NOMINAL MODAL LOGICS FOR FRESH-REGISTER
RAUTOMATA
(WORK IN PROGRESS)

M.H.Bandukara, N.Tzevelekos

Queen Mary University of London

Nominal Modal Logics for Fresh-Register Automata 20/02/2024

INFINITE ALPHABETS

Systems that operate over infinite alphabets

= Mobile processes, program semantics, dynamic resource allocation

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

INFINITE ALPHABETS

Systems that operate over infinite alphabets
= Mobile processes, program semantics, dynamic resource allocation

= Example: Application usage session

start(b)

start(b’)

use(a) use(a’)

terminate(a) terminate(a’)

d1

d3

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

Extension of the Finite-Memory Automata model [Kaminski & Francez, 1994]
Uses registers to store names (or atoms)
Captures global-freshness

= Allows acceptance of a name that has not been seen in the current run

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

Extension of the Finite-Memory Automata model [Kaminski & Francez, 1994]
Uses registers to store names (or atoms)
Captures global-freshness

= Allows acceptance of a name that has not been seen in the current run

use,Known(1)

start(b)

/ Q0 start,GFresh(1)
use(a) use(a’) ‘ — ;

terminate(a) terminate(a’) i
7 as e terminate,Known(1)

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

use,Known(1)

qo
]

start,GFresh(1)

terminate,Known(1)

Run: (g, 0, 0)

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

use,Known(1)
start(a)

start,GFresh(1)

terminate,Known(1)

start(a)

Run:(q,,0,0) ——

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

use,Known(1)

start,GFresh(1)

terminate,Known(1)

start(a)
Run: (CIO, ?, @) — (Chl {1 = a}, {a})

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

use,Known(1)

9 start,GFresh(1)
— -
0
terminate,Known(1)
terminate(a)
start(a) terminate(a)
Run: (C[O, @, @) — (qlr {1 = Cl}, {a}) g

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

use,Known(1)

90 start,GFresh(1)
’ >
terminate,Known(1)
start(a) terminate(a)
Run: (qo, @,0) —— (q1, {1 » a},{a}) > (qo, 9, {a})

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

start(b)

use,Known(1)

9 start,GFresh(1)
— >
0
terminate,Known(1)
start(a) terminate(a) start(b)
Run: (qo, @, 9) — (q1,{1 » a},{a}) > (90,9,{a}) ——

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

use,Known(1)

9 start,GFresh(1)
— >
0
terminate,Known(1)
Run: (0,8,0) “ > (g1, {1 = a}, {a}) 5 (0,0, {a}) 5 (41, (1 > b}, (a,b)

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

use,Known(1)

q0 start,GFresh(1)
— >
0
terminate,Known(1)
terminate(b)
Run: (q,, 0, @)_t(z(ql 1o a, {a})t rminate(a)(qo 8, {a}) start(b)(ql {1 - b}, {a,b}) erminate(b?

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

use,Known(1)

90 start,GFresh(1)
; ,
terminate,Known(1)
Run: (¢, @,) s (g3, {1 > a}, {a}) o (o, 8,{a}) e (g, {1 = b, {2,)) (40,0, {0, b))

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

use,Known(1)
start(c)

9 start,GFresh(1)
— >
0
terminate,Known(1)
Run: (qo, 8, 8) o (g1, {1 = a}, {a})) (46,0, {a}) 222 (g, {1 o b, @, b)) %) (40,0, {0, b}) — -

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA

use,Known(1)

start,GFresh(1)

terminate,Known(1)
start(a) terminate(a) start(b) terminate(b)
Run: (qOI @, ®) B (qli {1 = Cl}, {a}) > (CIO; ®' {a}) E— (CI1; {1 = b}' {a' b}) > (QO' @, {Cl, b}) > e
Configurations

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FRESH-REGISTER AUTOMATA — FORMAL DEFINITION

An r-Fresh-Register Automaton is a tuple A = (X, Q, qo, i, 8, /') that operates on a set of registers {1, ..., r} where:
= Y is a finite set of tags

= () is a finite set of states, q, € Q is the initial state,

= u:Q = P({1,...,7}) indicates which registers are filled at each state

= ¢ is the transition relation
= scQx{(t,X(W)|[texiefl,..,r},X in{Known, LFresh, GFresh}} X Q

use,Known (1)

start,GFresh(1)

terminate,Known(1)

