Cut-elimination for the circular modal μ -calculus: the benefits of linearity

Esaïe Bauer & Alexis Saurin
IRIF – Université Paris Cité, CNRS & INRIA Picube

FICS 2024

February 19, 2024

BACKGROUND

Formulas and semantic for the modal μ -calculus

Formulas of the modal μ -calculus

$$A,B ::= A \lor B \mid A \land B \mid A \rightarrow B \mid T \mid F \mid \Box A \mid \Diamond A \mid X \in \mathcal{V} \mid \mu X.A \mid \nu X.A.$$

Formulas and semantic for the modal μ -calculus

Formulas of the modal μ -calculus

$$A, B := A \lor B \mid A \land B \mid A \rightarrow B \mid T \mid F \mid \Box A \mid \Diamond A \mid X \in V \mid \mu X.A \mid \nu X.A.$$

Semantic of the modal μ -calculus

Semantics comes from a transition system. Truth-value is defined for states:

$$[A \lor B]_s = [A]_s \lor [B]_s \quad [A \land B]_s = [A]_s \land [B]_s$$

$$[A \to B]_s = [A]_s \to [B]_s \quad [T]_s = T$$

$$[\![A \to B]\!]_s = [\![A]\!]_s \to [\![B]\!]_s \qquad [\![\top]\!] = \top \qquad [\![F]\!] = \bot$$

 $[\Box A]_s$ holds for s if A holds in each states attainable from s.

 $[\![\Diamond A]\!]_s$ holds for s if A holds in one of the states attainable from s.

 $\llbracket \nu X.A \rrbracket_S$ is the greatest fixed-point of $S \to \llbracket A \rrbracket_{\lceil X \text{ is true on each } S \rceil}$

 $\llbracket \mu X.A \rrbracket_S$ is the least fixed-point of $S \to \llbracket A \rrbracket_{\lceil X \text{ is true on each } S \rceil}$

Proof theory of modal μ -calculus

Modal μ -calculus proof theory has been studied...

Finitary systems

Fixed-point rule à la Park, completeness from Kozen '83.

Systems with ω -rule

Works from Kozen '88, Jäger, Kretz & Stüder '08. Mints '12, Mints & Studer '12, Brünnler & Studer '12

Non-wellfounded systems

Works from Stirling '14 and restriction to regular proofs studied by Afshari & Leigh '16.

Proof theory of modal μ -calculus

Modal μ -calculus proof theory has been studied...

Finitary systems

Fixed-point rule à la Park, completeness from Kozen '83.

Systems with ω -rule

Works from Kozen '88, Jäger, Kretz & Stüder '08. Mints '12, Mints & Studer '12, Brünnler & Studer '12

Non-wellfounded systems

Works from Stirling '14 and restriction to regular proofs studied by Afshari & Leigh '16.

... None of them have a proper syntactic cut-elimination theorem on the full modal μ -calculus.

Fixed-point and the non-wellfounded system $\mu\mathsf{LK}^\infty$

Rules of $\mu L K^{\infty}$

We add to LK two fixed-point rules:

$$\frac{\vdash A[X \coloneqq \mu X.A], \Gamma}{\vdash \mu X.A, \Gamma} \mu \qquad \frac{\vdash A[X \coloneqq \nu X.A], \Gamma}{\vdash \nu X.A, \Gamma} \nu$$

Proofs of μLK^{∞}

Proofs are the trees co-inductively generated by the rules of μLK^{∞} satisfying a validity criterion.

$$\mathsf{Nat} \coloneqq \mu X. \top \lor X$$

$$\pi_0 := \frac{\frac{\pi_n}{\vdash \top \lor \mathsf{Nat}}}{\vdash \mathsf{Nat}} \, \frac{\lor_1}{\vdash} \qquad \pi_{n+1} := \frac{\frac{\pi_n}{\vdash \mathsf{Nat}}}{\vdash \mathsf{Nat}} \, \frac{\lor_2}{\vdash} \\ \frac{\vdash \mathsf{Nat}}{\vdash \mathsf{Nat}} \, \frac{\lor_2}{\vdash}$$

$$\mathsf{Nat} \coloneqq \mu X. \top \lor X$$

$$\pi_0 := \frac{\frac{\pi_n}{\vdash \top \lor \mathsf{Nat}}}{\vdash \mathsf{Nat}} \, \frac{\lor_1}{\vdash} \qquad \pi_{n+1} := \frac{\frac{\pi_n}{\vdash \mathsf{Nat}}}{\vdash \mathsf{Nat}} \, \frac{\lor_2}{\vdash} \\ \frac{\vdash \mathsf{Nat}}{\vdash \mathsf{Nat}} \, \frac{\lor_2}{\vdash}$$

$$\pi_{SUCC} := \frac{\frac{}{T \vdash T} \text{ ax}}{\frac{}{T \vdash T \lor \text{Nat}} \frac{}{\mu_r} \text{ At}} \bigvee_{r}^{1} \frac{}{\frac{}{T \vdash T \lor \text{Nat}} \frac{}{\mu_r} \text{ Nat} \vdash \text{Nat}} \bigvee_{r}^{2} \frac{}{\frac{}{\text{Nat} \vdash T \lor \text{Nat}} \frac{}{\mu_r} \text{ Nat} \vdash \text{Nat}} \bigvee_{r}^{2} \frac{}{\frac{}{\text{Nat} \vdash \text{Nat}} \frac{}{\mu_r} \text{ Nat} \vdash \text{Nat}} \bigvee_{r}^{2} \frac{}{\frac{}{\text{Nat} \vdash \text{Nat}} \frac{}{\mu_r} \text{ Nat}} \bigvee_{r}^{2} \frac{}{\frac{}{\text{Nat}} \frac{}{\mu_r} \text{ Nat}} \bigvee_{r}^{2} \frac{}{\frac{}{\text{N$$

$$\mathsf{Nat} \coloneqq \mu X. \top \lor X$$

$$\pi_0 := \frac{\frac{\pi_n}{\vdash \top \lor \mathsf{Nat}}}{\vdash \mathsf{Nat}} \, \overset{\forall_1}{\underset{\vdash}{\vdash} \mathsf{Nat}} \quad \pi_{n+1} := \frac{\overset{\pi_n}{\vdash \mathsf{Nat}}}{\frac{\vdash \mathsf{Nat}}{\vdash \mathsf{Nat}}} \, \overset{\forall_2}{\underset{\vdash}{\vdash} \mathsf{Nat}}$$

