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1 Introduction

Cyclic proof theory studies a notion of proof where we allow the trees rep-
resenting proofs to have loops (see [1]). This is really useful for logics with
fixpoints operators: these cycles can be used to represent the unfolding of a
fixpoint providing natural axiomatizations for these systems. However, this
cyclic character is not unique to such explicit fixpoints. For example, modal
logics whose frames have a Noetherian (conversely wellfounded) condition,
such as GL ([6],[3]),S4Grz ([5]) and K4Grz ([8]); also have cyclic proof systems.

Particularly, in [6], Shamkanov introduces a non-wellfounded and a cyclic
sequent system for provability logic (GL). He proves the equivalence of these
two systems with an acyclic finite system via proof translations. In order
to go from the finite system to the non-wellfounded system and from the
non-wellfounded to the cyclic he uses corecursion.

In [3], Iemhoff generalized the work of Shamkanov studying when, for
a given modal logic proof system, there exists another modal logic proof
system such that proofs in the first are equivalent to cyclic proofs in the
second. There, she shows that iGL, an1 intuitionistic version of GL, also
haves a natural cyclic proof system. Iemhoff does not use corecursion, which
should not be surprising since when defining a function from finite trees to
non-wellfounded trees we have recursive and corecursive tools at hand.

Our main interest is to explore corecursion as a tool for non-wellfounded
and cyclic proof theory. For this reason, in [7], we have provided an alterna-
tive proof of this equivalence using a corecursive translation from the finite

1The use of “an” instead of “the” is deliberated. Check the footnote of page 5 for an
explanation.
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acyclic system to the non-wellfounded system. Let us briefly describe what
we do in each section of this abstract:

• In the second section we introduce non-wellfounded trees, together with
the methods of recursion and corecursion, using category theory.

• In the third section we define the sequent rules we are going to need.
We also define non-wellfounded and cyclic proofs.

• In the fourth section we define some conditions that suffice to define
a corecursive proof translation from finite proofs to non-wellfounded
proofs.

• In the fifth section we finally show how to convert finite proofs with
rules of iGL into cyclic proofs with rules of iK4. We also briefly explain
how to show the reverse direction.

2 Algebras and Coalgebras: (co)recursion2

We need to work with (possibly) not wellfounded trees. We are going to
use the representation of trees with a non-empty set of finite sequences of
natural numbers. Given a set A we will write A∗ to denote the set of finite
sequences over A, i.e.

⋃
n∈N{f | f : {0, . . . , n − 1} −→ A}. Elements of ω∗

will be denoted by w, v, u.

Definition 1. An A-labelled tree is a pair T = (N, ℓ), where:

1. N ⊆ ω∗, non-empty and closed under initial segments.

2. For any w ∈ N there exists a natural number m such that for any i,
w, i ∈ N iff i < m. Given w, this number can be shown to be unique
and we call it the arity of w in T .

3. ℓ : N −→ A, called the labelling function of T .

T is said to be finite iff N is finite. A branch of T is just an infinite path of
T . We denote the collection of L-labelled trees as TreeA and the collection
of finite L-labelled trees as FinTreeA.

2We are just going to introduce the necessary principles for our work, particularly
infinite trees and corecursion to them. These ideas can already found in [1], so the methods
we use can be considered to be standard for the treatment of infinite trees. For a more
modern view on coalgebras the reader can consult for example [9].
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Given a finite or infinite sequence w and a natural number i, we will
write w↾i to mean the restriction of w to {0, . . . , i − 1}. If X is a set of
finite sequences, we say that w is maximal in X iff there is no sequence in
X strictly extending w. Let us define some usual notions of trees in this
formalism.

Definition 2. A branch of T is just an infinite sequence b ∈ ωω such that
for any i ∈ ω, b↾i is a node of T .

A leaf of T is a maximal sequence in the nodes of T . An internal node
is any node that is not a leaf.

