NOMINAL MODAL LOGICS FOR FRESH-REGISTER AUTOMATA (WORK IN PROGRESS)

M.H.Bandukara, N.Tzevelekos

Queen Mary University of London

INFINITE ALPHABETS

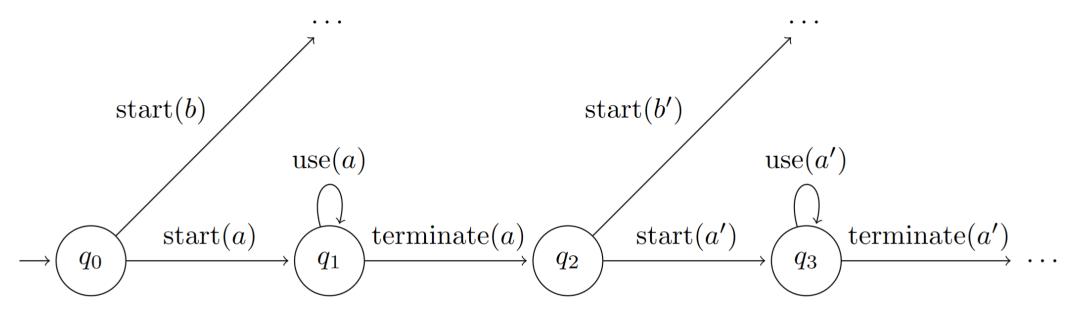
Systems that operate over *infinite alphabets*

• Mobile processes, program semantics, dynamic resource allocation

INFINITE ALPHABETS

Systems that operate over *infinite alphabets*

- Mobile processes, program semantics, dynamic resource allocation
- Example: Application usage session



Extension of the Finite-Memory Automata model [Kaminski & Francez, 1994]

Uses *registers* to store names (or atoms)

Captures *global-freshness*

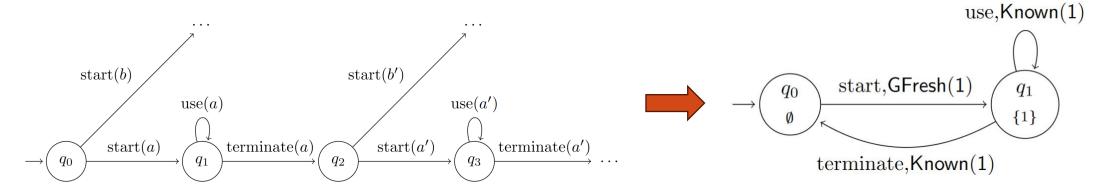
Allows acceptance of a name that has not been seen in the current run

Extension of the Finite-Memory Automata model [Kaminski & Francez, 1994]

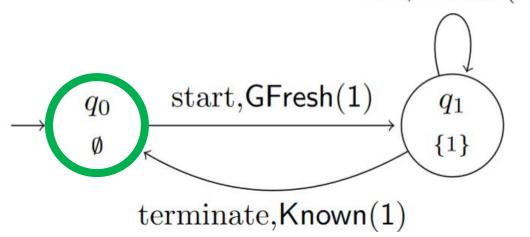
Uses *registers* to store names (or atoms)

Captures *global-freshness*

Allows acceptance of a name that has not been seen in the current run

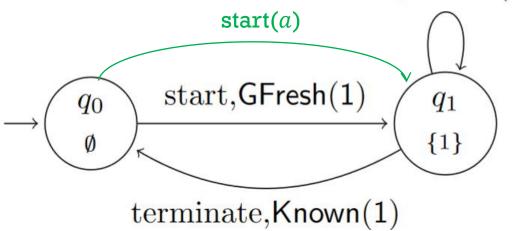


use, Known(1)