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

RESULTS ON PROPERTIES OF FRESH-REGISTER AUTOMATA

What has been done:

Language equivalence undecidable [Neven et al, 2004]
» E.g.,can encode computations of counter machines

Bisimulation equivalence decidable by use of symbolic techniques [Murawski et al, 2018]
* Language equivalence is decidable in the deterministic case

Translation from finitary m-calculus processes to fresh-register automata [Bandukara & Tzevelekos, 2022]

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

RESULTS ON PROPERTIES OF FRESH-REGISTER AUTOMATA

What has been done:

Language equivalence undecidable [Neven et al, 2004]
» E.g.,can encode computations of counter machines

Bisimulation equivalence decidable by use of symbolic techniques [Murawski et al, 2018]
* Language equivalence is decidable in the deterministic case

Translation from finitary m-calculus processes to fresh-register automata [Bandukara & Tzevelekos, 2022]

What we are working on:

A nominal logic that can express fresh-register automata properties

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

MOTIVATING EXAMPLES

Suppose we wanted to check if the following properties holds for two FRAs:

P1: At every state, there is an infinite path ay, a4, ..., 4,
Such thatVa;.a; # a;_4

P2: At each state, there is an infinite path a,, a4, ... a,
such that Va;.a; & {ay, ..., ai_1}

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

NOMINAL MODAL p.-CALCULUS

Given a countably infinite set of variables Var (x, y, etc.) and recursion variables
VAR (X,Y,etc.), we define:

* Formulae 3¢ i=u=ulpVP|a¢|Viad [(O | uX().)W) | X(W)
. Values du :=x|a
. Labels 3 € ::= 1| (t,u)

Defined according to the specification of Register Automata
= countably infinite set A of names ranged over by a (and variants)

= finite set X of tags ranged over by t (and variants)

Built on previous works by Dam [Dam, 2003] and Klin [Klin & tetyk, 2017].

Extension of HML with recursion (modal u-calculus) was introduced by Kozen [Kozen, 1983]

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

NOMINAL SETS - DEFINITIONS

Nominal sets (Pitts, 2013)

= A set X with action - of the group of finite permutations of A such that all elements of X are
finitely supported

= A setS € A of names supports an element x € X if for all 1 € Perm(A):

= (VaeS.-m-a=a)=n-x=x

Equivariant (Pitts, 2013)
= A relation R over a nominal set X is equivariant when for all x € X and permutations r:
= xERiUfrn-x€ER

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

NOMINAL SETS - DEFINITIONS

Orbit

= Given a nominal set X, the orbit of any element x € X is:
0(x) ={m-(d,x(d)|d € A", w € PERM(A)}

Orbit-finite
= A nominal set X is orbit-finite if there is a finite subset {x, ..., x,,} € X such that:
X =Udmr - x; | mis a permutation}

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

NOMINAL LT3

Definition 2. A nominal Labelled-Transition System (nominal LTS) is a tuple

L= (S,L,—), where S is a nominal set of states, L is a nominal set of actions
and - C S X L xS is an equivariant transition relation.
L 1s called orbit-finite if S and L are orbit-finite nominal sets.

Definition 3. A normal-nominal LTS = (S,L,—) with L = {7} U (X x A) is

a nominal LTS with the restriction that for every k L K

supp(x’) C supp(x) U supp(¥).
Moreover, let us set U = P(S) and for each n € N

U, ={f: A" - U | f is equivariant}.

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

NOMINAL MODAL .-CALCULUS: SEMANTICS

Defined on normal-nominal LTS where states are configurations of register automata
= Same as fresh-register automata configurations, without histories

Let U be the set of all configurations and ¢: VAR — U,y U, be a recursion variable assignment.

The semantics of a formula ¢ with respect to ¢, written [¢] is given inductively by:
[a =b]¢ =0
la =a]e=U
[61V 2] = [¢1]e U [92]e
[=ole = U\ 9]
V.., o= U, Ioto/)1

[(0)¢]e ={U eU | 3U 5 U".U" € [6]¢}

Nominal Modal Logics for Fresh-Register Automata

20/02/2024 @

NOMINAL MODAL .-CALCULUS: SEMANTICS

Defined on normal-nominal LTS where states are configurations of register automata
= Same as fresh-register automata configurations, without histories

Let U be the set of all configurations and ¢: VAR — U,y U, be a recursion variable assignment.