Let T = (N, ℓ) be a tree and w one of its nodes. We define the T -subtree
generated at w, as T -subtree(w) = (N ′, ℓ′) where:

N ′ = {v ∈ ω∗ | wv ∈ N},
ℓ′(v) = ℓ(wv).

We need to explain how to do corecursion over trees. In order to do so, we
are going to use category theory and define recursion at the same time. First
we need to define algebras, coalgebras and the morphisms between them.

Definition 3 (Algebra/Coalgebra). Let F be an endofunctor of the category
Set. An F -algebra is a pair (A,α) of a set A and a function α : F (A) −→ A.
An algebra morphism from (A,α) to (B, β) is just a function f : A −→ B
such that the following diagram commutes:

F (A) F (B)

A B

Ff

α β

f

Similarly, an F -coalgebra is a pair (C, γ) of a set C and a function γ :
C −→ F (C). A coalgebra morphism from (C, γ) to (D, δ) is a function
g : C −→ D such that the following diagram commutes:

C D

F (C) F (D)

g

γ δ

Fg

An intuition to think about algebras and coalgebras is to image the func-
tor F is representing some structure. Then, the objects of an algebra A
are created using the structures of shape F over A. Conversely, the objects
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of a coalgebra C are destructed into structures of shape F over C. Using
(co)algebras as objects and (co)algebra morphisms as arrows, we can define
a category we will call it F -(Co)Alg. We say that a (co)algebra is initial
(final), in case it is the3 initial (final) object of the corresponding category.
Finally, we can define what it means to define a function by recursion or
corecursion.

Definition 4 (Recursion/Corecursion). Let (A,α) be the initial algebra of
an endofunctor F and B be a set. We say that f : A −→ B has been defined
by recursion iff there exists a function β : F (B) −→ B such that f is the
only algebra morphism from (A,α) to (B, β).

Let (D, δ) be the final coalgebra of an endofunctor F and C be a set.
We say that g : C −→ D has been defined by corecursion iff there exists a
function γ : C −→ F (C) such that g is the only coalgebra morphism from
(C, γ) to (D, δ).

We can define an endofunctor of Set, TL, such that (possibly) non-
wellfounded (finitely branching) L-labelled trees are its final coalgebra and
finite L-labelled trees are its initial algebra.

Definition 5 (Tree endofunctor). Let L be a set of labels. We define the
Set endofunctor TL as:

TL(A) = L×A∗,

TL(f : A −→ B) = idL × mapf ,

where mapf : A∗ −→ B∗ is the pointwise application of f .

We need to find the functions that make the finite trees an inital algebra
and the non-wellfounded trees a final coalgebra. These functions are well-
known, we call them construct : L × Tree∗ −→ Tree and destruct : Tree −→
L× Tree∗.

Definition 6. We define the function construct : L × Tree∗ −→ Tree as
construct(a, ((N0, ℓ0), . . . , (Nn−1, ℓn−1))) = (N, ℓ) where:

N = {ϵ} ∪
⋃
i<n

{iw | w ∈ Ni},

ℓ(w) =

{
a if w = ϵ,

ℓi(v) if w = iv.

3We are justified to talk about the inial (final) (co)algebra, since if it exists it is unique
up to (co)algebra isomorphism.
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We define the function destruct : Tree −→ L× Tree∗ as:

destruct(N, ℓ) = (ℓ(ϵ), (succi(N, ℓ))i<T -arity(ϵ))

where succi(N, ℓ) = ({w | iw ∈ N}, w 7→ ℓ(iw)).

In simple words, given a label a and a finite sequence of trees T0, . . . , Tn−1

we have that construct creates the tree whose root has a as label and Ti as
the i-th successor. Similarly given a tree T , destruct will return a pair with
the label of the root and the sequence of trees which are successors of the
root, in order. Note that if we restrict the domain to finite trees, we will
obtain finite trees in the codomain for both functions. It is easy to check
that:

Lemma 7. (Tree, destruct) is the final coalgebra of TL and (FinTree, construct)
is the initial algebra of TL.

