logics where the $\mu$-calculus collapses to modal logic.

## 2 Preliminaries

The $\mu$-calculus Fix a set Prop of propositional symbols, a set Var of variable symbols, and a non-empty signature $\Lambda$. The $\mu$-formulas are generated by the following grammar:

$$
\varphi:=P|\neg P| X|\varphi \wedge \varphi| \varphi \vee \varphi\left|\square_{i} \varphi_{i}\right| \diamond_{i} \varphi|\mu X . \varphi| v X . \varphi,
$$

where $P \in \operatorname{Prop}, X \in \operatorname{Var}$ is a variable symbol, and $i \in \Lambda$. We write $\eta X . \varphi$ for $\mu X . \varphi$ or $v X . \varphi$. The set of subformulas of a formula $\varphi$ is denoted by $\operatorname{Sub}(\varphi)$.

Given a signature $\Lambda$, a Kripke frame is a pair $M=\left\langle W,\left\{R_{i}\right\}_{i \in \Lambda}\right\rangle$ where: $W$ is the set of possible worlds; and each $R_{i}$ is a binary relation on $W$, the accessibility relations. A Kripke model is a triple $M=\left\langle W,\left\{R_{i}\right\}_{i \in \Lambda}, V\right\rangle$ obtained by extending a Kripke frame with a function $V$ from propositional symbols to subsets of $W ; V$ is called a valuation function. Given a set $A \subseteq W$, the augmented model $M[X:=A]$ is obtained by setting $V(X):=A$. A pointed Kripke model is a pair $(M, w)$ consisting of a Kripke model $M$ and a world $w$ of $M$.

Fix a Kripke model $M=\left\langle W,\left\{R_{i}\right\}_{i \in \Lambda}, V\right\rangle$. Given a $\mu$-formula $\varphi(X)$ with a distinguished variable $X$, let $\Gamma_{\varphi(X)}: \mathscr{P}(W) \rightarrow \mathscr{P}(W)$ be the operator which maps $A \subseteq W$ to $\|\varphi(X)\|^{M[X:=A]}$. We define the valuation $\|\varphi\|^{M}$ on $M$ inductively on the structure of $\mu$-formulas:

- $\|P\|^{M}:=V(P) ;$
- $\|X\|^{M[X:=A]}:=A$;
- $\|\neg \varphi\|^{M}:=W \backslash\|\varphi\|^{M}$;
- $\|\varphi \wedge \psi\|^{M}:=\|\varphi\|^{M} \cap\|\psi\|^{M}$;
- $\|\varphi \vee \psi\|^{M}:=\|\varphi\|^{M} \cup\|\psi\|^{M}$;
- $\left\|\square_{i} \varphi\right\|^{M}:=\left\{w \in W \mid \forall v . w R_{i} v \rightarrow v \in\|\varphi\|^{M}\right\}$;
- $\|\mu X . \varphi\|^{M}$ is the least fixed-point of $\Gamma_{\varphi(X)}$;
- $\left\|\diamond_{i} \varphi\right\|^{M}:=\left\{w \in W \mid \exists v . w R_{i} v \wedge v \in\|\varphi\|^{M}\right\} ;$
- $\|v X . \varphi\|^{M}$ is the greatest fixed-point of $\Gamma_{\varphi(X)}$.

Note that, the operator $\Gamma_{\varphi(X)}$ is monotone for all formula $\varphi(X)$ : if $A \subseteq B \subseteq W$, then $\Gamma_{\varphi(X)}(A) \subseteq \Gamma_{\varphi(X)}(B)$. By the Knaster-Tarski Theorem, the least and greatest fixed-points of $\Gamma_{\varphi(X)}$ are well-defined. We say a formula $\varphi$ is valid on a Kripke model $M$ iff $\varphi$ holds on all worlds of $M$. We say a formula $\varphi$ is valid on a Kripke frame $F$ iff $\varphi$ is valid on all Kripke models obtained by adding valuations to $F$. When convenient, we write $M, w \models \varphi$ for $w \in\|\varphi\|^{M}$. See [3] for more information on the $\mu$-calculus.

Fusions $\operatorname{Fix} n \in \mathbb{N}$. A (normal) modal logic is a set of formulas (without fixed-point operators) closed containing all the propositional tautologies and closed under modus ponens, necessitation, and substitution. Let $\left\{\mathrm{L}_{j}\right\}_{j \leq n}$ be a collection of modal logics with pairwise disjoint signatures. The fusion $\otimes_{j \leq n} \mathrm{~L}_{j}$ is the smallest modal logic containing the logics $\left\{\mathrm{L}_{j}\right\}_{j \leq n}$. Let $\left\{\mathrm{F}_{j}\right\}_{j \leq n}$ be classes of frames with pairwise disjoint signatures $\left\{\Lambda_{j}\right\}_{j \leq n}$. Put $\Lambda=\bigcup_{j \leq n} \Lambda_{j}$. Define $\otimes_{j \leq n} \mathrm{~F}_{j}$ as the class of frames $F=\left\langle W,\left\{R_{i}\right\}_{i \in \Lambda}\right\rangle$ such that $\left\langle W,\left\{R_{i}\right\}_{i \in \Lambda_{j}}\right\rangle$ is a frame of $\mathrm{F}_{j}$ for all $j \leq n$.

Suppose the modal logic $\mathrm{L}_{j}$ is characterized by the class of frames $\mathrm{F}_{j}$, for all $j \leq n$. Then $\otimes_{j \leq n} \mathrm{~L}_{j}$ is characterized by $\otimes_{j \leq n} F_{j}$. Furthermore, if all the $L_{j}$ have the finite model property, then $\otimes_{j \leq n} L_{j}$ also has the finite model property. Similarly, if all the $L_{j}$ are decidable, so is $\otimes_{j \leq n} L_{j}$. On the other hand, fusions do not preserve the complexity of the logics: almost all interesting fusions are PSPACE-hard. See [8, 4] for more on fusions of modal logics and other combinations of modal logics.