The semantics of a formula ¢ with respect to ¢, written [¢] ¢ is given inductively by:

[(uX (2).0)(@)]e = (p(Af-Nb.[D{b/ZHe1xs11))(@)
[X(@)]e = £(X)(@)

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

UTILIZING OUR LOGIC

Suppose we want to check if the following property holds for an RA:

At every state, there is an infinite path ay, a4, ..., 4,
Such thatVa;.a; # a;_4

Does the RA satisfy the following formula:

\ @ x@.\[/ 2% y A X010

X€EA yEA

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

UTILIZING OUR LOGIC

[Vieal®). [vX(2).Vyeaz # y ADXP)](X) | ;

> Ugeal(@)- X(2). Vyen z % ¥y AIXDI@]),

= For all names a, examine configurations with an a transition

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

UTILIZING OUR LOGIC

[Vieatn). WX (D). Vyenz # y A XD],
> Ugeal(@)- X(2). Vyen z % ¥y AIXDI@]),

= For all names a, examine configurations with an a transition

> GFP(f. ¢ [Vyeac # ¥ AIX W],y (@

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

UTILIZING OUR LOGIC

[Vieal®). [vX(2).Vyeaz # y ADXP)](X) | ;

> Ugeal(@)- X(2). Vyen z % ¥y AIXDI@]),

= For all names a, examine configurations with an a transition
a
- GFP(Af.Ac [[VyeaC # ¥ A (y>X(y)]]]E[)(a)

— Upealla # b A (b)X(b)]]g[fo]
= For all names b that are different to a, examine configurations that follow from the above with a
b transition

X f]

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

UTILIZING OUR LOGIC

[Vxealx). vX(2).Vyeaz # y A WX (] () | ;

= Ugeal(@). WX(2). Vyea 7 % y A X OI@]),

= For all names a, examine configurations with an a transition

> GFP(f. ¢ [Vyeac # ¥ AX W]y (@
= Upealla # b A(DYX(D)] ¢ 1x0p1

= For all names b that are different to a, examine configurations that follow from the above with a
b transition

b
= Uceallb # ¢ Ae)X (O] epxo s

= For all names c that are different to b, examine configurations that follow from the above with a
¢ transition

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

UTILIZING OUR LOGIC

[Vxealx). vX(2).-Vyeaz # y A WX (] (X) | ;

> Ugeal(@)- WX(2). Vyen z % y AIX 1@,

= For all names a, examine configurations with an a transition
a
= GFPQAf.2c [[Vyenc # ¥y ANXW ., (@

= Upealla # b A(DYX(B)]¢1x0 1]

= For all names b that are different to a, examine configurations that follow from the above with a
b transition

b
= Uceallb # c A)X ()] exop
= For all names c that are different to b, examine configurations that follow from the above with a
¢ transition

c

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FINITE SEMANTICS

Require a finite representation for model checking

Given a finite set S € A, some n € w, we define:

UTS={x€eU|supp(x) € S}
S, =S"->(UTYS)

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

FINITE SEMANTICS

UTS={x€eU|supp(x) € S}
S, =S"> (UIS)

Require a finite representation for model checking
Let S € A be a finite set, large enough to cater all bound names (and one fresh one!)

the restricted definition uses same rules as before, except:
la = a‘g =UrlS
s _ TS
I\, ol =, [o{a/a};
[0 = @ 1 5)\ [¢]¢
[(X (F).0)(@)]F = ApAf5 X" [{b/Z}E x0s 1)) (@)

S
§
S
§

And where {: VAR — U,en Sn

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

PROOF OF MODEL CHECKING

Proposition 21. Let L = (S, L,—) be a orbit-finite normal-nominal LTS with
with L = {1} U (X x A), let ¢ be a formula. There is a finite set S (depending
linearly on @) such that for each S C A with | supp(d)|+||¢|| < |S| and supp(¢p) C

5. [¢le = O([919).