$$\pi_{SUCC} := \frac{\frac{}{T \vdash T} \text{ ax}}{\frac{}{T \vdash T \lor \text{Nat}} \bigvee_{r}^{1}} \bigvee_{r}^{1} \frac{}{\frac{}{T \vdash T \lor \text{Nat}} \bigvee_{r}^{2}} \underbrace{\frac{\text{Nat} \vdash \text{Nat}}{\text{Nat} \vdash \text{Nat}} \bigvee_{r}^{2}}_{\text{Nat} \vdash \text{Nat}} \underbrace{\frac{\text{Nat} \vdash \text{Nat}}{\text{Nat} \vdash \text{Nat}} \bigvee_{r}^{2}}_{\text{Nat} \vdash \text{Nat}} \underbrace{\frac{\vdash 0 \land \text{Nat}^{\perp}, \text{Nat}}{\vdash \text{Nat}^{\perp}, \text{Nat}}}_{\vdash \text{Nat}^{\perp}, \text{Nat}} \underbrace{\frac{\vdash 0 \land \text{Nat}^{\perp}, \text{Nat}}{\vdash \text{Nat}^{\perp}, \text{Nat}}}_{\vdash \text{Nat}^{\perp}, \text{Nat}} \underbrace{\frac{\vdash 0 \land \text{Nat}^{\perp}, \text{Nat}}{\vdash \text{Nat}^{\perp}, \text{Nat}}}_{\vdash \text{Nat}^{\perp}, \text{Nat}} \underbrace{\frac{\vdash 0 \land \text{Nat}^{\perp}, \text{Nat}}{\vdash \text{Nat}^{\perp}, \text{Nat}}}_{\vdash \text{Nat}^{\perp}, \text{Nat}^{\perp}, \text{Nat}^{\perp}} \underbrace{\frac{\vdash 0 \land \text{Nat}^{\perp}, \text{Nat}}{\vdash \text{Nat}^{\perp}, \text{Nat}^{\perp}}}_{\vdash \text{Nat}^{\perp}, \text{Nat}^{\perp}, \text{Nat}^{\perp}} \underbrace{\frac{\vdash 0 \land \text{Nat}^{\perp}, \text{Nat}}{\vdash \text{Nat}^{\perp}, \text{Nat}^{\perp}}}_{\vdash \text{Nat}^{\perp}, \text{Nat}^{\perp}, \text{Nat}^{\perp}}$$

$$\mathsf{Nat} \coloneqq \mu X. \top \lor X$$

$$\pi_0 := \frac{\frac{\pi_n}{\vdash \top} \vdash \nabla}{\vdash \mathsf{Nat}} \vdash \nabla \mathsf{At} \qquad \pi_{n+1} := \frac{\pi_n}{\vdash \mathsf{Nat}} \vdash \nabla \mathsf{At} \qquad \nabla_2 \vdash \mathsf{Nat} \vdash \mathsf{Nat} \qquad \nabla_2 \vdash \mathsf{Nat} \vdash \mathsf{Nat} \qquad \nabla_2 \vdash \mathsf{Nat} \vdash \mathsf{Nat} \vdash \mathsf{Nat} \qquad \nabla_2 \vdash \mathsf{Nat} \vdash \mathsf{Nat}$$

$$\mathsf{Nat} \coloneqq \mu X. \top \lor X$$

$$\pi_0 := \frac{\frac{\pi_n}{\vdash \top} \vee \mathsf{Nat}}{\vdash \mathsf{Nat}} \vee \mathsf{Nat} \qquad \pi_{n+1} := \frac{\vdash \mathsf{Nat}}{\vdash \mathsf{Nat}} \vee \mathsf{Nat} \vee \mathsf{Na$$

Nat :=
$$\mu X. \top \vee X$$

$$\pi_0 := \frac{\frac{\pi_n}{\vdash \top} \vdash \nabla}{\vdash \mathsf{Nat}} \vdash \nabla \mathsf{I} \qquad \pi_{n+1} := \frac{\mathsf{Im}_n}{\vdash \mathsf{Nat}} \vdash \nabla \mathsf{I} \mathsf{I} \qquad \pi_{n+1} := \frac{\vdash \mathsf{Nat}}{\vdash \mathsf{Nat}} \vdash \nabla \mathsf{I} \mathsf{I} \mathsf{I}$$

$$\mathsf{Nat} \coloneqq \mu X. \top \vee X$$

$$\pi_0 := \frac{\frac{\pi_n}{\vdash \top} \vdash \nabla}{\vdash \mathsf{Nat}} \vdash \nabla \mathsf{I} \qquad \pi_{n+1} := \frac{\mathsf{Im}_n}{\vdash \mathsf{Nat}} \vdash \nabla \mathsf{I} \mathsf{I} \qquad \pi_{n+1} := \frac{\vdash \mathsf{Nat}}{\vdash \mathsf{Nat}} \vdash \nabla \mathsf{I} \mathsf{I} \mathsf{I}$$

Nat :=
$$\mu X$$
. $\top \lor X$

$$\pi_0 := \frac{\frac{\pi_n}{\vdash \top} }{\frac{\vdash \top \lor \mathsf{Nat}}{\vdash \mathsf{Nat}}} \bigvee_{\mu}^{\lor 1} \qquad \pi_{n+1} := \frac{\frac{\pi_n}{\vdash \mathsf{Nat}}}{\frac{\vdash \top \lor \mathsf{Nat}}{\vdash \mathsf{Nat}}} \bigvee_{\mu}^{\lor 2}$$

Modal fragment and the $\mu\mathsf{LK}^\infty_\square$ system

Derivation rules of $\mu LK_{\square}^{\infty}$

Derivation rules of $\mu LK^{\infty}_{\square}$ are the rules of μLK^{∞} , together with:

$$\vdash A, \Gamma$$
 $\vdash \Box A, \Diamond \Gamma$

Example

Taking $F := \nu X . \Diamond X$:

$$\frac{\vdash F^{\perp}, F}{\vdash \Box F^{\perp}, \Diamond F} \Box \\
\vdash F^{\perp}, F \longleftarrow \mu, \nu$$

Formulas and derivation rules of μ MALL $^{\infty}$

$$F, G := F \stackrel{\mathcal{H}}{\circ} G \mid F \otimes G \mid F \& G \mid F \oplus G \mid \bot \mid 1 \mid \top \mid 0 \mid X \in \mathcal{V} \mid \mu X.F \mid \nu X.F.$$

$$\frac{-A, A^{\bot}}{\vdash A, A^{\bot}} \text{ ax } \frac{\vdash A, \Gamma \qquad \vdash A^{\bot}, \Delta}{\vdash \Gamma, \Delta} \text{ cut } \frac{\vdash \Gamma, B, A, \Delta}{\vdash \Gamma, A, B, \Delta} \text{ ex }$$

$$\frac{\vdash A, \Delta_1 \qquad \vdash B, \Delta_2}{\vdash A \otimes B, \Delta_1, \Delta_2} \otimes \frac{\vdash A, B, \Gamma}{\vdash A \stackrel{\mathcal{H}}{\circ} B, \Gamma} \stackrel{\mathcal{H}}{\circ}$$

$$\frac{\vdash A_1, \Gamma}{\vdash A_1 \oplus A_2, \Gamma} \oplus^1 \frac{\vdash A_2, \Gamma}{\vdash A_1 \oplus A_2, \Gamma} \oplus^2 \frac{\vdash A_1, \Gamma \qquad \vdash A_2, \Gamma}{\vdash A_1 \& A_2, \Gamma} \&$$

$$\frac{\vdash A[X := \mu X.A], \Gamma}{\vdash \mu X.A, \Gamma} \mu \frac{\vdash A[X := \nu X.A], \Gamma}{\vdash \nu X.A, \Gamma} \nu$$

