
Non-Uniform Polynomial Time and Non-Wellfounded
Parsimonious Proofs

FICS
Naples, 19 February 2024

Matteo Acclavio 1 Gianluca Curzi 2 Giulio Guerrieri 1

1University of Sussex

2University of Gothenburg

What is this talk about?
Parsimonious linear logic = subsystem of LL based on the principles of

parsimonious logic [MT15, Maz15]

linear logic modalities !, ? as least and greatest fixed points

!A ∼ streams ?A ∼ lists

In [MT15] characterisation of complexity classes via parsimonious logic:

P = polynomial time decidability
P/poly = non-uniform version of P

This talk: non-wellfounded proof systems for parsimonious linear logic:

wrPLL∞
2 (non-uniform) vs rPLL∞

2 (uniform)

Our main result: complexity-theoretic characterisations:

wrPLL∞
2 = P/poly vs rPLL∞

2 = P

1 / 10

What is this talk about?
Parsimonious linear logic = subsystem of LL based on the principles of

parsimonious logic [MT15, Maz15]

linear logic modalities !, ? as least and greatest fixed points

!A ∼ streams ?A ∼ lists

In [MT15] characterisation of complexity classes via parsimonious logic:

P = polynomial time decidability
P/poly = non-uniform version of P

This talk: non-wellfounded proof systems for parsimonious linear logic:

wrPLL∞
2 (non-uniform) vs rPLL∞

2 (uniform)

Our main result: complexity-theoretic characterisations:

wrPLL∞
2 = P/poly vs rPLL∞

2 = P

1 / 10

What is this talk about?
Parsimonious linear logic = subsystem of LL based on the principles of

parsimonious logic [MT15, Maz15]

linear logic modalities !, ? as least and greatest fixed points

!A ∼ streams ?A ∼ lists

In [MT15] characterisation of complexity classes via parsimonious logic:

P = polynomial time decidability
P/poly = non-uniform version of P

This talk: non-wellfounded proof systems for parsimonious linear logic:

wrPLL∞
2 (non-uniform) vs rPLL∞

2 (uniform)

Our main result: complexity-theoretic characterisations:

wrPLL∞
2 = P/poly vs rPLL∞

2 = P

1 / 10

What is this talk about?
Parsimonious linear logic = subsystem of LL based on the principles of

parsimonious logic [MT15, Maz15]

linear logic modalities !, ? as least and greatest fixed points

!A ∼ streams ?A ∼ lists

In [MT15] characterisation of complexity classes via parsimonious logic:

P = polynomial time decidability
P/poly = non-uniform version of P

This talk: non-wellfounded proof systems for parsimonious linear logic:

wrPLL∞
2 (non-uniform) vs rPLL∞

2 (uniform)

Our main result: complexity-theoretic characterisations:

wrPLL∞
2 = P/poly vs rPLL∞

2 = P

1 / 10

1 Parsimonious linear logic

2 Non-wellfounded parsimonious linear logic

3 Characterisation results

4 Conclusion and future work

Parsimonious linear logic

From linear logic. . .

Γ, ??A
dig

Γ, ?A
Γ, A

fp
?Γ, !A

Γ
w

Γ, ?A
Γ, A, ?A

abs
Γ, ?A

digging functorial weakening absorption
promotion

Key idea: !A as a type of (very special) streams

D

A
fp

!A

ax
A⊥, A

ax
?A⊥, ?A

⊗
A⊥, ?A⊥, A ⊗ ?A

abs
?A⊥, A ⊗ ?A

cut
A ⊗ !A

⇝∗ D

A

D

A
fp

!A
⊗

A ⊗ !A

pop ⟨D, D, . . . , D, . . .⟩ D ⊗ ⟨D, D, . . . , D, . . .⟩

2 / 10

Parsimonious linear logic

. . . to parsimonious linear logic (PLL2)

���
��H

HHHH

Γ, ??A
dig

Γ, ?A
Γ, A

fp
?Γ, !A

Γ
w

Γ, ?A
Γ, A, ?A

abs
Γ, ?A

digging functorial weakening absorption
promotion

Key idea: !A as a type of (very special) streams

D

A
fp

!A

ax
A⊥, A

ax
?A⊥, ?A

⊗
A⊥, ?A⊥, A ⊗ ?A

abs
?A⊥, A ⊗ ?A

cut
A ⊗ !A

⇝∗ D

A

D

A
fp

!A
⊗

A ⊗ !A

pop ⟨D, D, . . . , D, . . .⟩ D ⊗ ⟨D, D, . . . , D, . . .⟩

2 / 10

Parsimonious linear logic

. . . to parsimonious linear logic (PLL2)

���
��H

HHHH

Γ, ??A
dig

Γ, ?A
Γ, A

fp
?Γ, !A

Γ
w

Γ, ?A
Γ, A, ?A

abs
Γ, ?A

digging functorial weakening absorption
promotion

Key idea: !A as a type of (very special) streams

D

A
fp

!A

ax
A⊥, A

ax
?A⊥, ?A

⊗
A⊥, ?A⊥, A ⊗ ?A

abs
?A⊥, A ⊗ ?A

cut
A ⊗ !A

⇝∗ D

A

D

A
fp

!A
⊗

A ⊗ !A

pop ⟨D, D, . . . , D, . . .⟩ D ⊗ ⟨D, D, . . . , D, . . .⟩

2 / 10

Non-uniform parsimonious linear logic

Non-uniform PLL (nuPLL) = replace fp with the following:

D1

A
D2

A . . .

