
Characterizing the Exponential-Space Hierarchy via Partial
Fixpoints

Florian Bruse David Kronenberger Martin Lange
University of Kassel, Germany

FICS workshop
Naples, February 21st, 2024

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Descriptive Complexity

characterize complexity classes via logical ressources. L captures C if:

1) queries defined by formulas in L can be computed in C
2) queries that can be computed in C can be defined in L

only (boolean) queries on finite structures of interest

examples:

• ∃SO = NP ([Fagin’74])

• FO + LFP = PTIME over ordered str. ([Immerman’84], [Vardi’82])

• FO + PFP = PSPACE ([Vardi’82])

Some extensions/generalizations:

• SO = PH ([Stockmeyer’76])

• HOk+1 + LFP = k−EXPTIME over ordered∗ str. ([Freire/Martins’11])

• HOk+1 + PFP = k−EXPSPACE (this talk)

∗: for k = 0

2 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Descriptive Complexity

characterize complexity classes via logical ressources. L captures C if:

1) queries defined by formulas in L can be computed in C
2) queries that can be computed in C can be defined in L

only (boolean) queries on finite structures of interest

examples:

• ∃SO = NP ([Fagin’74])

• FO + LFP = PTIME over ordered str. ([Immerman’84], [Vardi’82])

• FO + PFP = PSPACE ([Vardi’82])

Some extensions/generalizations:

• SO = PH ([Stockmeyer’76])

• HOk+1 + LFP = k−EXPTIME over ordered∗ str. ([Freire/Martins’11])

• HOk+1 + PFP = k−EXPSPACE (this talk)

∗: for k = 0

2 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Descriptive Complexity

characterize complexity classes via logical ressources. L captures C if:

1) queries defined by formulas in L can be computed in C
2) queries that can be computed in C can be defined in L

only (boolean) queries on finite structures of interest

examples:

• ∃SO = NP ([Fagin’74])

• FO + LFP = PTIME over ordered str. ([Immerman’84], [Vardi’82])

• FO + PFP = PSPACE ([Vardi’82])

Some extensions/generalizations:

• SO = PH ([Stockmeyer’76])

• HOk+1 + LFP = k−EXPTIME over ordered∗ str. ([Freire/Martins’11])

• HOk+1 + PFP = k−EXPSPACE (this talk)

∗: for k = 0

2 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Descriptive Complexity

characterize complexity classes via logical ressources. L captures C if:

1) queries defined by formulas in L can be computed in C
2) queries that can be computed in C can be defined in L

only (boolean) queries on finite structures of interest

examples:

• ∃SO = NP ([Fagin’74])

• FO + LFP = PTIME over ordered str. ([Immerman’84], [Vardi’82])

• FO + PFP = PSPACE ([Vardi’82])

Some extensions/generalizations:

• SO = PH ([Stockmeyer’76])

• HOk+1 + LFP = k−EXPTIME over ordered∗ str. ([Freire/Martins’11])

• HOk+1 + PFP = k−EXPSPACE (this talk)

∗: for k = 0

2 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Descriptive Complexity

characterize complexity classes via logical ressources. L captures C if:

1) queries defined by formulas in L can be computed in C
2) queries that can be computed in C can be defined in L

only (boolean) queries on finite structures of interest

examples:

• ∃SO = NP ([Fagin’74])

• FO + LFP = PTIME over ordered str. ([Immerman’84], [Vardi’82])

• FO + PFP = PSPACE ([Vardi’82])

Some extensions/generalizations:

• SO = PH ([Stockmeyer’76])

• HOk+1 + LFP = k−EXPTIME over ordered∗ str. ([Freire/Martins’11])

• HOk+1 + PFP = k−EXPSPACE (this talk)

∗: for k = 0
2 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Partial Fixpoints

Knaster-Tarski/Kleene guarantee well-definedness of fixpoints of monotone functions:

• f : X 7→ f (X) (in powerset lattice) yields sequence ∅ ⊆ f (∅) ⊆ f 2(∅) ⊆ · · ·

• least fixpoint LFP f defined as first stable element of sequence

Ex.: LFP X . p(x) ∨ ∃y . E (x , y) ∧ X (y) (reachability of a node where p holds)

Ex.: LFP X .
(
X (x) ∧ ∃y . x > y ∧ ¬X (y)

)
∨
(
¬X (x) ∧ ∀y . x > y → X (y)

)

binary incrementation not monotone → need partial fixpoint:

• f : X 7→ f (X) yields sequence ∅, f (∅), f 2(∅), . . .

• PFP f =

{
f i (∅), if f i (∅) = f i+1(∅)

∅, otherwise

Obs.: sequence either stabilizes after at most exponentially many steps, or it cycles

3 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Partial Fixpoints

Knaster-Tarski/Kleene guarantee well-definedness of fixpoints of monotone functions:

• f : X 7→ f (X) (in powerset lattice) yields sequence ∅ ⊆ f (∅) ⊆ f 2(∅) ⊆ · · ·

• least fixpoint LFP f defined as first stable element of sequence

Ex.: LFP X . p(x) ∨ ∃y . E (x , y) ∧ X (y) (reachability of a node where p holds)

Ex.: LFP X .
(
X (x) ∧ ∃y . x > y ∧ ¬X (y)

)
∨
(
¬X (x) ∧ ∀y . x > y → X (y)

)

binary incrementation not monotone → need partial fixpoint:

• f : X 7→ f (X) yields sequence ∅, f (∅), f 2(∅), . . .

