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Descriptive Complexity

characterize complexity classes via logical ressources. £ captures C if:
1) queries defined by formulas in £ can be computed in C
2) queries that can be computed in C can be defined in £

only (boolean) queries on finite structures of interest

examples:
e 3SO = NP ([Fagin'74])
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® SO = PH ([Stockmeyer'76])
e HO**! 4 LFP = k—EXPTIME over ordered* str. ([Freire/Martins'11])
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x: for k=10
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Partial Fixpoints

Knaster-Tarski/Kleene guarantee well-definedness of fixpoints of monotone functions:

® f: X f(X) (in powerset lattice) yields sequence () C £(0)) C f2(()) C - -
® l|east fixpoint LFP f defined as first stable element of sequence

Ex.: LFP X. p(x) VvV 3y. E(x,y) A X(y) (reachability of a node where p holds)
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e f: X — f(X) yields sequence 0, f((), F2(()), ...
i eociomy _ pitl
. pEP f_{f((b), if £1(0) = F71(0)
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Obs.: sequence either stabilizes after at most exponentially many steps, or it cycles
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Higher-Order Logic (+ PFP)

Types:
7 = e (individuals) | 1, ..., 7, (cross product) | (7) sets
e ord(e) =1,
¢ ord(7y,...,m) = max{ord(r1),...,ord(7y)}
® ord((7)) =1+ ord(7)
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technical requirement: In order to encode Turing machine runs, we need to count up
to large numbers

have already seen that w.l.o.g. all structures ordered

Ex.: 2% (Xp,. . Xn, Y1, .0, Ya) = VI < (Xi, Vi) ANZT - < (Y, X0)
(first tuple is lexicographically smaller than second one)

Ex.: §0(<.7M7.)(X.""’., yo,...,o) _
AZo*). Y(Z) AN -X(Z)ANZ"0). o2, 7)) — (X(Z) = Y(2))
(the first relation is lexicographically smaller than second one)
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e T labelled graph
Idea:
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iteration of PFP of that formula simulates run of M on w
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e 0<h< EXP’;(IWD head position,
e t:{0,..., EXP’Z(‘WD} — I tape contents (I = tape alphabet)
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¢ type (7) with k-fold exponentially many elements must have order k + 2
(cf. poly = EXPg(") needs sets of individuals, i.e., order 2)
e function with such a domain is (functional) relation between domain and range

® seems to match, but we must iterate on encoding of a configuration
— encoding needs to fit into one variable, incl. state, head position

¢ vyields variable of type Q x 7 x (7 x ') — order k + 2
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Encoding Configurations of Space-Bounded DTM, cont’d.
configuration of M on input w is (q, h, t) with
® g state of M
o 0 < h<EXPP") head position,
e t:{0,..., EXP‘;(‘WD} — I tape contents (I" = tape alphabet)

represent C as tuple of the form (s, H, T') where

® s c T encodes the state

® H € 7] encodes head position as number between 0 and EXP’;(")
e | € ([r] x T) encodes tape

® ex. exactly one s" with (i,s') € | f.a. i € [7]

NB: A bit more challenging if cross product type not available standalone
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¢ formalizing that (encoding of) one conf. is successor of another is possible

® not shown here since transition table of DTM must be encoded (lots of cases)
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Encoding Runs

type (7) from last slide can be chosen of order k + 2 (form: ((---(e,...,®)---)))

® hence a tuple of the form (s, H, T) is also of order k + 2
— encoding of conf. is object of order k + 2

* initial and final configurations definable in HOK*14+PFP

Recall: (PFP XM X = (0 A ginie(x)) V (3y - @step(X, ¥) A X(y)))cpacc

e formalizing that (encoding of) one conf. is successor of another is possible
® not shown here since transition table of DTM must be encoded (lots of cases)

® requires some basic arithmetic (but no uniform notion of addition)

HO**1 1 PFP captures k-EXPSPACE for k > 0. ,
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® HFL = higher-order modal fixpoint logic ([Viswanathan/Viswanathan'04]
obtained by adding simply-typed A-calculus to p-calculus, + (function) fixpoints)

* NB: different notion of order
e follows Otto’s pattern, use HOK*1+LFP = k-EXPTIME (Freire/Martens'11)
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Preview: Extending Otto’s Theorem

Thm. ([Otto'99]): bisimulation-invariant PTIME captured by the polyadic mu-calculus
® bisimulation-invariance: queries must answer the same for bisimilar inputs
e proof uses Immerman-Vardi (PTIME = FO+LFP on ord. str.), then translates
between FO+LFP and poly. p-calc.
® Note: ~ invariance allows us to drop order requirement (since definable)!

Extensions:
Thm. ([B./Kronenberger/Lange'22]): ~-inv. k-EXPTIME is capt. by order-k poly. HFL

® HFL = higher-order modal fixpoint logic ([Viswanathan/Viswanathan'04]

obtained by adding simply-typed A-calculus to p-calculus, + (function) fixpoints)
* NB: different notion of order
e follows Otto’s pattern, use HOK*1+LFP = k-EXPTIME (Freire/Martens'11)

Thm.: ~-inv. k-EXPSPACE is captured by tail-recursive order-k+1 poly. HFL

tail recursion limits interplay between fixpoints and (higher-order) functions

Questions?
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