Dn

A . . .
nufp {Di | i ∈ N} is finite

!A

∼ ⟨D1, D2, . . . , Dn, . . .⟩

Improvement: !A as a type of streams over finite data of type A

⟨D1, D2, .., Dn, ..⟩

!A

ax
A⊥, A

ax
?A⊥, ?A

⊗
A⊥, ?A⊥, A ⊗ ?A

abs
?A⊥, A ⊗ ?A

cut
A ⊗ !A

⇝∗
D1
A

⟨D2, D3, .., Dn+1, ..⟩

!A
⊗

A ⊗ !A

pop ⟨D1, D2, . . . , Dn, . . .⟩ D1 ⊗ ⟨D2, D3, . . . , Dn+1, . . .⟩

nufp introduces some proof-theoretical notion of non-uniformity that deeply
interfaces with complexity-theoretic non-uniformity.

3 / 10

Non-uniform parsimonious linear logic

Non-uniform PLL (nuPLL) = replace fp with the following:

D1

A
D2

A . . .

Dn

A . . .
nufp {Di | i ∈ N} is finite

!A

∼ ⟨D1, D2, . . . , Dn, . . .⟩

Improvement: !A as a type of streams over finite data of type A

⟨D1, D2, .., Dn, ..⟩

!A

ax
A⊥, A

ax
?A⊥, ?A

⊗
A⊥, ?A⊥, A ⊗ ?A

abs
?A⊥, A ⊗ ?A

cut
A ⊗ !A

⇝∗
D1
A

⟨D2, D3, .., Dn+1, ..⟩

!A
⊗

A ⊗ !A

pop ⟨D1, D2, . . . , Dn, . . .⟩ D1 ⊗ ⟨D2, D3, . . . , Dn+1, . . .⟩

nufp introduces some proof-theoretical notion of non-uniformity that deeply
interfaces with complexity-theoretic non-uniformity.

3 / 10

1 Parsimonious linear logic

2 Non-wellfounded parsimonious linear logic

3 Characterisation results

4 Conclusion and future work

Non-uniformity via non-wellfoundedness

Goal: non-wellfounded formulations of nuPLL and PLL

(Partial) recipe:

(1) Replace fp and nufp with conditional promotion (cp):
Γ, A ?Γ, !A

cp
?Γ, !A

(2) From (wellfounded) infinite branching to non-wellfounded (finite branching):

D1

Γ, A
D2

Γ, A . . .

Dn

Γ, A . . .
⋆?Γ, !A

⇒
D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

=
non-wellfounded box

(3) Progressing condition = logical consistency

(4) Weak regularity = finiteness condition (⋆) for non-wellfounded boxes
4 / 10

Non-uniformity via non-wellfoundedness

Goal: non-wellfounded formulations of nuPLL and PLL

(Partial) recipe:

(1) Replace fp and nufp with conditional promotion (cp):
Γ, A ?Γ, !A

cp
?Γ, !A

(2) From (wellfounded) infinite branching to non-wellfounded (finite branching):

D1

Γ, A
D2

Γ, A . . .

Dn

Γ, A . . .
⋆?Γ, !A

⇒
D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

=
non-wellfounded box

(3) Progressing condition = logical consistency

(4) Weak regularity = finiteness condition (⋆) for non-wellfounded boxes
4 / 10

Non-uniformity via non-wellfoundedness

Goal: non-wellfounded formulations of nuPLL and PLL

(Partial) recipe:

(1) Replace fp and nufp with conditional promotion (cp):
Γ, A ?Γ, !A

cp
?Γ, !A

(2) From (wellfounded) infinite branching to non-wellfounded (finite branching):

D1

Γ, A
D2

Γ, A . . .

Dn

Γ, A . . .
⋆?Γ, !A

⇒
D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

=
non-wellfounded box

(3) Progressing condition = logical consistency

(4) Weak regularity = finiteness condition (⋆) for non-wellfounded boxes
4 / 10

Non-uniformity via non-wellfoundedness

Goal: non-wellfounded formulations of nuPLL and PLL

(Partial) recipe:

(1) Replace fp and nufp with conditional promotion (cp):
Γ, A ?Γ, !A

cp
?Γ, !A

(2) From (wellfounded) infinite branching to non-wellfounded (finite branching):

D1

Γ, A
D2

Γ, A . . .

