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THE µ-CALCULUS

modal µ-calculus = modal logic + fixed-point operators
▶ µ: least fixed-point operator
▶ ν: greatest fixed-point operator
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ALTERNATION DEPTH

The valuation of νX and µY depend on each other:

νX. µY.

scope of µY︷ ︸︸ ︷
(P ∧ ♢X) ∨ (¬P ∧ ♢Y)︸ ︷︷ ︸

scope of νX

Alternation depth of φ

Maximum number of codependent alternating µ and ν
operators in φ.

Alternation hierarchy

Classifies µ-formulas with respect to their alternation depth.
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SOME RESULTS ON THE UNIMODAL µ-CALCULUS

Theorem (Bradfield [2])

The µ-calculus alternation hierarchy is strict over all frames.

Theorem (Alberucci–Facchini [1])

The µ-calculus alternation hierarchy collapses to the alternation-free
fragment over transitive frames.

Theorem (Alberucci–Facchini [1])

The µ-calculus alternation hierarchy collapses to modal logic over
equivalence relations.

For a survey, see [4].
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OUR RESULT — SIMPLIFIED

The fusion S5⊗ S5 contains two independent pairs of
modalities □0/♢0 and □1/♢1, each satisfying S5.

Theorem
The µ-calculus’ alternation hierarchy is strict over S5⊗ S5.

This holds for the fusion of any two non-trivial logics.
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DEFINITIONS

The µ-formulas are defined by the following grammar:

φ := P | ¬P | X | φ ∧ φ | φ ∨ φ | □iφi | ♢iφ | µX.φ | νX.φ,

Let M = ⟨W,R0,R1,V⟩ be a Kripke model. Then:
▶ M,w |= □iφ iff, for all v, if wRiv then M,u |= φ;
▶ M,w |= ♢iφ iff there is v such that wRiv and M,u |= φ.

Given a µ-formula φ, define:

Γφ(X)(A)→ ∥φ(A)∥M.

Then:
▶ M,w |= µX.φ iff w is in the least fixed point of Γφ(X);
▶ M,w |= νX.φ iff w is in the greatest fixed point of Γφ(X).
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ALTERNATION HIERARCHY

▶ Σµ
0 (= Πµ

0 ) := set of all formulas with no fixed-point
operators.

▶ Σµ
n+1 is the closure of Σµ

n ∪Πµ
n under:

▶ propositional operators;
▶ modal operators;
▶ µX;
▶ and the substitution: if φ(X) ∈ Σµ

n+1 and ψ ∈ Σµ
n+1 are such

that no free variable of ψ becomes bound in φ(ψ), then
φ(ψ) ∈ Σµ

n+1.

▶ Πµ
n+1 is the dual of Σµ

n+1.
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GAME SEMANTICS

We define an evaluation game for M,w |= φ.
▶ Two players: Verifier and Refuter.
▶ Examples of moves:

▶ At ⟨ψ ∨ θ,w⟩, Verifier moves to one of ⟨ψ,w⟩ and ⟨θ,w⟩.
▶ At ⟨♢iψ,w⟩, Refuter picks v such that wRiv and moves to
⟨ψ, v⟩.

▶ At ⟨X,w⟩, go to ⟨µX.ψ,w⟩.
▶ At ⟨P,w⟩, Verifier wins iff w ∈ V(P).

▶ M,w |= φ iff Verifier wins the evaluation game.
On an infinite run, if the variable with biggest scope which
repeats infinitely often is ν, then Verifier wins.

Proposition

Kripke semantics and game semantics are equivalent.
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PARITY GAMES

▶ P = ⟨V∃,V∀, v0,E,Ω⟩
▶ Two players ∃ and ∀move a token in the graph
⟨V∃ ∪ V∀,E⟩ starting at v0.

▶ ∃wins ρ = v0, v1, v2, . . . iff the greatest priority Ω(vi) which
appears infinitely often in ρ is even.

Proposition

Evaluation games are parity games.
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PARITY GAMES AS UNIMODAL KRIPKE FRAMES

P
⟨∃, 0⟩

⟨∃, 1⟩ ⟨∀, 0⟩ ⟨∃, 8⟩

⇒

M
P∃,P0

P∃,P1 P∀,P0 P∀,P8

Wn :=ηXn . . . νX0.
∨

0≤j≤n

[(Pj ∧ P∃ ∧ ♢Xj) ∨ (Pj ∧ P∀ ∧□Xj)].
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PARITY GAMES AS S5⊗ S5 FRAMES

P
⟨∃, 0⟩

⟨∃, 1⟩ ⟨∀, 0⟩ ⟨∃, 8⟩

⇒

M
P∃,P0

P∃,P1

P∀,P0 P∀,P8
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BIMODAL WINNING REGION FORMULAS

W′
n :=ηXn . . . νX0.

∨
0≤j≤n

[(Pj ∧ P∃ ∧ ♦Xj) ∨ (Pj ∧ P∀ ∧■Xj)].

Where
▶ ♦φ := νY.pre0 ∧ bd ∧ ♢0(nxt0 ∧ pre1 ∧ bd ∧ ♢1(nxt1 ∧ bd ∧

((Y ∧ ¬st) ∨ (φ ∧ st)))); and
▶ ■φ := νY.pre0 ∧ bd→ □0(nxt0 ∧ pre1 ∧ bd→

□1(nxt1 ∧ bd→ ((Y ∧ ¬st) ∧ (φ ∧ st)))),
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PROOF SKETCH

▶ Let n be even. Then Wn ∈ Πµ
n+1.

▶ Suppose that Wn is equivalent to some formula in Πµ
n . Let

φ ∈ Σµ
n be equivalent to ¬Wn.

▶ fφ∧φ takes (M,w) to the evaluation game of M,w |= φ ∧ φ
(as a Kripke model).

▶ Let (M,w) be a fixed-point of fφ∧φ. Then

M,w |= ¬Wn ⇐⇒ M,w |= φ ∧ φ
⇐⇒ fφ∧φ(M,w) |= Wn

⇐⇒ M,w |= Wn.

▶ This is a contradiction.



INTRODUCTION DEFINITIONS PROOF CONCLUSION

OUR RESULT

Theorem
Let F0, F1, and F2 be classes of unimodal Kripke frames closed under
isomorphic copies and disjoint unions. If

1. ◦ ← ◦ → ◦ is a subframe of F0 and ◦ → ◦ a subframe of F1; or
2. ◦ → ◦ → ◦ is a subframe of F0 and ◦ → ◦ a subframe of F1;

then the µ-calculus’ alternation hierarchy is strict over F0 ⊗ F1. If
3. ◦ → ◦ is a subframe of F0, F1, and F2;

then the µ-calculus’ alternation hierarchy is strict over F0 ⊗ F1 ⊗ F2.

Conjecture

Suppose ◦ → ◦ is a subframe of F0 and F1. We can only show that
each µ-formula is equivalent to an alternation-free formula over
F0 ⊗ F1.
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COLLAPSE ON MULTIMODAL LOGICS

GLP is a provability logic which contains countably many
modal operators.

Theorem (Ignatiev [3])

GLP has the fixed-point property.

IS5 is an intuitionistic version of S5 which can be treated as a
bimodal logic.

Theorem (P. [5])

The µ-calculus collapses to modal logic over IS5.
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