• PFP f =

{
f i (∅), if f i (∅) = f i+1(∅)

∅, otherwise

Obs.: sequence either stabilizes after at most exponentially many steps, or it cycles

3 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Partial Fixpoints

Knaster-Tarski/Kleene guarantee well-definedness of fixpoints of monotone functions:

• f : X 7→ f (X) (in powerset lattice) yields sequence ∅ ⊆ f (∅) ⊆ f 2(∅) ⊆ · · ·

• least fixpoint LFP f defined as first stable element of sequence

Ex.: LFP X . p(x) ∨ ∃y . E (x , y) ∧ X (y) (reachability of a node where p holds)

Ex.: LFP X .
(
X (x) ∧ ∃y . x > y ∧ ¬X (y)

)
∨
(
¬X (x) ∧ ∀y . x > y → X (y)

)

binary incrementation not monotone → need partial fixpoint:

• f : X 7→ f (X) yields sequence ∅, f (∅), f 2(∅), . . .

• PFP f =

{
f i (∅), if f i (∅) = f i+1(∅)

∅, otherwise

Obs.: sequence either stabilizes after at most exponentially many steps, or it cycles

3 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Partial Fixpoints

Knaster-Tarski/Kleene guarantee well-definedness of fixpoints of monotone functions:

• f : X 7→ f (X) (in powerset lattice) yields sequence ∅ ⊆ f (∅) ⊆ f 2(∅) ⊆ · · ·

• least fixpoint LFP f defined as first stable element of sequence

Ex.: LFP X . p(x) ∨ ∃y . E (x , y) ∧ X (y) (reachability of a node where p holds)

Ex.: LFP X .
(
X (x) ∧ ∃y . x > y ∧ ¬X (y)

)
∨
(
¬X (x) ∧ ∀y . x > y → X (y)

)

binary incrementation not monotone → need partial fixpoint:

• f : X 7→ f (X) yields sequence ∅, f (∅), f 2(∅), . . .

• PFP f =

{
f i (∅), if f i (∅) = f i+1(∅)

∅, otherwise

Obs.: sequence either stabilizes after at most exponentially many steps, or it cycles

3 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Partial Fixpoints

Knaster-Tarski/Kleene guarantee well-definedness of fixpoints of monotone functions:

• f : X 7→ f (X) (in powerset lattice) yields sequence ∅ ⊆ f (∅) ⊆ f 2(∅) ⊆ · · ·

• least fixpoint LFP f defined as first stable element of sequence

Ex.: LFP X . p(x) ∨ ∃y . E (x , y) ∧ X (y) (reachability of a node where p holds)

Ex.: LFP X .
(
X (x) ∧ ∃y . x > y ∧ ¬X (y)

)
∨
(
¬X (x) ∧ ∀y . x > y → X (y)

)

binary incrementation not monotone → need partial fixpoint:

• f : X 7→ f (X) yields sequence ∅, f (∅), f 2(∅), . . .

• PFP f =

{
f i (∅), if f i (∅) = f i+1(∅)

∅, otherwise

Obs.: sequence either stabilizes after at most exponentially many steps, or it cycles

3 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Partial Fixpoints

Knaster-Tarski/Kleene guarantee well-definedness of fixpoints of monotone functions:

• f : X 7→ f (X) (in powerset lattice) yields sequence ∅ ⊆ f (∅) ⊆ f 2(∅) ⊆ · · ·

• least fixpoint LFP f defined as first stable element of sequence

Ex.: LFP X . p(x) ∨ ∃y . E (x , y) ∧ X (y) (reachability of a node where p holds)

Ex.: LFP X .
(
X (x) ∧ ∃y . x > y ∧ ¬X (y)

)
∨
(
¬X (x) ∧ ∀y . x > y → X (y)

)

binary incrementation not monotone → need partial fixpoint:

• f : X 7→ f (X) yields sequence ∅, f (∅), f 2(∅), . . .

• PFP f =

{
f i (∅), if f i (∅) = f i+1(∅)

∅, otherwise

Obs.: sequence either stabilizes after at most exponentially many steps, or it cycles

3 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Partial Fixpoints

Knaster-Tarski/Kleene guarantee well-definedness of fixpoints of monotone functions:

• f : X 7→ f (X) (in powerset lattice) yields sequence ∅ ⊆ f (∅) ⊆ f 2(∅) ⊆ · · ·

• least fixpoint LFP f defined as first stable element of sequence

Ex.: LFP X . p(x) ∨ ∃y . E (x , y) ∧ X (y) (reachability of a node where p holds)

Ex.: LFP X .
(
X (x) ∧ ∃y . x > y ∧ ¬X (y)

)
∨
(
¬X (x) ∧ ∀y . x > y → X (y)

)

binary incrementation not monotone → need partial fixpoint:

• f : X 7→ f (X) yields sequence ∅, f (∅), f 2(∅), . . .

• PFP f =

{
f i (∅), if f i (∅) = f i+1(∅)

∅, otherwise

Obs.: sequence either stabilizes after at most exponentially many steps, or it cycles

3 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Partial Fixpoints

Knaster-Tarski/Kleene guarantee well-definedness of fixpoints of monotone functions:

• f : X 7→ f (X) (in powerset lattice) yields sequence ∅ ⊆ f (∅) ⊆ f 2(∅) ⊆ · · ·

• least fixpoint LFP f defined as first stable element of sequence

Ex.: LFP X . p(x) ∨ ∃y . E (x , y) ∧ X (y) (reachability of a node where p holds)

Ex.: LFP X .
(
X (x) ∧ ∃y . x > y ∧ ¬X (y)

)
∨
(
¬X (x) ∧ ∀y . x > y → X (y)

)

binary incrementation not monotone → need partial fixpoint:

• f : X 7→ f (X) yields sequence ∅, f (∅), f 2(∅), . . .