Alternation Hierarchy The $\mu$-calculus' alternation hierarchy classifies the $\mu$-formulas according to the co-dependence of its least and greatest fixed-point operators. We define it as follows:

- $\Sigma_{0}^{\mu}\left(=\Pi_{0}^{\mu}\right)$ is the set of all $\mu$-formulas with no fixed-point operators.
- $\Sigma_{n+1}^{\mu}$ is the closure of $\Sigma_{n}^{\mu} \cup \Pi_{n}^{\mu}$ under propositional operators, modal operators, $\mu X$, and the substitution: if $\varphi(X) \in \Sigma_{n+1}^{\mu}$ and $\psi \in \Sigma_{n+1}^{\mu}$ are such that no free variable of $\psi$ becomes bound in $\varphi(\psi)$, then $\varphi(\psi) \in \Sigma_{n+1}^{\mu}$.
- $\Pi_{n+1}^{\mu}$ is the closure of $\Sigma_{n}^{\mu} \cup \Pi_{n}^{\mu}$ under propositional symbols, modal operators, $v X$, and the analogous substitution: if $\varphi(X) \in \Pi_{n+1}^{\mu}$ and $\psi \in \Pi_{n+1}^{\mu}$ are such that no free variable of $\psi$ becomes bound in $\varphi(\psi)$, then $\varphi(\psi) \in \Pi_{n+1}^{\mu}$.
Let F be a class of Kripke frames. The $\mu$-calculus' alternation hierarchy is strict over F iff, for all $n$, there is a formula in $\Sigma_{n+1}^{\mu} \cup \Pi_{n+1}^{\mu}$ which is not equivalent to any formula in $\Sigma_{n}^{\mu} \cup \Pi_{n}^{\mu}$ over F . The $\mu$ calculus collapses to modal logic over F iff every $\mu$-formula is equivalent to a formula without fixed-point operators over F .

Game Semantics The $\mu$-calculus also has an equivalent game semantics. Fix a $\mu$-formula $\varphi$, a Kripke model $M=\left\langle W,\left\{R_{i}\right\}_{i \in \Lambda}, V\right\rangle$, and a world $w$. For notational simplicity, we suppose each variable occurring in $\varphi$ has only one occurrence and is bound by some fixed-point operator ${ }^{1}$ The evaluation game $\mathscr{G}(M, w \models$ $\varphi$ ) is a game for two players: Verifier and Refuter, denoted by V and R respectively. The positions of the game are of the form $\langle\psi, v\rangle$ with $\psi \in \operatorname{Sub}(\varphi)$ and $v \in W$. The initial position is $\langle\varphi, w\rangle$. Each position $\langle\psi, \nu\rangle$ is owned by a player, who makes the next move. Table 1 summarizes the ownership of $\langle\psi, \nu\rangle$ and admissible moves on it; both are determined by the construction of $\psi$. On Table $1, \psi_{X}$ denotes the unique subformula of $\varphi$ such that $X$ occurs freely in $\psi_{X}$ and $\eta X . \psi_{X} \in \operatorname{Sub}(\varphi)$.

Let $\rho$ be a run of an evaluation game $\mathscr{G}(M, w \models \varphi)$. If $\rho$ is finite, V wins $\rho$ iff R cannot make a move and R wins $\rho$ iff V cannot make a move. If $\rho$ is infinite, let $\eta X . \psi \in \operatorname{Sub}(\varphi)$ be a formula such

[^1]that: positions of the form $\langle\eta X . \psi, v\rangle$ appear infinitely many often in $\rho$; and, for all formula $\theta$ such that positions $\langle\theta, v\rangle$ appear infinitely often in $\rho, \theta \in \operatorname{Sub}(\eta X . \psi)$. Then V wins $\rho$ iff $\eta$ is $v$ and R wins $\rho$ iff $\eta$ is $\mu$. A strategy is a function indicating how a player should move. A winning strategy for V is a strategy $\sigma$ for V such that V win all runs where they follow $\sigma$. We define winning strategies for R similarly.

Relational semantics and game semantics are equivalent:
Proposition 1. Let $M=\left\langle W,\left\{R_{i}\right\}_{i \in \Lambda}, V\right\rangle$ be a Kripke model, $w \in W$ be a world, and $\varphi$ be a $\mu$-formula. Then $M, w \models \varphi$ iff $\vee$ has a winning strategy in the evaluation game $\mathscr{G}(M, w \models \varphi)$; and $M, w \not \vDash \varphi$ iff R has a winning strategy in the evaluation game $\mathscr{G}(M, w \models \varphi)$.

Proof. See [3] or [11]

Table 1: The rules of evaluation game for modal $\mu$-calculus.

| Verifier |  |  | Refuter |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Position | Admissible moves | Position | Admissible moves |  |  |
| $\left\langle\psi_{1} \vee \psi_{2}, w\right\rangle$ | $\left\{\left\langle\psi_{1}, w\right\rangle,\left\langle\psi_{2}, w\right\rangle\right\}$ | $\left\langle\psi_{1} \wedge \psi_{2}, w\right\rangle$ | $\left\{\left\langle\psi_{1}, w\right\rangle,\left\langle\psi_{2}, w\right\rangle\right\}$ |  |  |
| $\left\langle\widehat{V}_{i} \psi, w\right\rangle$ | $\left\{\langle\psi, v\rangle \mid\langle w, v\rangle \in R_{i}\right\}$ | $\left\langle\square_{i} \psi, w\right\rangle$ | $\left\{\langle\psi, v\rangle \mid\langle w, v\rangle \in R_{i}\right\}$ |  |  |
| $\langle P, w\rangle$ and $w \notin V(P)$ | $\emptyset$ | $\langle P, w\rangle$ and $w \in V(P)$ | $\emptyset$ |  |  |
| $\langle\neg P, w\rangle$ and $w \in V(P)$ | $\emptyset$ | $\langle\neg P, w\rangle$ and $w \notin V(P)$ | $\emptyset$ |  |  |
| $\left\langle\mu X . \psi_{X}, w\right\rangle$ | $\left\{\left\langle\psi_{X}, w\right\rangle\right\}$ | $\left\langle v X \cdot \psi_{X}, w\right\rangle$ | $\left\{\left\langle\psi_{X}, w\right\rangle\right\}$ |  |  |
| $\langle X, w\rangle$ | $\left\{\left\langle\mu X \cdot \psi_{X}, w\right\rangle\right\}$ | $\langle X, w\rangle$ | $\left\{\left\langle v X \cdot \psi_{X}, w\right\rangle\right\}$ |  |  |

Parity games A parity game is a tuple $\mathscr{P}=\left\langle V_{\exists}, V_{\forall}, v_{0}, E, \Omega\right\rangle$ where two players $\exists$ and $\forall$ move a token in the graph $\left\langle V_{\exists} \cup V_{\forall}, E\right\rangle$. We suppose $V_{\exists}$ and $V_{\forall}$ are disjoint sets of vertices; $E \subseteq\left(V_{\exists} \cup V_{\forall}\right)^{2}$ is a set of edges; and $\Omega: V_{\exists} \cup V_{\forall} \rightarrow n$ is a parity function. If a player has no available move, then the other player wins. In an infinite play $\rho$, the winner is determined by the following parity condition: $\exists$ wins $\rho$ iff the greatest parity which appears infinitely often in $\rho$ is even; otherwise, $\forall$ wins $\rho . \exists$ wins the parity game $\mathscr{P}$ iff $\exists$ has a winning strategy; a winning strategy for $\exists$ is a function $\sigma$ from $V_{\exists}$ to $V_{\exists} \cup V_{\forall}$, where, if $\exists$ follows $\sigma$, all resulting plays are winning for them. Similarly, $\forall$ wins $\mathscr{P}$ iff $\forall$ has a winning strategy.