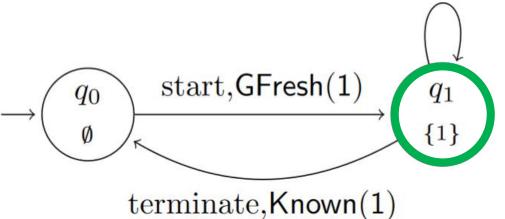
Run: $(q_0, \emptyset, \emptyset)$

use, Known(1)

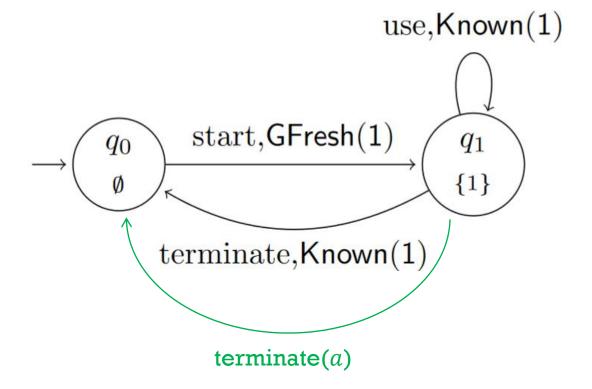


 $\operatorname{Run:}(q_0,\emptyset,\emptyset) \xrightarrow{\operatorname{start}(a)}$

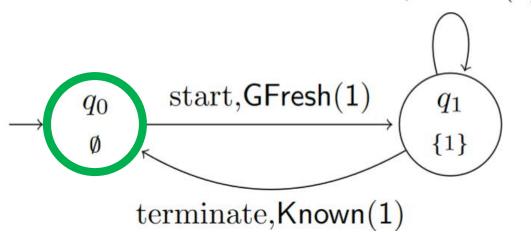
use, Known(1)



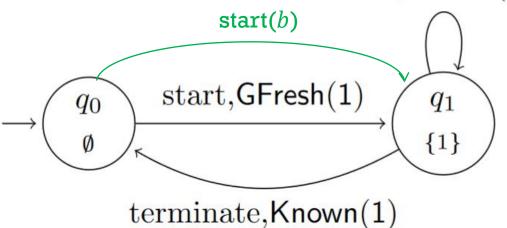
Run: $(q_0, \emptyset, \emptyset) \xrightarrow{start(a)} (q_1, \{1 \mapsto a\}, \{a\})$



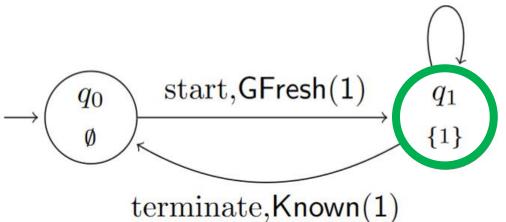
Run:
$$(q_0, \emptyset, \emptyset) \xrightarrow{start(a)} (q_1, \{1 \mapsto a\}, \{a\}) \xrightarrow{terminate(a)}$$



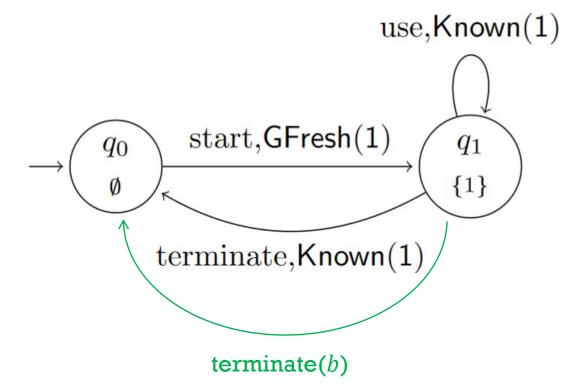
Run:
$$(q_0, \emptyset, \emptyset) \xrightarrow{start(a)} (q_1, \{1 \mapsto a\}, \{a\}) \xrightarrow{terminate(a)} (q_0, \emptyset, \{a\})$$



