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What is this talk about?
Parsimonious linear logic = subsystem of LL based on the principles of

parsimonious logic [MT15, Maz15]

linear logic modalities !, ? as least and greatest fixed points

!A ∼ streams ?A ∼ lists

In [MT15] characterisation of complexity classes via parsimonious logic:

P = polynomial time decidability
P/poly = non-uniform version of P

This talk: non-wellfounded proof systems for parsimonious linear logic:

wrPLL∞
2 (non-uniform) vs rPLL∞

2 (uniform)

Our main result: complexity-theoretic characterisations:

wrPLL∞
2 = P/poly vs rPLL∞

2 = P
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Parsimonious linear logic

From linear logic. . .

Γ, ??A
dig

Γ, ?A
Γ, A

fp
?Γ, !A

Γ
w

Γ, ?A
Γ, A, ?A

abs
Γ, ?A

digging functorial weakening absorption
promotion

Key idea: !A as a type of (very special) streams

D

A
fp

!A

ax
A⊥, A

ax
?A⊥, ?A

⊗
A⊥, ?A⊥, A ⊗ ?A

abs
?A⊥, A ⊗ ?A

cut
A ⊗ !A

⇝∗ D

A

D

A
fp

!A
⊗

A ⊗ !A

pop ⟨D, D, . . . , D, . . .⟩ D ⊗ ⟨D, D, . . . , D, . . .⟩
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Non-uniform parsimonious linear logic

Non-uniform PLL (nuPLL) = replace fp with the following:

D1

A
D2

A . . .

Dn

A . . .
nufp {Di | i ∈ N} is finite

!A

∼ ⟨D1, D2, . . . , Dn, . . .⟩

Improvement: !A as a type of streams over finite data of type A

⟨D1, D2, .., Dn, ..⟩

!A

ax
A⊥, A

ax
?A⊥, ?A

⊗
A⊥, ?A⊥, A ⊗ ?A

abs
?A⊥, A ⊗ ?A

cut
A ⊗ !A

⇝∗
D1
A

⟨D2, D3, .., Dn+1, ..⟩

!A
⊗

A ⊗ !A

pop ⟨D1, D2, . . . , Dn, . . .⟩ D1 ⊗ ⟨D2, D3, . . . , Dn+1, . . .⟩

nufp introduces some proof-theoretical notion of non-uniformity that deeply
interfaces with complexity-theoretic non-uniformity.
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Non-uniformity via non-wellfoundedness

Goal: non-wellfounded formulations of nuPLL and PLL

(Partial) recipe:

(1) Replace fp and nufp with conditional promotion (cp):
Γ, A ?Γ, !A

cp
?Γ, !A

(2) From (wellfounded) infinite branching to non-wellfounded (finite branching):

D1

Γ, A
D2

Γ, A . . .

Dn

Γ, A . . .
⋆?Γ, !A

⇒
D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

=
non-wellfounded box

(3) Progressing condition = logical consistency

(4) Weak regularity = finiteness condition (⋆) for non-wellfounded boxes
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Regularity vs weak regularity

Weakly regular = finitely many distinct subproofs whose conclusions are left
premises of cp rules

Idea: streams have finite support . . .

Regular proof = finitely many distinct subproofs

Idea: streams are periodic, so they only represent computable real numbers

⟨D1, D2, . . . , Dn, . . .⟩ ∼
D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A
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Two non-wellfounded proof systems

Two non-wellfounded proof systems for parsimonious linear logic:
wrPLL∞ = weakly regular progressing [. . . ] proofs
rPLL∞ = regular progressing [. . . ] proofs

Relating inductive and non-wellfounded systems:

inductive non-wellfounded
non-uniform nuPLL wrPLL∞

uniform PLL rPLL∞
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Cyclic implicit complexity

Implicit computational complexity (ICC) = characterise complexity classes by
means of languages/calculi without explicit reference to machine models or
external resource bounds.

▶ Originates with the Bellantoni and Cook’s paper on safe recursion [BC92].
▶ Borrows techniques from recursion theory, proof/type theory, model theory . . .
▶ Pervasive notion of stratification: data are organized into strata

Example: light linear logics = weaker versions of linear logic modality ! that
induce a bound on cut-elimination [Gir87, DJ03, Laf04]

Cyclic Implicit Complexity (CIC)

▶ introduced in joint works with Anupam Das [CD22, CD23b], aiming at studying
the principles of ICC using the tools of non-wellfounded and cyclic proof-theory

▶ characterisation of P and ELEMENTARY [CD22], and P/poly [CD23b]

This talk: CIC applied to LL!
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Non-uniform complexity

P/poly = class of problems decidable in non-uniform polynomial time

Theorem: A ∈ P/poly iff A decided by family of polynomial size circuits

P(R) = class of problems decidable in polynomial time by a Turing machine
querying bits of real numbers”