Dn

Γ, A . . .
⋆?Γ, !A

⇒
D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

=
non-wellfounded box

(3) Progressing condition = logical consistency

(4) Weak regularity = finiteness condition (⋆) for non-wellfounded boxes
4 / 10

Regularity vs weak regularity

Weakly regular = finitely many distinct subproofs whose conclusions are left
premises of cp rules

Idea: streams have finite support . . .

Regular proof = finitely many distinct subproofs

Idea: streams are periodic, so they only represent computable real numbers

⟨D1, D2, . . . , Dn, . . .⟩ ∼
D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

5 / 10

Regularity vs weak regularity

Weakly regular = finitely many distinct subproofs whose conclusions are left
premises of cp rules

Idea: streams have finite support . . .

Regular proof = finitely many distinct subproofs

Idea: streams are periodic, so they only represent computable real numbers

⟨D1, D2, . . . , Dn, . . .⟩ ∼
D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

5 / 10

Regularity vs weak regularity

Weakly regular = finitely many distinct subproofs whose conclusions are left
premises of cp rules

Idea: streams have finite support . . . so they only represent real numbers

Regular proof = finitely many distinct subproofs

Idea: streams are periodic, so they only represent computable real numbers

⟨1, 0, 1, 1, 0, 1, 1, 1, 0, . . .⟩ =
1

Bool

0

Bool

1

Bool

1

Bool

...
cp

!Bool
cp

!Bool
cp

!Bool
cp

!Bool
cp

!Bool

5 / 10

Regularity vs weak regularity

Weakly regular = finitely many distinct subproofs whose conclusions are left
premises of cp rules

Idea: streams have finite support . . . so they only represent real numbers

Regular proof = finitely many distinct subproofs

Idea: streams are periodic, so they only represent computable real numbers

⟨1, 0, 1, 1, 0, 1, 1, 1, 0, . . .⟩ =
1

Bool

0

Bool

1

Bool

1

Bool

...
cp

!Bool
cp

!Bool
cp

!Bool
cp

!Bool
cp

!Bool

5 / 10

Regularity vs weak regularity

Weakly regular = finitely many distinct subproofs whose conclusions are left
premises of cp rules

Idea: streams have finite support . . . so they only represent real numbers

Regular proof = finitely many distinct subproofs

Idea: streams are periodic, so they only represent computable real numbers

⟨1, 0, 1, 0, 1, 0, . . .⟩ =
1

Bool

0

Bool

1

Bool

0

Bool

...
cp

!Bool
cp

!Bool
cp

!Bool
cp

!Bool
cp

!Bool

5 / 10

Two non-wellfounded proof systems

Two non-wellfounded proof systems for parsimonious linear logic:
wrPLL∞ = weakly regular progressing [. . .] proofs
rPLL∞ = regular progressing [. . .] proofs

Relating inductive and non-wellfounded systems:

inductive non-wellfounded
non-uniform nuPLL wrPLL∞

uniform PLL rPLL∞

6 / 10

Two non-wellfounded proof systems

Two non-wellfounded proof systems for parsimonious linear logic:
wrPLL∞ = weakly regular progressing [. . .] proofs
rPLL∞ = regular progressing [. . .] proofs

Relating inductive and non-wellfounded systems:

inductive non-wellfounded
non-uniform nuPLL wrPLL∞

uniform PLL rPLL∞

6 / 10

1 Parsimonious linear logic

2 Non-wellfounded parsimonious linear logic

3 Characterisation results

4 Conclusion and future work

Cyclic implicit complexity

Implicit computational complexity (ICC) = characterise complexity classes by
means of languages/calculi without explicit reference to machine models or
external resource bounds.

▶ Originates with the Bellantoni and Cook’s paper on safe recursion [BC92].
▶ Borrows techniques from recursion theory, proof/type theory, model theory . . .
▶ Pervasive notion of stratification: data are organized into strata

Example: light linear logics = weaker versions of linear logic modality ! that
induce a bound on cut-elimination [Gir87, DJ03, Laf04]

Cyclic Implicit Complexity (CIC)

▶ introduced in joint works with Anupam Das [CD22, CD23b], aiming at studying
the principles of ICC using the tools of non-wellfounded and cyclic proof-theory

▶ characterisation of P and ELEMENTARY [CD22], and P/poly [CD23b]

This talk: CIC applied to LL!
7 / 10

Cyclic implicit complexity

Implicit computational complexity (ICC) = characterise complexity classes by
means of languages/calculi without explicit reference to machine models or
external resource bounds.