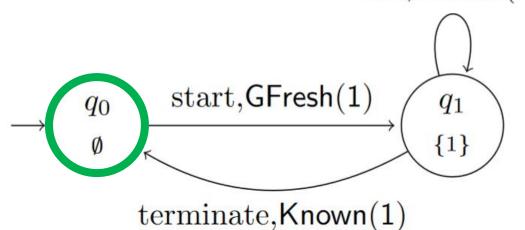
$$\operatorname{Run:} (q_0,\emptyset,\emptyset) \xrightarrow{\operatorname{start}(a)} (q_1,\{1\mapsto a\},\{a\}) \xrightarrow{\operatorname{terminate}(a)} (q_0,\emptyset,\{a\}) \xrightarrow{\operatorname{start}(b)}$$



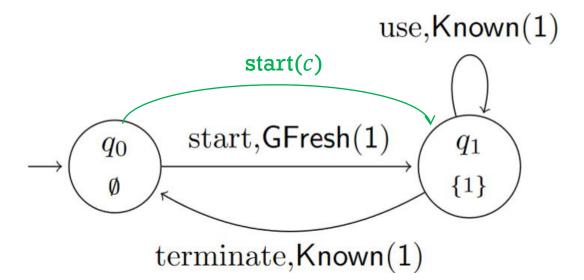
$$\operatorname{Run:} (q_0,\emptyset,\emptyset) \xrightarrow{\operatorname{start}(a)} (q_1,\{1\mapsto a\},\{a\}) \xrightarrow{\operatorname{terminate}(a)} (q_0,\emptyset,\{a\}) \xrightarrow{\operatorname{start}(b)} (q_1,\{1\mapsto b\},\{a,b\})$$



$$\operatorname{Run:} (q_0,\emptyset,\emptyset) \xrightarrow{\operatorname{start}(a)} (q_1,\{1\mapsto a\},\{a\}) \xrightarrow{\operatorname{terminate}(a)} (q_0,\emptyset,\{a\}) \xrightarrow{\operatorname{start}(b)} (q_1,\{1\mapsto b\},\{a,b\}) \xrightarrow{\operatorname{terminate}(b)} (q_1,\{1\mapsto b\},\{a,b\})$$

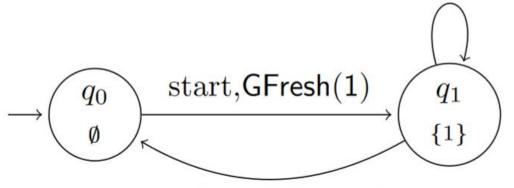


$$\operatorname{Run:} (q_0,\emptyset,\emptyset) \xrightarrow{\operatorname{start}(a)} (q_1,\{1\mapsto a\},\{a\}) \xrightarrow{\operatorname{terminate}(a)} (q_0,\emptyset,\{a\}) \xrightarrow{\operatorname{start}(b)} (q_1,\{1\mapsto b\},\{a,b\}) \xrightarrow{\operatorname{terminate}(b)} (q_0,\emptyset,\{a,b\}) \xrightarrow{\operatorname{terminate}(b)} (q_0,\emptyset,\{a,b\})$$