Fix a parity game $\mathscr{P}=\left\langle V_{\exists}, V_{\forall}, \nu_{0}, E, \Omega\right\rangle$. The set of winning positions for $\exists$ in $\mathscr{P}$ is the set of positions $v$ where $\exists$ wins the parity game if the players start at $v$. That is, $v \in V_{\exists} \cup V_{\forall}$ is a winning position for $\exists$ iff $\exists$ wins $\mathscr{P}_{v}=\left\langle V_{\exists}, V_{\forall}, v, E, \Omega\right\rangle$.

Sometimes it is convenient to suppose that all parity games are tree-like. That is, for all $v \in V_{\exists} \cup V_{\forall}$, there is no path $v=v_{0} E \cdots E v_{n}=v$, for all $n \in \mathbb{N}$. Any parity game $\mathscr{P}=\left\langle V_{\exists}, V_{\forall}, v_{0}, E, \Omega\right\rangle$ can be unfolded into a tree-like parity game. In the unfolded game, instead of moving to a node $v$, the players move to a fresh copy of $v$. The unfolded parity game is bisimilar to the original game.

## 3 Evaluation games as parity games

Fix a model $M=\left\langle W,\left\{R_{i}\right\}_{i \in \Lambda}, V\right\rangle$, a world $w \in W$ and a $\mu$-formula $\varphi$. We define a parity game $\mathscr{G}^{\mathrm{P}}=$ $\mathscr{G}^{\mathrm{P}}(M, w \models \varphi)=\left\langle V_{\exists}, V_{\forall}, v_{0}, E, \Omega\right\rangle$ which is equivalent to $\mathscr{G}=\mathscr{G}(M, w \models \varphi)$.

The set of positions $V_{\exists}$ consists of the positions owned by $V$ in $\mathscr{G}$. Similarly $V_{\forall}$ consists of the positions owned by $\forall$ in $\mathscr{G}$. The set of edges $E$ consists of the transitions in $\mathscr{G}$. The initial position $v_{0}$ is $\langle\varphi, w\rangle$. Define the parity function:

- $\Omega(\langle\mu X . \psi, \nu\rangle)=2(i+\varepsilon)-1$ if $\mu X . \psi \in \Sigma_{2 i+\varepsilon}^{\mu} \backslash \Pi_{2 i+\varepsilon}^{\mu} ;$
- $\Omega(\langle v X . \psi, v\rangle)=2 i$ if $v X . \psi \in \Pi_{2 i+\varepsilon}^{\mu} \backslash \Sigma_{2 i+\varepsilon}^{\mu} ;$
- $\Omega(\langle\psi, \nu\rangle)=0$ for $\psi$ not of the form $\eta X . \psi ;$
where $\varepsilon \in\{0,1\}$.
Proposition 2. Let $M=\left(W,\left\{R_{i}\right\}_{i \in \Lambda}, V\right)$ be a Kripke model, $w \in W$, and $\varphi$ a $\mu$-formula. Then:

$$
\vee \text { wins } \mathscr{G}(M, w \models \varphi) \Longleftrightarrow \exists \operatorname{wins}^{G^{\mathrm{P}}}(M, w \models \varphi) .
$$

Proof. Denote $\mathscr{G}(M, w \models \varphi)$ by $\mathscr{G}$ and $\mathscr{G}^{\mathrm{P}}(M, w \models \varphi)$ by $\mathscr{G}^{\mathrm{P}}$. As both games are on the same board, strategies for V and R in $\mathscr{G}$ are strategies for $\exists$ and $\forall$ in $\mathscr{G}$. As any position is owned by V in $\mathscr{G}$ iff it is owned by $\exists$ in $\mathscr{G}$, any finite run is winning for V iff it is winning for $\exists$.

Consider an infinite run $\rho$. The parity $\Omega(\langle\psi, \nu\rangle)$ is odd iff $\psi \in \Sigma^{k} \backslash \Pi^{k}$ for some $k \in \mathbb{N}$. If the greatest infinitely often occurring parity in $\rho$ is odd, then some $\mu X . \psi$ is the outermost infinitely often occurring fixed-point formula. Otherwise, if $\mu X . \psi \in \operatorname{Sub}(\nu \mathrm{Y} . \theta)$ and $v Y . \theta$ is the outermost infinitely occurring fixed-formula formula, then $\Omega(\langle v Y . \theta, v\rangle) \geq \Omega(\langle\mu X . \psi, v\rangle)$ and $\Omega(\langle v Y . \theta, v\rangle)$ is even. Similarly, if the greatest infinitely often occurring parity in $\rho$ is even, then some $v X . \psi$ is the outermost infinitely often occurring fixed-point formula. Either way, $\rho$ is winning for V in $\mathscr{G}$ iff $\rho$ is winning for $\exists$ in $\mathscr{G}^{\mathrm{P}}$.

## 4 Winning region formulas

Let $F_{0}$ and $F_{1}$ be classes of frames with signatures $\{0\}$ and $\{1\}$, respectively. Suppose that $\circ \leftarrow \circ \rightarrow \circ$ is a subframe of $\mathrm{F}_{0}$ and that $\circ \rightarrow \circ$ is a subframe of $\mathrm{F}_{1}$. Fix $F_{0} \in \mathrm{~F}_{0}$ and $F_{1} \in \mathrm{~F}_{1}$ witnessing these facts. Given a parity game $\mathscr{P}$ we will define an associated Kripke model $\mathscr{P}^{\mathrm{K}}$ with frame in $\mathrm{F}_{0} \otimes \mathrm{~F}_{1}$. We will also define winning region $\mu$-formulas $W_{n}$, for all $n \in \mathbb{N}$. If $\mathscr{P}$ is a parity game which uses parities up to $n$, then $\exists$ wins $\mathscr{P}$ starting at $v$ iff $\mathscr{P}^{\mathrm{K}}, v=W_{n}$.