▶ Originates with the Bellantoni and Cook’s paper on safe recursion [BC92].
▶ Borrows techniques from recursion theory, proof/type theory, model theory . . .
▶ Pervasive notion of stratification: data are organized into strata

Example: light linear logics = weaker versions of linear logic modality ! that
induce a bound on cut-elimination [Gir87, DJ03, Laf04]

Cyclic Implicit Complexity (CIC)

▶ introduced in joint works with Anupam Das [CD22, CD23b], aiming at studying
the principles of ICC using the tools of non-wellfounded and cyclic proof-theory

▶ characterisation of P and ELEMENTARY [CD22], and P/poly [CD23b]

This talk: CIC applied to LL!
7 / 10

Cyclic implicit complexity

Implicit computational complexity (ICC) = characterise complexity classes by
means of languages/calculi without explicit reference to machine models or
external resource bounds.

▶ Originates with the Bellantoni and Cook’s paper on safe recursion [BC92].
▶ Borrows techniques from recursion theory, proof/type theory, model theory . . .
▶ Pervasive notion of stratification: data are organized into strata

Example: light linear logics = weaker versions of linear logic modality ! that
induce a bound on cut-elimination [Gir87, DJ03, Laf04]

Cyclic Implicit Complexity (CIC)

▶ introduced in joint works with Anupam Das [CD22, CD23b], aiming at studying
the principles of ICC using the tools of non-wellfounded and cyclic proof-theory

▶ characterisation of P and ELEMENTARY [CD22], and P/poly [CD23b]

This talk: CIC applied to LL!
7 / 10

Cyclic implicit complexity

Implicit computational complexity (ICC) = characterise complexity classes by
means of languages/calculi without explicit reference to machine models or
external resource bounds.

▶ Originates with the Bellantoni and Cook’s paper on safe recursion [BC92].
▶ Borrows techniques from recursion theory, proof/type theory, model theory . . .
▶ Pervasive notion of stratification: data are organized into strata

Example: light linear logics = weaker versions of linear logic modality ! that
induce a bound on cut-elimination [Gir87, DJ03, Laf04]

Cyclic Implicit Complexity (CIC)

▶ introduced in joint works with Anupam Das [CD22, CD23b], aiming at studying
the principles of ICC using the tools of non-wellfounded and cyclic proof-theory

▶ characterisation of P and ELEMENTARY [CD22], and P/poly [CD23b]

This talk: CIC applied to LL!
7 / 10

Non-uniform complexity

P/poly = class of problems decidable in non-uniform polynomial time

Theorem: A ∈ P/poly iff A decided by family of polynomial size circuits

P(R) = class of problems decidable in polynomial time by a Turing machine
querying bits of real numbers”

Theorem [Folklore]: P/poly = P(R).

8 / 10

Non-uniform complexity

P/poly = class of problems decidable in non-uniform polynomial time

Theorem: A ∈ P/poly iff A decided by family of polynomial size circuits

P(R) = class of problems decidable in polynomial time by a Turing machine
querying bits of real numbers”

Theorem [Folklore]: P/poly = P(R).

8 / 10

Computational meaning of regularity conditions
Regular proofs = finitely many distinct subproofs

regularity ≈ computability , uniformity

Weakly regular proofs = relaxation of regularity to represent real numbers

weak regularity ≈ computability + query on bits of real numbers

. . . but since P(R) = P/poly . . .

weak regularity ≈ non-uniformity

9 / 10

Computational meaning of regularity conditions
Regular proofs = finitely many distinct subproofs

regularity ≈ computability , uniformity

Weakly regular proofs = relaxation of regularity to represent real numbers

weak regularity ≈ computability + query on bits of real numbers

. . . but since P(R) = P/poly . . .

weak regularity ≈ non-uniformity

9 / 10

Computational meaning of regularity conditions
Regular proofs = finitely many distinct subproofs

regularity ≈ computability , uniformity

Weakly regular proofs = relaxation of regularity to represent real numbers

weak regularity ≈ computability + query on bits of real numbers

. . . but since P(R) = P/poly . . .

weak regularity ≈ non-uniformity

9 / 10

Our characterisation results in a nutshell

Theorem:
inductive non-wellfounded

non-uniform nuPLL2 wrPLL∞
2

uniform PLL2 rPLL∞
2

Idea of the proof.

rPLL∞
2 wrPLL∞

2

P P/poly = P(R)

PLL2 nuPLL2

⊆
polynomial

modulus of continuity
on cut-elimination

+
uniformity

polynomial
modulus of continuity

on cut-elimination

polytime TM
polytime TM

querying real numbers
⊆

simulation simulation

10 / 10

Our characterisation results in a nutshell

Theorem:
inductive non-wellfounded

P/poly nuPLL2 wrPLL∞
2

P PLL2 rPLL∞
2

Idea of the proof.

rPLL∞
2 wrPLL∞

2

P P/poly = P(R)

PLL2 nuPLL2

⊆
polynomial

modulus of continuity
on cut-elimination

+
uniformity

polynomial
modulus of continuity

on cut-elimination

polytime TM
polytime TM

querying real numbers
⊆

simulation simulation

10 / 10

Our characterisation results in a nutshell

Theorem:
inductive non-wellfounded

P/poly nuPLL2 wrPLL∞
2

P PLL2 rPLL∞
2

Idea of the proof.