• PFP f =

{
f i (∅), if f i (∅) = f i+1(∅)

∅, otherwise

Obs.: sequence either stabilizes after at most exponentially many steps, or it cycles

3 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Partial Fixpoints

Knaster-Tarski/Kleene guarantee well-definedness of fixpoints of monotone functions:

• f : X 7→ f (X) (in powerset lattice) yields sequence ∅ ⊆ f (∅) ⊆ f 2(∅) ⊆ · · ·

• least fixpoint LFP f defined as first stable element of sequence

Ex.: LFP X . p(x) ∨ ∃y . E (x , y) ∧ X (y) (reachability of a node where p holds)

Ex.: LFP X .
(
X (x) ∧ ∃y . x > y ∧ ¬X (y)

)
∨
(
¬X (x) ∧ ∀y . x > y → X (y)

)

binary incrementation not monotone → need partial fixpoint:

• f : X 7→ f (X) yields sequence ∅, f (∅), f 2(∅), . . .

• PFP f =

{
f i (∅), if f i (∅) = f i+1(∅)

∅, otherwise

Obs.: sequence either stabilizes after at most exponentially many steps, or it cycles
3 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP)

Types:
τ ::= • (individuals) | τ1, . . . , τn (cross product) | (τ) sets

• ord(•) = 1,

• ord(τ1, . . . , τn) = max{ord(τ1), . . . , ord(τn)}
• ord((τ)) = 1 + ord(τ)

Formulas of HO

+PFP

:

φ ::= p(X) | E (X ,Y) | X (Y⃗) | φ ∨ φ | ¬φ | ∃X τ . φ

|
(
PFP X τ . φ

)
(Y⃗)

where Y⃗ = Y1, . . . ,Yn, type annotations dropped where possible

Ex.: < (written inline) is strict total order in ψ

∃ <(•,•) . ψ(<) ∧ ∀x•, y•, z•. (x < y ∧ y < z → x < z)

∧ x ̸< x ∧ (x ̸= y → x < y ∨ y < x)

Obs.: w.l.o.g. structures ordered from now on

4 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP)

Types:
τ ::= • (individuals) | τ1, . . . , τn (cross product) | (τ) sets

• ord(•) = 1,

• ord(τ1, . . . , τn) = max{ord(τ1), . . . , ord(τn)}
• ord((τ)) = 1 + ord(τ)

Formulas of HO

+PFP

:

φ ::= p(X) | E (X ,Y) | X (Y⃗) | φ ∨ φ | ¬φ | ∃X τ . φ

|
(
PFP X τ . φ

)
(Y⃗)

where Y⃗ = Y1, . . . ,Yn, type annotations dropped where possible

Ex.: < (written inline) is strict total order in ψ

∃ <(•,•) . ψ(<) ∧ ∀x•, y•, z•. (x < y ∧ y < z → x < z)

∧ x ̸< x ∧ (x ̸= y → x < y ∨ y < x)

Obs.: w.l.o.g. structures ordered from now on

4 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP)

Types:
τ ::= • (individuals) | τ1, . . . , τn (cross product) | (τ) sets

• ord(•) = 1,

• ord(τ1, . . . , τn) = max{ord(τ1), . . . , ord(τn)}
• ord((τ)) = 1 + ord(τ)

Formulas of HO

+PFP

:

φ ::= p(X) | E (X ,Y) | X (Y⃗) | φ ∨ φ | ¬φ | ∃X τ . φ

|
(
PFP X τ . φ

)
(Y⃗)

where Y⃗ = Y1, . . . ,Yn, type annotations dropped where possible

Ex.: < (written inline) is strict total order in ψ

∃ <(•,•) . ψ(<) ∧ ∀x•, y•, z•. (x < y ∧ y < z → x < z)

∧ x ̸< x ∧ (x ̸= y → x < y ∨ y < x)

Obs.: w.l.o.g. structures ordered from now on
4 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP)

Types:
τ ::= • (individuals) | τ1, . . . , τn (cross product) | (τ) sets

• ord(•) = 1,

• ord(τ1, . . . , τn) = max{ord(τ1), . . . , ord(τn)}
• ord((τ)) = 1 + ord(τ)

Formulas of HO+PFP:

φ ::= p(X) | E (X ,Y) | X (Y⃗) | φ ∨ φ | ¬φ | ∃X τ . φ |
(
PFP X τ . φ

)
(Y⃗)

where Y⃗ = Y1, . . . ,Yn, type annotations dropped where possible

Ex.: < (written inline) is strict total order in ψ

∃ <(•,•) . ψ(<) ∧ ∀x•, y•, z•. (x < y ∧ y < z → x < z)

∧ x ̸< x ∧ (x ̸= y → x < y ∨ y < x)

Obs.: w.l.o.g. structures ordered from now on
4 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP), cont’d.

Ex.:
(
PFP X (τ).

(
X = ∅ ∧ φinit(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φend

with τ as type of x (reachability of some end position from start)

Obs.: this form of reachability test does not store the full set of reachable positions
(cf. LFP approach) → less space used

An application:

Ex.:
PFP X . X = Y ∨

(
(X (x) ∧ ∃y . x > y ∧ ¬X (y)) ∨ (¬X (x) ∧ ∀y . x > y → X (y))

)
(Z)

5 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP), cont’d.

Ex.:
(
PFP X (τ).

(
X = ∅ ∧ φinit(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φend

with τ as type of x (reachability of some end position from start)

Obs.: this form of reachability test does not store the full set of reachable positions
(cf. LFP approach) → less space used

An application:

Ex.:
PFP X . X = Y ∨

(
(X (x) ∧ ∃y . x > y ∧ ¬X (y)) ∨ (¬X (x) ∧ ∀y . x > y → X (y))

)
(Z)

5 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP), cont’d.

Ex.:
(
PFP X (τ).

(
X = ∅ ∧ φinit(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φend

with τ as type of x (reachability of some end position from start)

Obs.: this form of reachability test does not store the full set of reachable positions
(cf. LFP approach) → less space used

An application:

Ex.:
PFP X . X = Y ∨

(
(X (x) ∧ ∃y . x > y ∧ ¬X (y)) ∨ (¬X (x) ∧ ∀y . x > y → X (y))

)
(Z)

5 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP), cont’d.

