Non-Uniform Polynomial Time and Non-Wellfounded Parsimonious Proofs

FICS

Naples, 19 February 2024

Matteo Acclavio¹ <u>Gianluca Curzi²</u> Giulio Guerrieri¹

¹University of Sussex

 $^2 {\sf University}$ of Gothenburg

Parsimonious linear logic = subsystem of LL based on the principles of parsimonious logic [MT15, Maz15]

linear logic modalities !,? as least and greatest fixed points

 $|A \sim streams$ $?A \sim lists$

■ In [MT15] characterisation of complexity classes via parsimonious logic:

P = polynomial time decidability P/poly = **non-uniform** version of P

■ This talk: non-wellfounded proof systems for parsimonious linear logic: wrPLL[∞]₂ (non-uniform) vs rPLL[∞]₂ (uniform)

• Our main result: complexity-theoretic characterisations: wrPl $I_{\infty}^{\infty} = \mathbf{P}/\text{poly}$ vs. $rPl I_{\infty}^{\infty} = \mathbf{P}$

Parsimonious linear logic = subsystem of LL based on the principles of parsimonious logic [MT15, Maz15]

linear logic modalities !,? as least and greatest fixed points

 $|A \sim \text{streams}$ $?A \sim \text{lists}$

In [MT15] characterisation of complexity classes via parsimonious logic:

$$P = polynomial time decidability $P/poly = non-uniform$ version of $P$$$

■ This talk: non-wellfounded proof systems for parsimonious linear logic: wrPLL[∞]₂ (non-uniform) vs rPLL[∞]₂ (uniform)

Our main result: complexity-theoretic characterisations:

wrPLL₂^{∞} = **P**/poly vs rPLL₂^{∞} = **P**

Parsimonious linear logic = subsystem of LL based on the principles of parsimonious logic [MT15, Maz15]

linear logic modalities !,? as least and greatest fixed points

 $|A \sim \text{streams}$ $?A \sim \text{lists}$

■ In [MT15] characterisation of complexity classes via parsimonious logic:

$$P = polynomial time decidability $P/poly = non-uniform$ version of $P$$$

■ This talk: non-wellfounded proof systems for parsimonious linear logic: wrPLL[∞]₂ (non-uniform) vs rPLL[∞]₂ (uniform)

Our main result: complexity-theoretic characterisations:

wrPLL₂^{∞} = **P**/poly vs rPLL₂^{∞} = **P**

Parsimonious linear logic = subsystem of LL based on the principles of parsimonious logic [MT15, Maz15]

linear logic modalities !,? as least and greatest fixed points

 $|A \sim \text{streams}$ $?A \sim \text{lists}$

In [MT15] characterisation of complexity classes via parsimonious logic:

P = polynomial time decidability<math>P/poly = non-uniform version of P

■ This talk: non-wellfounded proof systems for parsimonious linear logic: wrPLL[∞]₂ (non-uniform) vs rPLL[∞]₂ (uniform)

• Our main result: complexity-theoretic characterisations:

wrPLL₂^{∞} = **P**/poly vs rPLL₂^{∞} = **P**

■ From linear logic...

■ Key idea: !A as a type of (very special) streams

■ ... to parsimonious linear logic (PLL₂)

Key idea: !A as a type of (very special) streams

■ ... to parsimonious linear logic (PLL₂)

■ Key idea: !A as a type of (very special) streams

Non-uniform parsimonious linear logic

■ Non-uniform PLL (nuPLL) = replace *fp* with the following:

■ Improvement: !*A* as a type of streams over finite data of type *A*

nufp introduces some proof-theoretical notion of **non-uniformity** that deeply interfaces with complexity-theoretic non-uniformity.

Non-uniform parsimonious linear logic

■ Non-uniform PLL (nuPLL) = replace *fp* with the following:

■ Improvement: !*A* as a type of streams over finite data of type *A*

nufp introduces some proof-theoretical notion of **non-uniformity** that deeply interfaces with complexity-theoretic non-uniformity.