rPLL∞
2 wrPLL∞

2

P P/poly = P(R)

PLL2 nuPLL2

⊆
polynomial

modulus of continuity
on cut-elimination

+
uniformity

polynomial
modulus of continuity

on cut-elimination

polytime TM
polytime TM

querying real numbers
⊆

simulation simulation

10 / 10

1 Parsimonious linear logic

2 Non-wellfounded parsimonious linear logic

3 Characterisation results

4 Conclusion and future work

Conclusion and future work

To sum up:

▶ We introduced two non-wellfounded proof systems rPLL∞ and wrPLL∞

▶ We showed that the second-order extensions of rPLL∞ and wrPLL∞

characterise, respectively, P and P/poly

Ongoing work:
inductive non-wellfounded

P/poly nuPLL2 wrPLL∞
2

P PLL2 rPLL∞
2

. . . i.e., we restate in a non-wellfounded setting the results in [Maz15, MT15].

11 / 10

Conclusion and future work

To sum up:

▶ We introduced two non-wellfounded proof systems rPLL∞ and wrPLL∞

▶ We showed that the second-order extensions of rPLL∞ and wrPLL∞

characterise, respectively, P and P/poly

Ongoing work:
inductive non-wellfounded

P/poly nuPLL2 wrPLL∞
2

P PLL2 rPLL∞
2

. . . i.e., we restate in a non-wellfounded setting the results in [Maz15, MT15].

11 / 10

Conclusion and future work

To sum up:

▶ We introduced two non-wellfounded proof systems rPLL∞ and wrPLL∞

▶ We showed that the second-order extensions of rPLL∞ and wrPLL∞

characterise, respectively, P and P/poly

Ongoing work:
inductive non-wellfounded

L/poly nuPLL wrPLL∞

L PLL rPLL∞

. . . i.e., we restate in a non-wellfounded setting the results in [Maz15, MT15].

11 / 10

Thank you! Questions?

References:

Stephen J. Bellantoni and Stephen A. Cook, A new recursion-theoretic characterization of the polytime functions, Comput. Complex. 2 (1992),
97–110.

David Baelde, Amina Doumane, and Alexis Saurin, Infinitary proof theory: the multiplicative additive case, CSL, 2016.

David Baelde and Dale Miller, Least and greatest fixed points in linear logic, LPAR, 2007.

Gianluca Curzi and Anupam Das, Cyclic implicit complexity, LICS (Christel Baier and Dana Fisman, eds.), 2022.

, Computational expressivity of (circular) proofs with fixed points, LICS, 2023.

, Non-uniform complexity via non-wellfounded proofs, CSL (Bartek Klin and Elaine Pimentel, eds.), 2023.

Vincent Danos and Jean-Baptiste Joinet, Linear logic and elementary time, Inf. Comput. 183 (2003), no. 1, 123–137.

Jean-Yves Girard, Linear logic, Theor. Comput. Sci. (1987).

Yves Lafont, Soft linear logic and polynomial time, Theor. Comput. Sci. 318 (2004), no. 1-2, 163–180.

Damiano Mazza, Simple parsimonious types and logarithmic space, CSL (Stephan Kreutzer, ed.), 2015.

Damiano Mazza and Kazushige Terui, Parsimonious types and non-uniform computation, ICALP, 2015.

Alexis Saurin, A linear perspective on cut-elimination for non-wellfounded sequent calculi with least and greatest fixed points (extended version),
2023.

Terese, Term rewriting systems, Cambridge tracts in theoretical computer science, 2003.

Appendix

Finite expandability
Finitely expandable proof = any branch has finitely many cut and abs rules
Example:

ax
A⊥, A

ax
A⊥, A

...
cut

Γ, A
cut

Γ, A
cut

Γ, A

...
abs

A, A, ?A
abs

A, ?A
abs

?A

Theorem: decomposition for finitely expandable and progressing proofs

. . .
... . .

.

D

Γ

=

nw-box

?∆1, !A1 . . .

nw-box

?∆n, !An

finite

Γ

1 / 11

Finite expandability
Finitely expandable proof = any branch has finitely many cut and abs rules
Example:

ax
A⊥, A

ax
A⊥, A

...
cut

Γ, A
cut

Γ, A
cut

Γ, A

...
abs

A, A, ?A
abs

A, ?A
abs

?A

Theorem: decomposition for finitely expandable and progressing proofs

. . .
... . .

.

