INTRODUCTION 0000	Definitions 0000	Proof 0000	Conclusion 00

The μ -calculus' Alternation Hierarchy is Strict over Non-Trivial Fusion Logics

Leonardo Pacheco TU Wien

20 February 2024

Available at: leonardopacheco.xyz/slides/fics2024.pdf

The μ -calculus

modal μ -calculus = modal logic + fixed-point operators

- μ : least fixed-point operator
- ν : greatest fixed-point operator

ALTERNATION DEPTH

The valuation of νX and μY depend on each other:

$$\nu X. \underbrace{\mu Y. \underbrace{(P \land \Diamond X) \lor (\neg P \land \Diamond Y)}_{\text{scope of } \nu X}}_{\text{scope of } \nu X}$$

Alternation depth of φ

Maximum number of codependent alternating μ and ν operators in φ .

Alternation hierarchy

Classifies μ -formulas with respect to their alternation depth.

Some results on the unimodal μ -calculus

Theorem (Bradfield [2])

The μ *-calculus alternation hierarchy is strict over all frames.*

Theorem (Alberucci–Facchini [1])

The μ -calculus alternation hierarchy collapses to the alternation-free fragment over transitive frames.

Theorem (Alberucci–Facchini [1])

The μ -calculus alternation hierarchy collapses to modal logic over equivalence relations.

For a survey, see [4].

OUR RESULT — SIMPLIFIED

The fusion S5 \otimes S5 contains two independent pairs of modalities \Box_0 / \Diamond_0 and \Box_1 / \Diamond_1 , each satisfying S5.

Theorem

The μ *-calculus' alternation hierarchy is strict over* S5 \otimes S5.

This holds for the fusion of any two non-trivial logics.

INTRODUCTION	DEFINITIONS	Proof	Conclusion
0000	•000	0000	

DEFINITIONS

The μ -formulas are defined by the following grammar:

 $\varphi := P \mid \neg P \mid X \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box_i \varphi_i \mid \Diamond_i \varphi \mid \mu X.\varphi \mid \nu X.\varphi,$

Let $M = \langle W, R_0, R_1, V \rangle$ be a Kripke model. Then:

• $M, w \models \Box_i \varphi$ iff, for all v, if $wR_i v$ then $M, u \models \varphi$;

• $M, w \models \Diamond_i \varphi$ iff there is v such that $wR_i v$ and $M, u \models \varphi$. Given a μ -formula φ , define:

$$\Gamma_{\varphi(X)}(A) \to \|\varphi(A)\|^M.$$

Then:

- $M, w \models \mu X. \varphi$ iff w is in the least fixed point of $\Gamma_{\varphi(X)}$;
- $M, w \models \nu X.\varphi$ iff *w* is in the greatest fixed point of $\Gamma_{\varphi(X)}$.

INTRODUCTION	DEFINITIONS	Proof	Conclusion
0000	0000	0000	00

ALTERNATION HIERARCHY

- $\Sigma_0^{\mu} (= \Pi_0^{\mu}) :=$ set of all formulas with no fixed-point operators.
- Σ_{n+1}^{μ} is the closure of $\Sigma_n^{\mu} \cup \prod_n^{\mu}$ under:
 - propositional operators;
 - modal operators;
 - ► µX;
 - and the substitution: if $\varphi(X) \in \Sigma_{n+1}^{\mu}$ and $\psi \in \Sigma_{n+1}^{\mu}$ are such that no free variable of ψ becomes bound in $\varphi(\psi)$, then $\varphi(\psi) \in \Sigma_{n+1}^{\mu}$.

• Π_{n+1}^{μ} is the dual of Σ_{n+1}^{μ} .

DEFINITIONS 0000	Proof 0000	Conclusion 00

GAME SEMANTICS

We define an evaluation game for $M, w \models \varphi$.

- Two players: Verifier and Refuter.
- Examples of moves:
 - At $\langle \psi \lor \theta, w \rangle$, Verifier moves to one of $\langle \psi, w \rangle$ and $\langle \theta, w \rangle$.
 - At $\langle \diamond_i \psi, w \rangle$, Refuter picks v such that $wR_i v$ and moves to $\langle \psi, v \rangle$.
 - At $\langle X, w \rangle$, go to $\langle \mu X.\psi, w \rangle$.
 - At $\langle P, w \rangle$, Verifier wins iff $w \in V(P)$.
- $M, w \models \varphi$ iff Verifier wins the evaluation game.

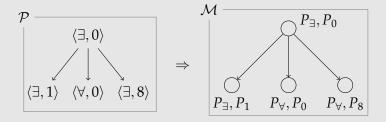
On an infinite run, if the variable with biggest scope which repeats infinitely often is ν , then Verifier wins.

Proposition

Kripke semantics and game semantics are equivalent.

INTRODUCTION 0000	DEFINITIONS 000	Proof 0000	Conclusion 00
			· · · · · · · · · · · · · · · · · · ·

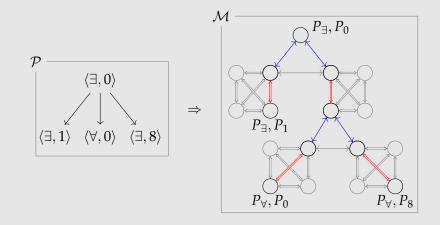
PARITY GAMES


- $\blacktriangleright \mathcal{P} = \langle V_{\exists}, V_{\forall}, v_0, E, \Omega \rangle$
- Two players \exists and \forall move a token in the graph $\langle V_{\exists} \cup V_{\forall}, E \rangle$ starting at v_0 .
- ► \exists wins $\rho = v_0, v_1, v_2, ...$ iff the greatest priority $\Omega(v_i)$ which appears infinitely often in ρ is even.