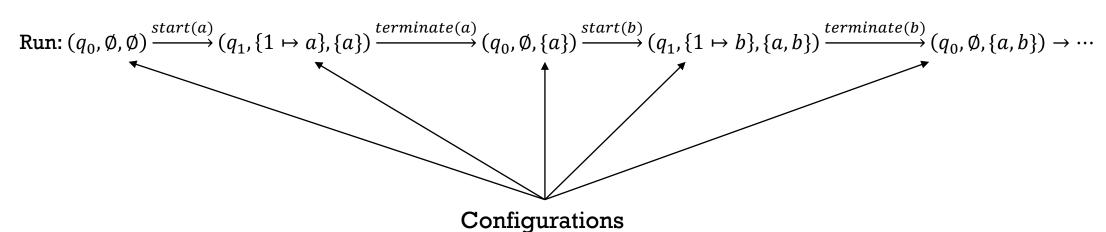


$$\operatorname{Run:} (q_0,\emptyset,\emptyset) \xrightarrow{\operatorname{start}(a)} (q_1,\{1\mapsto a\},\{a\}) \xrightarrow{\operatorname{terminate}(a)} (q_0,\emptyset,\{a\}) \xrightarrow{\operatorname{start}(b)} (q_1,\{1\mapsto b\},\{a,b\}) \xrightarrow{\operatorname{terminate}(b)} (q_0,\emptyset,\{a,b\}) \xrightarrow{} \cdots$$

use, Known(1)



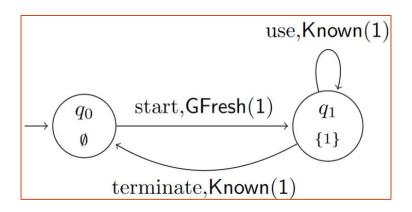
terminate, Known(1)



FRESH-REGISTER AUTOMATA — FORMAL DEFINITION

An r-Fresh-Register Automaton is a tuple $A = \langle \Sigma, Q, q_0, \mu, \delta, F \rangle$ that operates on a set of registers $\{1, ..., r\}$ where:

- Σ is a finite set of tags
- Q is a finite set of states, $q_0 \in Q$ is the initial state, $F \subseteq Q$ is the finite set of final states
- $\mu: Q \to P(\{1, ..., r\})$ indicates which registers are filled at each state
- δ is the transition relation
 - $\delta \subseteq Q \times \{(t, X(i)) | t \in \Sigma, i \in \{1, ..., r\}, X \text{ in } \{Known, LFresh, GFresh\}\} \times Q$



RESULTS ON PROPERTIES OF FRESH-REGISTER AUTOMATA

What has been done:

Language equivalence undecidable [Neven et al, 2004]

• E.g., can encode computations of counter machines

Bisimulation equivalence decidable by use of symbolic techniques [Murawski et al, 2018]

• Language equivalence is decidable in the deterministic case

Translation from finitary π -calculus processes to fresh-register automata [Bandukara & Tzevelekos, 2022]

RESULTS ON PROPERTIES OF FRESH-REGISTER AUTOMATA

What has been done:

Language equivalence undecidable [Neven et al, 2004]

• E.g., can encode computations of counter machines

Bisimulation equivalence decidable by use of symbolic techniques [Murawski et al, 2018]

• Language equivalence is decidable in the deterministic case

Translation from finitary π -calculus processes to fresh-register automata [Bandukara & Tzevelekos, 2022]

What we are working on:

A nominal logic that can express fresh-register automata properties

MOTIVATING EXAMPLES

Suppose we wanted to check if the following properties holds for two FRAs:

P1: At every state, there is an infinite path $a_0, a_1, ..., a_n$ Such that $\forall a_i, a_i \neq a_{i-1}$

P2: At each state, there is an infinite path $a_0, a_1, ... a_n$ such that $\forall a_i, a_i \notin \{a_0, ..., a_{i-1}\}$

NOMINAL MODAL μ -CALCULUS

Given a countably infinite set of variables Var(x, y, etc.) and recursion variables VAR(X, Y, etc.), we define:

- Formulae $\exists \phi ::= u = u \mid \phi \lor \phi \mid \neg \phi \mid \bigvee_{x \in \mathbb{A}} \phi \mid \langle \ell \rangle \phi \mid (\mu X(\vec{x}).\phi)(\vec{u}) \mid X(\vec{u})$
- $Values \ni u := x \mid a$
- Labels $\ni \ell := \tau \mid (t, u)$

Defined according to the specification of Register Automata

- countably infinite set \mathbb{A} of names ranged over by a (and variants)
- finite set Σ of tags ranged over by t (and variants)

Built on previous works by Dam [Dam, 2003] and Klin [Klin & Łełyk, 2017].