Examples of infinite proofs in $\mu MALL^{\infty}$

Exponentials

We add exponentials to $\mu MALL^{\infty}$:

?A and !A

As well as the corresponding rules:

$$\frac{-\vdash \Gamma}{\vdash ?A, \Gamma}?_{w} \qquad \frac{\vdash ?A, ?A, \Gamma}{\vdash ?A, \Gamma}?_{c} \qquad \frac{\vdash A, \Gamma}{\vdash ?A, \Gamma}?_{d} \qquad \frac{\vdash A, ?\Gamma}{\vdash !A, ?\Gamma}!_{p}$$

This system is called μLL^{∞}

Cut-elimination steps of μLL^{∞}

$$\frac{\pi_{1}}{\frac{\vdash ?A,?A,\Gamma_{1}}{\vdash ?A,\Gamma_{1}}?_{c}} \stackrel{\pi_{2}}{\stackrel{\vdash A^{\perp},?\Gamma_{2}}{\vdash !A^{\perp},?\Gamma_{2}}}!_{p} \sim \frac{\pi_{1}}{\frac{\vdash ?A,?A,\Gamma_{1}}{\vdash !A^{\perp},?\Gamma_{2}}} \stackrel{\vdash A^{\perp},?\Gamma_{2}}{\vdash !A^{\perp},?\Gamma_{2}}!_{p} \qquad \frac{\pi_{2}}{\frac{\vdash ?A,?A,\Gamma_{1}}{\vdash !A^{\perp},?\Gamma_{2}}}!_{p} \qquad \frac{\vdash A^{\perp},?\Gamma_{2}}{\vdash !A^{\perp},?\Gamma_{2}}}!_{p} \qquad cut$$

$$\frac{\vdash ?A,\Gamma_{1},?\Gamma_{2}}{\vdash \Gamma_{1},?\Gamma_{2}} \stackrel{\vdash A^{\perp},?\Gamma_{2}}{\vdash \Gamma_{1},?\Gamma_{2}} ?_{c}^{\#\Gamma_{2}}$$

$$cut$$

$$\frac{\begin{matrix} \pi_1 \\ \vdash \Gamma_1 \\ \vdash ?A, \Gamma_1 \end{matrix} ?_{\mathsf{w}} \quad \frac{\begin{matrix} \pi_2 \\ \vdash A^{\perp}, ?\Gamma_2 \\ \vdash !A^{\perp}, ?\Gamma_2 \end{matrix}}{\vdash \Gamma_1, ?\Gamma_2} !_{\mathsf{p}} \sim \frac{\begin{matrix} \pi_1 \\ \vdash \Gamma_1 \\ \vdash \Gamma_1, ?\Gamma_2 \end{matrix}}{\vdash \Gamma_1, ?\Gamma_2} ?_{\mathsf{w}}^{\#\Gamma_2}$$

Cut-elimination theorems

Cut-elimination of μALL^{∞} (Fortier & Santocanale 2013)

The cut-rule is admissible for Additive Linear Logic with fixpoints.

Cut-elimination of $\mu MALL^{\infty}$ (Baelde et al. 2016)

Each fair multi-cut reduction sequences of $\mu MALL^{\infty}$ are converging to a $\mu MALL^{\infty}$ -cut-free proof.

Cut-elimination of μLL^{∞} (Saurin 2023)

Each fair multi-cut reduction sequences of μLL^{∞} are converging to a μLL^{∞} -cut-free proof.

Goal

TABLEAUX '23

Translation of μLK^{∞} in μLL^{∞}

$$(\mu X.A)^{\bullet} := !\mu X.?A^{\bullet} \qquad (\nu X.A)^{\bullet} := !\nu X.?A^{\bullet}$$

$$(A_{1} \vee A_{2})^{\bullet} := !(?A_{1}^{\bullet} \oplus ?A_{2}^{\bullet}) \qquad (A_{1} \wedge A_{2})^{\bullet} := !(?A_{1}^{\bullet} \& ?A_{2}^{\bullet})$$

$$F^{\bullet} := !0 \qquad \qquad T^{\bullet} := !T$$

$$X^{\bullet} := !X \qquad \qquad a^{\bullet} := !a$$

$$(A_{1} \to A_{2})^{\bullet} := !(?A_{1}^{\bullet} \multimap ?A_{2}^{\bullet}) \qquad (\Gamma \vdash \Delta)^{\bullet} := \Gamma^{\bullet} \vdash ?\Delta^{\bullet}$$

$$\frac{\Gamma \vdash A, \Delta \qquad \Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta} \land_{r} \rightsquigarrow \frac{\Gamma^{\bullet} \vdash ?A^{\bullet}, ?\Delta^{\bullet} \qquad \Gamma^{\bullet} \vdash ?B^{\bullet}, ?\Delta^{\bullet}}{\frac{\Gamma^{\bullet} \vdash ?A^{\bullet} \& ?B^{\bullet}, ?\Delta^{\bullet}}{\Gamma^{\bullet} \vdash ?!(?A^{\bullet} \& ?B^{\bullet}), ?\Delta^{\bullet}}} ?_{\mathsf{d}}, !_{\mathsf{p}}$$

Cut-elimination for μLK^{∞}

Cut-elimination for μLK^{∞} Saurin 2023

The cut-elimination system of μLK^{∞} is weakly normalizing.

Naïve extension of the translation and issue with it

Let's consider the <u>two-sided</u> system μLL^{∞} together with the two modal rules:

$$\frac{\Gamma, A \vdash \Delta}{\Box \Gamma, \Diamond A \vdash \Diamond \Delta} \lozenge \quad \frac{\Gamma \vdash A, \Delta}{\Box \Gamma \vdash \Box A, \Diamond \Delta} \Box$$

We extend the translation, to get a translation from $\mu LK_{\square}^{\infty}$ to $\mu LL_{\square}^{\infty}$:

$$(\Box A)^{\bullet} := ! \Box ? A^{\bullet} \qquad (\Diamond A)^{\bullet} := ! \Diamond ? A^{\bullet}$$

Problem

Promotion rule

$$\frac{\vdash A, ?\Gamma}{\vdash !A, ?\Gamma}$$
!