Let $\mathscr{P}=\left\langle V_{\exists}, V_{\forall}, v, E, \Omega\right\rangle$ be a parity game. We represent $\mathscr{P}$ as a birelational Kripke model $\mathscr{P}^{K}=$ $\left\langle W, R_{0}, R_{1}, V\right\rangle$. The set $W$ of possible worlds will consist of a world $\underline{v}$ for each state $v \in V_{\exists}, V_{\forall}$ and a countable supply of other worlds. If $v \in V_{\exists}, V_{\forall}$ and $v E=\left\{v_{0}, \ldots v_{n}\right\}$, then we will represent the connection between $v$ and the $v_{i}$ using fresh isomorphic copies of $F_{0}$ and $F_{1}$. We first use a copy of $F_{0}$ to choose between $v_{0}$ and the other vertices, then we use copies of $F_{1}$ to confirm the choices. Similarly, we use a copy of $F_{0}$ to choose between $v_{1}$ and the other vertices, and copies of $F_{1}$ to confirm the choices. We repeat this procedure until we use up all the $v_{i}$. By using fresh copies of $F_{0}$ and $F_{1}$, we guarantee that the resulting frame is in $\mathrm{F}_{0} \otimes \mathrm{~F}_{1}$. We denote by $\underline{v}, \underline{v}_{0}, \cdots$ the worlds of $\mathscr{P}^{\mathrm{K}}$ corresponding to the positions $v, v_{0}, \cdots$; we do not name the other worlds connecting them. An example of this construction is depicted in Figure 1

To control the flow of the evaluation game, we will use fresh propositional symbols bd, pos, pre ${ }_{0}$, pre $_{1}$, nxt $t_{0}$, and nxt ${ }_{1}$. The proposition symbol bd indicate that a world is used to represent the parity game. That is, only the isomorphic copies of $\circ \leftarrow \circ \rightarrow \circ$ and $\circ \rightarrow \circ$ used in the paragraph above satisfy bd. The proposition symbol pos indicates that a world corresponds to a position in the parity game. That is, it holds only on worlds which are $\underline{v}$ for some $v \in V_{\exists} \cup V_{\forall}$. The proposition symbols pre ${ }_{0}$, pre $_{1}$, nxt $_{0}$, and $n x t_{1}$ represent the intended flow of the parity game in our model. pre ${ }_{0}$ holds when we are making


Figure 1: Example of a parity game $\mathscr{P}$ and the corresponding bimodal model $\mathscr{P}^{K}$, built using copies of $\circ \leftarrow \circ \rightarrow \circ$ and $\circ \rightarrow \circ$. We show only worlds satisfying bd and omit the other propositional symbols.
a choice and $\mathrm{nxt}_{0}$ holds after we make a choice. Similarly, $\mathrm{pre}_{1}$ holds when we are confirming a choice and $\mathrm{nxt}_{1}$ holds after we confirmed a choice. Overall, these propositional symbols allow us to stay in the part of the model which represents the parity game, and that we respect the flow of the game.

The proposition symbols $P_{\exists}$ and $P_{\forall}$ indicate the ownership of the positions: $P_{\exists}$ holds at $\underline{v}$ iff $v \in V_{\exists}$ and $P_{\forall}$ holds at $\underline{v}$ iff $v \in V_{\forall}$. The proposition symbols $P_{0}, \ldots, P_{n}$ indicate the parities of the positions: $P_{i}$ holds at $\underline{v}$ iff $\Omega(v)=i$. At each $\underline{v}$, exactly one of the $P_{i}$ will hold. The proposition symbols $P_{\exists}, P_{\forall}$, $P_{0}, \ldots, P_{n}$ are false at worlds which are not of the form $\underline{v}$ for some $v \in V_{\exists} \cup V_{\forall}$. This finishes the definition of $\mathscr{P}^{\mathrm{K}}$.

To define the winning region formulas $W_{n}$, we use the following shorthand formulas:

$$
\begin{aligned}
& \text { - } \varphi:=\mu Y \cdot \operatorname{pre}_{0} \wedge \operatorname{bd} \wedge \diamond_{0}\left(\operatorname{nxt}_{0} \wedge \operatorname{pre}_{1} \wedge \operatorname{bd} \wedge \diamond_{1}\left(\operatorname{nxt}_{1} \wedge \mathrm{bd} \wedge((Y \wedge \neg \operatorname{pos}) \vee(\varphi \wedge \operatorname{pos}))\right)\right) ; \text { and } \\
& \text { - } \boldsymbol{\square} \varphi:=v Y \cdot \operatorname{pre}_{0} \wedge \operatorname{bd} \rightarrow \square_{0}\left(\operatorname{nxt}_{0} \wedge \operatorname{pre}_{1} \wedge \mathrm{bd} \rightarrow \square_{1}\left(\mathrm{nxt}_{1} \wedge \mathrm{bd} \rightarrow((Y \wedge \neg \operatorname{pos}) \wedge(\varphi \wedge \operatorname{pos}))\right)\right),
\end{aligned}
$$

where $Y$ is a fresh variable symbol. We use these modalities to represent a move in $\mathscr{P}$ as multiple moves in evaluation game $\mathscr{P}^{\mathrm{K}}, \underline{v} \models W_{n}$. Given $n \in \mathbb{N}$, define:

$$
W_{n}:=\eta X_{n} \ldots v X_{2} \mu X_{1} v X_{0} . \bigvee_{0 \leq j \leq n}\left[\left(P_{j} \wedge P_{\exists} \wedge X_{j}\right) \vee\left(P_{j} \wedge P_{\forall} \wedge ■ X_{j}\right)\right]
$$

The formula $W_{n}$ defines the winning positions of $\exists$ in parity games using parities up to $n$ :
Proposition 3. Let $\mathscr{P}=\left\langle V_{\exists}, V_{\forall}, v_{0}, E, \Omega\right\rangle$ be a parity game. If $\max \{\Omega(v) \mid v \in W\} \leq n$, then

$$
\mathscr{P}^{K}, \underline{v}_{0} \models W_{n} \text { iff } \exists \text { wins } \mathscr{P} .
$$

Proof. Suppose $\mathscr{P}^{\mathrm{K}}, \underline{v}_{0} \models W_{n}$. Let $\sigma$ be a winning strategy for V in the evaluation game $\mathscr{G}:=\mathscr{G}\left(\mathscr{P}^{\mathrm{K}}, \underline{v}_{0} \models\right.$ $W_{n}$ ). We define a winning strategy $\sigma^{\prime}$ for $\exists$ in $\mathscr{P}$ while playing simultaneous runs of $\mathscr{G}$ and $\mathscr{P}$.

The games $\mathscr{G}$ and $\mathscr{P}$ start at positions $\left\langle W_{n}, v_{0}\right\rangle$ and $v_{0}$, respectively. First, have the players move to the position

$$
\left\langle\bigvee_{0 \leq j \leq n}\left[\left(P_{j} \wedge P_{\exists} \wedge X_{j}\right) \vee\left(P_{j} \wedge P_{\forall} \wedge X_{j}\right), \underline{v}_{0}\right\rangle\right.
$$

in $\mathscr{G}$.
Now, suppose the players are at positions

$$
\left\langle\bigvee_{0 \leq j \leq n}\left[\left(P_{j} \wedge P_{\exists} \wedge X_{j}\right) \vee\left(P_{j} \wedge P_{\forall} \wedge \square X_{j}\right), \underline{v}\right\rangle\right.
$$

in $\mathscr{G}$ and $v$ in $\mathscr{P}$, respectively. As $\sigma$ is winning for V in $\mathscr{G}, \sigma$ does not make any immediately losing move. That is, V picks the disjuncts according to $v$ 's parity and owner. We also have $\forall$ make nonimmediately losing moves. The players eventually reach one of two possible cases:

Case 1. The players are in the position $\left\langle X_{j}, \underline{v}\right\rangle$ in $\mathscr{G}$, with $v \in V_{\exists}$. By our choice of $\sigma, \mathrm{V}$ plays respects the flow of the parity game in in $\mathscr{G}$. As $X_{j}$ is a $\Sigma_{1}^{\mu}$-formula, the players are eventually in a position of the form $\left\langle X_{j}, \underline{v}^{\prime}\right\rangle$. Then $\exists$ moves to $v^{\prime}$ in $\mathscr{P}$.

