
Lifting final coalgebras and initial algebras, a
reconstruction

Luigi Santocanale, Gregory Chichery

LIS, CNRS UMR 7020, Aix-Marseille Université, France
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Context

For a category C and a functor Q : C → Pos, the Grothendieck
construction

∫
Q is so described:

• An object is a pair (X , α) with X ∈ C and α ∈ Q(X ).

• An arrow f : (X , α) → (Y , β) is an arrow f : X → Y of C
such that Q(f )(α) ≤ β.

The first projection π :
∫
Q → C is an op-fibration.
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Lifting star-autonomous structures [2]

The aim of this preprint paper is lifting many structures (functors,
star autonomous structures) to the Grothendieck construction

∫
Q

of a functor Q : C → Pos.

Theorem
There is a bijection between liftings of a functor F : C → C to
F :

∫
Q →

∫
Q and lax natural transformations ψ : Q → QF .∫

Q
∫
Q Q(X ) Q(Y )

≤

C C QF (X ) QF (Y )
QF (f )

ψ

Q(f )

ψ

F

π π

F

Remark
For the rest, let’s fix F a lifting with ψ the correspondant lax
natural transormations.
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Lifting coalgebras
For a coalgebra (X , γ : X → F (X )), define

Qν(X , γ) := {α ∈ Q(X ) | Q(γ)(α) ≤ ψ(α)}.

Proposition

([4, 5, 1, 6], Folklore ?)
Qν extends (in an obvious way) to a functor

Qν : CoAlgC (F ) → Pos

and we have an isomorphism

CoAlg∫ Q(F ) ≃
∫

Qν .

Remark
If Q : C → SLatt, then so Qν : C → SLatt.

SLatt is the category of posets with joins and maps that preserve them.
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Final coalgebras

We can therefore restrict to the question of lifting terminal objects
to the total category.

Lemma
Consider a functor G : D → Pos. If 1 is a terminal object of D and
⊤ ∈ G (1) is the greatest element of this poset, then (1,⊤) is a
terminal object of

∫
G .

Proposition

(c.f. [3, Theorem 2.6] and [4, Corollary 4.3])
Given a final coalgebra (ν.F , ξ). If the greatest fixed point ν.f of

f := Q(ξ−1) ◦ ψν.F : Q(ν.F ) → Q(F (ν.F )) → Q(ν.F )

exists, then (ν.F , ν.f , ξ) is a final coalgebra of F .
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Lifting algebras: natural case

Because of lax naturality of ψ, we do not have, in general, a similar
representation for Alg∫ Q(F ).

Proposition

Suppose that ψ is natural. Define

Qµ(X , γ) := {α ∈ Q(X ) | Q(γ)(ψ(α)) ≤ α}.

Then Qµ extends (in an obvious way) to a functor

Qµ : AlgC (F ) → Pos

and we have an isomorphism Alg∫ Q(F ) ≃
∫
Qµ.

Remark
In litterature, F is often required to preserve cartesian arrows. It is
equivalent that ψ required to be natural.

6/14



Lifting algebras: natural case

Because of lax naturality of ψ, we do not have, in general, a similar
representation for Alg∫ Q(F ).

Proposition

Suppose that ψ is natural. Define

Qµ(X , γ) := {α ∈ Q(X ) | Q(γ)(ψ(α)) ≤ α}.

Then Qµ extends (in an obvious way) to a functor

Qµ : AlgC (F ) → Pos

and we have an isomorphism Alg∫ Q(F ) ≃
∫
Qµ.

Remark
In litterature, F is often required to preserve cartesian arrows. It is
equivalent that ψ required to be natural.

6/14



Lifting algebras: natural case

Because of lax naturality of ψ, we do not have, in general, a similar
representation for Alg∫ Q(F ).

Proposition

Suppose that ψ is natural. Define

Qµ(X , γ) := {α ∈ Q(X ) | Q(γ)(ψ(α)) ≤ α}.

Then Qµ extends (in an obvious way) to a functor

Qµ : AlgC (F ) → Pos

and we have an isomorphism Alg∫ Q(F ) ≃
∫
Qµ.

Remark
In litterature, F is often required to preserve cartesian arrows. It is
equivalent that ψ required to be natural.

6/14



Lifting algebras: natural case

Because of lax naturality of ψ, we do not have, in general, a similar
representation for Alg∫ Q(F ).