Theorem [Folklore]: P/poly = P(R).
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Computational meaning of regularity conditions
Regular proofs = finitely many distinct subproofs

regularity ≈ computability , uniformity

Weakly regular proofs = relaxation of regularity to represent real numbers

weak regularity ≈ computability + query on bits of real numbers

. . . but since P(R) = P/poly . . .

weak regularity ≈ non-uniformity
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Our characterisation results in a nutshell

Theorem:
inductive non-wellfounded

non-uniform nuPLL2 wrPLL∞
2

uniform PLL2 rPLL∞
2

Idea of the proof.

rPLL∞
2 wrPLL∞

2

P P/poly = P(R)

PLL2 nuPLL2

⊆
polynomial

modulus of continuity
on cut-elimination

+
uniformity

polynomial
modulus of continuity

on cut-elimination

polytime TM
polytime TM

querying real numbers
⊆

simulation simulation
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Conclusion and future work

To sum up:

▶ We introduced two non-wellfounded proof systems rPLL∞ and wrPLL∞

▶ We showed that the second-order extensions of rPLL∞ and wrPLL∞

characterise, respectively, P and P/poly

Ongoing work:
inductive non-wellfounded

P/poly nuPLL2 wrPLL∞
2

P PLL2 rPLL∞
2

. . . i.e., we restate in a non-wellfounded setting the results in [Maz15, MT15].
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Thank you! Questions?
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Appendix



Finite expandability
Finitely expandable proof = any branch has finitely many cut and abs rules
Example:

ax
A⊥, A

ax
A⊥, A

...
cut

Γ, A
cut

Γ, A
cut

Γ, A

...
abs

A, A, ?A
abs

A, ?A
abs

?A

Theorem: decomposition for finitely expandable and progressing proofs

. . .
... . .

.

D

Γ

=

nw-box

?∆1, !A1 . . .

nw-box

?∆n, !An

finite

Γ
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Cut-elimination rules for non-wellfounded parsimonious logic

Cut-elimination rules for the exponential modalities ! and ?:

Γ, A ?Γ, !A
cp

?Γ, !A
A⊥, ∆, B ?A⊥, ?∆, !B

cp
?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

⇝

Γ, A A⊥, ∆, B
cut

Γ, ∆, B
?Γ, !A ?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

cp
?Γ, ?∆, !B

Γ, A ?Γ, !A
cp

?Γ, !A
∆

w
∆, ?A⊥

cut
?Γ, ∆

⇝
∆

w
?Γ, ∆

Γ, A ?Γ, !A
cp

?Γ, !A
∆, A⊥, ?A⊥

abs
∆, ?A⊥

cut
?Γ, ∆

⇝
Γ, A

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
abs

?Γ, ∆

Cut-elimination rules preserve progressing, (weak) regularity, and finite
expandability conditions

2 / 11



Our domain-theoretic approach

Starting from non-wellfonded proof D:

Special infinitary rewriting strategies σ that induce continuous functions
over domains of (partially defined) non-wellfounded proofs

Productivity: If D is progressing non-wellfounded proof then fσ(D) is
(cut-free and) totally defined

fσ preserves progressing and (weak) regularity conditions.
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Approximating non-wellfounded proofs

(1) A new rule: the hypothesis

hyp
Γ

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where cut rules are irreducible
(e.g., cut between hypotheses)

(4) oPLL∞(Γ) = domain of open proofs with endsequent Γ:

. . .
hyp

∆ . . .

Γ

⪯ . . .

. . .

∆ . . .

Γ

4 / 11



Approximating non-wellfounded proofs

(1) A new rule: the hypothesis

hyp
Γ

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where cut rules are irreducible
(e.g., cut between hypotheses)

(4) oPLL∞(Γ) = domain of open proofs with endsequent Γ:

. . .
hyp

∆ . . .

Γ

⪯ . . .

. . .

∆ . . .

Γ

4 / 11



Approximating non-wellfounded proofs

(1) A new rule: the hypothesis

hyp
Γ

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where cut rules are irreducible
(e.g., cut between hypotheses)

(4) oPLL∞(Γ) = domain of open proofs with endsequent Γ:

. . .
hyp

∆ . . .

Γ

⪯ . . .

. . .

∆ . . .

Γ

4 / 11



Approximating non-wellfounded proofs

(1) A new rule: the hypothesis

hyp
Γ

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where cut rules are irreducible
(e.g., cut between hypotheses)

(4) oPLL∞(Γ) = domain of open proofs with endsequent Γ:

. . .
hyp

∆ . . .

Γ

⪯ . . .

. . .

∆ . . .