D

Γ

=

nw-box

?∆1, !A1 . . .

nw-box

?∆n, !An

finite

Γ

1 / 11

Cut-elimination rules for non-wellfounded parsimonious logic

Cut-elimination rules for the exponential modalities ! and ?:

Γ, A ?Γ, !A
cp

?Γ, !A
A⊥, ∆, B ?A⊥, ?∆, !B

cp
?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

⇝

Γ, A A⊥, ∆, B
cut

Γ, ∆, B
?Γ, !A ?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

cp
?Γ, ?∆, !B

Γ, A ?Γ, !A
cp

?Γ, !A
∆

w
∆, ?A⊥

cut
?Γ, ∆

⇝
∆

w
?Γ, ∆

Γ, A ?Γ, !A
cp

?Γ, !A
∆, A⊥, ?A⊥

abs
∆, ?A⊥

cut
?Γ, ∆

⇝
Γ, A

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
abs

?Γ, ∆

Cut-elimination rules preserve progressing, (weak) regularity, and finite
expandability conditions

2 / 11

Our domain-theoretic approach

Starting from non-wellfonded proof D:

Special infinitary rewriting strategies σ that induce continuous functions
over domains of (partially defined) non-wellfounded proofs

Productivity: If D is progressing non-wellfounded proof then fσ(D) is
(cut-free and) totally defined

fσ preserves progressing and (weak) regularity conditions.

3 / 11

Our domain-theoretic approach

Starting from non-wellfonded proof D:

Special infinitary rewriting strategies σ that induce continuous functions
over domains of (partially defined) non-wellfounded proofs

Productivity: If D is progressing non-wellfounded proof then fσ(D) is
(cut-free and) totally defined

fσ preserves progressing and (weak) regularity conditions.

3 / 11

Our domain-theoretic approach

Starting from non-wellfonded proof D:

Special infinitary rewriting strategies σ that induce continuous functions
over domains of (partially defined) non-wellfounded proofs

Productivity: If D is progressing non-wellfounded proof then fσ(D) is
(cut-free and) totally defined

fσ preserves progressing and (weak) regularity conditions.

3 / 11

Approximating non-wellfounded proofs

(1) A new rule: the hypothesis

hyp
Γ

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where cut rules are irreducible
(e.g., cut between hypotheses)

(4) oPLL∞(Γ) = domain of open proofs with endsequent Γ:

. . .
hyp

∆ . . .

Γ

⪯ . . .

. . .

∆ . . .

Γ

4 / 11

Approximating non-wellfounded proofs

(1) A new rule: the hypothesis

hyp
Γ

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where cut rules are irreducible
(e.g., cut between hypotheses)

(4) oPLL∞(Γ) = domain of open proofs with endsequent Γ:

. . .
hyp

∆ . . .

Γ

⪯ . . .

. . .

∆ . . .

Γ

4 / 11

Approximating non-wellfounded proofs

(1) A new rule: the hypothesis

hyp
Γ

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where cut rules are irreducible
(e.g., cut between hypotheses)

(4) oPLL∞(Γ) = domain of open proofs with endsequent Γ:

. . .
hyp

∆ . . .

Γ

⪯ . . .

. . .

∆ . . .

Γ

4 / 11

Approximating non-wellfounded proofs

(1) A new rule: the hypothesis

hyp
Γ

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where cut rules are irreducible
(e.g., cut between hypotheses)

(4) oPLL∞(Γ) = domain of open proofs with endsequent Γ:

. . .
hyp

∆ . . .

Γ

⪯ . . .

. . .

∆ . . .

Γ

4 / 11

Approximating non-wellfounded proofs
(1) A new rule: the hypothesis

hyp
Γ

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where cut rules are irreducible
(e.g., cut between hypotheses)

(4) oPLL∞(Γ) = domain of open proofs with endsequent Γ:

hyp
Γ ⪯

hyp
∆1 . . .

hyp
∆n

Γ

⪯

hyp
Σ1 . . .

hyp
Σk1

∆1 . . .

hyp
Θ1 . . .

hyp
Θkn

∆n

Γ

⪯ . . .

4 / 11

Infinitary cut-elimination strategies
Infinitary cut-elimination strategy (ices) := family σ = (σD)D∈oPLL∞ where
each σD is a countable sequence of proofs such that:

D = σD(0)⇝ σD(1)⇝ . . .⇝ σD(n)⇝ . . .

Given an ices σ we define fσ : oPLL∞(Γ) → oPLL∞(Γ) as

fσ(D) :=
ℓ(σD)⊔

i=0
cf(σD(i))

where cf(Di) is the greatest cut-free approximation of Di (w.r.t. ⪯)

A ices σ is:
▶ Maximal if, for any finite open proof, ℓ(σD) (is finite and) is normal
▶ (Scott-)continuous is fσ is

Maximal continuous infinitary cut-elimination strategies (mc-ices).
5 / 11

Infinitary cut-elimination strategies
Infinitary cut-elimination strategy (ices) := family σ = (σD)D∈oPLL∞ where
each σD is a countable sequence of proofs such that:

D = σD(0)⇝ σD(1)⇝ . . .⇝ σD(n)⇝ . . .