Case 2. The players are in the position $\left\langle ■ X_{j}, \underline{v}\right\rangle$ in $\mathscr{G}$ and $v \in V_{\forall}$ in $\mathscr{P}$. If $\forall$ moves to $v^{\prime}$, have R move to $\left\langle X_{j}, \underline{v}^{\prime}\right\rangle$ in $\mathscr{G}$ while following the flow of the game.

Now, have the players regenerate $X_{j}$ in $\mathscr{G}$ and move until they get to positions of the form

$$
\left\langle\bigvee_{0 \leq j \leq n}\left[\left(P_{j} \wedge P_{\exists} \wedge X_{j}\right) \vee\left(P_{j} \wedge P_{\forall} \wedge \boldsymbol{\square} X_{j}\right), \underline{v^{\prime}}\right\rangle \text { and } v^{\prime}\right.
$$

in $\mathscr{G}$ and $\mathscr{P}$, respectively. We are back to the initial situation, and we repeat this process to define $\sigma^{\prime}$.
We consider parallel runs $\rho$ in $\mathscr{G}$ and $\rho^{\prime}$ in $\mathscr{P}$ played according to $\sigma$ and $\sigma^{\prime}$, respectively. Then either both runs are finite or both runs are infinite. If $\rho^{\prime}$ is finite, this means that one of the players didn't have a move available to play at a position $v$ in $\mathscr{P}$. Therefore, one of the players couldn't find a valid position to play after $\left\langle X_{\Omega(v)}, \underline{v}\right\rangle$ or $\left\langle ■ X_{\Omega(v)}, \underline{v}\right\rangle$. The former is not possible by our choice of $\sigma$, so it must be $\forall$ who could not make a move. Therefore $\exists$ wins $\rho^{\prime}$. If $\rho$ is infinite, then the outermost infinitely often regenerated fixed-point operator is some $v X_{2 k}$. By the construction of $\sigma^{\prime}$ the greatest infinitely often occurring parity must be $2 k$. Therefore $\exists$ wins $\rho^{\prime}$. We can now conclude that $\sigma^{\prime}$ is a winning strategy for $\exists$ in $\mathscr{P}$.

On the other hand, suppose $\exists$ wins $\mathscr{P}$ via $\sigma^{\prime}$. We define $\sigma$ for V in $\mathscr{G}$. At vertices of the form $\left\langle X_{j}, \underline{\nu}\right\rangle$ in $\mathscr{G}$, have V move to

$$
\sigma\left(\left\langle X_{j}, \underline{v}\right\rangle\right):=\left\langle X_{j}, \underline{v^{\prime}}\right\rangle,
$$

with $v^{\prime}=\sigma^{\prime}(v)$. On other positions, have $\sigma$ be the non-immediately losing moves for V .
Consider parallel runs $\rho$ in $\mathscr{G}$ and $\rho^{\prime}$ in $\mathscr{P}$ played according to $\sigma$ and $\sigma^{\prime}$, respectively. If $\rho$ is finite, then one of the players made a move not respecting the flow of the parity game, or did not have an adequate moves after a position of the form $\left\langle X_{j}, \underline{v}\right\rangle$ or $\left\langle\boldsymbol{\square} X_{j}, \underline{v}\right\rangle$. By the choice of $\sigma^{\prime}$ and definition of $\sigma, \mathrm{V}$ makes no such move. So it must be R 's mistake, and so V wins. If $\rho$ is infinite, the greatest parity appearing infinitely often in $\rho^{\prime}$ is even. Therefore the outermost infinitely often occurring fixed-point operator in $\rho$ is a $v$-operator. $\rho$ is winning for V . Therefore $\sigma$ is a winning strategy for V in $\mathscr{G}$.

Given an evaluation game $\mathscr{G}(M, w \models \varphi)$, we define the $\operatorname{Kripke}$ model $\mathscr{G}^{\mathrm{K}}(M, w \models \varphi)$ as $\left(\mathscr{G}^{\mathrm{P}}(M, w \models\right.$ $\varphi))^{\mathrm{K}}$. As evaluation games are also parity games, the $W_{n}$ also define winning regions for V in evaluation games:
Proposition 4. Let $M=\left(W, R_{0}, R_{1}, V\right)$ be a bimodal Kripke model, $w \in W$, and $\varphi$ a bimodal $\mu$-formula. If $n \geq 1$ and the greatest parity used in $\mathscr{G}^{\mathrm{P}}(M, w \models \varphi)$ is less or equal than $n$, then:

$$
M, w \models \varphi \text { iff } \mathscr{G}^{K}(M, w \models \varphi),\langle\varphi, w\rangle \models W_{n} .
$$

Proof. We have:

$$
\begin{aligned}
M, w \models \varphi & \operatorname{iff} \vee \operatorname{wins} \mathscr{G}(M, w \models \varphi) \\
& \quad \text { iff } \exists \operatorname{wins} \mathscr{G}^{\mathrm{P}}(M, w \models \varphi) \\
& \quad \operatorname{iff} \mathscr{G}^{\mathrm{K}}(M, w \models \varphi),\langle\varphi, w\rangle \models W_{n} .
\end{aligned}
$$

The first equivalence follows from Proposition 1, the second one follows from Proposition 2, the third one follows from Proposition 3 .

## 5 Strictness

Fix classes of frames $F_{0}$ and $F_{1}$ with signatures $\{0\}$ and $\{1\}$, respectively. We show that, if $\circ \leftarrow \circ \rightarrow \circ$ is a subframe of $F_{0}$ and that $\circ \rightarrow \circ$ is a subframe of $F_{1}$, then the $\mu$-calculus' alternation hierarchy is strict over $\mathrm{F}_{0} \otimes \mathrm{~F}_{1}$.

