
Substitution for Non-Wellfounded Syntax with Binders through
Monoidal Categories

Benedikt Ahrens

jww Ralph Matthes and Kobe Wullaert

FICS 2024

2024-02-07



Summary

Goals
1. Construct non-wellfounded syntax, untyped and simply-typed,
2. Construct monadic substitution operation on it — variable

binding à la de Bruijn, with well-scopedness through typing
3. Formally verify the construction in a computer proof assistant

and make it available for further use.

Motivation
• Non-wellfounded syntax is used, for instance, in proof search
• Coinductive types and mutually inductive-coinductive types

are not well integrated in all proof assistants

Approach
• Construct syntax via a suitable limit construction
• Construct substitution via (categorical) corecursion scheme



Wellfounded Vs Non-Wellfounded Syntax

Wellfounded Syntax
• Initial Semantics: we look for initial object in a category of

“models”
• Syntax is specified by a notion of signature
• Substitution is given by monad/monoid structure

Non-Wellfounded Syntax
• Not the dual of Initial Semantics
• Syntax is specified by a notion of signature
• Underlying syntax can be constructed as terminal coalgebra,

but we are interested in its algebra structure
• Substitution still given by monoid structure
• Object we construct is not specified by a universal property



Outline

1 Overview of Related Work

2 Details of the Construction of Substitution



Related Work: Wellfounded Syntax à la Fiore

• Simple notion of signatures, e.g., {[0,0], [1]} for LC
• Syntax as a functor Λ : F→ Set
• Substitution structure given via monoidal structure on [F,Set]
• Only wellfounded syntax is considered



Related Work: Wellfounded Syntax à la Hirschowitz and
Maggesi

• Sophisticated notion of signature: “parametrized module”,
e.g., T 7→ T × T + T∗
• Signatures allow for expression of equations between terms
• Do not automatically admit initial objects (syntax)

• Syntax as a functor Λ : Set→ Set
• Substitution structure given by monad structure
• Only wellfounded syntax is considered
• Formalization of syntax and substitution in a computer proof

assistant



Related Work: Substitution for Non-Wellfounded Syntax à
la Matthes and Uustalu

• Signatures: endofunctors with strength, e.g.,
H(X) := X × X + X ◦Maybe

• Syntax as a functor C→ C, for suitable C
• Substitution structure given by monad structure
• Non-wellfounded syntax is considered
• Explains in detail the construction of monad structure via

categorical (co)recursion à la Mendler, axiomatized via
“heterogeneous substitution system”



This Work: Pushout of the Aforementioned

• Generalize the results of Matthes and Uustalu to the level of
monoidal categories

• Implement constructions and proofs in a computer proof
assistant

• Instantiate the constructions to concrete categories to actually
construct syntax

Summary
Tool chain for non-wellfounded syntax

input multi-sorted binding signature
output syntax and certified monadic substitution



Outline

1 Overview of Related Work

2 Details of the Construction of Substitution



The Tool Chain

• Signature
• “Combinatorial” signatures for easy specification
• “Semantic” signatures (endofunctors) for construction of the

syntax
⇝ Non-wellfounded syntax as (inverse of) terminal coalgebra

• Via Adámek’s Theorem
• Uses ω-continuity of the semantic signature

⇝ Monad structure on the syntax via coiteration
• Construction of a “substitution system” on syntax
• From substitution system, derive monoid structure



Signatures

“Combinatorial” signatures over a fixed type of sorts
• ar : I→ list(list(S)× S)× S.
• STLC with sorts⇒ : S→ S→ S and I = (S× S) + (S× S)

ar(inl〈s, t〉) :≡



[〈[], s⇒ t〉, 〈[], s〉], t
�

ar(inr〈s, t〉) :≡



[〈[s], t〉], s⇒ t
�

Translation to “semantic” signature: functor with strength
• Functor C→ C, for suitably chosen C (e.g., [F,Set])
• Strength indicates how to do “substitution in subterms”: it

specifies what more has to be done than just having
substitution commute with the term constructors



Constructing (Non-Wellfounded) Syntax

Theorem (Adámek)
If C has limits of shape ω= 0← 1← 2← ·· · and a terminal object
1, and H : C→ C is ω-continuous, then the limit of
1← H1← H21← ·· · is a terminal H-coalgebra.

• We are instead interested in functors of shape Id+H(_),
where Id models the inclusion of variables into terms.

• H is usually a sum (one summand per constructor of the
language); ω-continuity can be proved modularly from
continuity of the summands.



(Co)Recursion: Substitution Systems

• (V , I,⊗) a monoidal category
• H : V → V with a pointed tensorial strength θ for H.

(t,η,τ) with t : V , η : I→ t and τ : Ht→ t is a substitution system
if, for all (z, e, f) with z : V , e : I→ z and f : z→ t, there is a unique
morphism h : z⊗ t→ t such that:

z⊗ I z⊗ t z⊗Ht

H(z⊗ t)

z t Ht

1z⊗η

ρz h

1z⊗τ

θ(z,e),t

Hh
f τ

Theorem
Any substitution system (t,η,τ) is an (H,θ )-monoid.



Non-Wellfounded Syntax and Substitution

Theorem
• V monoidal category with binary coproducts
• H : V → V with pointed monoidal strength θ
• (t,out) final coalgebra of I+H(_)
• set [η,τ] := out−1

Then (t,η,τ) is a substitution system.

• A quite simple proof can be given using the notion of
“completely iterative algebra”.

• Alternatively, use primitive corecursion.



Conclusion

• Construction of non-wellfounded syntax and substitution
mostly on the level of monoidal categories

• Formalization of context and variable binding requires
commitment to specific monoidal category; different choices
possible

• Full paper with the same title: arXiv:2308.05485

Thanks for your attention!

https://arxiv.org/abs/2308.05485


Conclusion

• Construction of non-wellfounded syntax and substitution
mostly on the level of monoidal categories

• Formalization of context and variable binding requires
commitment to specific monoidal category; different choices
possible

• Full paper with the same title: arXiv:2308.05485

Thanks for your attention!

https://arxiv.org/abs/2308.05485

	Overview of Related Work
	Details of the Construction of Substitution