2 Non-wellfounded parsimonious linear logic

Characterisation results

Conclusion and future work

■ Goal: non-wellfounded formulations of nuPLL and PLL

■ (Partial) recipe:

(1) Replace *fp* and *nufp* with conditional promotion (*cp*):

 $^{cp}\frac{\Gamma,A}{?\Gamma,!A}$

(2) From (wellfounded) infinite branching to non-wellfounded (finite branching):

= non-wellfounded box

(3) Progressing condition = logical consistency.

(4) Weak regularity = finiteness condition (*) for non-wellfounded boxes

- Goal: non-wellfounded formulations of nuPLL and PLL
- (Partial) recipe:
 - (1) Replace *fp* and *nufp* with conditional promotion (*cp*):

 $_{cp}rac{\Gamma,A}{?\Gamma,!A}$

(2) From (wellfounded) infinite branching to non-wellfounded (finite branching):

- (3) Progressing condition = logical consistency
- (4) Weak regularity = finiteness condition (\star) for non-wellfounded boxes

- Goal: non-wellfounded formulations of nuPLL and PLL
- (Partial) recipe:
 - (1) Replace *fp* and *nufp* with conditional promotion (*cp*):

 $_{cp}\frac{\Gamma,A}{?\Gamma,!A}$

(2) From (wellfounded) infinite branching to non-wellfounded (finite branching):

non-wellfounded box

- (3) Progressing condition = logical consistency
- (4) Weak regularity = finiteness condition (\star) for non-wellfounded boxes

- Goal: non-wellfounded formulations of nuPLL and PLL
- (Partial) recipe:
 - (1) Replace *fp* and *nufp* with conditional promotion (*cp*): $cp \frac{\Gamma, A ?\Gamma, !A}{2\Gamma !A}$

(2) From (wellfounded) infinite branching to non-wellfounded (finite branching):

non-wellfounded box

- (3) Progressing condition = logical consistency
- (4) Weak regularity = finiteness condition (\star) for non-wellfounded boxes

Weakly regular = finitely many distinct subproofs whose conclusions are left premises of *cp* rules

Idea: streams have finite support ...

- Regular proof = finitely many distinct subproofs.
 - Idea: streams are periodic, so they only represent computable real numbers

Weakly regular = finitely many distinct subproofs whose conclusions are left premises of *cp* rules

Idea: streams have finite support ...

Regular proof = finitely many distinct subproofs

Weakly regular = finitely many distinct subproofs whose conclusions are left premises of *cp* rules

Idea: streams have finite support ... so they only represent real numbers

Regular proof = finitely many distinct subproofs

Weakly regular = finitely many distinct subproofs whose conclusions are left premises of *cp* rules

Idea: streams have finite support ... so they only represent real numbers

Regular proof = finitely many distinct subproofs

Weakly regular = finitely many distinct subproofs whose conclusions are left premises of *cp* rules

Idea: streams have finite support ... so they only represent real numbers

Regular proof = finitely many distinct subproofs

Two non-wellfounded proof systems

 Two non-wellfounded proof systems for parsimonious linear logic: wrPLL[∞] = weakly regular progressing [...] proofs rPLL[∞] = regular progressing [...] proofs

Relating inductive and non-wellfounded systems:

Two non-wellfounded proof systems

Two non-wellfounded proof systems for parsimonious linear logic:

 $wrPLL^{\infty}$ = weakly regular progressing [...] proofs rPLL^{∞} = regular progressing [...] proofs

Relating inductive and non-wellfounded systems:

	inductive	non-wellfounded
non-uniform	nuPLL	$wrPLL^\infty$
uniform	PLL	rPLL [∞]

- Implicit computational complexity (ICC) = characterise complexity classes by means of languages/calculi without explicit reference to machine models or external resource bounds.
 - Originates with the Bellantoni and Cook's paper on safe recursion [BC92].
 - ▶ Borrows techniques from recursion theory, proof/type theory, model theory
 - Pervasive notion of stratification: data are organized into strata
 - Example: light linear logics = weaker versions of linear logic modality ! that induce a bound on cut-elimination [Gir87, DJ03, Laf04]

- introduced in joint works with Anupam Das [CD22, CD23b], aiming at studying the principles of ICC using the tools of non-wellfounded and cyclic proof-theory
- characterisation of P and ELEMENTARY [CD22], and P/poly [CD23b]
- n This talk: CIC applied to LLI

