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Formulas and semantic for the modal p-calculus

Formulas of the modal pu-calculus

AB:=AvB|ArB|A>B|T|F|0A|0A|XeV|uX.A|lvX.A.
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Formulas and semantic for the modal p-calculus

Formulas of the modal pu-calculus

AB:=AvB|ArB|A>B|T|F|0A|0A|XeV|uX.A|lvX.A.

Semantic of the modal u-calculus

Semantics comes from a transition system. Truth-value is defined for
states:

[Av Bl = [Als v [B]s  [AABls = [ALs A [Bls
[A— B]s =[Als ~ [B]s [t]=7 [FI=1

[oA]s holds for s if A holds in each states attainable from s.
[0A]s holds for s if A holds in one of the states attainable from s.
[vX.A]s is the greatest fixed-point of S — [A]l[x is true on each 5]
[uX.Als is the least fixed-point of S — [A][x is true on each ]
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Proof theory of modal p-calculus

Modal p-calculus proof theory has been studied...

Finitary systems

Fixed-point rule 3 la Park, completeness from Kozen '83.

Systems with w-rule

Works from Kozen '88, Jager, Kretz & Stiider '08. Mints '12, Mints &
Studer '12, Briinnler & Studer '12

Non-wellfounded systems

Works from Stirling '14 and restriction to regular proofs studied by
Afshari & Leigh '16.
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Proof theory of modal p-calculus

Modal p-calculus proof theory has been studied...

Finitary systems

Fixed-point rule 3 la Park, completeness from Kozen '83.

Systems with w-rule

Works from Kozen '88, Jager, Kretz & Stiider '08. Mints '12, Mints &
Studer '12, Briinnler & Studer '12

Non-wellfounded systems
Works from Stirling '14 and restriction to regular proofs studied by
Afshari & Leigh '16.

... None of them have a proper syntactic cut-elimination theorem on the
full modal p-calculus.
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Fixed-point and the non-wellfounded system pLK®

Rules of uLK*

We add to LK two fixed-point rules:

- ALX = pXALT - ALX = vXALLT
X AT X AT

Proofs of uLK*

Proofs are the trees co-inductively generated by the rules of uLK®
satisfying a validity criterion.

1%
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Some example of infinite proofs

Nat:= uX.Tv X
Inhabitant of natural number type
Tn
T
—T v .__ FNat
To = TV Nat Tn+l *= "1 Nat
+ Nat ~ Nat
Tsucc *=
—— ax
THT 1
T+TvNat '
_— r
T + Nat 5 Nat ~ Nat 2
T+TvNat ' Nat+ Tv Nat '
T+ Nat Nat — Nat

\7

T v Nat + Nat
Nat + Nat

Hi
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Some example of infinite proofs

Nat:= uX.Tv X
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Tn
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_— r
T+~ Nat 2 Nat ~ Nat 2
TETvNat Nat - Tv Nat "
r _— r
~ 0, Nat + Natt, Nat
0 A Natt, Nat
YAt

~ Nat', Nat
6/24



Some example of infinite proofs

Nat:= uX.Tv X
Inhabitant of natural number type
Tn
T
—T v .__ FNat
7o ‘= ~ 7V Nat Tn+l *= "1 Nat
+ Nat — Nat
Tsucc =
——F—— aXx
THT 1
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TFNat ', _ NatrNat™
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%
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Some example of infinite proofs

Nat:= uX.Tv X
Inhabitant of natural number type
Tn
T
i —— .__ FNat
To = TV Nat Tn+l *= "1 Nat
~ Nat — Nat
Tsucc *=
——— ax
-0, T
S Vl
~0,T Vv Nat
0, Nat » + Nat', Nat
S — e ——V
F0,7vNat ¥ ~ Natt, T v Nat
m
~ 0, Nat ~ Nat!, Nat

~ 0 A Natt, Nat
IR EARLLTE R S

~ Natt, Nat
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Modal fragment and the puLKZ system

Derivation rules of puLKZ

Derivation rules of uLKZ are the rules of uLK™, together with:

AT 0
FOA, oI
SEE
Taking F :=vX.0X:
FFF
—— 0O
FOFY, OF
— v
FFF
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Formulas and derivation rules of fMALL®

F.G:=FBG|FQG|F&G|FaoG|L|1|T|0|XeV|uX.F|vX.F.