Extension of HML with recursion (modal μ -calculus) was introduced by Kozen [Kozen, 1983]

NOMINAL SETS - DEFINITIONS

Nominal sets (Pitts, 2013)

- A set X with action \cdot of the group of finite permutations of $\mathbb A$ such that all elements of X are finitely supported
- A set $S \subseteq \mathbb{A}$ of names supports an element $x \in X$ if for all $\pi \in Perm(\mathbb{A})$:
 - $(\forall a \in S. \pi \cdot a = a) \Rightarrow \pi \cdot x = x$

Equivariant (Pitts, 2013)

- A relation R over a nominal set X is equivariant when for all $x \in X$ and permutations π :
 - $x \in R \text{ iff } \pi \cdot x \in R$

NOMINAL SETS - DEFINITIONS

Orbit

• Given a nominal set X, the orbit of any element $x \in X$ is:

$$\mathcal{O}(x) = \left\{ \pi \cdot \left(\vec{a}, x(\vec{a}) \right) \middle| \vec{a} \in \mathbb{A}^n, \pi \in PERM(\mathbb{A}) \right\}$$

Orbit-finite

• A nominal set X is *orbit-finite* if there is a finite subset $\{x_1, \dots, x_n\} \subseteq X$ such that:

$$X = \bigcup_{i} \{\pi \cdot x_i \mid \pi \text{ is a permutation}\}\$$

NOMINAL LTS

Definition 2. A nominal Labelled-Transition System (nominal LTS) is a tuple $\mathcal{L} = \langle \mathcal{S}, L, \rightarrow \rangle$, where \mathcal{S} is a nominal set of states, L is a nominal set of actions and $\rightarrow \subseteq \mathcal{S} \times L \times \mathcal{S}$ is an equivariant transition relation. \mathcal{L} is called orbit-finite if \mathcal{S} and L are orbit-finite nominal sets.

Definition 3. A normal-nominal $LTS = \langle \mathcal{S}, L, \rightarrow \rangle$ with $L = \{\tau\} \cup (\Sigma \times \mathbb{A})$ is a nominal LTS with the restriction that for every $\kappa \xrightarrow{\ell} \kappa'$

$$\operatorname{supp}(\kappa') \subseteq \operatorname{supp}(\kappa) \cup \operatorname{supp}(\ell).$$

Moreover, let us set $\mathcal{U} = \mathcal{P}(\mathcal{S})$ and for each $n \in \mathbb{N}$

$$\mathcal{U}_n = \{ f : \mathbb{A}^n \to \mathcal{U} \mid f \text{ is equivariant} \}.$$

NOMINAL MODAL μ -CALCULUS: SEMANTICS

Defined on normal-nominal LTS where states are configurations of register automata

Same as fresh-register automata configurations, without histories

Let \mathcal{U} be the set of all configurations and $\xi: VAR \to \bigcup_{n\in\mathbb{N}} \mathcal{U}_n$ be a recursion variable assignment.

The semantics of a formula ϕ with respect to ξ , written $[\![\phi]\!]_{\xi}$ is given inductively by:

$$\begin{aligned}
& [a = b]_{\xi} = \emptyset \\
& [a = a]_{\xi} = \mathcal{U} \\
& [\phi_1 \lor \phi_2]_{\xi} = [\phi_1]_{\xi} \cup [\phi_2]_{\xi} \\
& [\neg \phi]_{\xi} = \mathcal{U} \setminus [\phi]_{\xi} \\
& [V_{x \in \mathbb{A}} \phi]_{\xi} = \bigcup_{a \in \mathbb{A}} [\phi \{a/x\}]_{\xi} \\
& [\langle \ell \rangle \phi]_{\xi} = \{U \in \mathcal{U} \mid \exists U \xrightarrow{\ell} U' . U' \in [\phi]_{\xi} \}
\end{aligned}$$

NOMINAL MODAL μ -CALCULUS: SEMANTICS

Defined on normal-nominal LTS where states are configurations of register automata

Same as fresh-register automata configurations, without histories

Let \mathcal{U} be the set of all configurations and $\xi: VAR \to \bigcup_{n\in\mathbb{N}} \mathcal{U}_n$ be a recursion variable assignment.