In other words, we can define functions to trees by corecursion and from
finite trees by recursion.

3 Non-wellfounded and cyclic proofs

We work with formulas in the language described by the following BNF:

ϕ ::= p | ⊥ | ϕ→ ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | □ϕ,

where p is a propositional variable. Note that, since our base logic is in-
tuitonistic, ♢ is not definable with □. In other words, we are working in the
□-fragment of modal logic.4

A sequent is just a pair (Γ, ϕ) where Γ is a finite multiset of formulas and
ϕ is a formula. We will use Seqto denote the set of all sequents. In other
words, we work with 2-sided single conclusion sequents. A rule instance
is a pair consisting in a finite sequence of sequents and a sequence, called
premises and conclusion. A rule is just a set of rule instances, let Rul be the
set consisting in all rules (i.e. the set with all sets of rule instances). We are
interested in the following rules:

4 In particular for us iGL will be the smallest modal logic with intuitionistic proposi-
tional logic and the non-logical axioms of GL formulated with □. There is an alternative
approach and define iGL to include also the diamond intuitionistic versions of the diamond
axioms. Note that even the □-fragment of these logics is not the same, so they must not
be identified.
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Prop
Γ, p⇒ p

Abs
Γ,⊥ ⇒ ϕ

Γ, ϕ, ψ ⇒ χ
∧L

Γ, ϕ ∧ ψ ⇒ χ

Γ ⇒ ϕ Γ ⇒ ψ
∧R

Γ ⇒ ϕ ∧ ψ
Γ, ϕ⇒ χ Γ, ψ ⇒ χ

∨L
Γ, ϕ ∨ ψ ⇒ χ

Γ ⇒ ϕ
∨R1

Γ ⇒ ϕ ∨ ψ
Γ ⇒ ψ

∨R2
Γ ⇒ ϕ ∨ ψ

Γ, ϕ→ ψ ⇒ ϕ Γ, ψ ⇒ χ
→L

Γ, ϕ→ ψ ⇒ χ

Γ, ϕ⇒ ψ
→R

Γ ⇒ ϕ→ ψ

Γ,□Γ ⇒ ϕ
□K4

Π,□Γ ⇒ □ϕ

Γ,□Γ,□ϕ⇒ ϕ
□GL

Π,□Γ ⇒ □ϕ

where Γ,Π are multisets of formulas, p is a propositional variable and ϕ, ψ, χ
are formulas. The first 9 rules are called propositional rules, while the last 2
are called modal rules.

From now on, we assume that with tree we mean Seq×Rul-labelled tree.
This permits us to talk about the premises, conclusion and rule of any node
w as follows.

Definition 8. Let π be a tree and w one of its nodes. We define:

π-prem(w) = (fst(ℓ(wi)))i<π-arity(w),

π-concl(w) = (fst(ℓ(w))),
π-rule(w) = (snd(ℓ(w))),

where fst is the first projection from an ordered pair and snd the second
projection.

A proof in iGL is just a standard finite proof-tree with the propositional
logic rules and the modal rule □GL. Let us define non-wellfounded and cyclic
proofs in iK4.

Definition 9. A non-wellfounded proof in iK4 is a tree π such that:

1. For any node w, we have that (π-prem(w), π-concl(w)) is an instance
of the rule π-rule(w) and π-rule(w) is either a propositional rule or
□K4.

2. For any branch w, there are infinitely many i’s with π-rule(w↾i) = □K4.
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We will write ⊢iK4∞ S to mean that π is a non-wellfounded proof in iK4
and π-concl(ϵ) = S. Also, we will denote the collection of non-wellfounded
proofs in iK4 as Proof(iK4∞).

Definition 10. A cyclic proof in iK4 is a pair (τ, b) such that:

1. τ is a finite tree and b is a partial function from leaves of τ to the
internal nodes of τ called the backlink function.

2. For any node w ̸∈ dom(b), we have that (π-prem(w), π-concl(w)) is an
instance of the rule π-rule(w) and π-rule(w) is a propositional rule or
□K4.

