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Motivation

Wanted
Given a function f : L → L over a partially ordered set (L, ⊑), we
want to compute its least fixpoint x , i.e., the least x ∈ L such that

f (x) = x

There are many results concerning fixpoints: Banach,
Knaster-Tarski, Kleene, . . .
But: what if f is a function that can only be approximated?
For instance: a function over the reals, involving probabilities
that can only be estimated.
Which fixpoint iterations still work? For which types of
functions? Do we need new techniques?
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Fixpoint Theory

We are interested in techniques for solving fixpoint equations.

Least and greatest fixpoints
Solve the equation given as f (x) = x
where

f : L → L is a monotone function over a complete lattice
(L, ⊑)
µf denotes the least and νf the greatest fixpoint of f

Applications in concurrency theory (behavioural equivalences and
metrics), model checking (µ-calculus), program analysis (dataflow
analysis), games (computation of value vectors and strategies), . . .
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Fixpoint Theory

Solution techniques
The Knaster-Tarski theorem guarantees the existence of least
and greatest fixpoints for monotone functions

Kleene iteration: whenever f is (co-)continuous
Least fixpoint: µf =

⊔
i∈N f i (⊥)

Greatest fixpoint: νf =
d

i∈N f i (⊤)
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Fixpoint Theory
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Fixpoint Theory

(Power) contractions and non-expansive maps
Let (X , d) be a metric space (with metric d : X × X → R+

0 ). Then
f : X → X is a contraction, whenever there exists 0 ≤ q < 1 such
that:

d(f (x), f (y)) ≤ q · d(x , y) for all x , y ∈ X

The function f is called non-expansive if this holds for q = 1.
It is a power contraction if there exists n ∈ N such that f n is a
contraction.

Example: X = [0, c]d (for c > 0) is a partially ordered complete
metric space (and a complete lattice). We use the supremum
distance:

d((x1, . . . , xd), (y1, . . . , yd)) = max
i

|xi − yi |
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Fixpoint Theory

Banach Fixpoint Theorem
Let (X , d) be a non-empty complete metric space and let
f : X → X be a (power) contraction. Then f has a unique fixpoint
x∗ = µf = νf . From any starting point fixpoint iteration
converges to x∗.
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Introducing Approximation: Applications

We discuss two applications where approximated functions play a
role:

Model-based reinforcement learning for Markov decision
processes (MDPs)
Model-checking quantitative µ-calculi
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Markov Decision Processes (MDPs)
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Markov Decision Processes (MDPs)
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Markov decision process
A Markov decision process (MDP) is a tuple (S ,T ) where

S is a finite set of states and
T : S → Pf (D(S)) is a transition function.

We let T (s) be indexed over (pairwise disjoint) sets A(s) of
actions, writing F = {s ∈ S | A(s) = ∅},A =

⋃
s∈S A(s), and

T (s ′ | s, a) is the probability of going from s to s ′ when a is chosen.
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Markov Decision Processes (MDPs)
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Definition (Policy)
Given an MDP M = (S ,T ), a policy is a function π : S \ F → A
with π(s) ∈ A(s).

A policy defines the Markov chain Mπ = (S ,Tπ) where
Tπ(s ′ | s) = T (s ′ | s, π(s)).
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Markov Decision Processes (MDPs)
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Possible Objectives for the agent:
Reachability / avoidance objectives
Objectives given in (temporal) logic
Collect reward given by (step-wise) reward function

R : S × A × S → R
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Markov Decision Processes (MDPs)

Fix an MDP with states S = {1, . . . , d}. The least fixpoint of the
following function f : [0, c]d → [0, c]d gives the expected reward
for each state (Bellman optimality operator):

f (v)(s) = max
a∈A(s)

∑
s′∈S

T (s ′ | s, a) ·
(
R(s, a, s ′) + γv(s ′)

)
where γ ∈ (0, 1] is a discount factor. Note that γ < 1 makes f
contractive.
We assume that the expected reward is bounded by c (more about
this later).
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Markov Decision Processes (MDPs)

Question: How to determine µf if the probabilities (given by T )
and possibly the rewards (given by R) are not known precisely, but
can only be approximated by sampling via interacting with the
MDP?

This is exactly the question in reinforcement learning that
synthesizes strategies for an MDP with unknown parameters while
exploring it (Q-Learning, SARSA, Dyna, . . . ).
But: Reinforcement learning typically concentrates on the
contractive case (γ < 1), where fixpoints are unique and errors
made in early stages are removed by the contraction.
Here: We address the non-contractive case (γ = 1) and
concentrate on model-based reinforcement learning (we construct a
model of the MDP while exploring it).