———ax AT AL A FI,B,A A ex
-AA FT.A cut FT,AB,A
A A + B, As ® A B, T
FAQB,A1, A FA® BT
- AT - A, T AT A, T
7691 @2 &
"Al@ALr |—A1®A2,r }—Al&Az,r
FA[X = uX.A]T FA[X :=vX.A]T

m v
F XA T - XA T

8/24



Examples of infinite proofs in yMALL®™

Stream of natural numbers

Stream Nat := vX.Nat ® X

™2 :
+ Nat + Stream Nat
o ust + Nat ® Stream Nat

®
v
— Nat — Stream Nat ® ~ Nat + Stream Nat ®
+~ Nat ® Stream Nat v o +~ Nat ® Stream Nat y
+ Stream Nat ~ Nat  Stream Nat

®
+ Nat ® Stream Nat
 Stream Nat
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Exponentials

We add exponentials to uMALL®:

7A and A

As well as the corresponding rules:
FC F?A?A T 5 AT - FA T
FIAT Y TE2AT ¢ F?AT Y haw P

This system is called pLL™
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Cut-elimination

steps of pLL™

T2
T T2 T - AL M, | T2
- ?A,7A, Ty F A, 70, - 7A,7A,T; FIAY M, - AT
— 7 n o ~ cut T E—— 'p
-7?A,T, 1AL T, =7A,T1, 7T =1AT
TN cut ETNETN cut
— = L#M2
Fra,M2 ©
T T2
1 ﬂ-l
= r]_ HA ;?r2 =T
7 b~ 1
F?AT Y RIAN M, P — ="
cut Hlq,
FTq, 70 2
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Cut-elimination theorems

Cut-elimination of uALL®™ (Fortier & Santocanale 2013)

The cut-rule is admissible for Additive Linear Logic with fixpoints.

Cut-elimination of uMALL®™ (Baelde et al. 2016)

Each fair multi-cut reduction sequences of uMALL®™ are converging to a
uMALL®-cut-free proof.

Cut-elimination of pLL™ (Saurin 2023)

Each fair multi-cut reduction sequences of uLL™ are converging to a
uLL*-cut-free proof.
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Goal

We want to prove cut-elimination in a syntactic way

(-)*
LK pLLE
(-)°
pMALL>® pLL™

TABLEAUX '23
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uMALL® pLL™
TABLEAUX '23
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Translation of pLK* in pLL®

(uX.A)® = 1uX.?2A® (vX.A)® :=1wX.7A°
(A1 vV A2)* = 1(2A1° @ 2A,°) (A1 A A2)* = 1(2A1° & 7A2°)

F*:=10 T =17
X®:=1X a®:=la

(A1 > A2)® == 1(2A1° — 2A5°) (T A)*:=T* - 7A°

[*+7A%7A° r*+~7B°7A"
read e84 . T - 7A° & 7B°, 7A° ’
F-AAB,A 24:1p

r* - ?21(?A° & 7B*%), 72A®
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Cut-elimination for uLK®*

Cut-elimination for uLK® Saurin 2023

The cut-elimination system of uLK®™ is weakly normalizing.

LK ulLLl™
T=Tg 7 =0=0,
A A
u(e,) On
\LOO \Loo
U(0) 0o
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) o
pLKg pLLE
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Naive extension of the translation and issue with it

Let's consider the two-sided system uLL™ together with the two modal
rules:
MAFA 0 N-AA 5
al, A+ 0A ol - OA, 0A

We extend the translation, to get a translation from uLK3 to pLL3:

(DA)® = 10 ?A° (0A)® = 197A°
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Problem

Promotion rule

AT
1A, 7T

We want to translate:

A B 0
+OA, OB

We start with the sequent:

- 21074, 21078°
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Problem

Promotion rule

AT
1A T
We want to translate:

A B

——0
+OA, 0B
We apply a dereliction a promotion:

