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KNASTER-TARSKI FIXED POINT THEOREM

For (L, <) a complete lattice & F : L — L monotone:

Theorem (Tarski’55)
The fixed points of F form a complete lattice under <.

~ F has a least fixed point ;1F and
a greatest fixed point UF.
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For (L, <) a complete lattice & F : L — L monotone:

Theorem (Tarski’55)
The fixed points of F form a complete lattice under <.

~> F has a least fixed point j1F and
a greatest fixed point UF.

Applications across Computer Science:
® Game Theory.
® (Finite) Model Theory.
® Automata Theory.

® Typed Programming Languages.
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Type Set theoretic model
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0o X 01 0o X 01
o—=T 77

® ‘Formulas-as-types’ ~~ Curry-Howard correspondence.
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SIMPLE TYPES WITH FIXED POINTS

Types: 0,Ty... u= L |X|o+7|oxT|o—-71|pXo|vXo

In uX o and vX o, the variable X must occur positively in o.

Type Set theoretic model
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0o X 071 0o X 01
o—>T 77
uXo(X) ?
vXo(X) ?

® ‘Formulas-as-types’ ~~ Curry-Howard correspondence.

® No set theoretic interpretation of vX X and uX((X — o) — 7).
~ impredicativity.
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WX o (X) : T
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® ‘Formulas-as-types’ ~~ Curry-Howard correspondence.

® No set theoretic interpretation of vX X and uX((X — o) — 7).
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SEQUENT CALCULUS: PROOFS-AS-PROGRAMS

Sequents: 01,...,0, = T (interpretas oy X - -+ X g, — T)
Each type can be constructed and destructed. E.g.

Io=r71 I'=p o=

—

—

. I
II'=so0c—->r71 Ip—>o=r

~~ Curry-Howard correspondence: proofs-as-programs.
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Each type can be constructed and destructed. E.g.

Io=r71 I'=p o=

—

—

,
II'=so0c—->r71 Ip—>o=r

~~ Curry-Howard correspondence: proofs-as-programs.

Fixed point rules:

= o(uXo(X)) Dyo(t)=rT1 L7 = o(7) Do(wXoX))=r1
I'= uXo(X) : DuXo(X) =1 VYF,T = vXo(X) B MvXoX)=r1

Hor
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Each type can be constructed and destructed. E.g.

Io=r71 I'=p o=

—

—

. I
II'=so0c—->r71 Ip—>o=r

~~ Curry-Howard correspondence: proofs-as-programs.

Fixed point rules:

= o(uXo(X)) Dyo(t)=rT1 L7 = o(7) Do(wXoX))=r1
I'= uXo(X) : DuXo(X) =1 VYF,T = vXo(X) - MvXoX)=r1

Br

Definition ([Cla09])
uLJ is the extension of usual LJ by the fixed point rules above.

Computational model given by cut-reduction.
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EXAMPLES: NATURAL NUMBERS AND STREAMS

N:=puX(1+X)
=1
0:= _ n+1:=
=1+ N
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EXAMPLES: NATURAL NUMBERS AND STREAMS

N:=puX(1+X)
=1 :
0= Ty = 2N
N T
oy —————— =1+N
= N oy —————

add: N XN —>N

id

N= N
N=N N=1+N
LN=N "~ N=N
1+ N,N=N
N,N = N

id

M

add(0,n) =n
add(m + 1,n) = add(m,n) + 1

)

7/31



EXAMPLES: NATURAL NUMBERS AND STREAMS

N:=puX(1+X)
=1
0:= _ n+1:=
=1+N
[l ——
=N Hr

add: N XN —>N

id

N=N
id

NxS=N

N=N N=1+N

LN=N "~ N=N
1+N,N=N
N,N=N

M

add(0,n) =n
add

(m+1,n) =add(m,n) +1

S:=vY(N xY)

N=N

S=N

S=3S

NxS=S§

S=3S
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EXAMPLES: NATURAL NUMBERS AND STREAMS

N:=puX(1+X)
=1 °
0:= ﬁ n+1:= =N
Hvi =1+ N
= N Hr =N

add: N XN —> N

id

N=N
szN N=1+N
I,N=N N=N

1+ N,N=N
"TNN=N

add(0,n) =n
add(m +1,n) = add(m,n) +1

)

1%

S:=vY(NxY)
id id
N= N S=3S
_— tli= —
NxS=N NxS=S§
S=N ! S=3S

fine—(mn+1,...]

id

N=N
J N=1+N
N=N N=N
N= NxN
N=S§

(fm)=nuf(n+1))
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STRUCTURE MEETS POWER: A QUESTION OF EXPRESSIVITY

Computational interpretations relate logic and computation:

System Computation Logic
simple types Extended Polynomials Pure FO Logic
+N HO Primitive Recursion (T)  FO Arithmetic (PA)
+ v ? ?
+V,3 Polymorphic A-Calculus (F) SO Arithmetic (PA2)

What do fixed point types compute?
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CIRCULAR AND NON-WELLFOUNDED PROOFS

® Derivations may be non-wellfounded but regular.