- Implicit computational complexity (ICC) = characterise complexity classes by means of languages/calculi without explicit reference to machine models or external resource bounds.
 - Originates with the Bellantoni and Cook's paper on safe recursion [BC92].
 - ▶ Borrows techniques from recursion theory, proof/type theory, model theory
 - Pervasive notion of stratification: data are organized into strata
 - Example: light linear logics = weaker versions of linear logic modality ! that induce a bound on cut-elimination [Gir87, DJ03, Laf04]

- introduced in joint works with Anupam Das [CD22, CD23b], aiming at studying the principles of ICC using the tools of non-wellfounded and cyclic proof-theory
- characterisation of P and ELEMENTARY [CD22], and P/poly [CD23b]
- This talk: CIC applied to LL!

- Implicit computational complexity (ICC) = characterise complexity classes by means of languages/calculi without explicit reference to machine models or external resource bounds.
 - ▶ Originates with the Bellantoni and Cook's paper on safe recursion [BC92].
 - ▶ Borrows techniques from recursion theory, proof/type theory, model theory
 - Pervasive notion of stratification: data are organized into strata
 - Example: light linear logics = weaker versions of linear logic modality ! that induce a bound on cut-elimination [Gir87, DJ03, Laf04]

- introduced in joint works with Anupam Das [CD22, CD23b], aiming at studying the principles of ICC using the tools of non-wellfounded and cyclic proof-theory
- ► characterisation of P and ELEMENTARY [CD22], and P/poly [CD23b]
- This talk: CIC applied to LL!

- Implicit computational complexity (ICC) = characterise complexity classes by means of languages/calculi without explicit reference to machine models or external resource bounds.
 - ▶ Originates with the Bellantoni and Cook's paper on safe recursion [BC92].
 - ▶ Borrows techniques from recursion theory, proof/type theory, model theory
 - Pervasive notion of stratification: data are organized into strata
 - Example: light linear logics = weaker versions of linear logic modality ! that induce a bound on cut-elimination [Gir87, DJ03, Laf04]

- introduced in joint works with Anupam Das [CD22, CD23b], aiming at studying the principles of ICC using the tools of non-wellfounded and cyclic proof-theory
- ► characterisation of P and ELEMENTARY [CD22], and P/poly [CD23b]
- This talk: CIC applied to LL!

Non-uniform complexity

 \blacksquare $P/\mathsf{poly} = \mathsf{class}$ of problems decidable in **non-uniform** polynomial time

Theorem: $A \in \mathbf{P}$ /poly iff A decided by family of polynomial size circuits

■ P(ℝ) = class of problems decidable in polynomial time by a Turing machine querying bits of real numbers"

Theorem [Folklore]: $P/poly = P(\mathbb{R})$.

Non-uniform complexity

■ P/poly = class of problems decidable in **non-uniform** polynomial time

Theorem: $A \in \mathbf{P}$ /poly iff A decided by family of polynomial size circuits

■ P(ℝ) = class of problems decidable in polynomial time by a Turing machine querying bits of real numbers"

Theorem [Folklore]: \mathbf{P} /poly = $\mathbf{P}(\mathbb{R})$.

Computational meaning of regularity conditions

Regular proofs = finitely many distinct subproofs

regularity pprox computability, uniformity

■ Weakly regular proofs = relaxation of regularity to represent real numbers

weak <code>regularity</code> $~\approx~$ <code>computability</code> + <code>query</code> on bits of real numbers

 \ldots but since ${\sf P}({\mathbb R})={\sf P}/{\sf poly}\,\ldots$

weak regularity \approx non-uniformity

Computational meaning of regularity conditions

Regular proofs = finitely many distinct subproofs

regularity pprox computability, uniformity

• Weakly regular proofs = relaxation of regularity to represent real numbers

weak <code>regularity</code> $~\approx~$ <code>computability</code> + <code>query</code> on bits of real numbers