We want to translate:

$$\frac{\vdash A, B}{\vdash \Box A, \Diamond B}$$

We start with the sequent:

$$\vdash$$
 ?! \Box ? A^{\bullet} , ?! \Diamond ? B^{\bullet}

Problem

Promotion rule

$$\frac{\vdash A, ?\Gamma}{\vdash !A, ?\Gamma}$$
!

We want to translate:

$$\frac{\vdash A, B}{\vdash \Box A, \Diamond B}$$

We apply a dereliction a promotion:

$$\frac{\vdash ?! \, \Box \, ?A^{\bullet}, \lozenge?B^{\bullet}}{\vdash ?! \, \Box \, ?A^{\bullet}, ?! \lozenge?B^{\bullet}} ?_{\mathsf{d}}, !$$

Problem

Promotion rule

$$\frac{\vdash A, ?\Gamma}{\vdash !A, ?\Gamma}$$
!

We want to translate:

$$A \leftarrow A, B \rightarrow A, \Diamond B \Box$$

We apply a dereliction again:

$$\frac{\frac{\vdash ! \, \Box \, ?A^{\bullet}, \lozenge ?B^{\bullet}}{\vdash ?! \, \Box \, ?A^{\bullet}, \lozenge ?B^{\bullet}}?_{d}}{\vdash ?! \, \Box \, ?A^{\bullet}, ?! \lozenge ?B^{\bullet}}?_{d}, !$$

And we are blocked.

Promotion rule

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta}$$
!

We want to translate:

$$\frac{\vdash A, B}{\vdash \Box A, \Diamond B}$$

We apply a dereliction again:

$$\frac{\frac{\vdash ! \, \Box \, ?A^{\bullet}, \lozenge ?B^{\bullet}}{\vdash ?! \, \Box \, ?A^{\bullet}, \lozenge ?B^{\bullet}}?_{d}}{\vdash ?! \, \Box \, ?A^{\bullet}, ?! \lozenge ?B^{\bullet}}?_{d}, !$$

Promotion rule

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta}$$
!

We want to translate:

$$\frac{\vdash A, B}{\vdash \Box A, \Diamond B}$$

Now, we can apply our promotion:

$$\frac{\frac{\vdash \Box ?A^{\bullet}, \Diamond ?B^{\bullet}}{\vdash ! \Box ?A^{\bullet}, \Diamond ?B^{\bullet}}!}{\vdash ?! \Box ?A^{\bullet}, \Diamond ?B^{\bullet}}?_{d}$$

$$\vdash ?! \Box ?A^{\bullet}, ?! \Diamond ?B^{\bullet}}?_{d},!$$

Promotion rule

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta}$$
!

We want to translate:

$$\frac{\vdash A, B}{\vdash \Box A, \Diamond B}$$

And finally our modal rule:

$$\frac{ \begin{array}{c|c} \vdash ?A^{\bullet},?B^{\bullet} \\ \hline \vdash \Box ?A^{\bullet},\lozenge ?B^{\bullet} \end{array} \Box}{ \vdash !\Box ?A^{\bullet},\lozenge ?B^{\bullet}} ! \\ \hline \vdash ?!\Box ?A^{\bullet},\lozenge ?B^{\bullet} \\ \hline \vdash ?!\Box ?A^{\bullet},?!\lozenge ?B^{\bullet} \end{array} ?_{d},!$$

Promotion rule

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta}$$
!

But what does it imply for this system?

Promotion rule

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta}$$
!

$$\frac{\frac{\pi_1}{\vdash \Gamma_1}}{\vdash \vdash (A, \Gamma_1)} ?_{\mathsf{w}} \frac{\vdash A^{\perp}, ?\Gamma_2}{\vdash \vdash (A^{\perp}, ?\Gamma_2)} !_{\mathsf{p}} \sim \frac{\pi_1}{\vdash \Gamma_1, ?\Gamma_2} ?_{\mathsf{w}}^{\#\Gamma_2}$$

Promotion rule

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta}$$
!

$$\frac{\pi_{1}}{\begin{array}{c} +?A,?A,\Gamma_{1} \\ \vdash ?A, ?\Gamma_{2} \end{array}?^{c} \\ \frac{\vdash ?A, \Gamma_{1}}{\begin{array}{c} \vdash A^{\perp},?\Gamma_{2}, \Diamond \Delta \\ \vdash \vdash A^{\perp},?\Gamma_{2}, \Diamond \Delta \end{array}}{\begin{array}{c} \vdash A^{\perp},?\Gamma_{2}, \Diamond \Delta \\ \vdash \vdash A^{\perp},?\Gamma_{2}, \Diamond \Delta \end{array}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash ?A,\Gamma_{1},?\Gamma_{2} \\ \vdash ?A,\Gamma_{1},?\Gamma_{2} \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash A^{\perp},?\Gamma_{2} \\ \vdash \vdash A^{\perp},?\Gamma_{2} \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash A^{\perp},?\Gamma_{2} \\ \vdash \vdash A^{\perp},?\Gamma_{2} \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash A^{\perp},?\Gamma_{2},?\Gamma_{2} \\ \vdash \vdash A^{\perp},?\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},?\Gamma_{2},?\Gamma_{2} \\ \vdash \Gamma_{1},?\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},?\Gamma_{2},?\Gamma_{2} \\ \vdash \Gamma_{1},?\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},?\Gamma_{2},?\Gamma_{2} \\ \vdash \Gamma_{1},?\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},?\Gamma_{2},?\Gamma_{2} \\ \vdash \Gamma_{1},?\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},?\Gamma_{2},?\Gamma_{2} \\ \vdash \Gamma_{1},?\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},?\Gamma_{2},?\Gamma_{2} \\ \vdash \Gamma_{1},?\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},?\Gamma_{2},?\Gamma_{2} \\ \vdash \Gamma_{1},?\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},?\Gamma_{2},?\Gamma_{2} \\ \vdash \Gamma_{1},?\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},\Gamma_{2},\Gamma_{2} \\ \vdash \Gamma_{1},?\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},\Gamma_{2},\Gamma_{2} \\ \vdash \Gamma_{1},?\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},\Gamma_{2},\Gamma_{2} \\ \vdash \Gamma_{1},\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},\Gamma_{2},\Gamma_{2} \\ \vdash \Gamma_{2},\Gamma_{2},\Gamma_{2}, \Diamond \Delta \end{array}}} \stackrel{!_{p}}{\underset{cut}{\begin{array}{c} \vdash \Gamma_{1},\Gamma_{2},\Gamma_{2},\Gamma_{2} \\ \vdash \Gamma_{2},\Gamma_{2},\Gamma_{2},\Gamma_{2},\Gamma_{2} \\ \vdash \Gamma_{2},\Gamma_{2}$$

$$\frac{\frac{\Gamma_{1}}{\vdash \Gamma_{1}}}{\vdash PA, \Gamma_{1}}?_{w} \frac{\vdash A^{\perp}, ?\Gamma_{2}}{\vdash PA^{\perp}, ?\Gamma_{2}}!_{p} \sim \frac{\frac{\pi_{1}}{\vdash \Gamma_{1}}}{\vdash \Gamma_{1}, ?\Gamma_{2}}?_{w}^{\#\Gamma_{2}}$$

$$\vdash \Gamma_{1}, ?\Gamma_{2}$$

$$\vdash \Gamma_{1}, ?\Gamma_{2}$$

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta}$$
!