The semantics of a formula ϕ with respect to ξ , written $[\![\phi]\!]_{\xi}$ is given inductively by:

$$[\![(\mu X(\vec{x}).\phi)(\vec{a})]\!]_{\xi} = (\mathrm{lfp}(\lambda f.\lambda \vec{b}. [\![\phi \{\vec{b}/\vec{x}\}]\!]_{\xi[X \mapsto f]}))(\vec{a})$$

$$[\![X(\vec{a})]\!]_{\xi} = \xi(X)(\vec{a})$$

Suppose we want to check if the following property holds for an RA:

At every state, there is an infinite path $a_0, a_1, ..., a_n$ Such that $\forall a_i, a_i \neq a_{i-1}$

Does the RA satisfy the following formula:

$$\bigvee_{x \in \mathbb{A}} \langle x \rangle . \left[\nu X(z) . \bigvee_{y \in \mathbb{A}} z \neq y \wedge \langle y \rangle X(y) \right] (x)$$

$$\left[\left[\bigvee_{x \in \mathbb{A}} \langle x \rangle. \left[\nu X(z). \bigvee_{y \in \mathbb{A}} z \neq y \wedge \langle y \rangle X(y) \right](x) \right]_{\xi}$$

- $\to \bigcup_{a \in \mathbb{A}} \left[\langle a \rangle. \left[\nu X(z). \bigvee_{y \in \mathbb{A}} z \neq y \wedge \langle y \rangle X(y) \right](a) \right]_{\xi}$
 - For all names a, examine configurations with an a transition

$$\left[\left[\bigvee_{x \in \mathbb{A}} \langle x \rangle. \left[\nu X(z). \bigvee_{y \in \mathbb{A}} z \neq y \wedge \langle y \rangle X(y) \right](x) \right]_{\xi}$$

- $\to \bigcup_{a \in \mathbb{A}} \left[\langle a \rangle. \left[\nu X(z). \vee_{y \in \mathbb{A}} z \neq y \wedge \langle y \rangle X(y) \right](a) \right]_{\xi}$
 - For all names a, examine configurations with an a transition

$$\stackrel{a}{\to} GFP(\lambda f. \lambda c \left[\left[\bigvee_{y \in \mathbb{A}} c \neq y \land \langle y \rangle X(y) \right] \right]_{\xi[X \mapsto f]})(a)$$

$$\left[\left[\bigvee_{x \in \mathbb{A}} \langle x \rangle. \left[\nu X(z). \bigvee_{y \in \mathbb{A}} z \neq y \wedge \langle y \rangle X(y) \right](x) \right]_{\xi}$$

- $\to \bigcup_{a\in\mathbb{A}} \left[\!\!\left[\langle a\rangle, [\nu X(z), \bigvee_{y\in\mathbb{A}} z \neq y \wedge \langle y\rangle X(y)](a)\right]\!\!\right]_{\xi}$
 - For all names a, examine configurations with an a transition

$$\stackrel{a}{\to} GFP(\lambda f. \lambda c \left[\left[\bigvee_{y \in \mathbb{A}} c \neq y \land \langle y \rangle X(y) \right] \right]_{\xi[X \mapsto f]})(a)$$