 \ldots but since ${\sf P}({\mathbb R})={\sf P}/{
m poly}\ldots$

weak regularity \approx non-uniformity

Computational meaning of regularity conditions

Regular proofs = finitely many distinct subproofs

regularity pprox computability, uniformity

• Weakly regular proofs = relaxation of regularity to represent real numbers

weak <code>regularity</code> $~\approx~$ <code>computability</code> + <code>query</code> on bits of real numbers

 \dots but since $\mathbf{P}(\mathbb{R}) = \mathbf{P}/\mathsf{poly}\,\dots$

weak regularity \approx non-uniformity

Our characterisation results in a nutshell

Theorem:

	inductive	non-wellfounded
non-uniform	nuPLL ₂	$wrPLL_2^{\infty}$
uniform	PLL ₂	$rPLL_2^{\infty}$

Idea of the proof.

Our characterisation results in a nutshell

Theorem:

	inductive	non-wellfounded
P/poly	nuPLL ₂	$wrPLL_2^{\infty}$
Р	PLL ₂	$rPLL_2^\infty$

Idea of the proof.

Our characterisation results in a nutshell

Theorem:

	inductive	non-wellfounded
P/poly	nuPLL ₂	$wrPLL_2^{\infty}$
Р	PLL ₂	$rPLL_2^\infty$

Idea of the proof.

Conclusion and future work

Conclusion and future work

■ To sum up:

- \blacktriangleright We introduced two non-wellfounded proof systems $r\mathsf{PLL}^\infty$ and $wr\mathsf{PLL}^\infty$
- ► We showed that the second-order extensions of rPLL[∞] and wrPLL[∞] characterise, respectively, P and P/poly

Ongoing work:

Conclusion and future work

■ To sum up:

- \blacktriangleright We introduced two non-wellfounded proof systems <code>rPLL^{\infty}</code> and <code>wrPLL^{\infty}</code>
- ► We showed that the second-order extensions of rPLL[∞] and wrPLL[∞] characterise, respectively, P and P/poly

Ongoing work:

	inductive	non-wellfounded
P/poly	nuPLL ₂	$wrPLL_2^{\infty}$
Р	PLL ₂	$rPLL_2^\infty$

Conclusion and future work

■ To sum up:

- \blacktriangleright We introduced two non-wellfounded proof systems $r\mathsf{PLL}^\infty$ and $wr\mathsf{PLL}^\infty$
- ► We showed that the second-order extensions of rPLL[∞] and wrPLL[∞] characterise, respectively, P and P/poly

Ongoing work:

	inductive	non-wellfounded
L/poly	nuPLL	wrPLL∞
L	PLL	rPLL∞

... i.e., we restate in a non-wellfounded setting the results in [Maz15, MT15].

Thank you! Questions?

Terese, Term rewriting systems, Cambridge tracts in theoretical computer science, 2003.

Appendix

Finite expandability

Finitely expandable proof = any branch has finitely many *cut* and *abs* rules
 Example:

Theorem: decomposition for finitely expandable and progressing proofs

Finite expandability

Finitely expandable proof = any branch has finitely many *cut* and *abs* rules Example:

Theorem: decomposition for finitely expandable and progressing proofs

Cut-elimination rules for non-wellfounded parsimonious logic

• Cut-elimination rules for the exponential modalities ! and ?:

$$c_{p} \frac{\Gamma, A}{cut} \frac{?\Gamma, !A}{(cut)} - c_{p} \frac{A^{\perp}, \Delta, B}{?A^{\perp}, ?\Delta, !B} \xrightarrow{?A^{\perp}, ?\Delta, !B} \sim cut \frac{\Gamma, A}{c_{p}} \frac{A^{\perp}, \Delta, B}{(c_{p})} \frac{cut}{?\Gamma, \Delta, B} - cut \frac{?\Gamma, !A}{?\Gamma, 2A, !B} \xrightarrow{?A^{\perp}, ?\Delta, !B} \frac{Cut}{?\Gamma, 2A, !B}$$

 $\label{eq:cut-elimination rules preserve progressing, (weak) regularity, and finite expandability conditions$

Our domain-theoretic approach

Starting from non-wellfonded proof \mathcal{D} :

- Special infinitary rewriting strategies σ that induce continuous functions over domains of (partially defined) non-wellfounded proofs
- **Productivity:** If \mathcal{D} is progressing non-wellfounded proof then $f_{\sigma}(\mathcal{D})$ is (cut-free and) totally defined
- f_{σ} preserves progressing and (weak) regularity conditions.