Ex.:
(
PFP X (τ).

(
X = ∅ ∧ φinit(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φend

with τ as type of x (reachability of some end position from start)

Obs.: this form of reachability test does not store the full set of reachable positions
(cf. LFP approach) → less space used

An application:

Ex.:
PFP X . X = Y ∨

(
(X (x) ∧ ∃y . x > y ∧ ¬X (y)) ∨ (¬X (x) ∧ ∀y . x > y → X (y))

)
(Z)

5 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP), cont’d.

Ex.:
(
PFP X (τ).

(
X = ∅ ∧ φinit(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φend

with τ as type of x (reachability of some end position from start)

Obs.: this form of reachability test does not store the full set of reachable positions
(cf. LFP approach) → less space used

An application:

Ex.:
PFP X . X = Y ∨

(
(X (x) ∧ ∃y . x > y ∧ ¬X (y)) ∨ (¬X (x) ∧ ∀y . x > y → X (y))

)
(Z)

5 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP), cont’d.

Ex.:
(
PFP X (τ).

(
X = ∅ ∧ φinit(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φend

with τ as type of x (reachability of some end position from start)

Obs.: this form of reachability test does not store the full set of reachable positions
(cf. LFP approach) → less space used

An application:

Ex.:
PFP X . X = Y ∨

(
(X (x) ∧ ∃y . x > y ∧ ¬X (y)) ∨ (¬X (x) ∧ ∀y . x > y → X (y))

)
(Z)

5 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP), cont’d.

Ex.:
(
PFP X (τ).

(
X = ∅ ∧ φinit(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φend

with τ as type of x (reachability of some end position from start)

Obs.: this form of reachability test does not store the full set of reachable positions
(cf. LFP approach) → less space used

An application:

Ex.:
PFP X . X = Y ∨

(
(X (x) ∧ ∃y . x > y ∧ ¬X (y)) ∨ (¬X (x) ∧ ∀y . x > y → X (y))

)
(Z)

5 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP), cont’d.

Ex.:
(
PFP X (τ).

(
X = ∅ ∧ φinit(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φend

with τ as type of x (reachability of some end position from start)

Obs.: this form of reachability test does not store the full set of reachable positions
(cf. LFP approach) → less space used

An application:

Ex.:
PFP X . X = Y ∨

(
(X (x) ∧ ∃y . x > y ∧ ¬X (y)) ∨ (¬X (x) ∧ ∀y . x > y → X (y))

)
(Z)

5 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Higher-Order Logic (+ PFP), cont’d.

Ex.:
(
PFP X (τ).

(
X = ∅ ∧ φinit(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φend

with τ as type of x (reachability of some end position from start)

Obs.: this form of reachability test does not store the full set of reachable positions
(cf. LFP approach) → less space used

An application:

Ex.:
PFP X . X = Y ∨

(
(X (x) ∧ ∃y . x > y ∧ ¬X (y)) ∨ (¬X (x) ∧ ∀y . x > y → X (y))

)
(Z)

5 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Ordering Higher-Order Relations

technical requirement: In order to encode Turing machine runs, we need to count up
to large numbers

have already seen that w.l.o.g. all structures ordered

Ex.: φ•,...,•
< (X1, . . . ,Xn,Y1, . . . ,Yn) =

∨n
i=1 < (Xi ,Yi) ∧

∧i−1
j=1 ¬ < (Yj ,Xj)

(first tuple is lexicographically smaller than second one)

Ex.: φ
(•,...,•)
< (X •,...,•,Y •,...,•) =

∃(Z⃗ •,...,•). Y (Z⃗) ∧ ¬X (Z⃗) ∧ ∀(Z⃗ ′•,...,•). φ•,...,•
< (Z⃗ , Z⃗ ′) → (X (Z⃗ ′) → Y (Z⃗ ′))

(the first relation is lexicographically smaller than second one)

can continue this:
Ex.: φ

((•,...,•))
< (X ((•,...,•)),Y ((•,...,•))) =

∃Z (•,...,•). Y (Z) ∧ ¬X (Z) ∧ ∀Z ′(•,...,•). φ
(•,...,•)
< (Z ′,Z) → (X (Z ′) → Y (Z ′))

Lemma: All types can be considered ordered from now on

also have formulas to find e.g., first, last element of order

6 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Ordering Higher-Order Relations

technical requirement: In order to encode Turing machine runs, we need to count up
to large numbers

have already seen that w.l.o.g. all structures ordered

Ex.: φ•,...,•
< (X1, . . . ,Xn,Y1, . . . ,Yn) =

∨n
i=1 < (Xi ,Yi) ∧

∧i−1
j=1 ¬ < (Yj ,Xj)

(first tuple is lexicographically smaller than second one)

Ex.: φ
(•,...,•)
< (X •,...,•,Y •,...,•) =

∃(Z⃗ •,...,•). Y (Z⃗) ∧ ¬X (Z⃗) ∧ ∀(Z⃗ ′•,...,•). φ•,...,•
< (Z⃗ , Z⃗ ′) → (X (Z⃗ ′) → Y (Z⃗ ′))

(the first relation is lexicographically smaller than second one)

can continue this:
Ex.: φ

((•,...,•))
< (X ((•,...,•)),Y ((•,...,•))) =

∃Z (•,...,•). Y (Z) ∧ ¬X (Z) ∧ ∀Z ′(•,...,•). φ
(•,...,•)
< (Z ′,Z) → (X (Z ′) → Y (Z ′))

