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Introduction
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What are cyclic proofs, categorically?

The starting point of this work was trying to develop a
fibrational semantics of cyclic proofs.

R

` Γ

One of the main difficulties is how to capture the validity
criterion categorically.
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Recursive definitions

More generally, we want to model recursive definitions.
What makes a recursive function valid?

add Z n = n
add (S m) n = S (add m n)

bad n = bad (S n)

foo 0 = 0
foo (S m) = S (foo m)
foo (S m) = foo m

It seem that if a recursive definition has a unique solution, then it
is a valid definition.
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Context free grammars

This led us to consider the question of unicity for CFGs.

G1 =
S →a ε
S →b [S]
S →c SS

G2 = S →d ε
S →e [S]S (1)

LG1 = LG2 = the Dyck language of balanced brackets
= the minimal solution of the following equations

L = ε+ [L] + LL (2)
L = ε+ [L]L (3)

L = Σ∗ is another solution of the equation (2), while equation (3)
has a unique solution.
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Context free language

There are at least two different ways of interpreting a context-free
language as the solution to a recursive system of constraints.

• Traditionally, as the smallest language closed under the
production rule.

For example, L1 = µ(F1) and L2 = µ(F2) where the
operators F1,F2 : P(Σ∗)→ P(Σ∗) are defined by

F1(X ) = ε+ [X ] + XX F2(X ) = ε+ [X ]X

• Considering the recursive equations literally (rather than as
inclusions) and find their solution.
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This talk

• We want to formulate the question of unicity of solutions to
equations arising from CFGs in a very general fibrational
framework.

• The problem of characterizing unicity of solution to systems of
polynomial equations induced by context-free grammars has
been considered in early work of Courcelle 1, and our work can
be seen as a categorical revisiting of Courcelle’s work
(although it did not start out that way)2.

1Bruno Courcelle (1986): Equivalences and transformations of regular systems–applications to recursive
program schemes and grammars

2We gratefully thank Sylvain Salvati for pointing us to this work
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gCFGs

Following 3, we define a generalized CFG as a functor of operads
p : Free(S)→ O where Free(S) is the freely generated operad
from a finite species S.
This encompasses ordinary CFGs by taking O =W[Σ] to be the
“operad of spliced words” whose n-ary operations are sequences
w0 − w1 − · · · − wn of n + 1 words over Σ.

S →a ε S →b [S] S →c SS
S = {S, a : .→ S, b : S → S, c : S, S → S}

p(a) = ε
p(b) = [−ε−]

p(c) = ε− ε− ε

3Paul-André Melliès, Noam Zeilberger: The categorical contours of the Chomsky-Schützenberger
representation theorem.
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Models of gCFGs
A model of p is given by a square of the following form:

Free(S) E

O B

p

M̃

q

M

the only requirements on q are that it admits pushforwards and
fiberwise coproducts.

We mainly consider two models:
• q : Subset→ Set.

• proof-irrelevant: LS ⊆ Σ∗ (subset of words)
• q : Set→ → Set

• proof-relevant: LS −→ Σ∗ (set of derivations equipped
with underlying word)
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Question

Let M be the initial functor O → Set. We want to find a sufficient
and necessary condition for unicity of M̃.

Free(S) Set→

O Set

p

M̃

q

M

We focus on the question of unicity of solutions in the
proof-relevant model, since it implies unicity of solutions in the
proof-irrelevant model.
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A non-unital suboperad

The starting point is to consider the base operad O as being
equipped with a non-unital suboperad O+ ⊂ O, whose operations
induce a well-founded ordering on the constants of O:

f : A1, · · · ,An → B (ai : Ai )1≤i≤n

f (a1, · · · , an) > ai

In the case of CFGs, W[Σ]+ is operad of spliced words n-ary
operations are sequences of n + 1 words containing at least one
non-empty word.

f = w0 − w1 − · · · − wn (ui : Σ∗)1≤i≤n

w0u1w1u2 · · · unwn > ui
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Composition of grammars

S →d T T →e [T ]T T →f ε
S = {S,T , d : T → S, e : T ,T → T , f : .→ T}

p(d) = ε− ε
p(e) = [−ε−]

p(f ) = ε
p(S−) 6⊂ W[Σ]+

S− ◦ S:

e

ef

e

ed

d

f

e ff

e

ee
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Some notations

• We use the composition product from the theory of species 4.
• The unit of the composition is given by the species I with a

single unary node ∗R : R → R for every color R.
• We denote by R− the species R− := R−R(0) obtained by

removing all nullary nodes from any species R.
• We write ∆S for the endofunctor ∆S : SpecX → SpecX
defined by ∆S := R 7→ (R ◦ S)−.

4André Joyal (1981): Une théorie combinatoire des séries formelles
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Relative nilpotency

We say a gCFG p : Free(S)→ O has the relative nilpotency if

there exists a k such that p(∆k
S I) ⊂ O+.

G1 =
S →a ε
S →b [S]
S →c SS

G ′2 =
S →d T
T →e [T ]T
T →f ε

• the grammar G2 from slide 5 satisfies the relative nilpotency
condition with k=1.

• As we saw, G ′2 satisfies the relative nilpotency condition with
k = 2.

• G1 does not satisfy the relative nilpotency condition.
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Result

Let O be an operad which is equipped with a non-unital suboperad
O+ ⊂ O, whose operations induce a well-founded ordering on the
constants of O. Then p : Free(S)→ O has a unique model in
Set→ → Set iff p satisfies the relative nilpotency condition.

Free(S) Set→

O Set

p

M̃

q

M
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Future work

• We still need to write up!
• What does the standard proof-relevant results on CFGs say in
relation with models and unicity? For example, Greibach
Normal Form grammars satisfy the relative nilpotency
condition.

• We eventually want to deal with other examples including
cyclic proofs as well as recursive definitions in type theory and
functional programming.

• We also have a fibrational setting for inductively defined
predicate. Does the comparison of these two settings give us a
hint to better understand the relationship between cyclic and
inductive proofs?