-2 O?A%, 078"
- 700 7A° 71078

2, !
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Problem

Promotion rule

AT
1A
We want to translate:
A B
— 0
DA OB
We apply a dereliction again:
~1O?A%, 0?B°®

F707A° 078" S
-2 O7A%, 21078 4

And we are blocked.
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Solution

Promotion rule

AT OA
HIA T, OA
We want to translate:
A B 0
+ DA OB
We apply a dereliction again:
H1O?A® 0?B®

74

- ?2107A%, 07B° |
-2 07A%, 210780
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Solution

Promotion rule

AT O0A
AT, OA

We want to translate:

A B .
DA, 0B

Now, we can apply our promotion:
FO?A®, O7B*
H1Oo?A%, 0?B*

- ?2107A%, 07B° |
-2 O7A%, 210780 Y

[
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Solution

Promotion rule

FAL0A
1A T, 0A

We want to translate:
A B
— O
DA, OB

And finally our modal rule:

- 7A%,7B°
—07A°, 07B° Dl
- 107A°%, 07B°

F0?A%, 078 S
-2 oA 707BT 9
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Solution

Promotion rule

F A, OA
1A, 7T, 0A

But what does it imply for this system?
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Solution

AT OA |
HIA T, OA
T2
- T2 m - AL M, \ T2
F7A,7A, T, F AL, - 7A,7A,T, AL M, FAL M,
— 7 ——0—% ~ cut Tl
- 7A, s - IAY 2T, F7A,T1, 7T, PN
cut cu
K1, P
Ty, ©
1 T2
1 1
T = AL,
fw !p ~r [l r]_ “r
AT 1AL T, — 2
cut = Fl, f F2
[ Fl,?F2
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Solution

AL OA |
1A T, OA
T2
T T2 T [ d . T2
- 7A,7A, Ty AL M, 0A F7A,7A, T, AL T, AL,
— 7 n o~ cut YT 'p
-?A,T, 1AL M, 0A F?A, T, 7> =1A7, 7T
F 1,72, 0A cut F 1,72, 72 cut
— = ,#M>
=T1,7M2, 0A €
T 2
1 m
-1y AL,
: ~r = r1
- ?A, T, FIAL M, P e 772
cut 11,709
[ rl,?r2 ’
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Solution

AL OA |
1A T, OA
T2
T T2 T [ d | T2
F A 7A Ty FAL M, 08 - 7A,7A, Ty FIAS T, FALI
R — ! t _—
F?2AN, © F 1AL Mo, 0A F7A,T., > c FIAS T,
cut cut
Ty, 7T, 0A =T1,7M2, 7T, 04, 0A T2 o#n
T, 72, 0A € Ve
1 T2
19 1
Ty HAL r
‘w P i #T
F7A T, =1AL T, T
cut T, 7
}— Fl,?r2
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Solution

Promotion rule

FAL0A
1A T, OA
T2
. T - FAL M, 0A T2
- A ATy FAL M, 008 F2A7A, Ty FIAY M, 08 " PAL M2, 08
R S — ! cut _—
FAT. f riatbmeon - 74,1, 75, OO ! At 0n ©
cut cu
F T, 2T, OA P2 208,08 058
Ty, 72, OA e e
T T2
1 7T]_
l—r]_ '_A ,?r2
Tw I oo T o
= ?A, Fl 1A ,?rg t ﬁ [Nk
Ccu Fl11,9
l—rl,?r2 ’
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Solution

Promotion rule

AL OA |
1A 7T, 0A
T2
m 2 T _FALMR, 08 ™2
F A 7A,Ty FAL M, 08 - 7A,7A,Ty AL, 00 F FAL T, 08
—_ 7 ! cut e vE g
AT ° cAbmaon ¢ C7A 1,72, 0D u 1AL T2 08 Pt
cut cu
=Ty, M, OA =Ty, M2, T2, OA, QA 472 O#A
=T1,7T2, 0A ¢ Ve
T T2
AL 5, OA L
= !
'_rl 2 ) 2, I - |_r1

l—?A,rl " I—!Al,?rg,OA P ?#rz

?
F T, 2T, OA cut I, 70
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Solution