Lemma: All types can be considered ordered from now on

also have formulas to find e.g., first, last element of order

6 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Ordering Higher-Order Relations

technical requirement: In order to encode Turing machine runs, we need to count up
to large numbers

have already seen that w.l.o.g. all structures ordered

Ex.: φ•,...,•
< (X1, . . . ,Xn,Y1, . . . ,Yn) =

∨n
i=1 < (Xi ,Yi) ∧

∧i−1
j=1 ¬ < (Yj ,Xj)

(first tuple is lexicographically smaller than second one)

Ex.: φ
(•,...,•)
< (X •,...,•,Y •,...,•) =

∃(Z⃗ •,...,•). Y (Z⃗) ∧ ¬X (Z⃗) ∧ ∀(Z⃗ ′•,...,•). φ•,...,•
< (Z⃗ , Z⃗ ′) → (X (Z⃗ ′) → Y (Z⃗ ′))

(the first relation is lexicographically smaller than second one)

can continue this:
Ex.: φ

((•,...,•))
< (X ((•,...,•)),Y ((•,...,•))) =

∃Z (•,...,•). Y (Z) ∧ ¬X (Z) ∧ ∀Z ′(•,...,•). φ
(•,...,•)
< (Z ′,Z) → (X (Z ′) → Y (Z ′))

Lemma: All types can be considered ordered from now on

also have formulas to find e.g., first, last element of order

6 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Ordering Higher-Order Relations

technical requirement: In order to encode Turing machine runs, we need to count up
to large numbers

have already seen that w.l.o.g. all structures ordered

Ex.: φ•,...,•
< (X1, . . . ,Xn,Y1, . . . ,Yn) =

∨n
i=1 < (Xi ,Yi) ∧

∧i−1
j=1 ¬ < (Yj ,Xj)

(first tuple is lexicographically smaller than second one)

Ex.: φ
(•,...,•)
< (X •,...,•,Y •,...,•) =

∃(Z⃗ •,...,•). Y (Z⃗) ∧ ¬X (Z⃗) ∧ ∀(Z⃗ ′•,...,•). φ•,...,•
< (Z⃗ , Z⃗ ′) → (X (Z⃗ ′) → Y (Z⃗ ′))

(the first relation is lexicographically smaller than second one)

can continue this:
Ex.: φ

((•,...,•))
< (X ((•,...,•)),Y ((•,...,•))) =

∃Z (•,...,•). Y (Z) ∧ ¬X (Z) ∧ ∀Z ′(•,...,•). φ
(•,...,•)
< (Z ′,Z) → (X (Z ′) → Y (Z ′))

Lemma: All types can be considered ordered from now on

also have formulas to find e.g., first, last element of order
6 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Characterizing k-EXPSPACE

HOk+1 = formulas with types of order at most k+1 (PFP of order at most k+2)

for HOk+1 + PFP = k-EXPSPACE we need:

1) queries def. by formulas in HOk+1 + PFP can be computed in k-EXPSPACE
2) queries that can be computed in k-EXPSPACE can be def. in HOk+1 + PFP

1) is straightforward
• HOk+1 has k-EXPTIME model checking
• PFP of order k + 2 have only k + 1-fold exp. many different possible values
→ iterate until stable, but stop if (k+1-fold exp.) counter runs out (log. coding)

for 2), let

• M an EXP
p(n)
k -space-bounded DTM (p poly.) and w ∈ Σ∗ input

• T labelled graph

Idea:
• encode configurations of M on input w as (sets of) tuples in T
• find formula that maps conf. to unique successor (or same conf. if accepting)
• iteration of PFP of that formula simulates run of M on w
• query result for (encoding of) accepting conf.

7 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Characterizing k-EXPSPACE

HOk+1 = formulas with types of order at most k+1 (PFP of order at most k+2)

for HOk+1 + PFP = k-EXPSPACE we need:

1) queries def. by formulas in HOk+1 + PFP can be computed in k-EXPSPACE
2) queries that can be computed in k-EXPSPACE can be def. in HOk+1 + PFP

1) is straightforward
• HOk+1 has k-EXPTIME model checking
• PFP of order k + 2 have only k + 1-fold exp. many different possible values

→ iterate until stable, but stop if (k+1-fold exp.) counter runs out (log. coding)

for 2), let

• M an EXP
p(n)
k -space-bounded DTM (p poly.) and w ∈ Σ∗ input

• T labelled graph

Idea:
• encode configurations of M on input w as (sets of) tuples in T
• find formula that maps conf. to unique successor (or same conf. if accepting)
• iteration of PFP of that formula simulates run of M on w
• query result for (encoding of) accepting conf.

7 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Characterizing k-EXPSPACE

HOk+1 = formulas with types of order at most k+1 (PFP of order at most k+2)

for HOk+1 + PFP = k-EXPSPACE we need:

1) queries def. by formulas in HOk+1 + PFP can be computed in k-EXPSPACE
2) queries that can be computed in k-EXPSPACE can be def. in HOk+1 + PFP

1) is straightforward
• HOk+1 has k-EXPTIME model checking
• PFP of order k + 2 have only k + 1-fold exp. many different possible values
→ iterate until stable, but stop if (k+1-fold exp.) counter runs out (log. coding)

for 2), let

• M an EXP
p(n)
k -space-bounded DTM (p poly.) and w ∈ Σ∗ input

• T labelled graph

Idea:
• encode configurations of M on input w as (sets of) tuples in T
• find formula that maps conf. to unique successor (or same conf. if accepting)
• iteration of PFP of that formula simulates run of M on w
• query result for (encoding of) accepting conf.