3. For any node w ∈ dom(b), we have that:

(a) b(w) is a (strict) inital segment of w.

(b) π-concl(w) = π-concl(b(w)) and π-rule(w) = ∅.

(c) There is a v between b(w) and w (b(w) initial segment of v and v
initial segment of w), such that π-rule(v) = □K4.

We will write ⊢iK4◦ S to mean that π is a cyclic proof in iK4 and π-concl(ϵ) =
S. Also, we will denote the collection of cyclic proofs in iK4 as Proof(iK4◦).

4 Infinitary Proof Translation

Thanks to the definition of corecursion we will be able to define a proof
translation from a function α : FinTree −→ (Seq×Rul)×FinTree∗. However,
not any function of that shape will give a function from proofs to proofs, in
the following definition we enumerate the necessary conditions for this to
happen.

Definition 11 (Infinitary Proof Translation). Let α : FinTree −→ (Seq ×
Rul)× FinTree∗. We say that it is an infinitary proof translation iff for any
π ∈ Proof(iGL), if we denote:

α(π) = ((S,R), (τ0, . . . , τn−1)),

α(τi) = ((Si, Ri), . . .),

then the following conditions are satisfied:

1. τ0, . . . , τn−1 ∈ Proof(iGL).
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2. The following is a rule instance of iK4:

S0 · · · Sn−1
R

S

3. If R ̸= □K4, then height(τ0), . . . , height(τn−1) < height(π).

Given such α we define transα as the only coalgebra morphism from (FinTree, α)
to (Tree, destruct). This implies that

transα = construct ◦ (id × maptransα) ◦ α.

We want to show that if α is an infinitary proof translation and π is a
(finite) proof in iGL, then transβ(π) is a non-wellfounded proof in iK4. First
we need the following technical lemma:

Lemma 12. Let α be an infinitary proof translation and π ∈ Proof(iGL). If
w is a node of transα(π), then there is an unique sequence of finite iGL-proofs,
(ιi)i≤length(w), such that:

1. ι0 = π.

2. For any i ≤ length(w), (transα(π))-subtree(w↾ i) = transα(ιi).

3. For any i < length(w), ιi+1 = succwi(α(ιi)).

Similarly, if w is a branch of transα(π), then there is an unique sequence of
finite iGL-proofs, (ιi)i∈ω, such that:

1. ι0 = π.

2. For any i, (transα(π))-subtree(w↾ i) = transα(ιi).

3. For any i, ιi+1 = succwi(α(ιi)).

Proof. See Lemma 17 in appendix.

With this lemma we can show that infinitary proof translations transform
finite proofs in iGL into infinitary proofs in iK4:

Theorem 13. If α is an infinitary proof translation, then

transα : Proof(iGL) −→ Proof(iK4∞).

Proof. In appendix.
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5 From finitary to cyclic, and vice versa

In order to define the corecursion from the finite acyclic system into the cyclic
system first we need to obtain non-wellfounded proofs of certain shape. For
this, we need the admissibility of the following two rules in iGL:

Γ, ψ, ψ ⇒ ϕ
Contract

Γ, ψ ⇒ ϕ

Γ,□Γ,□ϕ⇒ ϕ
Löb

Γ,□Γ ⇒ ϕ

The admissibility of these rules is proven in [2]. If Γ is a finite multiset it
can be split into a set (a multiset where all its elements appear exactly once)
and a multiset in an unique way. Γs will be the resulting set of this splitting
and Γm will be the multiset.

Thanks to admissibility of contraction we can define a function that,
given an iGL-proof π of Γ,□Γ ⇒ ϕ, returns a proof contract(π) of Γs,□Γs ⇒
ϕ. Similarly, thanks to admissibility of Löb we can define a function that
given an iGL-proof π of Γ,□Γ,□ϕ⇒ ϕ, returns a proof löb(π) of Γ,□Γ ⇒ ϕ.