Promotion rule

FA0A
- 1A T, OA
T2
m 72 m FAL I, 08 2
F7A,74,Ty HAL M, 08 F7A7A, Ty FIAL M, 08 " PAL M2, 08
R S — ! cut _—
FAT. f riatbmeon - 74,1, 75, OO ! At 0n ©
cut cu
F 1,7, 0A 13702, 720 08,08 o
Ty, 72, OA ¢ Ve
T ™2
1 ? ﬂ-l
Rl FAL G, 0A - T
fw n P r A
F7A, T, 1AL T, OA e o7

? Tw
-1, 702, 0A N
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The plLLZY system

Modification of the promotion rule

A, O0A |
AT, OA
Rules on modality
AT 5 FOA, 0A A 0 = A o
- OA, O FO0AA S OAA Y
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o pLLy

(-)°

ulLL™
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Translation from plLLZ to pLL®

m pLLZ to puLL® and cut-elimination for plLZ

We define:

(QA)° = ?A° and (OA)° — 1A°.
We easily get weakening and contractions of () with weakening and contraction of ?.
For the modality rule, we have:

= A° T°
AT 0 ??d
FoAor 0 _RALTE
= 1A° e
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Translation from plLLZ to pLL®

puLLZ to uLL* and cut-elimination for pulLLZ
We define:
(QA)° = ?A° and (OA)° — 1A°.
We easily get weakening and contractions of () with weakening and contraction of ?.
For the modality rule, we have:
= A° T°

[ ?d
O~  A°,T° !

Flae ere P

AT
FOA, O

Cut-elimination theorems
Using (-)°, we obtain cut-elimination for uLL>.

Using (-)°, we get a proof of uLL>’, from which we can eliminate

cuts, we then can come back to puLK3 and get a cut-free proof of
plLZ.
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Sub-exponentials
B. & Laurent TLLA '20

The previous work actually works with a sub-exponential system inspired
from the work of Nigam & Miller '09. With a promotion rule on signed
exponentials:

FA AL e AL €<z € | FAAL..., A, e<r e
! '
FleA 26 AL, ., 26, An FleA 7Aooy e, An
and structural rules authorized only on some signed exponentials:

T eeW w F?.A,7A T eecC AT ecD
F AT C AT ¢ C AT

Modal logic is an instance of this sub-exponential system:
With two signatures e and €', with ! := !, and O =l.
! ! ! I ! !
el<;e, e< e e'<re, esre, et ee

e,e’ €W, e, e eCand eecD
23/24



Conclusion & future works

What did we prove?

We proved a syntactic cut-elimination theorem for the modal
p~calculus.
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Conclusion & future works

What did we prove?

We proved a syntactic cut-elimination theorem for the modal
p~calculus.

We proved a (syntactic) cut-elimination theorem for uLL> (as well
as for a general parametrized linear logic system psuperLL®™).

We proved a cut-elimination procedure for the circular version of the
modal p-calculus with sequents as sets.

Future works

Integrate the digging rule (axiom S4) or the co-dereliction rule
(axiom T)

Extension of the validity criterion
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Extension to psuperLL®®

Super exponential system (TLLA '21)

Exponential signatures

An exponential signature is a boolean function on the set of rule names:

(%, 2, | i €N},

Formulas

Let £ be a set of exponential signatures, formulas of psuperLL>* (&) (with o € &) are:

AB:=A%B|A®B|A&B|A®B|L|1]|T|0|XeV|uX.A|lvX.Al

2-A|1GA.
Multiplexing: Generalized contraction:
i i
—_——— —~

AL AT o(m) F A, . 1A T o)

F20AT i F72.AT '

1/10



Extension to psuperLL ™

Promotion rules

Given three relations <g, <f and <, on &, we have the promotion rules of
psuperLL™ (€, <4, <f,<u):

l—A,?(;,A USgOT’ | -AA O'Sfo-:l 0 -AB 01 <u 02
FloA 7 A & FlgA 7oA FlogA 75, B

2/10



Extension to psuperLL®®

Instances of superlLL

ELL
Elementary Linear Logic (ELL) is a variant of LL where we remove (74)
and (!g) and add the functorial promotion:

AT

FIA T

superLL(&, <g,<f,<y) is ELL where:
€={e};
o(?c,) = ¢(?m,) =true (and (e)(r) = false otherwise);
<g=<y= and e <se.

superLL subsume many existing system of linear logic such as LL, LL
with shifts, ELL, LLL, SLL or seLL.