- $\to \bigcup_{b\in\mathbb{A}} \llbracket a \neq b \land \langle b \rangle X(b) \rrbracket_{\xi[X\mapsto f]}$
 - For all names b that are different to a, examine configurations that follow from the above with a b transition

$$\left[\left[\bigvee_{x \in \mathbb{A}} \langle x \rangle. \left[\nu X(z). \bigvee_{y \in \mathbb{A}} z \neq y \wedge \langle y \rangle X(y) \right](x) \right] \right]_{\xi}$$

$$\to \bigcup_{a\in\mathbb{A}} \left[\!\!\left[\langle a\rangle, [\nu X(z), \bigvee_{y\in\mathbb{A}} z\neq y \wedge \langle y\rangle X(y)](a)\right]\!\!\right]_{\xi}$$

• For all names a, examine configurations with an a transition

$$\stackrel{a}{\to} GFP(\lambda f. \lambda c \left[\left[\bigvee_{y \in \mathbb{A}} c \neq y \land \langle y \rangle X(y) \right] \right]_{\xi[X \mapsto f]})(a)$$

- $\to \bigcup_{b\in\mathbb{A}} \llbracket a \neq b \land \langle b \rangle X(b) \rrbracket_{\xi[X\mapsto f]}$
 - For all names b that are different to a, examine configurations that follow from the above with a b transition

$$\stackrel{b}{\to} \bigcup_{c \in \mathbb{A}} \llbracket b \neq c \land \langle c \rangle X(c) \rrbracket_{\xi[X \mapsto f]}$$

• For all names c that are different to b, examine configurations that follow from the above with a c transition

$$\left[\left[\bigvee_{x \in \mathbb{A}} \langle x \rangle. \left[\nu X(z). \bigvee_{y \in \mathbb{A}} z \neq y \wedge \langle y \rangle X(y) \right](x) \right]_{\xi}$$

- $\to \bigcup_{a \in \mathbb{A}} \left[\langle a \rangle. \left[\nu X(z). \bigvee_{y \in \mathbb{A}} z \neq y \wedge \langle y \rangle X(y) \right](a) \right]_{\xi}$
 - For all names a, examine configurations with an a transition

$$\stackrel{a}{\to} GFP(\lambda f. \lambda c \left[\left[\bigvee_{y \in \mathbb{A}} c \neq y \land \langle y \rangle X(y) \right] \right]_{\xi[X \mapsto f]})(a)$$

- $\to \bigcup_{b\in\mathbb{A}} \llbracket a\neq b \wedge \langle b\rangle X(b) \rrbracket_{\xi[X\mapsto f]}$
 - For all names b that are different to a, examine configurations that follow from the above with a b transition

$$\stackrel{b}{\to} \bigcup_{c \in \mathbb{A}} \llbracket b \neq c \land \langle c \rangle X(c) \rrbracket_{\xi[X \mapsto f]}$$

• For all names c that are different to b, examine configurations that follow from the above with a c transition

```
\stackrel{C}{\rightarrow} \dots
```

FINITE SEWANTICS

Require a finite representation for model checking Given a finite set $S \subseteq \mathbb{A}$, some $n \in \omega$, we define:

$$\mathcal{U} \upharpoonright S = \{ x \in \mathcal{U} \mid supp(x) \subseteq S \}$$
$$S_n = S^n \to (\mathcal{U} \upharpoonright S)$$

FINITE SEMANTICS

$$\mathcal{U} \upharpoonright S = \{x \in \mathcal{U} \mid supp(x) \subseteq S\}$$
$$S_n = S^n \to (\mathcal{U} \upharpoonright S)$$

Require a finite representation for model checking

Let $S \subseteq \mathbb{A}$ be a finite set, large enough to cater all bound names (and one fresh one!) the restricted definition uses same rules as before, except:

$$[a = a]_{\xi}^{S} = \mathcal{U} \upharpoonright S$$

$$[\bigvee_{x \in \mathbb{A}} \phi]_{\xi}^{S} = \bigcup_{a \in S} [\![\phi \{a/x\}]\!]_{\xi}^{S}$$

$$[\![\neg \phi]\!]_{\xi}^{S} = (\mathcal{U} \upharpoonright S) \setminus [\![\phi]\!]_{\xi}^{S}$$

$$[\![(\mu X(\vec{x}).\phi)(\vec{a})]\!]_{\xi}^{S} = (\mathrm{lfp}(\lambda f^{S_{n}}.\lambda \vec{b}^{S^{n}}.[\![\phi \{\vec{b}/\vec{x}\}]\!]_{\xi[X \mapsto f]}^{S}))(\vec{a})$$