$$\frac{\pi_{1}}{\begin{array}{c} \vdash ?A,?A,\Gamma_{1} \\ \vdash ?A,\Gamma_{1} \end{array}?_{c} \quad \frac{\vdash A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta} \mid_{p} \\ \vdash \Gamma_{1},?\Gamma_{2},\Diamond\Delta \end{array} \mid_{p} \sim \frac{\pi_{1}}{\begin{array}{c} \vdash A^{\perp},?\Gamma_{2} \\ \vdash ?A,?A,\Gamma_{1} \end{array} \stackrel{\vdash A^{\perp},?\Gamma_{2}}{\begin{array}{c} \vdash A^{\perp},?\Gamma_{2} \\ \vdash ?A,\Gamma_{1},?\Gamma_{2} \end{array}} \mid_{p} \\ \hline \begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash \Gamma_{1},?\Gamma_{2}, (-1,1)^{2}, (-1,1)^{2} \end{array} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash \Gamma_{1},?\Gamma_{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash \Gamma_{1},?\Gamma_{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash \Gamma_{1},?\Gamma_{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash \Gamma_{1},?\Gamma_{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash \Gamma_{1},?\Gamma_{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash \Gamma_{1},?\Gamma_{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash \Gamma_{1},?\Gamma_{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash \Gamma_{1},?\Gamma_{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash \Gamma_{1},?\Gamma_{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash \Gamma_{1},?\Gamma_{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash (-1,1)^{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash (-1,1)^{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash (-1,1)^{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash (-1,1)^{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash (-1,1)^{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash (-1,1)^{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash (-1,1)^{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2} \\ \hline \\ \vdash (-1,1)^{2}, (-1,1)^{2}, (-1,1)^{2} \end{array}} \stackrel{\vdash (-1,1)^{2}}{\begin{array}{c} \vdash (-1,1)^{2}, (-1,1)^{2}$$

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta}$$
!

$$\frac{\pi_{1}}{\frac{\vdash ?A,?A,\Gamma_{1}}{\vdash \vdash ?A,\Gamma_{1}}?_{c}} \stackrel{\pi_{2}}{\stackrel{\vdash A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{!_{p}}{\underset{cut}{\vdash \vdash ?A,\Gamma_{1},?\Gamma_{2},\Diamond\Delta}} \stackrel{\pi_{1}}{\underset{\vdash \vdash ?A,\Gamma_{1},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{!_{p}}{\underset{cut}{\vdash \vdash A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{\pi_{2}}{\underset{\vdash \vdash ?A,\Gamma_{1},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{!_{p}}{\underset{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{!_{p}}{\underset{\vdash \vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{!_{p}}{\underset{\vdash \vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash !A^{\perp},.}} \stackrel{!_{p}}{\underset{\vdash \vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash !A^{\perp},.}} \stackrel{!_{p}}{\underset{\vdash \vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{!_{p}}{\underset{\vdash \vdash \vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{!_{p}}{\underset{\vdash \vdash \vdash !A^{\perp},?\Gamma_{2},\triangle\Delta}}} \stackrel{!_{p}$$

$$\frac{\frac{\pi_{1}}{\vdash \Gamma_{1}}}{\vdash ?A, \Gamma_{1}}?_{w} \frac{\vdash A^{\perp}, ?\Gamma_{2}}{\vdash !A^{\perp}, ?\Gamma_{2}}!_{p} \sim \frac{\pi_{1}}{\vdash \Gamma_{1}, ?\Gamma_{2}}?_{w}^{\#\Gamma_{2}}$$

$$\vdash \Gamma_{1}, ?\Gamma_{2}$$

$$\vdash \Gamma_{1}, ?\Gamma_{2}$$

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta}$$
!

$$\frac{\pi_{1}}{\frac{\vdash ?A,?A,\Gamma_{1}}{\vdash \vdash ?A,\Gamma_{1}}?_{c}} \stackrel{\pi_{2}}{\frac{\vdash A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}}} \stackrel{I_{p}}{\underset{cut}{\vdash \vdash ?A,\Gamma_{1},?\Gamma_{2},\Diamond\Delta}} \stackrel{\pi_{2}}{\underset{\vdash \vdash ?A,\Gamma_{1},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{I_{p}}{\underset{cut}{\vdash \vdash A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{\pi_{2}}{\underset{\vdash \vdash ?A,\Gamma_{1},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{I_{p}}{\underset{cut}{\vdash \vdash A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{\pi_{2}}{\underset{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{I_{p}}{\underset{\vdash \vdash I,?\Gamma_{2},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{I_{p}}{\underset{\vdash \vdash I,?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{I_{p}}{\underset{\vdash \vdash I,?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{\pi_{2}}{\underset{\vdash \vdash I,?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{I_{p}}{\underset{\vdash \vdash I,\Gamma_{1},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash I,\Gamma_{1},?\Gamma_{2},\Diamond\Delta}} \stackrel{I_{p}}{\underset{\vdash \vdash I,\Gamma_{1},\Gamma_{2},\Gamma_{2},\Box\Delta}{\vdash \vdash I,\Gamma_{1},\Gamma_{2},\Box\Delta}} \stackrel{I_{p}}{\underset{\vdash \vdash I,\Gamma_{1},\Gamma_{2},\Gamma_{2},\Box\Delta}{\vdash \vdash I,\Gamma_{1},\Gamma_{2},\Box\Delta}} \stackrel{I_{p}}{\underset{\vdash \vdash I,\Gamma_{1},\Gamma_{2},\Gamma_{2},\Box\Delta}} \stackrel{I_{p}}{\underset{\vdash \vdash I,\Gamma_{1},\Gamma_{2},\Gamma_{2},\Box\Delta}}$$

$$\frac{\frac{\vdash \Gamma_{1}}{\vdash ?A, \Gamma_{1}}?_{w} \quad \frac{\vdash A^{\perp}, ?\Gamma_{2}, \Diamond \Delta}{\vdash !A^{\perp}, ?\Gamma_{2}, \Diamond \Delta}!_{p}}{\vdash \Gamma_{1}, ?\Gamma_{2}, \Diamond \Delta} \stackrel{!_{p}}{\rightleftharpoons} \approx \frac{\vdash \Gamma_{1}}{\vdash \Gamma_{1}, ?\Gamma_{2}}?_{w}^{\#\Gamma_{2}}$$