7 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Characterizing k-EXPSPACE

HOk+1 = formulas with types of order at most k+1 (PFP of order at most k+2)

for HOk+1 + PFP = k-EXPSPACE we need:

1) queries def. by formulas in HOk+1 + PFP can be computed in k-EXPSPACE
2) queries that can be computed in k-EXPSPACE can be def. in HOk+1 + PFP

1) is straightforward
• HOk+1 has k-EXPTIME model checking
• PFP of order k + 2 have only k + 1-fold exp. many different possible values
→ iterate until stable, but stop if (k+1-fold exp.) counter runs out (log. coding)

for 2), let

• M an EXP
p(n)
k -space-bounded DTM (p poly.) and w ∈ Σ∗ input

• T labelled graph

Idea:
• encode configurations of M on input w as (sets of) tuples in T

• find formula that maps conf. to unique successor (or same conf. if accepting)
• iteration of PFP of that formula simulates run of M on w
• query result for (encoding of) accepting conf.

7 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Characterizing k-EXPSPACE

HOk+1 = formulas with types of order at most k+1 (PFP of order at most k+2)

for HOk+1 + PFP = k-EXPSPACE we need:

1) queries def. by formulas in HOk+1 + PFP can be computed in k-EXPSPACE
2) queries that can be computed in k-EXPSPACE can be def. in HOk+1 + PFP

1) is straightforward
• HOk+1 has k-EXPTIME model checking
• PFP of order k + 2 have only k + 1-fold exp. many different possible values
→ iterate until stable, but stop if (k+1-fold exp.) counter runs out (log. coding)

for 2), let

• M an EXP
p(n)
k -space-bounded DTM (p poly.) and w ∈ Σ∗ input

• T labelled graph

Idea:
• encode configurations of M on input w as (sets of) tuples in T
• find formula that maps conf. to unique successor (or same conf. if accepting)
• iteration of PFP of that formula simulates run of M on w

• query result for (encoding of) accepting conf.

7 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Characterizing k-EXPSPACE

HOk+1 = formulas with types of order at most k+1 (PFP of order at most k+2)

for HOk+1 + PFP = k-EXPSPACE we need:

1) queries def. by formulas in HOk+1 + PFP can be computed in k-EXPSPACE
2) queries that can be computed in k-EXPSPACE can be def. in HOk+1 + PFP

1) is straightforward
• HOk+1 has k-EXPTIME model checking
• PFP of order k + 2 have only k + 1-fold exp. many different possible values
→ iterate until stable, but stop if (k+1-fold exp.) counter runs out (log. coding)

for 2), let

• M an EXP
p(n)
k -space-bounded DTM (p poly.) and w ∈ Σ∗ input

• T labelled graph

Idea:
• encode configurations of M on input w as (sets of) tuples in T
• find formula that maps conf. to unique successor (or same conf. if accepting)
• iteration of PFP of that formula simulates run of M on w
• query result for (encoding of) accepting conf.

7 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Configurations of Space-Bounded DTM

configuration of M on input w is (q, h, t) with

• q state of M
• 0 ≤ h ≤ EXP

p(|w |)
k head position,

• t : {0, . . . ,EXPp(|w |)
k } → Γ tape contents (Γ = tape alphabet)

domain of t of size EXP
p(n)
k (!)

→ must be careful to model t as one relation together with q, h

sorting out the various orders:

• type (τ) with k-fold exponentially many elements must have order k + 2

(cf. poly = EXP
p(n)
0 needs sets of individuals, i.e., order 2)

• function with such a domain is (functional) relation between domain and range

• seems to match, but we must iterate on encoding of a configuration
→ encoding needs to fit into one variable, incl. state, head position

• yields variable of type Q × τ × (τ × Γ) → order k + 2

8 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Configurations of Space-Bounded DTM

configuration of M on input w is (q, h, t) with

• q state of M
• 0 ≤ h ≤ EXP

p(|w |)
k head position,

• t : {0, . . . ,EXPp(|w |)
k } → Γ tape contents (Γ = tape alphabet)

domain of t of size EXP
p(n)
k (!)

→ must be careful to model t as one relation together with q, h

sorting out the various orders:

• type (τ) with k-fold exponentially many elements must have order k + 2

(cf. poly = EXP
p(n)
0 needs sets of individuals, i.e., order 2)

• function with such a domain is (functional) relation between domain and range

• seems to match, but we must iterate on encoding of a configuration
→ encoding needs to fit into one variable, incl. state, head position

• yields variable of type Q × τ × (τ × Γ) → order k + 2

8 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Configurations of Space-Bounded DTM

configuration of M on input w is (q, h, t) with

• q state of M
• 0 ≤ h ≤ EXP

p(|w |)
k head position,

• t : {0, . . . ,EXPp(|w |)
k } → Γ tape contents (Γ = tape alphabet)

domain of t of size EXP
p(n)
k (!)

→ must be careful to model t as one relation together with q, h

sorting out the various orders:

• type (τ) with k-fold exponentially many elements must have order k + 2

(cf. poly = EXP
p(n)
0 needs sets of individuals, i.e., order 2)

• function with such a domain is (functional) relation between domain and range

• seems to match, but we must iterate on encoding of a configuration
→ encoding needs to fit into one variable, incl. state, head position

• yields variable of type Q × τ × (τ × Γ) → order k + 2

8 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Configurations of Space-Bounded DTM

configuration of M on input w is (q, h, t) with

• q state of M
• 0 ≤ h ≤ EXP

p(|w |)
k head position,

• t : {0, . . . ,EXPp(|w |)
k } → Γ tape contents (Γ = tape alphabet)

domain of t of size EXP
p(n)
k (!)

→ must be careful to model t as one relation together with q, h

sorting out the various orders:

• type (τ) with k-fold exponentially many elements must have order k + 2

(cf. poly = EXP
p(n)
0 needs sets of individuals, i.e., order 2)

• function with such a domain is (functional) relation between domain and range

• seems to match, but we must iterate on encoding of a configuration

→ encoding needs to fit into one variable, incl. state, head position

• yields variable of type Q × τ × (τ × Γ) → order k + 2

8 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Configurations of Space-Bounded DTM

configuration of M on input w is (q, h, t) with

• q state of M
• 0 ≤ h ≤ EXP

p(|w |)
k head position,

• t : {0, . . . ,EXPp(|w |)
k } → Γ tape contents (Γ = tape alphabet)

domain of t of size EXP
p(n)
k (!)