Let $(M, w)=\left\langle W, R_{0}, R_{1}, V, w\right\rangle$ and $\left(M^{\prime}, w^{\prime}\right)=\left\langle W^{\prime}, R_{0}^{\prime}, R_{1}^{\prime}, V^{\prime}, w^{\prime}\right\rangle$ be pointed Kripke models without loops in their graphs. $(M, w)$ is isomorphic to $\left(M^{\prime}, w^{\prime}\right)$ iff there is a bijection $I: W \rightarrow W^{\prime}$ such that:

- $I(w)=w^{\prime} ;$
- for all $v, v^{\prime} \in W, v R_{0} v^{\prime}$ iff $I(v) R_{0}^{\prime} I\left(v^{\prime}\right)$;
- for all $v, v^{\prime} \in W, v R_{1} v^{\prime}$ iff $I(v) R_{1}^{\prime} I\left(v^{\prime}\right)$; and
- for all $v \in W, v \in V(P)$ iff $I(v) \in V^{\prime}(P)$.

For all $n \in \mathbb{N}$, let $(M \upharpoonright n, w)$ be the submodel of $(M, w)$ obtained by restricting $W$ to worlds with distance less than $n$ from $w$. We say $(M, w)$ is $n$-isomorphic to $\left(M^{\prime}, w^{\prime}\right)$ if and only if $(M \upharpoonright n, w)$ is isomorphic to $\left(M^{\prime} \upharpoonright n, w^{\prime}\right)$. For any $(M, w),(M \upharpoonright 0, w)$ is an empty Kripke model. We assume the empty Kripke model is isomorphic to itself.

Given a $\mu$-formula $\varphi$, let $f_{\varphi}$ be the function mapping a pointed model to the pointed Kripke model representing its evaluation game with respect to $\varphi$. That is $f_{\varphi}(M, w)=\left(\mathscr{G}^{\mathrm{K}}(M, w \models \varphi),\langle\varphi, w\rangle\right)$, for all pointed models $(M, w)$.

Lemma 5. Fix a $\mu$-formula $\varphi$. If $(M, w)$ and $\left(M^{\prime}, w^{\prime}\right)$ are n-isomorphic via a function I, then $f_{\varphi \wedge \varphi}(M, w)$ and $f_{\varphi \wedge \varphi}\left(M^{\prime}, w^{\prime}\right)$ are $(n+1)$-isomorphic via the function $J$ defined by:

$$
J(\langle\psi, w\rangle)=(\langle\psi, I(w)\rangle),
$$

for all world w of $M$ and subformula $\psi$ of $\varphi$.
Proof. As $(M, w)$ and $(N, v)$ are $n$-isomorphic, the evaluation games $\mathscr{G}(M, w \models \varphi \wedge \varphi)$ and $\mathscr{G}(N, v \models$ $\varphi \wedge \varphi)$ are going to be same up to $n$-many plays of the form $\langle\triangle \psi, w\rangle$, with $\triangle \in\left\{\square_{0}, \diamond_{0}, \square_{1}, \diamond_{1}\right\}$. As the first move in an evaluation game for the formula $\varphi \wedge \varphi$ is to choose between a conjunction, we can guarantee that the two games above are the same up to $n+1$ moves.

Lemma 6. For all $\mu$-formula $\varphi$, the function $f_{\varphi \wedge \varphi}$ has a fixed-point (up to isomorphism). That is, there is a model $(M, w)$ such that $f_{\varphi}(M, w)$ is isomorphic to $(M, w)$.

Proof. Let $\left(M_{0}, w_{0}\right)$ be a fixed arbitrary pointed Kripke model. We define $\left(M_{n+1}, w_{n+1}\right)=f_{\varphi \wedge \varphi}\left(M_{n}, w_{n}\right)$ inductively on $n \in \mathbb{N}$. If $n=0$, then ( $M_{0}, w_{0}$ ) and ( $M_{1}, w_{1}$ ) are trivially 0 -isomorphic. By induction on $n,\left(M_{n}, w_{n}\right)$ and $\left(M_{n+1}, w_{n+1}\right)$ are $n$-isomorphic via Lemma 5. Therefore, if $m>n$ then $\left(M_{n}, w_{n}\right)$ is $n$-isomorphic to $\left(M_{m}, w_{m}\right)$.

We can now define a pointed $\operatorname{Kripke}$ model $(M, w)$ which is $n$-isomorphic to $\left(M_{n}, w_{n}\right)$ for all $n$. We identify $\left(M_{n} \upharpoonright n, w_{n}\right)$ and $\left(M_{n+1} \upharpoonright n, w_{n+1}\right)$, since they are $n$-isomorphic. Take the graph of $M$ to be the union of the graph of the $M_{n} \upharpoonright n$, the valuation of $M$ to be the union of the valuation of the $M_{n} \upharpoonright n$ and $w$ as $w_{0}$. Finally, we have that $(M, w)$ is isomorphic to $f_{\varphi \wedge \varphi}(M, w)$. Otherwise, there world be $n$ such that $\left(M_{n}, w_{n}\right)$ is not $n$-isomorphic to $\left(M_{n+1}, w_{n+1}\right)$.

Proof of Item 1 of the Main Theorem. Let $\mathrm{F}_{0}$ and $\mathrm{F}_{1}$ be classes of unimodal Kripke frames closed under isomorphic copies and disjoint unions. Suppose $\circ \leftarrow \circ \rightarrow \circ$ is a subframe of $F_{0}$ and $\circ \rightarrow \circ$ a subframe of $F_{1}$.


Figure 2: Example of a parity game $\mathscr{P}$ and the corresponding bimodal model $\mathscr{P}^{K}$, built using copies of $\circ \rightarrow \circ \rightarrow \circ$ and $\circ \rightarrow \circ$. We show only worlds satisfying bd and omit the other propositional symbols.

If $n$ is even, then $W_{n} \in \Pi_{n+1}^{\mu}$. For a contradiction, suppose that $W_{n}$ is equivalent to some formula in $\Pi_{n}^{\mu}$ over $\mathrm{F}_{0} \otimes \mathrm{~F}_{1}$. Let $\varphi \in \Sigma_{n}^{\mu}$ be equivalent to $\neg W_{n}$. Let $(M, w)$ be a fixed-point of $f_{\varphi \wedge \varphi}$. Then

$$
\begin{aligned}
M, w \models \neg W_{n} & \Longleftrightarrow M, w \models \varphi \wedge \varphi \\
& \Longleftrightarrow f_{\varphi \wedge \varphi}(M, w) \models W_{n} \Longleftrightarrow M, w \models W_{n} .
\end{aligned}
$$

This is a contradiction. The case for $n$ odd is symmetric: $W_{n} \in \Sigma_{n+1}^{\mu}$ and is not equivalent to any formula in $\Sigma_{n}^{\mu}$.

## 6 Finishing the proof of the Main Theorem

To prove Items 2 and 3 of the Main Theorem, we modify two points in the proof above: first, we define new functions transforming parity games into Kripke models; second, we supply new versions of the modalities and $\boldsymbol{\square}$.