Given an ices σ we define fσ : oPLL∞(Γ) → oPLL∞(Γ) as

fσ(D) :=
ℓ(σD)⊔

i=0
cf(σD(i))

where cf(Di) is the greatest cut-free approximation of Di (w.r.t. ⪯)

A ices σ is:
▶ Maximal if, for any finite open proof, ℓ(σD) (is finite and) is normal
▶ (Scott-)continuous is fσ is

Maximal continuous infinitary cut-elimination strategies (mc-ices).
5 / 11

Infinitary cut-elimination strategies
Infinitary cut-elimination strategy (ices) := family σ = (σD)D∈oPLL∞ where
each σD is a countable sequence of proofs such that:

D = σD(0)⇝ σD(1)⇝ . . .⇝ σD(n)⇝ . . .

Given an ices σ we define fσ : oPLL∞(Γ) → oPLL∞(Γ) as

fσ(D) :=
ℓ(σD)⊔

i=0
cf(σD(i))

where cf(Di) is the greatest cut-free approximation of Di (w.r.t. ⪯)

A ices σ is:
▶ Maximal if, for any finite open proof, ℓ(σD) (is finite and) is normal
▶ (Scott-)continuous is fσ is

Maximal continuous infinitary cut-elimination strategies (mc-ices).
5 / 11

Infinitary cut-elimination strategies
Infinitary cut-elimination strategy (ices) := family σ = (σD)D∈oPLL∞ where
each σD is a countable sequence of proofs such that:

D = σD(0)⇝ σD(1)⇝ . . .⇝ σD(n)⇝ . . .

Given an ices σ we define fσ : oPLL∞(Γ) → oPLL∞(Γ) as

fσ(D) :=
ℓ(σD)⊔

i=0
cf(σD(i))

where cf(Di) is the greatest cut-free approximation of Di (w.r.t. ⪯)

A ices σ is:
▶ Maximal if, for any finite open proof, ℓ(σD) (is finite and) is normal
▶ (Scott-)continuous is fσ is

Maximal continuous infinitary cut-elimination strategies (mc-ices).
5 / 11

Continuous cut-elimination theorem

Existence of mc-ices: intuitively, always apply a cut-elimination step to the
leftmost reducible cut rule with minimal height.

Confluence: if σ and σ′ are mc-ices, then fσ = fσ′

Theorem (Continuous cut-elimination): Given σ a mc-ices:

(1) D is progressing then fσ(D) is hyp-free (productivity)

(2) fσ preserves progressing and finite expandability

(3) If D ∈ wrPLL∞ then fD(D) ∈ wrPLL∞

(4) If D ∈ rPLL∞ then fD(D) ∈ rPLL∞

6 / 11

Continuous cut-elimination theorem

Existence of mc-ices: intuitively, always apply a cut-elimination step to the
leftmost reducible cut rule with minimal height.

Confluence: if σ and σ′ are mc-ices, then fσ = fσ′

Theorem (Continuous cut-elimination): Given σ a mc-ices:

(1) D is progressing then fσ(D) is hyp-free (productivity)

(2) fσ preserves progressing and finite expandability

(3) If D ∈ wrPLL∞ then fD(D) ∈ wrPLL∞

(4) If D ∈ rPLL∞ then fD(D) ∈ rPLL∞

6 / 11

Productivity and preservation of progressing condition

Theorem:
(1) D is progressing then fσ(D) is hyp-free (productivity)
(2) fσ preserves progressing and finite expandability

Proof idea.

D0
Γ, A

D1
Γ, A

Dn
Γ, A

.

.

.
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

.

.

.
abs

∆, A, A, A, ?A⊥, C
abs

∆, A, A, ?A⊥, C
abs

∆, A, ?A⊥, C
abs

∆, ?A⊥, C
cut

?Γ, ∆, C

7 / 11

Productivity and preservation of progressing condition

Theorem:
(1) D is progressing then fσ(D) is hyp-free (productivity)
(2) fσ preserves progressing and finite expandability

Proof idea.

D0
Γ, A

D1
Γ, A

Dn
Γ, A

.

.

.
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

.

.

.
abs

∆, A, A, A, ?A⊥, C
abs

∆, A, A, ?A⊥, C
abs

∆, A, ?A⊥, C
abs

∆, ?A⊥, C
cut

?Γ, ∆, C

7 / 11

Productivity and preservation of progressing condition

Theorem:
(1) D is progressing then fσ(D) is hyp-free (productivity)
(2) fσ preserves progressing and finite expandability

Proof idea.

D0
Γ, A

D1
Γ, A

Dn
Γ, A

.

.

.
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

nw-box

∆, A,
n

. . ., A, ?A⊥, C

.

.