→ must be careful to model t as one relation together with q, h

sorting out the various orders:

• type (τ) with k-fold exponentially many elements must have order k + 2

(cf. poly = EXP
p(n)
0 needs sets of individuals, i.e., order 2)

• function with such a domain is (functional) relation between domain and range

• seems to match, but we must iterate on encoding of a configuration
→ encoding needs to fit into one variable, incl. state, head position

• yields variable of type Q × τ × (τ × Γ) → order k + 2

8 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Configurations of Space-Bounded DTM, cont’d.

configuration of M on input w is (q, h, t) with

• q state of M
• 0 ≤ h ≤ EXP

p(|w |)
k head position,

• t : {0, . . . ,EXPp(|w |)
k } → Γ tape contents (Γ = tape alphabet)

represent C as tuple of the form (s,H,T) where

• s ∈ T encodes the state

• H ∈ JτK encodes head position as number between 0 and EXP
p(n)
k

• I ∈ (JτK × T) encodes tape

• ex. exactly one s ′ with (i , s ′) ∈ I f.a. i ∈ JτK

NB: A bit more challenging if cross product type not available standalone

9 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Configurations of Space-Bounded DTM, cont’d.

configuration of M on input w is (q, h, t) with

• q state of M
• 0 ≤ h ≤ EXP

p(|w |)
k head position,

• t : {0, . . . ,EXPp(|w |)
k } → Γ tape contents (Γ = tape alphabet)

represent C as tuple of the form (s,H,T) where

• s ∈ T encodes the state

• H ∈ JτK encodes head position as number between 0 and EXP
p(n)
k

• I ∈ (JτK × T) encodes tape

• ex. exactly one s ′ with (i , s ′) ∈ I f.a. i ∈ JτK

NB: A bit more challenging if cross product type not available standalone

9 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Configurations of Space-Bounded DTM, cont’d.

configuration of M on input w is (q, h, t) with

• q state of M
• 0 ≤ h ≤ EXP

p(|w |)
k head position,

• t : {0, . . . ,EXPp(|w |)
k } → Γ tape contents (Γ = tape alphabet)

represent C as tuple of the form (s,H,T) where

• s ∈ T encodes the state

• H ∈ JτK encodes head position as number between 0 and EXP
p(n)
k

• I ∈ (JτK × T) encodes tape

• ex. exactly one s ′ with (i , s ′) ∈ I f.a. i ∈ JτK

NB: A bit more challenging if cross product type not available standalone

9 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Runs

type (τ) from last slide can be chosen of order k + 2 (form: ((· · · (•, . . . , •) · · ·)))
• hence a tuple of the form (s,H,T) is also of order k + 2
→ encoding of conf. is object of order k + 2

• initial and final configurations definable in HOk+1+PFP

Recall:
(
PFP X (τ). X =

(
∅ ∧ φ(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φ

• formalizing that (encoding of) one conf. is successor of another is possible

• not shown here since transition table of DTM must be encoded (lots of cases)

• requires some basic arithmetic (but no uniform notion of addition)

Theorem 1

HOk+1+PFP captures k-EXPSPACE for k ≥ 0.

10 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Runs

type (τ) from last slide can be chosen of order k + 2 (form: ((· · · (•, . . . , •) · · ·)))
• hence a tuple of the form (s,H,T) is also of order k + 2
→ encoding of conf. is object of order k + 2

• initial and final configurations definable in HOk+1+PFP

Recall:
(
PFP X (τ). X =

(
∅ ∧ φ(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φ

• formalizing that (encoding of) one conf. is successor of another is possible

• not shown here since transition table of DTM must be encoded (lots of cases)

• requires some basic arithmetic (but no uniform notion of addition)

Theorem 1

HOk+1+PFP captures k-EXPSPACE for k ≥ 0.

10 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Runs

type (τ) from last slide can be chosen of order k + 2 (form: ((· · · (•, . . . , •) · · ·)))
• hence a tuple of the form (s,H,T) is also of order k + 2
→ encoding of conf. is object of order k + 2

• initial and final configurations definable in HOk+1+PFP

Recall:
(
PFP X (τ). X =

(
∅ ∧ φinit(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φend

• formalizing that (encoding of) one conf. is successor of another is possible

• not shown here since transition table of DTM must be encoded (lots of cases)

• requires some basic arithmetic (but no uniform notion of addition)

Theorem 1

HOk+1+PFP captures k-EXPSPACE for k ≥ 0.

10 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Runs

type (τ) from last slide can be chosen of order k + 2 (form: ((· · · (•, . . . , •) · · ·)))
• hence a tuple of the form (s,H,T) is also of order k + 2
→ encoding of conf. is object of order k + 2

• initial and final configurations definable in HOk+1+PFP

Recall:
(
PFP X (τ). X =

(
∅ ∧ φinit(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φacc

• formalizing that (encoding of) one conf. is successor of another is possible

• not shown here since transition table of DTM must be encoded (lots of cases)

• requires some basic arithmetic (but no uniform notion of addition)

Theorem 1

HOk+1+PFP captures k-EXPSPACE for k ≥ 0.

10 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Encoding Runs

type (τ) from last slide can be chosen of order k + 2 (form: ((· · · (•, . . . , •) · · ·)))
• hence a tuple of the form (s,H,T) is also of order k + 2
→ encoding of conf. is object of order k + 2

• initial and final configurations definable in HOk+1+PFP

Recall:
(
PFP X (τ). X =

(
∅ ∧ φinit(x)

)
∨
(
∃y τ .φstep(x , y) ∧ X (y)

))
φacc

• formalizing that (encoding of) one conf. is successor of another is possible

• not shown here since transition table of DTM must be encoded (lots of cases)

• requires some basic arithmetic (but no uniform notion of addition)

Theorem 1

HOk+1+PFP captures k-EXPSPACE for k ≥ 0.