*orbit-finite means the state-space is finite up to name permutations

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

HISTORY-DEPENDENT EXTENSION

As with FRAs, the previous definition is extended to account for global freshness

Adding the following construct to our definition:

Formulae 3 ¢ ::= -+ | #u

1.e., adds semantics that a name will be fresh in the current state

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

SEMANTICS (EXTENDED WITH HISTORIES)

[#a]e = {(s,H) |a ¢ H}
la = bjjg =
la=a]e =%
[01V $]e = [d1]e Ul 2]
[—¢]e =7 \ [9]¢
V., 0l =, _, [6{a/x}e
[(09]e = {(s,H) | 3(s.H) = (s, H').(s',H') € [#]¢}
[(1X (%).6)@)]e = Up(A £ AB.[0 {5/} epxss) @)
[X(@)]e = £(X)(@)

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

PREVIOUS MOTIVATING EXAMPLE:

Suppose we wanted to check if the following property holds for an FRA:

At each state, there is an infinite path a,, a4, ... a,
such that Va;.a; &€ {ay, ..., a;_1}

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

PREVIOUS MOTIVATING EXAMPLE:

Suppose we wanted to check if the following property holds for an FRA:

At each state, there is an infinite path a,y, a4, ... a,
such thatVa;.a; & {ag, ..., a;_1}

Does the FRA satisfy the following formula:

vX.\/#x A (x)X

X€EA

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

PREVIOUS MOTIVATING EXAMPLE:

[VX.V,eq#x A {x)X]
— GFP(Af.A_. [Vyeq #x A ()X])

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

PREVIOUS MOTIVATING EXAMPLE:

[VX.V,eq#x A {x)X]
— GFP(Af.A_. [Vyeq #x A ()X])
— Ugeall#a A (a)X]

= [all configurations where some name a is not in the history and has an a transition]

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

PREVIOUS MOTIVATING EXAMPLE:

[VX.V,eq#x A {x)X]
— GFP(Af.A_. [Vyeq #x A ()X])
- Ugeall#a A (a)X]

= [all configurations where some name a is not in the history and has an a transition]

a
= Upeall#b A (b)X]
= [all configurations where some name b is not in the history and has a b transition]
= The name a would be in the history at this point!

Nominal Modal Logics for Fresh-Register Automata 20/02/2024 @

Explored fresh-register automata and infinite alphabets
Looked at Nominal modal p-calculus, a logic that can represent register automata
Detailed how to expand the logic to a history dependent setting

Examined some representable properties

Nominal Modal Logics for Fresh-Register Automata

20/02/2024

Mohamed Hamza Bandukara

Nominal Modal Logics for Fresh-Register Automata 20/02/2024

mailto:m.h.bandukara@qmul.ac.uk

	Slide 1: Nominal Modal Logics for Fresh-Register Automata (Work in Progress)
	Slide 2: Infinite Alphabets
	Slide 3: Infinite Alphabets
	Slide 4: Fresh-Register Automata
	Slide 5: Fresh-Register Automata
	Slide 6: Fresh-Register Automata
	Slide 7: Fresh-Register Automata
	Slide 8: Fresh-Register Automata
	Slide 9: Fresh-Register Automata
	Slide 10: Fresh-Register Automata
	Slide 11: Fresh-Register Automata
	Slide 12: Fresh-Register Automata
	Slide 13: Fresh-Register Automata
	Slide 14: Fresh-Register Automata
	Slide 15: Fresh-Register Automata
	Slide 16: Fresh-Register Automata
	Slide 17: Fresh-Register Automata – Formal Definition
	Slide 18: Results on properties of Fresh-Register Automata
	Slide 19: Results on Properties of Fresh-Register Automata
	Slide 21: Motivating Examples
	Slide 22: Nominal Modal mu-calculus
	Slide 23: Nominal Sets - Definitions
	Slide 24: Nominal Sets - Definitions
	Slide 25: Nominal LTS
	Slide 26: Nominal Modal mu-calculus: Semantics
	Slide 27: Nominal Modal mu-calculus: Semantics
	Slide 28: Utilizing Our Logic
	Slide 29: Utilizing Our Logic
	Slide 30: Utilizing Our Logic
	Slide 31: Utilizing Our Logic
	Slide 32: Utilizing Our Logic
	Slide 33: Utilizing Our Logic
	Slide 34: Finite Semantics
	Slide 35: Finite Semantics
	Slide 37: Proof of model checking
	Slide 38: History-Dependent Extension
	Slide 40: Semantics (Extended with Histories)
	Slide 41: Previous MotivatING Example:
	Slide 42: Previous MotivatING Example:
	Slide 43: Previous Motivating Example:
	Slide 44: Previous Motivating Example:
	Slide 45: Previous Motivating Example:
	Slide 47: Summary
	Slide 48: Thank you