Barbara König Approximating Fixpoints of Approximated Functions 11



Motivation Fixpoint Theory Introducing Approximation Dampened Mann Iteration Conclusion

Quantitative µ-Calculi

Quantitative µ-calculus (Huth/Kwiatkowska, Mio/Simpson)

φ ::= 1 | 0 | x | p | r · φ | max{φ, φ′} | min{φ, φ′} |
3φ | 2φ | µx .φ | νx .φ

where x ∈ PVar is a propositional variable, p ∈ Prop is a
propositional symbol.

Such formulas φ can be evaluated on MDPs, given an environment
ρ : Prop ∪ PVar → [0, 1]S , resulting in JφKρ : S → [0, 1].

J3φKρ(s) = maxa∈A(s)
∑

s′∈S T (s ′ | s, a) · JφKρ(s ′)
Jµx .φKρ = µ(λv .JφKρ∪[x 7→v ])
Least and greatest fixpoints can be arbitrarily nested.
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Quantitative µ-Calculi

Questions:
How to model-check when the MDP can only be
approximated?
Even if the MDP is known exactly: if we allow arbitrary
(non-expansive) operators, fixpoints can only be
approximated. Hence computations of outer fixpoints have to
deal with approximated functions.
(For  Lukasiewicz µ-calculi resulting in piecewise linear
functions there is an exact technique by Petković/Simpson.)
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Introducing Approximation
We do not want to resort to (power) contractions, where
approximation is (relatively) harmless. Instead, we concentrate on
the non-expansive case:

Task
Given a sequence of monotone and non-expansive (wrt. supremum
distance) functions f1, f2, f3, . . . : [0, c]d → [0, c]d that (uniformly)
converges to f : [0, c]d → [0, c]d .
Compute a sequence x0, x1, x2, . . . that converges to µf .

Remarks:
In a compact space, uniform convergence for non-expansive
functions follows from pointwise convergence.
Non-expansiveness wrt. supremum distance covers many
interesting cases: termination probabilities in Markov chains,
MDPs, stochastic games, behavioural metrics, . . .
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Introducing Approximation

f , fn : [0, 1] → [0, 1] with fn(x) = 1/n + (1 − 1/n) · x , f (x) = x

x
0 0.5 1

f (x)

0

0.5

1

µfn = 1 (for all n), while µf = 0.
Hence limn→∞ µfn = 1 ̸= 0 = µf .

The fixpoints of the approximations need not converge to the
fixpoint of f .
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Introducing Approximation
g , gn : [0, 1] → [0, 1] with gn(x) = 1/n if x ≤ 1/n, gn(x) = x
otherwise, g(x) = x

x
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1

In this case limn→∞ µfn = 0 = µf .

But: Starting a Kleene iteration with some fn will over-estimate
the least fixpoint and further iterations with functions fm (m > 0)
will never decrease it.
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Dampened Mann Iteration
Inspired by a paper by Kim/Xu we now consider the following form
of iteration:

xn+1 = (1 − βn) ·
(
αn · xn + (1 − αn) · fn(xn)

)
which is

a Mann iteration αn · xn + (1 − αn) · fn(xn)
with a dampening factor 1 − βn.

We assume:
1 limn→∞ αn < 1,
2 limn→∞ βn = 0 and

∑∞
n=1 βn = ∞

(equivalently:
∏n

i=1(1 − βn) = 0).
3

∑∞
n=1 |αn − αn+1| < ∞ and

∑∞
n=1 |βn − βn+1| < ∞.

Canonical choices: βn = 1/n and αn = 1/n or αn = 0.
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Dampened Mann Iteration

xn+1 = (1 − βn) ·
(
αn · xn + (1 − αn) · fn(xn)

)
Intuition:

a dampening factor 1 − βn: this converges to 1, but there is
always enough “power” left to decrease a current
over-estimation to the true least fixpoint.
linear combination with αn: provides extra flexibility and gives
the option to generalize the results.
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Dampened Mann Iteration

The sequence (xn) converges to the correct solution µf from any
starting point in the following cases:

1 When iterating with the correct function, i.e. when fn = f for
all n,

2 when f is a power contraction and fn → f ,
3 when µfn → µf and fn → f monotonically,
4 when fn → f normally, i.e.∑