We first consider the case of Item 2. Let $F_{0}$ and $F_{1}$ be classes of unimodal Kripke frames closed under isomorphic copies and disjoint unions. Suppose $\circ \rightarrow \circ \rightarrow \circ$ is a subframe of $F_{0}$ and $\circ \rightarrow \circ$ is a subframe of $\mathrm{F}_{1}$. When we define a Kripke model $\mathscr{P}^{\mathrm{K}}$ from a parity game $\mathscr{P}$, we change the way we use the copies of $\circ \rightarrow \circ \rightarrow \circ$ and $\circ \rightarrow \circ$. Suppose $v \in V_{\exists}, V_{\forall}$ and $v E=\left\{v_{0}, \ldots v_{n}\right\}$. The players choose the next position as follows: they first move once in a copy of $\circ \rightarrow 0 \rightarrow \circ$; they then confirm some $v_{i}$ using a copy of $\circ \rightarrow \circ$ or move along the current copy $\circ \rightarrow 0 \rightarrow 0$; if they moved along $\circ \rightarrow 0 \rightarrow 0$, they must confirm this move via a copy of $\circ \rightarrow 0$. See Figure 2 for an example.

To control the flow of the game over copies of $\circ \rightarrow \circ \rightarrow 0$, we use three propositional symbols pre ${ }_{0}$, $\operatorname{mid}_{0}$, and $\mathrm{nxt}_{0}$. Here, pre ${ }_{0}$ holds at the first world of the copies of $\circ \rightarrow 0 \rightarrow 0$, mid $_{0}$ holds at the second world, and $\mathrm{nxt}_{0}$ holds at the third world. We define $\boldsymbol{} \boldsymbol{\text { and }}$ as follows:

$$
\begin{aligned}
& \text { - } \varphi:=\mu Y . \operatorname{pre}_{0} \wedge \mathrm{bd} \wedge \diamond_{0}\left[\operatorname { m i d } _ { 0 } \wedge \operatorname { p r e } _ { 1 } \wedge \wedge \mathrm { bd } \wedge \diamond _ { 1 } ( \mathrm { nxt } _ { 1 } \wedge \mathrm { bd } \wedge ( ( Y \wedge \neg \operatorname { p o s } ) \vee ( \varphi \wedge \operatorname { p o s } ) ) ) \vee \diamond _ { 0 } \left(\mathrm{nxt}_{0} \wedge\right.\right. \\
& \left.\left.\operatorname{pre}_{1} \wedge \mathrm{bd} \wedge \diamond_{1}\left(\mathrm{nxt}_{1} \wedge \mathrm{bd} \wedge((Y \wedge \neg \operatorname{pos}) \vee(\varphi \wedge \text { pos }))\right)\right)\right] \text {; and } \\
& \text { - } \square \varphi:=\mu Y \cdot \operatorname{pre}_{0} \wedge \mathrm{bd} \rightarrow \square_{0}\left[\operatorname { m i d } _ { 0 } \wedge \operatorname { p r e } _ { 1 } \wedge \wedge \mathrm { bd } \rightarrow \square _ { 1 } ( \mathrm { nxt } _ { 1 } \wedge \mathrm { bd } \wedge ( ( Y \wedge \neg \operatorname { p o s } ) \vee ( \varphi \wedge \operatorname { p o s } ) ) ) \wedge \square _ { 0 } \left(\mathrm{nxt}_{0} \wedge\right.\right. \\
& \left.\left.\operatorname{pre}_{1} \wedge \mathrm{bd} \rightarrow \square_{1}\left(\mathrm{nxt}_{1} \wedge \mathrm{bd} \wedge((Y \wedge \neg \operatorname{pos}) \vee(\varphi \wedge \operatorname{pos}))\right)\right)\right],
\end{aligned}
$$

where $Y$ is a fresh variable symbol. The definition of the winning region formulas $W_{n}$ are the same as above, where and $\square$ use their new definitions.

Now for the proof of Item 3. Let $F_{0}, F_{1}$, and $F_{2}$ be classes of unimodal Kripke frames closed under isomorphic copies and disjoint unions. Suppose $\circ \rightarrow \circ$ is a subframe of $\mathrm{F}_{0}, \mathrm{~F}_{1}$, and $\mathrm{F}_{2}$. Given $v \in V_{\exists}, V_{\forall}$ and $v E=\left\{v_{0}, \ldots v_{n}\right\}$, we build a Kripke model as in the proof of Item 2, but instead of using a copy of $\circ \rightarrow \circ \rightarrow \circ$, we use two copies of $\circ \rightarrow 0$, one from $F_{0}$ and one from $F_{1}$; we use copies of $\circ \rightarrow \circ$ from


Figure 3: Example of a parity game $\mathscr{P}$ and the corresponding tri-modal model $\mathscr{P}^{K}$, built using copies of $\circ \rightarrow \circ$. We show only worlds satisfying bd and omit the other propositional symbols.
$F_{2}$ to confirm the choices. See Figure 3 for an example. This time we will also use fresh proposition variables $\mathrm{pre}_{2}$ and $\mathrm{nxt}_{2}$ to control the flow of the evaluation games along copies of $\circ \rightarrow \circ$ in $\mathrm{F}_{2}$. Here, we define and as follows:

$$
\begin{aligned}
& \text { - } \varphi:=\mu Y . \operatorname{pre}_{0} \wedge \mathrm{bd} \wedge \diamond_{0}\left[\mathrm{nxt}_{0} \wedge \operatorname{pre}_{1} \wedge \operatorname{pre}_{2} \wedge \mathrm{bd} \wedge \diamond_{2}\left(\mathrm{nxt}_{2} \wedge \mathrm{bd} \wedge((Y \wedge \neg \operatorname{pos}) \vee(\varphi \wedge \operatorname{pos}))\right) \vee\right. \\
& \left.\diamond_{1}\left(\mathrm{nxt}_{1} \wedge \operatorname{pre}_{2} \wedge \mathrm{bd} \wedge \diamond_{2}\left(\mathrm{nxt}_{2} \wedge \mathrm{bd} \wedge((Y \wedge \neg \operatorname{pos}) \vee(\varphi \wedge \operatorname{pos}))\right)\right)\right] \text {; and } \\
& \text { - } \square \varphi:=\mu Y . \operatorname{pre}_{0} \wedge \mathrm{bd} \rightarrow \square_{0}\left[\mathrm{nxt}_{0} \wedge \operatorname{pre}_{1} \wedge \operatorname{pre}_{2} \mathrm{bd} \rightarrow \square_{2}\left(\mathrm{nxt}_{2} \wedge \mathrm{bd} \wedge((Y \wedge \neg \operatorname{pos}) \vee(\varphi \wedge \operatorname{pos}))\right) \wedge\right. \\
& \left.\square_{1}\left(\mathrm{nxt}_{1} \wedge \operatorname{pre}_{2} \wedge \mathrm{bd} \rightarrow \square_{2}\left(\mathrm{nxt}_{2} \wedge \mathrm{bd} \wedge((Y \wedge \neg \operatorname{pos}) \vee(\varphi \wedge \operatorname{pos}))\right)\right)\right],
\end{aligned}
$$

where $Y$ is a fresh variable symbol. The definition of the winning region formulas $W_{n}$ are the same as above, where and $\boldsymbol{\square}$ use their new definitions.