3/10



Cut-elimination axioms

Extension to psuperLL ™

c<go’ = (?m;) = o’ (%;) i>0 (axgmpx)
oc<so! = o(?m;) = o'(m;) iz0and s+g  (axfumpx)
oc<so! = o (%) = o/ (%) i>2 (axcontr)
oc<sol = o <s ol = o<s ol (axTrans)
o<g o = o <s ol = o<g ol (axleqgs)
o< o’ = o<y’ = o<t Ll (axleqgfu)
oo’ = olggo’ = (osgo’NMosgo = (osg " A (Pmy))) (axleqfg)
o<yo’ = o' <s o’ = o <s o (axlequs)

with s € {g, f, u}, all the axioms are universally quantified.

Instances of superLL satisfies cut-elimination axioms
LL, LL with shifts, ELL, LLL, SLL, selLL satisfy cut-elimination axioms.

a/10



Extension to psuperLL ™

Cut-elimination for superlLL

Let's consider the following axiom:

/A A " 144
0<g0 = 0 <50 = 0550 (axleqgs)
We use it for the following cut-elimination step:
A ?:T o <gT, T \ =C,A TP
FLA7.T.7.C e FLCh A
cut
F LA 75T, T,A
~C,A TP .
F A 74T CLCh A
cut
FA 7T, 7,0 ! oSt

=1, A, ?;F, .7/3A

5/10



Extension to psuperLL ™

superLL eliminates cuts

Cut-eliminations (B. & Laurent '21)

As soon as the 8 cut-elimination axioms are satisfied, cut elimination
holds for superLL(E, <g,<f, <u).

6/10



Super exponentials

Cut-elimination steps

If
v
A7?:A 0<g T |
Fl A 7-A & @ to 1)
mcC
F 1A 75T S
is @ psuperLL™ (&, <g, <f, <y )-proof then
s
FA A @
t(e, L
FA7,T (e, 1) T
F 1A 75T =

is also a psuperLL™ (&, <g, <¢, <y )-proof.

7/10



Super exponentials

Translation of psuperLL™ into pulLL™

Translation of formulas

We translate formulas by induction using:

(1,A)° = 1A° (?5A)° = 7A°
n K_JI‘
— FA° ... AT
A, ... ,AT 0(?m;) - ~ = —— g x|
AT Om; AL 2ACT 2 i
- 7A°.T°
/—/n‘q r—’l—
F A, AT o(?,) o EAC LA T
7e; x|
F7.AT F?A°,°

8/10



Super exponentials

Translation of psuperLL™ into pulLL™

i€[1,n]
F7A7, ..., TAY A°
F o AL o, An A O%g0i 7 |_?A°1’ 7?Aon’|Ao lp
‘g fAL, -y CAR:
F 20 AL T A LA n
ie[[l,n]] '_Aiw"aAano 5
°d
FAL.. L ALA o <foj I ~r I—?Ai,...,?AZ7A0 |
20 ALy 70, A 16 A AL A 1A P
- B°, A°
I—B,A 01 <y 02 ~ W?d
'_?UzBﬂla'lA -u - o’ o !P
~7B°,1A

9/10



Super exponentials

Cut-elimination for usuperLL™

Cut-elimination reduction system correctness

For every pisuperLL™ (&€, <q, <f,<y) reduction sequences (7;)jen, there
exists a uLL™ reduction sequence (6;);ey such that for each i, there
exists j such that 7} is equal to §; up to rule-permutations.

Cut-elimination reduction system completeness

If there is a uLL*-redex R sending 7° to 7’° then there is also a
psuperLL™ (€, <4, <f,<y)-redex R’ sending 7 to a proof ©”, such that in
the translation of R’, R is reduced.

|

Cut-elimination theorem for usuperLL

Every fair (mcut)-reduction sequence of usuperLL™ (€, <g, <f,<y)
converges to a usuperLL™ (€, <g, <¢, <) cut-free proof.

10/ 10
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