® Correctness by an w-regular property of infinite branches.

Cyclic proofs are a bridge between automata, games and proofs.

Landscape:
® Algebra. E.g., [San02, FS13, DP17, DD24].
® Typesystems. E.g., [Cla09, BDS16, DP18, KPP21, BDKS22].
® Modal logics. E.g., [NW96, Lan03, Stu08, Shal4, AL17].
® Predicate logic: E.g. [Sim17, BT17a, BT17b, Das20, DG22].
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NON-WELLFOUNDED TYPING

1'LJ obtained from pLJ by replacing 1 and v, by unfoldings:

To(uXo(X) =1 = owXo(X))
" TpuXo(X) =71 " T = uvXo(X)

® A coderivation is generated coinductively from rules of 11'LJ.

® Itis progressing if every infinite branch has an infinite progressing thread.

(Precise definition is beyond the scope of this talk.)

Definition
CuLJ is the class of regular progressing coderivations.

Computational model again given by cut-reduction.
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EXAMPLES OF PROGRESSING CODERIVATIONS

add: N X N—> N

N NSN®
dN=>N N,N=1+N
ILN=N N,N= N
,1+N,N=N
"TNN=N

W = NxS§

=N

vr

[no,nl,. . ]

o

= N

T =
= NxS§

=S

ne—[mn+1,...]

id

N=N
N=1+N
_ NN N=s§.
N=N N=3S§
,N=NxS§
N=S§ *
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EXAMPLES OF PROGRESSING CODERIVATIONS

add: NxN—> N [10, 11, ... ] ne—[mn+1,...]
id
p—————e .
N N,N= N =N N=1+N
N=N N,N=1+N W = NxS§ "TN=N Nﬁs.
Hr vy ——— i
LN=N N,N= N =N =3 dN=>N et N=S
,1+N,N=N = NxS§ N=NxS§
H ° vy ———— o_
' NNN=N =3 " Nos
Recursion to cycles:

p———————— o
T,o(r) =1 i DuXo(X) =7
H T, uXo(X) = ~ i Do(uXo(X)) = o(r) T,o(r)=7
To(uXeo(X)) =T
°
T, uXo(X) =1
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ACKERMANN FUNCTION

N=N N,N=N_ NN=N
TMM:N TN N NN
N,N,N= N
"NN,N=N
(— @

N,N=N

A(O,n)=n+1
A(m +1,0) =A(m,1)
Am+1,n+1) =A(m,A(n +1,m))
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THE ‘BROTHERSTON-SIMPSON CONJECTURE’

Are circular and finitary proofs equally expressive?

Several recent advances around first-order arithmetic via metamathematics. E.g.

THE CASE OF N
Write (C)T for restriction of (C)uLJ to just the fixed point N:

Theorem ([KPP21, Das21b])
CT and T define the same (type 1) functions.

Theorem ([Das21a])
CT and T define the same functionals (at all types).

NB: further results on affinity [KPP21] and type levels [Das21b].
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© Main results
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MAIN RESULT

Theorem ([CD23])
ulJ and CuL) define just the functions provably recursive in 115-CAo.

——-trans.

(
Theories: uHA uPA <« I1;-CA,
(1‘)1 I(*)
S : (=) -
ystems plkJ W CulJ E—— CulJ

(*) Formalisation of semantics by fixed points as fixed points:
® Novel reverse mathematics of fixed point theorems, building on [Das21a, DM23].
(0) A complex black box result due to [M602].

(1) Realisability interpretation by fixed points as SO types.

® (Considerable) specialisation of HA2 — F.
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GENERAL INDUCTIVE DEFINITIONS IN ARITHMETIC

1PA is (informally) the extension of PA by u and v formulas.
Axioms:
(pre) w(pep) S pep.

(ind) ¢(¢) € ¢¥) = (np <= ¢)
Perspective: 1o = [ J{A 2 p(A)}.

Theorem (Essentially [M602])

T1;-CA, is arithmetically conservative over j1PA.

Proposition (Implicit in [Tup04])
1PA is T13 -conservative over an intuitionistic variant, uHA.