∥fn − f ∥∞ < ∞

These conditions are satisfied for the second example above, but
not for the first example and also not for MDPs.
We also have a counterexample for the case µfn → µf .
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Dampened Mann Iteration
Dampened Mann iteration (with αn = 0) for fn : [0, 1]2 → [0, 1]2

fn(x1, x2) = (max{x1, (1 − y1)xn1 + y1}, max{x2, (1 − y2)xn2 + y2})
where (y1, y2) = (1/4, 3/4).
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Dampened Mann Iteration for MDPs
MDPs do not satisfy one of the above criteria, however the
technique still works under some conditions. We first fix some
terminology:
End component of an MDP
Let M = (S ,T ) be an MDP. Then E ⊆ S is an end component if

the graph induced by E is strongly connected
and for each s ∈ E there exists a ∈ A(s):

{s ′ | T (s ′ | s, a) > 0} ⊆ E

There exists a strategy that stays in the end component.

s1 s2 s3 s4
2 1
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Dampened Mann Iteration for MDPs

A Markov chain is terminating if for any starting state its
probability of eventually reaching a terminal state is 1. An MDP
M is terminating if for all policies π, the induced Markov chain Mπ

is terminating.

For an MDP M, the following are equivalent:
M is terminating.
M has no end components.
The corresponding function fM is a power-contraction.
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Dampened Mann Iteration for MDPs
In an MDP with end components it holds that:

The expected reward is bounded if no reward is given when
staying in an end component.
Then all states in an end component have the same expected
reward.
The expected reward can be computed by merging all states
in a maximal end component, obtaining a terminating MDP.

We can now deduce that dampened Mann iteration works for MDP
sampling, assuming that rewards are only given outside of end
components.

When sampling, the sequence of approximating MDPs will almost
surely converge to the correct MDP. We can also assume that if
for a transition probability T (s ′ | s, a) = 0, it will never be
non-zero in an approximation.
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Dampened Mann Iteration for MDPs

Lower bound
The expected reward for an MDP M is the supremum of the
expected rewards for Markov chains Mπ over all policies π.
In a Markov chain all states in an end component have reward 0.
Fixing the value to 0 in the states of an end component gives us a
power contraction with the same fixpoint.
From this one can deduce that the true expected reward (µf ) is
always a lower bound for the outcome of the dampened Mann
iteration.
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Dampened Mann Iteration for MDPs

Upper bound
Eventually, the approximating MDPs have the same maximal
end components than the exact MDP.
Each maximal end component can be merged to a singleton
end component (with loop) to obtain an over-approximation.
In a singleton end component we only make an error due to
approximated probabilities if we leave the end component.
The errors that are made behave similarly to rewards and
hence the total error is bounded and vanishes with better
approximations.

This argument can be extended to more general “MDP-like”
functions.
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Dampened Mann Iteration for Other Cases

There are still interesting cases, where neither of the sufficient
conditions applies. For instance: stochastic games (MDPs enriched
with a Min player, in addition to the usual Max player).

What can we do in these cases?
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Dampened Mann Iteration for Other Cases

Idea: fix a subsequence of functions fn1 , fn2 , fn3 , . . . that
convergences normally (sum of the errors is bounded).
Intuition: perform enough sampling steps before the next iteration.

We can estimate how close we are to the exact function:
Hoeffding’s inequality

P
[
|T n(s ′ | s, a) − T (s ′ | s, a)| > ε

]
≤ 2e−2ε2/n
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Dampened Mann Iteration for Other Cases

Choose ni such that

P
[
∥fni − f ∥ > γi

]
≤ δi ,

where
∑

i γi < ∞ and
∑

i δi < ∞ (for instance γi = δi = 1/i2).

By the Borel-Cantelli Lemma we get that

P
[
∥fni − f ∥ > γi for infinitely many i

]
= 0

Hence, almost surely we have ∥fni − f ∥ ≤ γi eventually and by our
fixpoint results (normal convergence) the sequence produced by the
algorithm converges to the solution vector of its input in that case.
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Dampened Mann Iteration for Other Cases

Example: f , fn : [0, 1] → [0, 1] with fn(x) = 1/n + (1 − 1/n) · x ,
f (x) = x

x
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f (x)
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1

Perform dampened Mann iteration with the sequence (fn2)n.

This works, although the sequence of least fixpoints of these
functions does not converge to the least fixpoint of f !
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Conclusion

Implementation
We have implemented this form of iteration and obtained
encouraging results. The runtime and accuracy after n steps are
similar to computing µfn by Kleene iteration.
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Conclusion

Future Work
Apply this to quantitative µ-calculi

Show that the sufficient critera are met
or estimate how close we are to the exact function.

Approximating coalgebras
Chaotic iteration
What if the coefficients αn converge to 1? (Mann iteration
converging to the identity)
Model-free learning
Idea: Sequence f1, f2, . . . of functions approximates f in the
limit-average: 1

n

∑n
i=1 fi → f

Aim: obtain model-free reinforcement learning algorithms as
special cases
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