And where $\xi: VAR \to \bigcup_{n \in \mathbb{N}} S_n$

PROOF OF MODEL CHECKING

Proposition 21. Let $\mathcal{L} = \langle \mathcal{S}, \mathcal{L}, \rightarrow \rangle$ be a orbit-finite normal-nominal LTS with with $L = \{\tau\} \cup (\Sigma \times \mathbb{A})$, let ϕ be a formula. There is a finite set S (depending linearly on ϕ) such that for each $S \subseteq \mathbb{A}$ with $|\operatorname{supp}(\phi)| + ||\phi|| < |S|$ and $\operatorname{supp}(\phi) \subseteq S$, $[\![\phi]\!]_{\xi} = \mathcal{O}([\![\phi]\!]_{\xi}^S)$.

*orbit-finite means the state-space is finite up to name permutations

HISTORY-DEPENDENT EXTENSION

As with FRAs, the previous definition is extended to account for global freshness Adding the following construct to our definition:

$$Formulae \ni \phi ::= \cdots \mid \#u$$

i.e., adds semantics that a name will be fresh in the current state

SEMANTICS (EXTENDED WITH HISTORIES)

Suppose we wanted to check if the following property holds for an FRA:

At each state, there is an infinite path $a_0, a_1, ... a_n$ such that $\forall a_i, a_i \notin \{a_0, ..., a_{i-1}\}$

Suppose we wanted to check if the following property holds for an FRA:

At each state, there is an infinite path $a_0, a_1, \dots a_n$ such that $\forall a_i, a_i \notin \{a_0, \dots, a_{i-1}\}$

Does the FRA satisfy the following formula:

$$\nu X. \bigvee_{x \in \mathbb{A}} \# x \wedge \langle x \rangle X$$

 $[\![\nu X. \vee_{x \in \mathbb{A}} \# x \wedge \langle x \rangle X]\!]$ $\to GFP(\lambda f. \lambda_{-}. [\![\vee_{x \in \mathbb{A}} \# x \wedge \langle x \rangle X]\!])$

$$[vX. \bigvee_{x \in \mathbb{A}} \#x \land \langle x \rangle X]$$

- $\rightarrow GFP(\lambda f. \lambda _. [\![\bigvee_{x \in \mathbb{A}} \#x \land \langle x \rangle X]\!])$
- $\rightarrow \bigcup_{a \in \mathbb{A}} \llbracket \#a \land \langle a \rangle X \rrbracket$
 - [all configurations where some name a is not in the history and has an a transition]

$$[vX. \bigvee_{x \in \mathbb{A}} \#x \land \langle x \rangle X]$$

- $\rightarrow GFP(\lambda f. \lambda_{-}. [[\vee_{x \in \mathbb{A}} \#x \land \langle x \rangle X]])$
- $\rightarrow \bigcup_{a \in \mathbb{A}} \llbracket \#a \land \langle a \rangle X \rrbracket$
 - [all configurations where some name a is not in the history and has an a transition]

$$\stackrel{a}{\to} \bigcup_{b \in \mathbb{A}} \llbracket \#b \wedge \langle b \rangle X \rrbracket$$

- [all configurations where some name b is not in the history and has a b transition]
 - The name a would be in the history at this point!

SIIMMARY

Explored fresh-register automata and infinite alphabets Looked at Nominal modal μ -calculus, a logic that can represent register automata Detailed how to expand the logic to a history dependent setting

Examined some representable properties