Using these two functions and the theorem of proof translations, we have
the following result:

Theorem 14. There is a unique h : Proof(iGL) −→ Proof(iK4∞), such that
h is the identity in initial sequents, commutes with the logical rules and:

π

Γ,□Γ,□ϕ⇒ ϕ
□GL

Π,□Γ ⇒ □ϕ 7−→

h(contract(löb(π))
Γs,□Γs ⇒ ϕ

□K4
Π,□Γm,□Γs ⇒ □ϕ

In addition, if π is a proof of Γ ⇒ ϕ, then h(π) is also a proof of Γ ⇒ ϕ.

Proof. See Appendix.

Finally, thanks to this proof translation we can show that any finite
acyclic proof can be transformed into a cyclic proof.

Corollary 15. Let S be a sequent. If ⊢iGL S, then ⊢iK4◦ S.

Proof. This result is based in two observations. First, that thanks to the
shape of the rule we have the subformula property. Second, that any branch
must have infinitely many applications of the □K4 rule, but choosing the
translation we defined before the premise of such an application is determined
by a set. Using these two facts together we can get the required repetition
of sequents to define a cyclic proof (check the Appendix).
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The argument to obtain a proof from the cyclic system to the finite acyclic
system is totally analogous to the classical case ([6]). The only difference
being that now the interpretation of a sequent Γ ⇒ ϕ as a formula should
be

∧
Γ ⇒ ϕ. We can conclude the desired result:

Theorem 16. Let S be a sequent. Then ⊢iGL S iff ⊢iK4 S.

6 Conclusion and Future Work

We have provided a proof of the equivalence between a finite acyclic system
with rules of iGL and a (finite) cyclic system with rules of iK4 using a core-
cursive translation of proofs. In order to do this, we exploited that while
performing a corecursion we can use the admissible rules in the finite acyclic
system to obtain non-wellfounded proofs of the desired shape. We propose
two possible extensions of this work:

1. We do not provide a proof of the admissibility of contraction in the
non-wellfounded system. Shamkanov’s proof in the classical case ([6])
does not work due to the shape of intuitionistic propositional rules,
neither does induction in the height of the tree works. So it remains
open to show admissibility of contraction in this system, and also to
show that it is equivalent to the other finite acyclic and finite cyclic
systems.

2. Applying the same idea of using the admissibility of a rule in the finite
system to produce well-shaped non-wellfounded proofs with other rules
and systems. In particular, we propose to study cut and check if there
is some non-wellfounded system with cut-elimination where this idea
can be applied. This would provide an alternative method of cut-
elimination for the non-wellfounded system, if we show in addition
how to transform non-wellfounded proofs with cut into finite acyclic
proofs with cut. A candidate logic where to study this is S4Grz, ([5]).
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A Proofs

First, we prove a technical lemma that given a node of a tree defined by
corecursion give us the “story” about how it was created.

Lemma 17. Let (C,α : C −→ A×C∗) be a TA-coalgebra and β : C −→ Tree
be the only coalgebra morphism from this coalgebra to the (non-wellfounded)
tree coalgebra. Given c ∈ C, π := β(c) and w ∈ Node(π) there exists a
sequence (ci)i≤length(w) of elements of C such that:

1. For any i ≤ length(w), β(ci) = π-subtree(w↾i).

2. For any i < length(w), ci+1 = succwi(β(ci)).

Let b be a branch of π. Then, there exists a sequence (ci)i∈ω of elements of
C such that:

1. For any i ∈ ω, β(ci) = π-subtree(w↾i).

2. For any i ∈ ω, ci+1 = succwi(β(ci)).

Proof. We show the result for nodes by induction in the length of w. If the
length is 0, w = ϵ, the empty sequence. Then, the sequence is simply c0 = c.
If the length is n+ 1, then w = w′, i. By induction hypothesis there is a se-
quence (ci)i≤n fulfilling the conditions for w′. Let α(cn) = (a, (c′0, . . . , c

′
k−1)),

we want to define cn+1 = c′i, which will fulfill the conditions. In order to
do this, we need to be sure that i < k. Notice that k is the arity of ϵ in
β(cn) = π-subtree(w′), which is the same as the arity of w′ in π. Thanks to
w′, i being a node of π we have that the arity of i < k.