Proposition

Suppose that ψ is natural. Define

Qµ(X , γ) := {α ∈ Q(X ) | Q(γ)(ψ(α)) ≤ α}.

Then Qµ extends (in an obvious way) to a functor

Qµ : AlgC (F ) → Pos

and we have an isomorphism Alg∫ Q(F ) ≃
∫
Qµ.

Remark
In litterature, F is often required to preserve cartesian arrows. It is
equivalent that ψ required to be natural.

6/14



Lifting algebras: with duality (1)

Even if ψ is not natural, we can say something when
Q : C → SLatt, exploiting the internal duality of SLatt.

Let Q∗ : C op → SLatt be defined by Q∗(X ) := Q(X )op and
Q∗(f ) = Q(f )∗, the right adjoint to Q(f ).

C op SLattop SLatt
Q (−)∗

Lemma
We have (

∫
Q)op =

∫
Q∗ and, moreover, F

op
is the lifting of

F op : C op → C op to
∫
Q∗ via ψop : Q(X )op → Q(F (X ))op.
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Lifting algebras: with duality (2)

Theorem
If Q : C → SLatt, then

Alg∫ Q(F ) = [CoAlg∫ Q∗(F op)]op ≃ [

∫
Q∗ν ]op =

∫
Q∗ν∗. (1)

Remark
This isomorphism allows us to use the terminal coalgebras results.

Moreover, put Qµ := Q∗ν∗ : AlgC (F ) → SLatt, we have an explicit
description of this functor: for f : (X , γ) → (Y , δ) ∈ Qµ(X , γ),

Qµ(X , γ) = {α ∈ Q(X ) | Q(γ)(ψX (α)) ≤ α} , (2)

Qµ(f )(α) = least β ∈ Qµ(Y , δ) such that Q(f )(α) ≤ β . (3)

Remark
If ψ is natural, this definition of Qµ coincide with the previous.
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Lifting algebras: more general

Suppose that Q : C → SLatt−, where SLatt− is the category of
complete lattice with morphisms of posets.

Then with the previous definition Qµ : AlgC (F ) → SLatt− is an
oplax functor, that is, it satisfies Qµ(gf ) ≤ Qµ(g)Qµ(f ). So the
general Grothendieck construction allows us to define the category∫
Qµ.

Proposition

Again, we have Alg∫ Q(F ) ≃
∫
Qµ.
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Initial algebras (1)

We can therefore restrict to the question of lifting initial objects to
the total category.

Lemma
If 0 is an initial object of D, ⊥ ∈ G (0) is the least element of this
poset, and, for each object X of D, the unique arrow ?X : 0 → X
is such that G (?X )(⊥) is the least element of G (X ), then (0,⊥) is
an initial object of

∫
G .

Proposition

Using one of the three definition of Qµ, given an initial algebra
(µ.F , ξ), if the least fixed point µ.f of

f := Q(ξ) ◦ ψµ.F : Q(µ.F ) → Q(F (µ.F )) → Q(µ.F )

exists, and the Q(?X ) preserves least fixed point of Q(γ)ψX , then
(µ.F , µ.f , ξ) is an initial algebra of F .
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Initial algebras (2)

Corollary

If we have Q : C → SLatt, then so is Qµ, morever an initial
algebra (µ.F , ξ) of F give us an initial algebra (µ.F , µ.f , ξ) of F .

Proposition

Suppose that the Q(X ) are complete lattice and the Q(f )
preserves suprema of (possibly empty) chains. Then an initial
algebra (µ.F , ξ) of F gives us an initial algebra (µ.F , µ.f , ξ) of F .

The proposition relies on and establishes a link with [3], where a
constructive setting is being considered: ipos+Pataraya’s least
fixed point theorem.
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Initial algebras: a lemma

This is a consequence of the next lemma applied to

Q(µ.F ) Q(F (µ.F )) Q(µ.F )

≥

Q(X ) Q(F (X )) Q(X )

Q(?X ) Q(F (?X )) Q(?X )

ψµ.F Q(ξ)

ψX Q(γ)

Lemma
Consider a half-commuting diagram of posets as the one below. If
A and B are complete lattices and f preserves suprema of (possibly
empty) chains, then f (µ.gA) ≤ µ.gB .

A A

≥

B B

f f

gB

gA
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