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta}$$
!

$$\frac{\pi_{1}}{\frac{\vdash ?A,?A,\Gamma_{1}}{\vdash \vdash ?A,\Gamma_{1}}?_{c}} \stackrel{\pi_{2}}{\frac{\vdash A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}}} \stackrel{!_{p}}{\underset{cut}{\vdash \vdash ?A,\Gamma_{1},?\Gamma_{2},\Diamond\Delta}} \stackrel{\pi_{2}}{\underset{\vdash \vdash ?A,\Gamma_{1},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{!_{p}}{\underset{cut}{\vdash \vdash A^{\perp},?\Gamma_{2},\Diamond\Delta}} \stackrel{\pi_{2}}{\underset{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}}} \stackrel{!_{p}}{\underset{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}}} \stackrel{!_{p}}{\underset{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}}} \stackrel{!_{p}}{\underset{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}}} \stackrel{!_{p}}{\underset{\vdash \vdash !A^{\perp},?\Gamma_{2},\Diamond\Delta}{\vdash !A^{\perp},?\Gamma_{$$

$$\frac{\frac{\pi_{1}}{\vdash \Gamma_{1}}}{\vdash \vdash (A, \Gamma_{1})}?_{w} \quad \frac{\vdash A^{\perp}, ?\Gamma_{2}, \Diamond \Delta}{\vdash !A^{\perp}, ?\Gamma_{2}, \Diamond \Delta}!_{p} \Rightarrow \frac{\pi_{1}}{\vdash \Gamma_{1}} \vdash \Gamma_{1}, ?\Gamma_{2}, \Diamond \Delta}{\vdash \Gamma_{1}, ?\Gamma_{2}, \Diamond \Delta}?_{w}^{\#\Gamma_{2}}, \Diamond_{w}^{\#\Delta}$$

The $\mu \mathsf{LL}^\infty_\square$ system

Modification of the promotion rule

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta}$$
!

Rules on modality

$$\frac{\vdash A, \Gamma}{\vdash \Box A, \Diamond \Gamma} \Box \qquad \frac{\vdash \Diamond A, \Diamond A, \Delta}{\vdash \Diamond A, \Delta} \Diamond_{\mathsf{c}} \qquad \frac{\vdash \Delta}{\vdash \Diamond A, \Delta} \Diamond_{\mathsf{w}}$$

Translation from $\mu LL^{\infty}_{\square}$ to μLL^{∞}

Translation from $\mu\mathsf{LL}^\infty_\square$ to $\mu\mathsf{LL}^\infty$ and cut-elimination for $\mu\mathsf{LL}^\infty_\square$

We define:

$$(\lozenge A)^{\circ} \to ?A^{\circ} \text{ and } (\Box A)^{\circ} \to !A^{\circ}.$$

We easily get weakening and contractions of \Diamond with weakening and contraction of ?. For the modality rule, we have:

$$\frac{\vdash A, \Gamma}{\vdash \Box A, \Diamond \Gamma} \Box \sim \frac{\frac{\vdash A^{\circ}, \Gamma^{\circ}}{\vdash A^{\circ}, ?\Gamma^{\circ}}}{\vdash !A^{\circ}, ?\Gamma^{\circ}} !_{p}$$

Translation from $\mu LL^{\infty}_{\square}$ to μLL^{∞}

Translation from $\mu\mathsf{LL}^\infty_\square$ to $\mu\mathsf{LL}^\infty$ and cut-elimination for $\mu\mathsf{LL}^\infty_\square$

We define:

$$(\lozenge A)^{\circ} \to ?A^{\circ} \text{ and } (\Box A)^{\circ} \to !A^{\circ}.$$

We easily get weakening and contractions of \Diamond with weakening and contraction of ?. For the modality rule, we have:

$$\frac{\vdash A, \Gamma}{\vdash \Box A, \Diamond \Gamma} \Box \sim \frac{\vdash A^{\circ}, \Gamma^{\circ}}{\vdash A^{\circ}, ?\Gamma^{\circ}} ?_{d}}{\vdash !_{A}^{\circ}, ?\Gamma^{\circ}} !_{p}$$

Cut-elimination theorems

Using $(-)^{\circ}$, we obtain cut-elimination for $\mu LL_{\square}^{\infty}$.

Using $(-)^{\bullet}$, we get a proof of $\mu LL^{\infty}_{\square}$, from which we can eliminate cuts, we then can come back to $\mu LK^{\infty}_{\square}$ and get a cut-free proof of $\mu LL^{\infty}_{\square}$.

Sub-exponentials

B. & Laurent TLLA '20

The previous work actually works with a sub-exponential system inspired from the work of Nigam & Miller '09. With a promotion rule on signed exponentials:

$$\frac{ \vdash A,?_{e_1}A_1,\ldots,?_{e_n}A_n \quad e \leq_g e_i}{\vdash !_eA,?_{e_1}A_1,\ldots,?_{e_n}A_n} \mid \qquad \frac{\vdash A,A_1,\ldots,A_n \quad e \leq_f e_i}{\vdash !_eA,?_{e_1}A_1,\ldots,?_{e_n}A_n} \mid_f$$

and structural rules authorized only on some signed exponentials:

$$\frac{ \vdash \Gamma \quad e \in \mathcal{W}}{\vdash ?_e A, \Gamma} \ w \qquad \frac{\vdash ?_e A, ?_e A, \Gamma \qquad e \in \mathcal{C}}{\vdash ?_e A, \Gamma} \ c \qquad \frac{\vdash A, \Gamma \qquad e \in \mathcal{D}}{\vdash ?_e A, \Gamma} \ d$$

Modal logic is an instance of this sub-exponential system:

With two signatures e and e', with $! := !_e$ and $\square = !_{e'}$. $e' \le_g e$, $e \le_g e$, $e' \le_f e'$, $e \not\le_f e'$, $e' \not\le_g e$, e'

$$e, e' \in \mathcal{W}, e, e' \in \mathcal{C} \text{ and } e \in \mathcal{D}$$

What did we prove?

We proved a syntactic cut-elimination theorem for the modal μ -calculus.

What did we prove?

We proved a syntactic cut-elimination theorem for the modal μ -calculus.

We proved a (syntactic) cut-elimination theorem for $\mu LL^{\infty}_{\square}$ (as well as for a general parametrized linear logic system μ superLL $^{\infty}$).

What did we prove?

We proved a syntactic cut-elimination theorem for the modal μ -calculus.

We proved a (syntactic) cut-elimination theorem for $\mu LL^{\infty}_{\square}$ (as well as for a general parametrized linear logic system μ superLL $^{\infty}$).

We proved a cut-elimination procedure for the circular version of the modal μ -calculus with sequents as sets.