Our domain-theoretic approach

Starting from non-wellfonded proof \mathcal{D} :

- Special infinitary rewriting strategies σ that induce continuous functions over domains of (partially defined) non-wellfounded proofs
- **Productivity:** If \mathcal{D} is progressing non-wellfounded proof then $f_{\sigma}(\mathcal{D})$ is (cut-free and) totally defined

• f_{σ} preserves progressing and (weak) regularity conditions.

Our domain-theoretic approach

Starting from non-wellfonded proof \mathcal{D} :

- Special infinitary rewriting strategies σ that induce continuous functions over domains of (partially defined) non-wellfounded proofs
- **Productivity:** If \mathcal{D} is progressing non-wellfounded proof then $f_{\sigma}(\mathcal{D})$ is (cut-free and) totally defined
- f_{σ} preserves progressing and (weak) regularity conditions.

(1) A new rule: the **hypothesis**

^{hyp} —

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where *cut* rules are irreducible (e.g., cut between hypotheses)

(1) A new rule: the hypothesis

^{hyp} —

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where *cut* rules are irreducible (e.g., cut between hypotheses)

(1) A new rule: the **hypothesis**

^{hyp} —

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where *cut* rules are irreducible (e.g., cut between hypotheses)

(1) A new rule: the hypothesis

^{hyp} —

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where *cut* rules are irreducible (e.g., cut between hypotheses)

(1) A new rule: the **hypothesis**

^{hyp} <u>Γ</u>

(2) Open proof = non-wellfounded proof that might contain hyp

(3) Normal open proof = proofs where *cut* rules are irreducible (e.g., cut between hypotheses)

Infinitary cut-elimination strategy (ices) := family σ = (σ_D)_{D∈oPLL∞} where each σ_D is a countable sequence of proofs such that:

$$\mathcal{D} = \sigma_{\mathcal{D}}(\mathbf{0}) \rightsquigarrow \sigma_{\mathcal{D}}(\mathbf{1}) \rightsquigarrow \ldots \rightsquigarrow \sigma_{\mathcal{D}}(\mathbf{n}) \rightsquigarrow \ldots$$

Given an ices σ we define f_{σ} : oPLL^{∞}(Γ) \rightarrow oPLL^{∞}(Γ) as

$$f_{\sigma}(\mathcal{D}) := \bigsqcup_{i=0}^{\ell(\sigma_{\mathcal{D}})} \mathsf{cf}(\sigma_{\mathcal{D}}(i))$$

where $cf(\mathcal{D}_i)$ is the greatest cut-free approximation of \mathcal{D}_i (w.r.t. \preceq) A ices σ is:

- Maximal if, for any finite open proof, $\ell(\sigma_D)$ (is finite and) is normal
- (Scott-)continuous is f_{σ} is

Maximal continuous infinitary cut-elimination strategies (mc-ices).

Infinitary cut-elimination strategy (ices) := family σ = (σ_D)_{D∈oPLL∞} where each σ_D is a countable sequence of proofs such that:

$$\mathcal{D} = \sigma_{\mathcal{D}}(\mathbf{0}) \rightsquigarrow \sigma_{\mathcal{D}}(\mathbf{1}) \rightsquigarrow \ldots \rightsquigarrow \sigma_{\mathcal{D}}(\mathbf{n}) \rightsquigarrow \ldots$$

• Given an ices σ we define f_{σ} : oPLL^{∞}(Γ) \rightarrow oPLL^{∞}(Γ) as

$$f_{\sigma}(\mathcal{D}) := \bigsqcup_{i=0}^{\ell(\sigma_{\mathcal{D}})} \mathsf{cf}(\sigma_{\mathcal{D}}(i))$$

where $cf(\mathcal{D}_i)$ is the greatest cut-free approximation of \mathcal{D}_i (w.r.t. \preceq) A ices σ is:

- Maximal if, for any finite open proof, $\ell(\sigma_D)$ (is finite and) is normal
- (Scott-)continuous is f_{σ} is

■ Maximal continuous infinitary cut-elimination strategies (mc-ices).