The result for branches follows from the result from nodes, using that if
b is a branch then b↾i is a node. So for each restriction of the branch we get
a sequence of elements of C. Thanks to the second condition in the node
case, we know that if i ≤ j then the sequence of b↾j extends the sequence of
b↾i. Taking the union of all the sequences of b↾i, i ∈ ω, we get the desired
infinite sequence.

Theorem 13. If α is an infinitary proof translation, then

transα : Proof(iGL) −→ Proof(iK4∞).

Proof. We need to show that every node is the instance of a rule and that the
branch condition is fulfilled. For both things we will use Lemma 12. So, let α
be an infinitary proof translation, π by a (finite) proof in iGL, τ = transα(π)
and w be a node of τ of length n. Thanks to the lemma, we get a sequence
(ιi)i≤n such that:
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1. For i ≤ n, transα(ιi) = τ -subtree(w↾i).

2. For i < n, ιi+1 = succwi(α(ιi)).

Thanks to 2 above and the first condition on infinitary proof translations,
we have that each ιi is a (finite) proof in iGL. Then, using Lemma 12 for
each w, i with i smaller than the arity of w in τ and the second condition of
initary proof translation with ιn, we get the desired rule instance condition
on w.

Let b be a branch of τ and let us show that the branch condition is
fulfilled. By reductio ad absurdum, assume that it is not i.e. if (Ri)i∈ω is
the sequence of rules in the nodes (b↾i)i∈ω in τ , then there is a k such that
for i ≥ k Ri ̸= □K4 (i). Use Lemma 12 to get an infinite sequence (ιi)i∈ω
such that

1. For i ∈ ω, transα(ιi) = τ -subtree(w↾i).

2. For i ∈ ω, ιi+1 = succwi(α(ιi)).

Again by 2 above and the first condition of infinitary proof translation,
that all the ιi are finite proofs of iGL. By 1 above we get that, if α(ιi) =
((Si, R

′
i), (ι

′
0, . . . , ι

′
ni
)) then R′

i = Ri. So, if i ≥ k we know that Ri ̸= □K4 and
by the third condition of infinitary proof translation we have that ι′0, . . . , ι′ni

are of strictly smaller height than ιi. Since ιi+1 must be equal to one of these
(by 2 above), in fact we have proven that for i ≥ k, height(ιi) > height(ιi+1).
But then (height(ιi))i≥k is an infinite (strictly) descending sequence of nat-
ural numbers, impossible.

Theorem 14 . There is a unique h : Proof(iGL) −→ Proof(iK4∞), such that
h is the identity in initial sequents, commutes with the logical rules and:

π

...
Γ,□Γ,□ϕ⇒ ϕ

□GL
Π,□Γ ⇒ □ϕ 7−→

h(contract(löb(π))
...

Γs,□Γs ⇒ ϕ
□K4

Π,□Γm,□Γs ⇒ □ϕ

In addition, if π is a proof of Γ ⇒ ϕ, then h(π) is also a proof of Γ ⇒ ϕ.
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Proof. The idea is to define α : FinTree −→ (Seq × Rul)× FinTree∗ as:

α


π0

S0 · · ·
πn−1

Sn−1
R

S

 = ((S,R), (π0, . . . , πn−1)) if R ̸= □GL,

α


π0

Γ,□Γ,□ϕ⇒ ϕ
□GL

Π,□Γ ⇒ □ϕ

 = ((Π,□Γ ⇒ □ϕ,□K4), contract(löb(π))).

And it is straightforward to check that indeed, it is an infinitary proof trans-
lation. Then, the desired h is just the one defined by corecursion using this
infinitary proof translation.