Proposition

Evaluation games are parity games.

INTRODUCTION 0000	Definitions 0000	Proof •000	Conclusion 00


PARITY GAMES AS UNIMODAL KRIPKE FRAMES

$$W_n := \eta X_n \dots \nu X_0. \bigvee_{0 \le j \le n} [(P_j \land P_{\exists} \land \Diamond X_j) \lor (P_j \land P_{\forall} \land \Box X_j)].$$

INTRODUCTION	DEFINITIONS	Proof	Conclusion
0000	0000	0000	00

Parity games as $S5\otimes S5$ frames

INTRODUCTION	Definitions	Proof	Conclusion
0000	0000	0000	00

BIMODAL WINNING REGION FORMULAS

$$W'_n := \eta X_n \dots \nu X_0. \bigvee_{0 \le j \le n} [(P_j \land P_{\exists} \land \blacklozenge X_j) \lor (P_j \land P_{\forall} \land \blacksquare X_j)].$$

INTRODUCTION	DEFINITIONS	Proof	Conclusion
0000	0000	0000	00

BIMODAL WINNING REGION FORMULAS

$$W'_n := \eta X_n \dots \nu X_0. \bigvee_{0 \le j \le n} [(P_j \land P_{\exists} \land \blacklozenge X_j) \lor (P_j \land P_{\forall} \land \blacksquare X_j)].$$

Where

- $\phi \varphi := \nu Y. \operatorname{pre}_0 \wedge \operatorname{bd} \wedge \Diamond_0(\operatorname{nxt}_0 \wedge \operatorname{pre}_1 \wedge \operatorname{bd} \wedge \Diamond_1(\operatorname{nxt}_1 \wedge \operatorname{bd} \wedge ((Y \wedge \neg \operatorname{st}) \vee (\varphi \wedge \operatorname{st}))));$ and
- $\blacksquare \varphi := \nu Y. \operatorname{pre}_0 \land \operatorname{bd} \to \Box_0(\operatorname{nxt}_0 \land \operatorname{pre}_1 \land \operatorname{bd} \to \Box_1(\operatorname{nxt}_1 \land \operatorname{bd} \to ((Y \land \neg \operatorname{st}) \land (\varphi \land \operatorname{st})))),$

PROOF SKETCH

- Let *n* be even. Then $W_n \in \prod_{n+1}^{\mu}$.
- Suppose that W_n is equivalent to some formula in Π_n^{μ} . Let $\varphi \in \Sigma_n^{\mu}$ be equivalent to $\neg W_n$.
- ► $f_{\varphi \land \varphi}$ takes (M, w) to the evaluation game of $M, w \models \varphi \land \varphi$ (as a Kripke model).
- Let (M, w) be a fixed-point of $f_{\varphi \land \varphi}$. Then

$$egin{aligned} M,w &\models
eg W_n \iff M,w &\models arphi \wedge arphi \ \iff f_{arphi \wedge arphi}(M,w) &\models W_n \ \iff M,w &\models W_n. \end{aligned}$$

► This is a contradiction.

INTRODUCTION	Definitions	Proof	CONCLUSION
0000	0000	0000	●○

OUR RESULT

Theorem

Let F_0 , F_1 , and F_2 be classes of unimodal Kripke frames closed under isomorphic copies and disjoint unions. If

1. $\circ \leftarrow \circ \rightarrow \circ$ is a subframe of F_0 and $\circ \rightarrow \circ$ a subframe of F_1 ; or

2. $\circ \to \circ \to \circ$ is a subframe of F_0 and $\circ \to \circ$ a subframe of F_1 ;

then the μ -calculus' alternation hierarchy is strict over $F_0 \otimes F_1$. If

3. $\circ \rightarrow \circ$ is a subframe of F_0 , F_1 , and F_2 ;

then the μ -calculus' alternation hierarchy is strict over $F_0 \otimes F_1 \otimes F_2$.

Conjecture

Suppose $\circ \to \circ$ is a subframe of F_0 and F_1 . We can only show that each μ -formula is equivalent to an alternation-free formula over $F_0 \otimes F_1$.

INTRODUCTION	Definitions	Proof	Conclusion
0000	0000	0000	○●

COLLAPSE ON MULTIMODAL LOGICS

GLP is a provability logic which contains countably many modal operators.

Theorem (Ignatiev [3])

GLP has the fixed-point property.

IS5 is an intuitionistic version of S5 which can be treated as a bimodal logic.

Theorem (P. [5])

The μ -calculus collapses to modal logic over IS5.

INTRODUCTION	Definitions	Proof	Conclusion
0000	0000	0000	00

REFERENCES

- L. Alberucci, A. Facchini, "The modal μ-calculus hierarchy over restricted classes of transition systems", 2009.
- [2] J.C. Bradfield, "Simplifying the modal mu-calculus alternation hierarchy", 1998.
- [3] K.N. Ignatiev, "On Strong Provability Predicates and the Associated Modal Logics", 1993.
- [4] L. Pacheco, "Exploring the difference hierarchies on μ-calculus and arithmetic—from the point of view of Gale–Stewart games", PhD Thesis, 2023.
- [5] L. Pacheco, "Game Semantics for the Constructive μ-Calculus", arXiv:2308.16697, 2023.