Γ

4 / 11



Approximating non-wellfounded proofs
(1) A new rule: the hypothesis

hyp
Γ

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where cut rules are irreducible
(e.g., cut between hypotheses)

(4) oPLL∞(Γ) = domain of open proofs with endsequent Γ:

hyp
Γ ⪯

hyp
∆1 . . .

hyp
∆n

Γ

⪯

hyp
Σ1 . . .

hyp
Σk1

∆1 . . .

hyp
Θ1 . . .

hyp
Θkn

∆n

Γ

⪯ . . .

4 / 11



Infinitary cut-elimination strategies
Infinitary cut-elimination strategy (ices) := family σ = (σD)D∈oPLL∞ where
each σD is a countable sequence of proofs such that:

D = σD(0)⇝ σD(1)⇝ . . .⇝ σD(n)⇝ . . .

Given an ices σ we define fσ : oPLL∞(Γ) → oPLL∞(Γ) as

fσ(D) :=
ℓ(σD)⊔

i=0
cf(σD(i))

where cf(Di) is the greatest cut-free approximation of Di (w.r.t. ⪯)

A ices σ is:
▶ Maximal if, for any finite open proof, ℓ(σD) (is finite and) is normal
▶ (Scott-)continuous is fσ is

Maximal continuous infinitary cut-elimination strategies (mc-ices).
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Continuous cut-elimination theorem

Existence of mc-ices: intuitively, always apply a cut-elimination step to the
leftmost reducible cut rule with minimal height.

Confluence: if σ and σ′ are mc-ices, then fσ = fσ′

Theorem (Continuous cut-elimination): Given σ a mc-ices:

(1) D is progressing then fσ(D) is hyp-free (productivity)

(2) fσ preserves progressing and finite expandability

(3) If D ∈ wrPLL∞ then fD(D) ∈ wrPLL∞

(4) If D ∈ rPLL∞ then fD(D) ∈ rPLL∞
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Productivity and preservation of progressing condition

Theorem:
(1) D is progressing then fσ(D) is hyp-free (productivity)
(2) fσ preserves progressing and finite expandability

Proof idea.

D0
Γ, A

D1
Γ, A

Dn
Γ, A

.

.

.
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

.

.

.
abs

∆, A, A, A, ?A⊥, C
abs

∆, A, A, ?A⊥, C
abs

∆, A, ?A⊥, C
abs

∆, ?A⊥, C
cut

?Γ, ∆, C
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cp
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cp
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∆, A,
n

. . ., A, ?A⊥, C

.

.

.
abs

∆, A, A, A, ?A⊥, C
abs

∆, A, A, ?A⊥, C
abs

∆, A, ?A⊥, C
abs
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?Γ, ∆, C

7 / 11



Preservation of (weak) regularity
Theorem: If D ∈ wrPLL∞ then fD(D) ∈ wrPLL∞ (similarly for rPLL∞)
Proof idea. We use decomposition:

D =
nw-box

?∆1, !A1 . . .

nw-box

?∆n, !An

finite

Γ

We define a transfinite cut-elimination sequence preserving (weak) regularity by
induction on the “nesting” of non-wellfounded boxes:

D0
Γ, A

D1
Γ, A

Dn
Γ, A

.

.

.
cp

?Γ, !A
cp

...
cp

?Γ, !A
cp

?Γ, !A

D′
0

∆, A⊥, C

D′
1

∆, A⊥, C

D′
n

∆, A⊥, C

.

.

.
cp

?∆, ?A⊥!C
cp

...
cp

?∆, ?A⊥!C
cp

?∆, ?A⊥!C
cut

?Γ, ?∆, !C

We compress the transfinite sequence to an ω-long one [Sau23, Ter03]
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5 Non-uniform complexity classes



Non-uniform complexity classes

FP = class of functions computable in polynomial time on a Turing machine.

FP/poly is an extension of FP that intuitively has access to a ‘small’ amount
of advice, determined only by the length of the input.

FP/poly = class of functions f (x⃗) for which there exists some strings
αn⃗ ∈ {0, 1}∗ and a function f ′(x , x⃗) ∈ FP with:
▶ |αn⃗| is polynomial in n⃗.
▶ f (x⃗) = f ′(α|⃗x|, x⃗).

Note, in particular, that FP/poly admits undecidable problems. E.g. the
function f (x) = 1 just if |x | is the code of a halting Turing machine (and 0
otherwise) is in FP/poly. Indeed, the point of the class FP/poly is to rather
characterise a more non-uniform notion of computation.

Theorem: f (x⃗) ∈ FP/poly iff there are poly-size circuits computing f (x⃗).
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The class FP(R) consists of just the functions computable in polynomial time
by a Turing machine with access to oracles from:

R := {f (x) : N → {0, 1} | |x | = |y | =⇒ f (x) = f (y)}

Note that the notation R is suggestive here, since its elements are essentially
maps from lengths/positions to Booleans, and so may be identified with
Boolean streams.

Theorem [Folklore]: FP/poly = FP(R).
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