.
abs

∆, A, A, A, ?A⊥, C
abs

∆, A, A, ?A⊥, C
abs

∆, A, ?A⊥, C
abs

∆, ?A⊥, C
cut

?Γ, ∆, C

7 / 11

Preservation of (weak) regularity
Theorem: If D ∈ wrPLL∞ then fD(D) ∈ wrPLL∞ (similarly for rPLL∞)
Proof idea. We use decomposition:

D =
nw-box

?∆1, !A1 . . .

nw-box

?∆n, !An

finite

Γ

We define a transfinite cut-elimination sequence preserving (weak) regularity by
induction on the “nesting” of non-wellfounded boxes:

D0
Γ, A

D1
Γ, A

Dn
Γ, A

.

.

.
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

D′
0

∆, A⊥, C

D′
1

∆, A⊥, C

D′
n

∆, A⊥, C

.

.

.
cp

?∆, ?A⊥!C
cp

...
cp

?∆, ?A⊥!C
cp

?∆, ?A⊥!C
cut

?Γ, ?∆, !C

We compress the transfinite sequence to an ω-long one [Sau23, Ter03]
8 / 11

Preservation of (weak) regularity
Theorem: If D ∈ wrPLL∞ then fD(D) ∈ wrPLL∞ (similarly for rPLL∞)
Proof idea. We use decomposition:

D =
nw-box

?∆1, !A1 . . .

nw-box

?∆n, !An

finite

Γ

We define a transfinite cut-elimination sequence preserving (weak) regularity by
induction on the “nesting” of non-wellfounded boxes:

D0
Γ, A

D1
Γ, A

Dn
Γ, A

.

.

.
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

D′
0

∆, A⊥, C

D′
1

∆, A⊥, C

D′
n

∆, A⊥, C

.

.

.
cp

?∆, ?A⊥!C
cp

...
cp

?∆, ?A⊥!C
cp

?∆, ?A⊥!C
cut

?Γ, ?∆, !C

We compress the transfinite sequence to an ω-long one [Sau23, Ter03]
8 / 11

Preservation of (weak) regularity
Theorem: If D ∈ wrPLL∞ then fD(D) ∈ wrPLL∞ (similarly for rPLL∞)

Proof idea. We use decomposition:

D =
nw-box

?∆1, !A1 . . .

nw-box

?∆n, !An

finite

Γ

We define a transfinite cut-elimination sequence preserving (weak) regularity by
induction on the “nesting” of non-wellfounded boxes:

D0
Γ, A

D′
0

∆, A⊥, C
cut

Γ, ∆, C

D1
Γ, A

D′
1

∆, A⊥, C
cut

Γ, ∆, C

Dn
Γ, A

D′
n

∆, A⊥, C
cut

Γ, ∆, C

.

.

.
cp

?Γ, ?∆!C
cp

...
cp

?Γ, ?∆!C
cp

?Γ, ?∆!C

We compress the transfinite sequence to an ω-long one [Sau23, Ter03]
8 / 11

Preservation of (weak) regularity
Theorem: If D ∈ wrPLL∞ then fD(D) ∈ wrPLL∞ (similarly for rPLL∞)

Proof idea. We use decomposition:

D =
nw-box

?∆1, !A1 . . .

nw-box

?∆n, !An

finite

Γ

We define a transfinite cut-elimination sequence preserving (weak) regularity by
induction on the “nesting” of non-wellfounded boxes:

D∗
0

Γ, A

D∗
1

Γ, A

D∗
n

Γ, A

.

.

.
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

We compress the transfinite sequence to an ω-long one [Sau23, Ter03]
8 / 11

5 Non-uniform complexity classes

Non-uniform complexity classes

FP = class of functions computable in polynomial time on a Turing machine.

FP/poly is an extension of FP that intuitively has access to a ‘small’ amount
of advice, determined only by the length of the input.

FP/poly = class of functions f (x⃗) for which there exists some strings
αn⃗ ∈ {0, 1}∗ and a function f ′(x , x⃗) ∈ FP with:
▶ |αn⃗| is polynomial in n⃗.
▶ f (x⃗) = f ′(α|⃗x|, x⃗).

Note, in particular, that FP/poly admits undecidable problems. E.g. the
function f (x) = 1 just if |x | is the code of a halting Turing machine (and 0
otherwise) is in FP/poly. Indeed, the point of the class FP/poly is to rather
characterise a more non-uniform notion of computation.

Theorem: f (x⃗) ∈ FP/poly iff there are poly-size circuits computing f (x⃗).

9 / 11

The class FP(R) consists of just the functions computable in polynomial time
by a Turing machine with access to oracles from:

R := {f (x) : N → {0, 1} | |x | = |y | =⇒ f (x) = f (y)}

Note that the notation R is suggestive here, since its elements are essentially
maps from lengths/positions to Booleans, and so may be identified with
Boolean streams.

Theorem [Folklore]: FP/poly = FP(R).

10 / 11

	Parsimonious linear logic
	Non-wellfounded parsimonious linear logic
	Characterisation results
	Conclusion and future work
	Appendix
	Non-uniform complexity classes