## 7 Case studies on the collapse over multimodal logics

We now comment on two where the $\mu$-calculus collapses to modal logic. These are not originally framed in the context of multimodal $\mu$-calculus.

Provability Logic GLP is a multimodal provability logic with signature $\mathbb{N}$, first defined by Japaridze. One of the possible arithmetical interpretations for each $\square_{n}$ is as a provability predicate for $I \Sigma_{n}$. Each modality $\square_{n}$ satisfies the necessitation rule and the axioms for the provability $\mathrm{GL}: \square(P \rightarrow Q) \rightarrow(\square P \rightarrow$ $\square Q)$ and $\square(\square P \rightarrow P) \rightarrow \square P$. While GLP contains the fusion of infinitely many copies of GL, it is not a fusion logic: it also includes the axioms $\square_{m} P \rightarrow \square_{n} \square_{m} P, \widehat{ }_{m} P \rightarrow \square_{n} \widehat{ }_{m} P$, and $\square_{m} P \rightarrow \square_{n} P$, for all $m \leq n$.

Ignatiev [6] proved that GLP has the fixed-point property: if $X$ is in the scope of some $\square_{i}$ in $\varphi(X)$, then there is $\psi$ such that GLP $\vdash \psi \leftrightarrow \varphi(\psi)$. This implies that we do not get a more expressive logic if we add to it the operators $\mu$ and $v$. While the additional conditions on the relation between the modalities makes it possible to have the fixed-point property, GLP is not complete over any class of Kripke models.

Intuitionistic Modal Logic IS5 is an intuitionistic variation of S5; it is also known as MIPQ. It consists of closure under necessitation and modus ponens of the set of formulas containing the intuitionistic tautologies along with the axioms $T:=\square \varphi \rightarrow \varphi \wedge \varphi \rightarrow \diamond \varphi, 4:=\square \varphi \rightarrow \square \square \varphi \wedge \diamond \diamond \varphi \rightarrow \diamond \varphi$, and $5:=\diamond \varphi \rightarrow \square \diamond \varphi \wedge \diamond \square \varphi \rightarrow \square \varphi$. An IS5 model is a tuple $\langle W, \preceq, R, V\rangle$ satisfying: $\preceq$ is a pre-order; $R$ is an equivalence relation; $w R ; \preceq v$ implies $w \preceq ; R v$; and $w \preceq v$ and $w \in V(P)$ implies $v \in V(P)$. IS5 can be thought as a bimodal logic, where $\square$ and $\diamond$ are abbreviations for $\square_{\preceq} \square_{R}$ and $\left.\square \preceq\right\rangle_{R}$, respectively. Ono [9] and Fischer Servi [5] proved that IS5 is complete over IS5 frames.

Pacheco [11] prove that the $\mu$-calculus collapses to constructive modal logic over IS5 frames using game semantics for the constructive $\mu$-calculus. This example shows that, if we add restrictions on how we use multiple modalities, then we may still have the collapse to modal logic. Note that the relation $\langle W, \preceq\rangle$ is an S4 frame, and the $\mu$-calculus does not collapse to modal logic over S4 frames [1]. So the restriction on the usage of the modalities here is quite strong.
Problem. When does the $\mu$-calculus collapse to modal logic over multimodal frames?

## References

[1] Luca Alberucci \& Alessandro Facchini (2009): The Modal $\mu$-Calculus Hierarchy over Restricted Classes of Transition Systems. The Journal of Symbolic Logic 74(4), pp. 1367-1400, doi 10.2178/jsl/1254748696.
[2] Julian C. Bradfield (1998): Simplifying the Modal Mu-Calculus Alternation Hierarchy. In G. Goos, J. Hartmanis, J. van Leeuwen, Michel Morvan, Christoph Meinel \& Daniel Krob, editors: STACS 98, 1373, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 39-49, doi:10.1007/BFb0028547.
[3] Julian C. Bradfield \& Igor Walukiewicz (2018): The Mu-Calculus and Model Checking. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith \& Roderick Bloem, editors: Handbook of Model Checking, Springer International Publishing, Cham, pp. 871-919, doi 10.1007/978-3-319-10575-8_26.
[4] Walter Carnielli \& Marcelo Esteban Coniglio (2020): Combining Logics. In Edward N. Zalta, editor: The Stanford Encyclopedia of Philosophy, fall 2020 edition, Metaphysics Research Lab, Stanford University.
[5] Gisèle Fischer Servi (1978): The Finite Model Property for MIPQ and Some Consequences. Notre Dame Journal of Formal Logic XIX(4), pp. 687-692.
[6] Konstantin N. Ignatiev (1993): On Strong Provability Predicates and the Associated Modal Logics. Journal of Symbolic Logic 58(1), pp. 249-290, doi 10.2307/2275337.
[7] Clemens Kupke, Johannes Marti \& Yde Venema: On the Size of Disjunctive Formulas in the $\mu$-Calculus 346, pp. 291-307. doi 10.4204/EPTCS.346.19.
[8] Agi Kurucz (2007): Combining Modal Logics. In Patrick Blackburn, Johan Van Benthem \& Frank Wolter, editors: Studies in Logic and Practical Reasoning, Handbook of Modal Logic 3, Elsevier, pp. 869-924, doi 10.1016/S1570-2464(07)80018-8.
[9] Hiroakira Ono (1977): On Some Intuitionistic Modal Logics. Publications of the Research Institute for Mathematical Sciences 13(3), pp. 687-722, doi 10.2977/prims/1195189604.
[10] Leonardo Pacheco (2023): Exploring the Difference Hierarchies on $\mu$-Calculus and Arithmetic-from the Point of View of Gale-Stewart Games. Ph.D. thesis, Tohoku University.
[11] Leonardo Pacheco (2023): Game Semantics for the Constructive $\mu$-Calculus, doi $10.48550 /$ arXiv.2308.16697 $\operatorname{arXiv} 2308.16697$


[^0]:    *I would like to thank Thibaut Kouptchinky for comments and proof-reading. This research was partially funded by the FWF grant TAI-797.

[^1]:    ${ }^{1}$ This statement is not problematic as we are interested in metamathematical properties of the $\mu$-calculus. More care is needed when one is interested in the complexity of algorithms related to the $\mu$-calculus. See [7].