What did we prove?

We proved a syntactic cut-elimination theorem for the modal μ -calculus.

We proved a (syntactic) cut-elimination theorem for $\mu LL^{\infty}_{\square}$ (as well as for a general parametrized linear logic system μ superLL $^{\infty}$).

We proved a cut-elimination procedure for the circular version of the modal μ -calculus with sequents as sets.

Future works

Integrate the digging rule (axiom S4) or the co-dereliction rule (axiom T)

What did we prove?

We proved a syntactic cut-elimination theorem for the modal μ -calculus.

We proved a (syntactic) cut-elimination theorem for $\mu LL^{\infty}_{\square}$ (as well as for a general parametrized linear logic system μ superLL $^{\infty}$).

We proved a cut-elimination procedure for the circular version of the modal μ -calculus with sequents as sets.

Future works

Integrate the digging rule (axiom S4) or the co-dereliction rule (axiom T)

Extension of the validity criterion

Super exponential system (TLLA '21)

Exponential signatures

An exponential signature is a boolean function on the set of rule names:

$$\{?_{\mathsf{m}_i},?_{\mathsf{c}_i}\mid i\in\mathbb{N}\}.$$

Formulas

Let \mathcal{E} be a set of exponential signatures, formulas of μ superLL $^{\infty}(\mathcal{E})$ (with $\sigma \in \mathcal{E}$) are:

$$A,B ::= A \mathbin{?\!?} B \mid A \otimes B \mid A \mathbin{\&} B \mid A \oplus B \mid \bot \mid 1 \mid \top \mid 0 \mid X \in \mathcal{V} \mid \mu X.A \mid \nu X.A \mid$$

$$?_{\sigma}A \mid !_{\sigma}A.$$

Multiplexing:

Generalized contraction:

$$\frac{-\overbrace{A,\ldots,A}^{\prime},\Gamma \qquad \sigma(?_{\mathsf{m}_{i}})}{\vdash ?_{\sigma}A,\Gamma}?_{\mathsf{m}_{i}} \qquad \frac{-\overbrace{?_{\sigma}A,\ldots,?_{\sigma}A}^{\prime},\Gamma \qquad \sigma(?_{\mathsf{c}_{i}})}{\vdash ?_{\sigma}A,\Gamma}?_{\mathsf{c}_{i}}$$

Promotion rules

Given three relations \leq_g, \leq_f and \leq_u on \mathcal{E} , we have the promotion rules of μ superLL $^{\infty}(\mathcal{E}, \leq_g, \leq_f, \leq_u)$:

$$\frac{ \vdash A, ?_{\vec{\sigma'}}\Delta \qquad \sigma \leq_{\mathsf{g}} \vec{\sigma'}}{\vdash !_{\sigma}A, ?_{\vec{\sigma'}}\Delta} \mid_{\mathsf{g}} \quad \frac{\vdash A, \Delta \qquad \sigma \leq_{\mathsf{f}} \vec{\sigma'}}{\vdash !_{\sigma}A, ?_{\vec{\sigma'}}\Delta} \mid_{\mathsf{f}} \quad \frac{\vdash A, B \qquad \sigma_{1} \leq_{\mathsf{u}} \sigma_{2}}{\vdash !_{\sigma_{1}}A, ?_{\sigma_{2}}B} \mid_{\mathsf{u}}$$

Instances of superLL

ELL

Elementary Linear Logic (ELL) is a variant of LL where we remove $(?_d)$ and $(!_g)$ and add the functorial promotion:

$$\frac{\vdash A, \Gamma}{\vdash !A, ?\Gamma} !_{\mathsf{f}}$$

superLL $(\mathcal{E}, \leq_g, \leq_f, \leq_u)$ is ELL where:

$$\mathcal{E} = \{\bullet\};$$

$$\bullet(?_{c_2}) = \bullet(?_{m_0}) = \text{true (and } (\bullet)(r) = \text{false otherwise});$$

$$\leq_g = \leq_u = \emptyset \text{ and } \bullet \leq_f \bullet.$$

superLL subsume many existing system of linear logic such as LL, LL with shifts, ELL, LLL, SLL or seLL.

Cut-elimination axioms

```
\sigma(?_{\mathbf{m}_i})
                                                                                    \sigma'(?_{c_i})
σ ≤g σ'
                                                                                                                                                                                                                  i > 0
                                                                                                                                                                                                                                                (axgmpx)
\sigma \leq_S \sigma'
                                                                                   \bar{\sigma}'(?\mathbf{m}_i)
                                                                                                                                                                                                        i \ge 0 and s \ne g
                                    \sigma(?m_i)
                                                                                                                                                                                                                                               (axfumpx)
                                                                                    \bar{\sigma}'(?_{\mathbf{c}_i})
                                                                                                                                                                                                                  i \ge 2
                                                                                                                                                                                                                                                (axcontr)
                                                                                   \sigma \leq_{\mathsf{S}} \sigma''
                                                                                                                                                                                                                                                (axTrans)
                                                                                   σ ≤g σ"
                                                                                                                                                                                                                                                 (axleqgs)
                                                                                   σ ≤ σ"
                                                                                                                                                                                                                                                 (axlegfu)
                                                                                   (\sigma \leq_{\mathbf{g}}^{\mathsf{r}} \sigma'' \wedge (\sigma \leq_{\mathbf{f}} \sigma''') \Rightarrow (\sigma \leq_{\mathbf{g}} \sigma''' \wedge \sigma'''(?_{\mathbf{m_1}}))) 
 \underline{\sigma} \leq_{\mathsf{S}} \sigma'' 
\sigma \leq_{\mathbf{f}} \sigma'
                                      \sigma' \leq_{\mathbf{g}} \sigma''
\sigma' \leq_{\mathbf{S}} \sigma''
                                                                                                                                                                                                                                                 (axlegfg)
\sigma \leq_{\mathsf{u}} \sigma'
                                                                                                                                                                                                                                                 (axlegus
```

with $s \in \{g, f, u\}$, all the axioms are universally quantified.

Instances of superLL satisfies cut-elimination axioms

LL, LL with shifts, ELL, LLL, SLL, seLL satisfy cut-elimination axioms.