Infinitary cut-elimination strategy (ices) := family σ = (σ_D)_{D∈oPLL∞} where each σ_D is a countable sequence of proofs such that:

$$\mathcal{D} = \sigma_{\mathcal{D}}(\mathbf{0}) \rightsquigarrow \sigma_{\mathcal{D}}(\mathbf{1}) \rightsquigarrow \ldots \rightsquigarrow \sigma_{\mathcal{D}}(\mathbf{n}) \rightsquigarrow \ldots$$

• Given an ices σ we define f_{σ} : oPLL^{∞}(Γ) \rightarrow oPLL^{∞}(Γ) as

$$f_{\sigma}(\mathcal{D}) := igsqcup_{i=0}^{\ell(\sigma_{\mathcal{D}})} \mathsf{cf}(\sigma_{\mathcal{D}}(i))$$

where $cf(\mathcal{D}_i)$ is the greatest cut-free approximation of \mathcal{D}_i (w.r.t. \preceq)

- A ices σ is:
 - Maximal if, for any finite open proof, $\ell(\sigma_D)$ (is finite and) is normal
 - (Scott-)continuous is f_{σ} is

Maximal continuous infinitary cut-elimination strategies (mc-ices).

Infinitary cut-elimination strategy (ices) := family σ = (σ_D)_{D∈oPLL∞} where each σ_D is a countable sequence of proofs such that:

$$\mathcal{D} = \sigma_{\mathcal{D}}(\mathbf{0}) \rightsquigarrow \sigma_{\mathcal{D}}(1) \rightsquigarrow \ldots \rightsquigarrow \sigma_{\mathcal{D}}(n) \rightsquigarrow \ldots$$

• Given an ices σ we define f_{σ} : oPLL^{∞}(Γ) \rightarrow oPLL^{∞}(Γ) as

$$f_{\sigma}(\mathcal{D}) := igsqcup_{i=0}^{\ell(\sigma_{\mathcal{D}})} \mathsf{cf}(\sigma_{\mathcal{D}}(i))$$

where $cf(\mathcal{D}_i)$ is the greatest cut-free approximation of \mathcal{D}_i (w.r.t. \preceq)

- A ices σ is:
 - Maximal if, for any finite open proof, $\ell(\sigma_{\mathcal{D}})$ (is finite and) is normal
 - (Scott-)continuous is f_{σ} is
- Maximal continuous infinitary cut-elimination strategies (mc-ices).

Continuous cut-elimination theorem

- **Existence of** mc-ices: intuitively, always apply a cut-elimination step to the leftmost reducible *cut* rule with minimal height.
- **Confluence:** if σ and σ' are mc-ices, then $f_{\sigma} = f_{\sigma'}$
- Theorem (Continuous cut-elimination): Given σ a mc-ices:
 - (1) \mathcal{D} is progressing then $f_{\sigma}(\mathcal{D})$ is hyp-free (productivity)
 - (2) f_{σ} preserves progressing and finite expandability
 - (3) If $\mathcal{D} \in \mathsf{wrPLL}^{\infty}$ then $f_{\mathcal{D}}(\mathcal{D}) \in \mathsf{wrPLL}^{\infty}$
 - (4) If $\mathcal{D} \in \mathsf{rPLL}^\infty$ then $f_\mathcal{D}(\mathcal{D}) \in \mathsf{rPLL}^\infty$

Continuous cut-elimination theorem

- **Existence of** mc-ices: intuitively, always apply a cut-elimination step to the leftmost reducible *cut* rule with minimal height.
- **Confluence:** if σ and σ' are mc-ices, then $f_{\sigma} = f_{\sigma'}$

Theorem (Continuous cut-elimination): Given *σ* a mc-ices:

- (1) \mathcal{D} is progressing then $f_{\sigma}(\mathcal{D})$ is hyp-free (productivity)
- (2) f_{σ} preserves progressing and finite expandability
- (3) If $\mathcal{D} \in wrPLL^{\infty}$ then $f_{\mathcal{D}}(\mathcal{D}) \in wrPLL^{\infty}$
- (4) If $\mathcal{D} \in \mathsf{rPLL}^{\infty}$ then $f_{\mathcal{D}}(\mathcal{D}) \in \mathsf{rPLL}^{\infty}$

Productivity and preservation of progressing condition

Theorem:

- (1) \mathcal{D} is progressing then $f_{\sigma}(\mathcal{D})$ is hyp-free (productivity)
- (2) f_{σ} preserves progressing and finite expandability

Proof idea.