10 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Preview: Extending Otto’s Theorem

Thm. ([Otto’99]): bisimulation-invariant PTIME captured by the polyadic mu-calculus

• bisimulation-invariance: queries must answer the same for bisimilar inputs

• proof uses Immerman-Vardi (PTIME = FO+LFP on ord. str.), then translates
between FO+LFP and poly. µ-calc.

• Note: ∼ invariance allows us to drop order requirement (since definable)!

Extensions:
Thm. ([B./Kronenberger/Lange’22]): ∼-inv. k-EXPTIME is capt. by order-k poly. HFL

• HFL = higher-order modal fixpoint logic ([Viswanathan/Viswanathan’04]
obtained by adding simply-typed λ-calculus to µ-calculus, + (function) fixpoints)

• NB: different notion of order
• follows Otto’s pattern, use HOk+1+LFP = k-EXPTIME (Freire/Martens’11)

Thm.: ∼-inv. k-EXPSPACE is captured by tail-recursive order-k+1 poly. HFL

tail recursion limits interplay between fixpoints and (higher-order) functions

Questions?

11 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Preview: Extending Otto’s Theorem

Thm. ([Otto’99]): bisimulation-invariant PTIME captured by the polyadic mu-calculus

• bisimulation-invariance: queries must answer the same for bisimilar inputs
• proof uses Immerman-Vardi (PTIME = FO+LFP on ord. str.), then translates
between FO+LFP and poly. µ-calc.

• Note: ∼ invariance allows us to drop order requirement (since definable)!

Extensions:
Thm. ([B./Kronenberger/Lange’22]): ∼-inv. k-EXPTIME is capt. by order-k poly. HFL

• HFL = higher-order modal fixpoint logic ([Viswanathan/Viswanathan’04]
obtained by adding simply-typed λ-calculus to µ-calculus, + (function) fixpoints)

• NB: different notion of order
• follows Otto’s pattern, use HOk+1+LFP = k-EXPTIME (Freire/Martens’11)

Thm.: ∼-inv. k-EXPSPACE is captured by tail-recursive order-k+1 poly. HFL

tail recursion limits interplay between fixpoints and (higher-order) functions

Questions?

11 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Preview: Extending Otto’s Theorem

Thm. ([Otto’99]): bisimulation-invariant PTIME captured by the polyadic mu-calculus

• bisimulation-invariance: queries must answer the same for bisimilar inputs
• proof uses Immerman-Vardi (PTIME = FO+LFP on ord. str.), then translates
between FO+LFP and poly. µ-calc.

• Note: ∼ invariance allows us to drop order requirement (since definable)!

Extensions:
Thm. ([B./Kronenberger/Lange’22]): ∼-inv. k-EXPTIME is capt. by order-k poly. HFL

• HFL = higher-order modal fixpoint logic ([Viswanathan/Viswanathan’04]
obtained by adding simply-typed λ-calculus to µ-calculus, + (function) fixpoints)

• NB: different notion of order
• follows Otto’s pattern, use HOk+1+LFP = k-EXPTIME (Freire/Martens’11)

Thm.: ∼-inv. k-EXPSPACE is captured by tail-recursive order-k+1 poly. HFL

tail recursion limits interplay between fixpoints and (higher-order) functions

Questions?

11 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Preview: Extending Otto’s Theorem

Thm. ([Otto’99]): bisimulation-invariant PTIME captured by the polyadic mu-calculus

• bisimulation-invariance: queries must answer the same for bisimilar inputs
• proof uses Immerman-Vardi (PTIME = FO+LFP on ord. str.), then translates
between FO+LFP and poly. µ-calc.

• Note: ∼ invariance allows us to drop order requirement (since definable)!

Extensions:
Thm. ([B./Kronenberger/Lange’22]): ∼-inv. k-EXPTIME is capt. by order-k poly. HFL

• HFL = higher-order modal fixpoint logic ([Viswanathan/Viswanathan’04]
obtained by adding simply-typed λ-calculus to µ-calculus, + (function) fixpoints)

• NB: different notion of order
• follows Otto’s pattern, use HOk+1+LFP = k-EXPTIME (Freire/Martens’11)

Thm.: ∼-inv. k-EXPSPACE is captured by tail-recursive order-k+1 poly. HFL

tail recursion limits interplay between fixpoints and (higher-order) functions

Questions?

11 / 11

Bruse, Kronenberger, Lange: Characterizing the Exponential-Space Hierarchy via Partial Fixpoints

Preview: Extending Otto’s Theorem

Thm. ([Otto’99]): bisimulation-invariant PTIME captured by the polyadic mu-calculus

• bisimulation-invariance: queries must answer the same for bisimilar inputs
• proof uses Immerman-Vardi (PTIME = FO+LFP on ord. str.), then translates
between FO+LFP and poly. µ-calc.

• Note: ∼ invariance allows us to drop order requirement (since definable)!

Extensions:
Thm. ([B./Kronenberger/Lange’22]): ∼-inv. k-EXPTIME is capt. by order-k poly. HFL

• HFL = higher-order modal fixpoint logic ([Viswanathan/Viswanathan’04]
obtained by adding simply-typed λ-calculus to µ-calculus, + (function) fixpoints)

• NB: different notion of order
• follows Otto’s pattern, use HOk+1+LFP = k-EXPTIME (Freire/Martens’11)

Thm.: ∼-inv. k-EXPSPACE is captured by tail-recursive order-k+1 poly. HFL

tail recursion limits interplay between fixpoints and (higher-order) functions

Questions?

11 / 11