Idea: specialises I13-conservativity of PA2 over HAZ.

17/31



REALISABILITY

18/31



REALISABILITY

Define a judgement -r- € (uLJ™) x Formandat : Form — Types.t.:

Theorem
IfuHA + @ thenthereis Pr o with uLJ™ - P : t(p).
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REALISABILITY

Define a judgement -r- € (uLJ™) x Formandat : Form — Types.t.:

Theorem
IfuHA + @ thenthereis Pr o with uLJ™ - P : t(p).

Corollary
The provably total recursive functions of uHA are definable in ulLJ ™.
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REALISABILITY JUDGEMENT

Realisability candidates:
Binary relation -A- € (uLJ™) x N with nice properties.

trm=nifm=,t =, n.

tr@o A 1 if pot 1o and pit ¥ .

trAniftAn.

tr3xp(x) if there is n € Nwith pot =, nand pitr p(n).

trp — 1 if, whenever s r ¢, we have tsr 1.

trVx(p(x) — 9(x)) if whenever ur (n = n A p(n)) we have tur (n).
trVxp(x), where ¢ is not a —-formula, if for all n € Nwe have tnr o(n).
trnepuXxp(X,x)iftrVx(p(4,x) — Ax) — Anforall A.

Avaries over realisability candidates, subsets of (uLJ™) x Nwith ‘nice’ properties.
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trm=nifm=,t =, n.

tr@o A 1 if pot 1o and pit ¥ .

trAniftAn.

trIxp(x) if there is n € Nwith pot = nand pitr p(n).

trp — 1 if, whenever s r ¢, we have tsr 1.

trVx(p(x) — 9(x)) if whenever ur (n = n A p(n)) we have tur (n).
trVxp(x), where ¢ is not a —-formula, if for all n € Nwe have tnr o(n).
trnepuXxp(X,x)iftrVx(p(4,x) — Ax) — Anforall A.

Avaries over realisability candidates, subsets of (uLJ™ ) x N with ‘nice properties.

Perspectives:

u, v viewed under their SO encodings (unlike [BT21]).
...a (considerable) specialisation of HA2 — F.

Must inline relativisation to N (unlike [BT21]).
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SEMANTICS: A COMPUTABILITY MODEL

Definition (Type structure)
Avaries over sets of coterms with ‘nice’ properties.
|A]:=A

IN|:={t|IneN.t =] n}
1o (O] := pld = lo(A)]] lo x 7] := {t| pot € |o] &pit € |7]}

lo — 7]:={t|Vse|o].tse|r]}
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Definition (Type structure)
Avaries over sets of coterms with ‘nice’ properties.

Al :=A
lo — 7] :={t|Vse|o].tse ||} H”NH e
|uXo (X)] := pl[A — |o(4)]] lo x 7] := {t| pot € |o| & pit € | 7]}
Theorem
IfCuLlJ™ + P: TthenP e |7|.
Proofidea.
® Otherwise, iteratively construct an infinite branch and | - |-inputs witnessing

| - |-non-membership. Need ‘general inputs’ for two-sided sequents.

® The progressing condition induces from this an infinite descending sequence
of ordinals approximating | - |-non-membership.
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|uXo (X)] := pl[A — |o(4)]] lo x 7] := {t| pot € |o| & pit € | 7]}
Theorem
IfCuLlJ™ + P: TthenP e |7|.
Proofidea.
® Otherwise, iteratively construct an infinite branch and | - |-inputs witnessing

| - |-non-membership. Need ‘general inputs’ for two-sided sequents.

® The progressing condition induces from this an infinite descending sequence
of ordinals approximating | - |-non-membership. O

Corollary
ifCul)™ = P : N — N then P defines a total function N — N.
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Ifo(X,x) € AbT (X, X) then uX xp(X, x) € AT (X).
Can be seen as a partial arithmetisation of [Lub93].
Proof crucially relies on pp = ({A 2 p(4)} = U, ¢~

Corollary (IT5-CAy)
ol € A;.
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SUMMARY AND FURTHER WORK

We settled both questions we started with!

Theorem ([CD23])
ulJ and CuL) define just the functions provably recursive in 11;-CAo.

Corollary
...and so does uyMALL and CuMALL.

Emerging consensus: circularity and (co)recursion are equally powerful.
...but circular proofs may be more succinct, cf. [Das20, Das21b].

® What about (very) weak systems? (cf., e.g., [CD22])

® Relating FOL and type systems via proof interpretations? (w.i.p.w. Tom Powell)

THANK YOU.
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