Productivity and preservation of progressing condition

Theorem:

- (1) \mathcal{D} is progressing then $f_{\sigma}(\mathcal{D})$ is hyp-free (productivity)
- (2) f_{σ} preserves progressing and finite expandability

Proof idea.

Productivity and preservation of progressing condition

Theorem:

- (1) \mathcal{D} is progressing then $f_{\sigma}(\mathcal{D})$ is hyp-free (productivity)
- (2) f_{σ} preserves progressing and finite expandability

Proof idea.

Theorem: If $\mathcal{D} \in wrPLL^{\infty}$ then $f_{\mathcal{D}}(\mathcal{D}) \in wrPLL^{\infty}$ (similarly for $rPLL^{\infty}$) **Proof idea.** We use decomposition:

We define a transfinite cut-elimination sequence preserving (weak) regularity by induction on the "nesting" of non-wellfounded boxes:

Theorem: If $\mathcal{D} \in wrPLL^{\infty}$ then $f_{\mathcal{D}}(\mathcal{D}) \in wrPLL^{\infty}$ (similarly for $rPLL^{\infty}$)

Proof idea. We use decomposition:

We define a transfinite cut-elimination sequence preserving (weak) regularity by induction on the "nesting" of non-wellfounded boxes:

Theorem: If $\mathcal{D} \in wrPLL^{\infty}$ then $f_{\mathcal{D}}(\mathcal{D}) \in wrPLL^{\infty}$ (similarly for $rPLL^{\infty}$)

Proof idea. We use decomposition:

We define a transfinite cut-elimination sequence preserving (weak) regularity by induction on the "nesting" of non-wellfounded boxes:

Theorem: If $\mathcal{D} \in wrPLL^{\infty}$ then $f_{\mathcal{D}}(\mathcal{D}) \in wrPLL^{\infty}$ (similarly for $rPLL^{\infty}$) **Proof idea.** We use decomposition:

We define a transfinite cut-elimination sequence preserving (weak) regularity by induction on the "nesting" of non-wellfounded boxes:

Son-uniform complexity classes

Non-uniform complexity classes

- **FP** = class of functions computable in polynomial time on a Turing machine.
- **FP**/poly is an extension of **FP** that intuitively has access to a 'small' amount of *advice*, determined only by the length of the input.
- **FP**/poly = class of functions $f(\vec{x})$ for which there exists some strings $\alpha_{\vec{n}} \in \{0,1\}^*$ and a function $f'(x, \vec{x}) \in \mathbf{FP}$ with:
 - ► $|\alpha_{\vec{n}}|$ is polynomial in \vec{n} .
 - $f(\vec{x}) = f'(\alpha_{|\vec{x}|}, \vec{x}).$
- Note, in particular, that \mathbf{FP} /poly admits undecidable problems. E.g. the function f(x) = 1 just if |x| is the code of a halting Turing machine (and 0 otherwise) is in \mathbf{FP} /poly. Indeed, the point of the class \mathbf{FP} /poly is to rather characterise a more non-uniform notion of computation.

Theorem: $f(\vec{x}) \in \mathbf{FP}$ /poly iff there are poly-size circuits computing $f(\vec{x})$.

■ The class **FP**(ℝ) consists of just the functions computable in polynomial time by a Turing machine with access to oracles from:

$$\mathbb{R} := \{f(x) : \mathbb{N} \to \{0,1\} \mid |x| = |y| \implies f(x) = f(y)\}$$

- Note that the notation \mathbb{R} is suggestive here, since its elements are essentially maps from lengths/positions to Booleans, and so may be identified with Boolean streams.
- Theorem [Folklore]: $FP/poly = FP(\mathbb{R})$.