Substitution for Non-Wellfounded Syntax with Binders through Monoidal Categories

Benedikt Ahrens

jww Ralph Matthes and Kobe Wullaert

FICS 2024

2024-02-07

Summary

Goals

- 1. Construct non-wellfounded syntax, untyped and simply-typed,
- 2. Construct monadic substitution operation on it variable binding à la de Bruijn, with well-scopedness through typing
- 3. Formally verify the construction in a computer proof assistant and make it available for further use.

Motivation

- Non-wellfounded syntax is used, for instance, in proof search
- Coinductive types and mutually inductive-coinductive types are not well integrated in all proof assistants

Approach

- Construct syntax via a suitable limit construction
- Construct substitution via (categorical) corecursion scheme

Wellfounded Vs Non-Wellfounded Syntax

Wellfounded Syntax

- Initial Semantics: we look for initial object in a category of "models"
- Syntax is specified by a notion of signature
- Substitution is given by monad/monoid structure

Non-Wellfounded Syntax

- Not the dual of Initial Semantics
- Syntax is specified by a notion of signature
- Underlying syntax can be constructed as terminal coalgebra, but we are interested in its algebra structure
- Substitution still given by monoid structure
- Object we construct is not specified by a universal property

Outline

2 Details of the Construction of Substitution

Related Work: Wellfounded Syntax à la Fiore

- Simple notion of signatures, e.g., {[0,0],[1]} for LC
- Syntax as a functor $\Lambda : \mathbb{F} \to \mathsf{Set}$
- Substitution structure given via monoidal structure on [F, Set]
- Only wellfounded syntax is considered

Related Work: Wellfounded Syntax à la Hirschowitz and Maggesi

- Sophisticated notion of signature: "parametrized module", e.g., $T \mapsto T \times T + T^*$
 - Signatures allow for expression of equations between terms
 - Do not automatically admit initial objects (syntax)
- Syntax as a functor Λ : Set \rightarrow Set
- Substitution structure given by monad structure
- Only wellfounded syntax is considered
- Formalization of syntax and substitution in a computer proof assistant

Related Work: Substitution for Non-Wellfounded Syntax à la Matthes and Uustalu

- Signatures: endofunctors with strength, e.g.,
 H(*X*) := *X* × *X* + *X* ∘ Maybe
- Syntax as a functor $C \rightarrow C$, for suitable C
- Substitution structure given by monad structure
- Non-wellfounded syntax is considered
- Explains in detail the construction of monad structure via categorical (co)recursion à la Mendler, axiomatized via "heterogeneous substitution system"

This Work: Pushout of the Aforementioned

- Generalize the results of Matthes and Uustalu to the level of monoidal categories
- Implement constructions and proofs in a computer proof assistant
- Instantiate the constructions to concrete categories to actually construct syntax

Summary

Tool chain for non-wellfounded syntax input multi-sorted binding signature output syntax and certified monadic substitution

Outline

2 Details of the Construction of Substitution

The Tool Chain

- Signature
 - "Combinatorial" signatures for easy specification
 - "Semantic" signatures (endofunctors) for construction of the syntax
- ---> Non-wellfounded syntax as (inverse of) terminal coalgebra
 - Via Adámek's Theorem
 - Uses ω -continuity of the semantic signature
- ---> Monad structure on the syntax via coiteration
 - Construction of a "substitution system" on syntax
 - From substitution system, derive monoid structure

Signatures

"Combinatorial" signatures over a fixed type of sorts

- ar : $I \rightarrow \text{list}(\text{list}(S) \times S) \times S$.
- STLC with sorts \Rightarrow : S \rightarrow S \rightarrow S and $I = (S \times S) + (S \times S)$

$$\operatorname{ar}(\operatorname{inl}\langle s,t\rangle) :\equiv \left\langle [\langle [],s \Rightarrow t\rangle, \langle [],s\rangle],t \right\rangle$$
$$\operatorname{ar}(\operatorname{inr}\langle s,t\rangle) :\equiv \left\langle [\langle [s],t\rangle],s \Rightarrow t \right\rangle$$

Translation to "semantic" signature: functor with strength

- Functor $C \rightarrow C$, for suitably chosen C (e.g., [F, Set])
- Strength indicates how to do "substitution in subterms": it specifies what **more** has to be done than just having substitution commute with the term constructors

Constructing (Non-Wellfounded) Syntax

Theorem (Adámek)

If C has limits of shape $\omega = 0 \leftarrow 1 \leftarrow 2 \leftarrow \cdots$ and a terminal object 1, and $H : C \rightarrow C$ is ω -continuous, then the limit of $1 \leftarrow H1 \leftarrow H^21 \leftarrow \cdots$ is a terminal H-coalgebra.

- We are instead interested in functors of shape Id + *H*(_), where Id models the inclusion of variables into terms.
- *H* is usually a sum (one summand per constructor of the language); ω-continuity can be proved modularly from continuity of the summands.

(Co)Recursion: Substitution Systems

- $(\mathcal{V}, I, \otimes)$ a monoidal category
- $H: \mathcal{V} \to \mathcal{V}$ with a pointed tensorial strength θ for H.

 (t, η, τ) with $t : \mathcal{V}, \eta : I \to t$ and $\tau : Ht \to t$ is a *substitution system* if, for all (z, e, f) with $z : \mathcal{V}, e : I \to z$ and $f : z \to t$, there is a unique morphism $h : z \otimes t \to t$ such that:

Theorem

Any substitution system (t, η, τ) is an (H, θ) -monoid.

Non-Wellfounded Syntax and Substitution

Theorem

- 𝒴 monoidal category with binary coproducts
- $H: \mathcal{V} \to \mathcal{V}$ with pointed monoidal strength θ
- (t, out) final coalgebra of I + H(_)
- set $[\eta, \tau] := \operatorname{out}^{-1}$

Then (t, η, τ) is a substitution system.

- A quite simple proof can be given using the notion of "completely iterative algebra".
- Alternatively, use primitive corecursion.

Conclusion

- Construction of non-wellfounded syntax and substitution mostly on the level of monoidal categories
- Formalization of context and variable binding requires commitment to specific monoidal category; different choices possible
- Full paper with the same title: arXiv:2308.05485

Conclusion

- Construction of non-wellfounded syntax and substitution mostly on the level of monoidal categories
- Formalization of context and variable binding requires commitment to specific monoidal category; different choices possible
- Full paper with the same title: arXiv:2308.05485

Thanks for your attention!