Corollary 15. Let S be a sequent. If ⊢iGL S, then ⊢iK4◦ S

Proof. Let π be a iGL proof of S, and τ = (N, ℓ) := h(π) (h is defined in
PUT) is a iK4∞ proof of S. Let Φ be the set of subformulas of formulas in
S, note that this is a finite set. First, we notice that we have the subformula
property, i.e. each sequents has only formulas in Φ. This and the definition
of h guarantees that for any w ∈ Node(τ) such that τ -rule(w) = □K4 there
exists an unique set Γ ⊆ Φ and a unique ϕ ∈ Φ such that τ -premise(w) =
(Γ,□Γ ⇒ ϕ). We call this Γ as Γw and this ϕ as ϕw. Let us define the cyclic
proof.

First, we define the following collections of nodes of τ :

N0 = {w ∈ N | ∀i < j < length(w) . τ -rule(w↾i) = τ -rule(w↾j) = □K4,

then τ -prem(w↾i) ̸= τ -prem(w↾j)},

N1 = {(w, 0) ∈ N | w ∈ N0 and ∃j < length(w) . τ -rule(w↾j) = □K4,

and τ -prem(w↾j) ̸= τ -prem(w)},

In words, N0 is the collection of nodes of π such that if you look to their
path to the root there is no premise of □K4 being repeated. N1 is the nodes
which are a successor of an N0 which ended in an application of □K4 whose
premise is repeated.
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Then, we define the tree ι = (N ′, ℓ′) where N ′ = N0 ∪N1 and

ℓ′ =

{
ℓ(w) if w ∈ N0,

(S,∅) if w ∈ N1 and ℓ(w) = (S,R).

Note that this is well-defined since N0 ∩N1 = ∅. In words, the tree is just
the result of only keeping the nodes of N0 ∪ N1 of τ and change the rule
of the leaves which are a premise of □K4 reapeated for ∅. We notice, that
thanks to the definition of N1 if w ∈ N1 there is a j < length(w) − 1 such
that τ -rule(w↾j) = □K4 and τ -premise(w↾j) = τ -premise(w↾(length(w)−1))
and it is in fact unique. We will denote this unique j as jw. Then we define
the backlink function of the cyclic proof as b : N1 −→ N ′, b(w) = w↾(jw+1).
Clearly b(w) is a strict initial segment of w and they share the same sequent
and ι-rule(w) = ∅, by definition of ℓ′. Also, between b(w) and w there is an
application of □K4, particularly in the node w↾(length(w)− 1). This means
that b fulfills all the conditions of backlink function (condition 3 of cyclic
proof).

Also, we note that since ι is just a part of the tree τ whose only changes
in the labels occurs in the domain of the backlink function, and thanks to τ
being a non-wellfounded proof of K4, we get that for any node w which is not
in the domain of the backlink function, (ι-prem(w), ι-concl(w)) ∈ ι-rule(w)
and the rule is propositional or □K4 (condition 2 of cyclic proof). Also, it is
clear that the conclusion of ι is still S.

The only thing left to show that (ι, b) is the desired cyclic proof of S is
to show that ι is indeed a finite tree. Assume otherwise, since our trees are
finitely branching we know by König’s lemma (see [4]) that it must have an
infinite branch, let it be (bi)i∈ω. Note that in such a branch all the nodes
b↾i must belong to N0, since the definition of N1 must be leaves. Then, this
infinite branch would also be an infinite branch of τ with the same sequents
and rules, so thanks to the branch condition, we get that there are infinitely
many i’s such that ι-rule(b↾i) = □K4. For any such i we know that there is
a Γi, ϕi) ∈ ℘(Φ)×Φ determining the premise of w. But, Φ is a finite set, so
℘(Φ)×Φ is also finite. Since there were infinitely many i’s with this propery,
we get that for some i ̸= j, (Γi, ϕi) = (Γj , ϕj). In other words, along the
branch there are two distinct nodes which have the same sequence and are
premises of the □K4 rule. But then, (b↾i)i∈ω cannot be a sequence of nodes
in N0, contradiction. We conclude that the tree is necessarily finite.
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