Cut-elimination for superLL

Let's consider the following axiom:

$$\sigma \leq_{\mathsf{g}} \sigma' \quad \Rightarrow \quad \sigma' \leq_{\mathsf{f}} \sigma'' \quad \Rightarrow \quad \sigma \leq_{\mathsf{g}} \sigma'' \qquad (\mathsf{axleqgs})$$

We use it for the following cut-elimination step:

$$\frac{ \begin{array}{c|c} \vdash A,?_{\vec{\tau}}\Gamma & \sigma \leq_{\mathbf{g}}\vec{\tau},\tau \\ \hline \vdash !_{\sigma}A,?_{\vec{\tau}}\Gamma,?_{\tau}C & |_{\mathbf{g}} & \frac{\vdash C,\Delta}{\vdash !_{\tau}C^{\perp},?_{\vec{\rho}}\Delta} & \mathrm{cut} \end{array} }_{\vdash P_{\sigma}A,?_{\vec{\tau}}\Gamma,?_{\vec{\rho}}\Delta} \\ \\ \frac{\vdash C,\Delta}{\vdash P_{\sigma}A,?_{\tau}\Gamma} & \frac{\vdash C,\Delta}{\vdash P_{\sigma}A,?_{\tau}\Gamma,?_{\vec{\rho}}\Delta} & \mathrm{cut} \\ \hline \\ \frac{\vdash A,?_{\vec{\tau}}\Gamma}{\vdash P_{\sigma}A,?_{\tau}\Gamma,?_{\vec{\rho}}\Delta} & \mathrm{cut} \\ \hline \\ \frac{\vdash A,?_{\tau}\Gamma,P_{\sigma}\Delta}{\vdash P_{\sigma}A,?_{\tau}\Gamma,P_{\sigma}\Delta} & \mathrm{cut} \\ \hline \end{array} }_{\vdash P_{\sigma}A,P_{\sigma}} \\ \\ P_{\sigma}A,P_{\sigma}B,P_{\sigma$$

superLL eliminates cuts

Cut-eliminations (B. & Laurent '21)

As soon as the 8 cut-elimination axioms are satisfied, cut elimination holds for superLL($\mathcal{E}, \leq_g, \leq_f, \leq_u$).

Cut-elimination steps

Example

lf

$$\frac{\pi}{\frac{\vdash A,?_{\vec{\tau}}\Delta \qquad \sigma \leq_{\mathbf{g}} \vec{\tau}}{\vdash !_{\sigma}A,?_{\vec{\tau}}\Delta}} !_{\mathbf{g}} \qquad C^{!}}_{\vdash !_{\sigma}A,?_{\vec{\rho}}\Gamma} \qquad \operatorname{mcut}(\iota, \mathbb{1})$$

is a μ superLL $^{\infty}(\mathcal{E}, \leq_{\mathsf{g}}, \leq_{\mathsf{f}}, \leq_{\mathsf{u}})$ -proof then

$$\frac{\frac{\pi}{\vdash A,?_{\vec{r}}\Delta} \quad C!}{\frac{\vdash A,?_{\vec{\rho}}\Gamma}{\vdash !_{\sigma}A,?_{\vec{\rho}}\Gamma}} \operatorname{mcut}(\iota,\mathbb{1}) \qquad \sigma \leq_{\mathbf{g}} \vec{\rho}}{\vdash !_{\sigma}A,?_{\vec{\rho}}\Gamma} \mid_{\mathbf{g}}$$

is also a μ superLL $^{\infty}(\mathcal{E}, \leq_g, \leq_f, \leq_u)$ -proof.

Translation of μ superLL $^{\infty}$ into μ LL $^{\infty}$

Translation of formulas

We translate formulas by induction using:

$$(!_{\sigma}A)^{\circ} := !A^{\circ} \qquad (?_{\sigma}A)^{\circ} := ?A^{\circ}$$

$$\frac{\overset{i}{\vdash A, \dots, A, \Gamma} \sigma(?_{m_{i}})}{\vdash ?_{\sigma}A, \Gamma} ?_{m_{i}} \qquad \frac{\overset{i}{\vdash A^{\circ}, \dots, A^{\circ}, \Gamma^{\circ}}}{\vdash ?A^{\circ}, \dots, ?A^{\circ}, \Gamma^{\circ}} ?_{d} \times i$$

$$\frac{\overset{i}{\vdash ?_{\sigma}A, \dots, ?_{\sigma}A, \Gamma} \sigma(?_{c_{i}})}{\vdash ?_{\sigma}A, \Gamma} ?_{c_{i}} \qquad \overset{i}{\vdash ?A^{\circ}, \dots, ?A^{\circ}, \Gamma^{\circ}} ?_{c} \times i$$

Translation of μ superLL^{∞} into μ LL^{∞}

$$\frac{i \in \llbracket 1, n \rrbracket}{\vdash ?_{\sigma_{1}}A_{1}, \dots, ?_{\sigma_{n}}A_{n}, A} \xrightarrow{\sigma \leq_{\mathbf{g}} \sigma_{i}} |_{\mathbf{g}} \qquad \frac{\vdash ?A_{1}^{\circ}, \dots, ?A_{n}^{\circ}, A^{\circ}}{\vdash ?A_{1}^{\circ}, \dots, ?A_{n}^{\circ}, |_{A^{\circ}}} |_{\mathbf{p}}$$

$$\frac{\vdash A_{1}, \dots, A_{n}, A}{\vdash ?_{\sigma_{1}}A_{1}, \dots, ?_{\sigma_{n}}A_{n}, |_{\sigma}A} |_{\mathbf{f}} \qquad \frac{\vdash A_{1}^{\circ}, \dots, A_{n}^{\circ}, A^{\circ}}{\vdash ?A_{1}^{\circ}, \dots, ?A_{n}^{\circ}, A^{\circ}} |_{\mathbf{f}}$$

$$\frac{\vdash B, A}{\vdash ?_{\sigma_{2}}B, |_{\sigma_{1}}A} |_{\mathbf{u}} \qquad \Rightarrow \qquad \frac{\vdash B^{\circ}, A^{\circ}}{\vdash ?B^{\circ}, A^{\circ}} |_{\mathbf{f}}$$

Cut-elimination for μ superLL $^{\infty}$

Cut-elimination reduction system correctness

For every μ superLL $^{\infty}(\mathcal{E}, \leq_{\mathsf{g}}, \leq_{\mathsf{f}}, \leq_{\mathsf{u}})$ reduction sequences $(\pi_i)_{i \in \mathbb{N}}$, there exists a μ LL $^{\infty}$ reduction sequence $(\theta_i)_{i \in \mathbb{N}}$ such that for each i, there exists j such that π_i° is equal to θ_j up to rule-permutations.

Cut-elimination reduction system completeness

If there is a μLL^{∞} -redex $\mathcal R$ sending π° to ${\pi'}^{\circ}$ then there is also a μ superLL $^{\infty}(\mathcal E, \leq_g, \leq_f, \leq_u)$ -redex $\mathcal R'$ sending π to a proof π'' , such that in the translation of $\mathcal R'$, $\mathcal R$ is reduced.

Cut-elimination theorem for μ superLL $^{\infty}$

Every fair (mcut)-reduction sequence of μ superLL $^{\infty}(\mathcal{E}, \leq_g, \leq_f, \leq_u)$ converges to a μ superLL $^{\infty}(\mathcal{E}, \leq_g, \leq_f, \leq_u)$ cut-free proof.