Nominal Algebraic-Coalgebraic Data Types, with Applications to Infinitary λ -Calculi

A FANFICTION ON [KUR+13]*

Rémy Cerda, Aix-Marseille Université, 12M FICS 2024, Napoli, Feb. 19th 2024

^(*) Alexander Kurz, Daniela Petrişan, Paula Severi, and Fer-Jan de Vries. "Nominal Coalgebraic Data Types with Applications to Lambda Calculus." In: Logical Methods in Computer Science 9.4 (2013). DOI: 10.2168/lmcs-9(4: 20)2013

WHY I AM HERE

- I am not really a FICS really person (but I hope I'll be soon...)
- ▶ I wrote this "fanfiction" because I needed it
- Now I want to understand it better

CONTENTS

- A glimpse of nominal sets
 - The category **Nom** of nominal sets
 - Abstraction, concretion
 - Nominal algebraic types: recursion modulo $\boldsymbol{\alpha}$ for free
- Mixed inductive-coinductive higher-order terms
 - What we want
 - What we get
- Nominal mixed types
 - (Some) α-equivalence classes as a mixed fix-point
 - Capture-avoiding substitution: it works!
 - Capture-avoiding substitution: it works!

A GLIMPSE OF NOMINAL SETS

THE CATEGORY Nom OF NOMINAL SETS

 $\mathcal V$ is a fixed set of variables.

A set A equipped with a $\mathfrak{S}(\mathcal{V})$ -action \cdot is a **nominal set** if all $a \in A$ if **finitely supported**: there is a finite set $\sup(a)$ s.t.

$$\forall \sigma \in \mathfrak{S}(\mathcal{V}), \ (\forall x \in \operatorname{supp}(a), \ \sigma(x) = x) \Rightarrow \sigma \cdot a = a.$$

THE CATEGORY Nom OF NOMINAL SETS

 \mathcal{V} is a fixed set of variables.

A set A equipped with a $\mathfrak{S}(\mathcal{V})$ -action \cdot is a **nominal set** if all $a \in A$ if **finitely supported**: there is a finite set $\sup(a)$ s.t.

$$\forall \sigma \in \mathfrak{S}(\mathcal{V}), \ (\forall x \in \text{supp}(a), \ \sigma(x) = x) \Rightarrow \sigma \cdot a = a.$$

Nom is the category of nominal sets and $\mathfrak{S}(\mathcal{V})$ -equivariant maps.

It has all colimits (created by $U : \mathbf{Nom} \to \mathbf{Set}$) and limits.

ABSTRACTION

Key construction: the abstraction functor $[\mathcal{V}]-: \mathbf{Nom} \to \mathbf{Nom}$.

Fix a nominal set (A, \cdot) . $\mathcal{V} \times A$ is equipped with an equivalence relation \sim defined by $(x, a) \sim (x', a')$ whenever

$$\exists y \notin \operatorname{supp}(a) \cup \operatorname{supp}(a') \cup \{x, x'\}, \ (x \ y) \cdot a = (x' \ y) \cdot a'.$$

 $\langle x \rangle a$ denotes the class of (x, a).

$$[\mathcal{V}]A := (\mathcal{V} \times A)/\sim [\mathcal{V}]f : \langle x \rangle a \mapsto \langle x \rangle f(a)$$

CONCRETION

Reverse construction: **concretion**, the partial map

$$[\mathcal{V}]A \times \mathcal{V} \to A$$

$$(\langle x \rangle a, y) \mapsto \langle x \rangle a @ y := (x \ y) \cdot a \quad \text{for } y \notin \text{supp}(\langle x \rangle a)$$

In particular:

$$\langle y \rangle (\langle x \rangle a \otimes y) = \langle x \rangle a$$

NOMINAL ALGEBRAIC TYPES

Consider the nominal set of (finite) λ -terms Λ , together with

$$\sigma \cdot x := \sigma(x)$$

$$\sigma \cdot \lambda x.t := \lambda(\sigma(x)).\sigma \cdot t$$

$$\sigma \cdot tu := (\sigma \cdot t)(\sigma \cdot u)$$

 α -equivalence is compatible with \cdot , hence $(\Lambda/=_{\alpha},\cdot)$ is a nominal set too.

NOMINAL ALGEBRAIC TYPES

Consider the nominal set of (finite) λ -terms Λ , together with

$$\sigma \cdot x := \sigma(x)$$

$$\sigma \cdot \lambda x.t := \lambda(\sigma(x)).\sigma \cdot t$$

$$\sigma \cdot tu := (\sigma \cdot t)(\sigma \cdot u)$$

 α -equivalence is compatible with \cdot , hence $(\Lambda/=_{\alpha},\cdot)$ is a nominal set too.

Theorem [GP02]

$$(\Lambda, \cdot) = \text{d}X.\mathcal{V} + \mathcal{V} \times X + X \times X$$
$$(\Lambda/=_{\alpha}, \cdot) = \text{d}X.\mathcal{V} + [\mathcal{V}]X + X \times X$$

MIXED INDUCTIVE-COINDUCTIVE

HIGHER-ORDER TERMS

INFINITARY λ-CALCULI

MIXED BINDING SIGNATURES

Binding signatures [Plo90; FPT99] are extended to mixed binding signatures:

- a set Σ of constructors,
- ▶ for each cons ∈ Σ, an arity $ar(cons) = ((n_1, b_1), ..., (n_k, b_k))$ k = number of inputs, $n_i \in \mathbb{N} = \text{number of variables bound by input } i,$ $b_i \in \mathbb{B} = (co) \text{inductive behaviour of input } i.$

e.g.
$$\Sigma_{\lambda} := \{\lambda, @\}$$
 $ar(\lambda) = ((1, a))$ $ar(@) := ((0, b), (0, c)).$

FINITE TERMS ON A MBS

Given a MBS (Σ, ar) , its **term functor** is

$$\mathcal{F}_{\Sigma}(X,Y) := \mathcal{V} + \coprod_{\substack{\mathsf{cons} \in \Sigma \\ \mathsf{ar}(\mathsf{cons}) = ((n_1,b_1),...,(n_k,b_k))}} \prod_{i=1}^{\kappa} \mathcal{V}^{n_i} \times \pi_{b_i}(X,Y)$$

and its quotient term functor is

$$\mathcal{Q}_{\Sigma}(X,Y) := \mathcal{V} + \coprod_{\substack{\mathsf{cons} \in \Sigma \\ \mathsf{ar}(\mathsf{cons}) = ((n_1,b_1),...,(n_k,b_k))}} \prod_{i=1}^{R} [\mathcal{V}]^{n_i} \pi_{b_i}(X,Y).$$

FINITE TERMS ON A MBS

Given a MBS (Σ, ar) , its **term functor** is

$$\mathcal{F}_{\Sigma}(X,Y) := \mathcal{V} + \prod_{\substack{\mathsf{cons} \in \Sigma \\ \mathsf{ar}(\mathsf{cons}) = ((n_1,b_1),...,(n_k,b_k))}} \prod_{i=1}^{\kappa} \mathcal{V}^{\mathsf{n}_i} \times \pi_{b_i}(X,Y)$$

and its quotient term functor is

$$\mathcal{Q}_{\Sigma}(X,Y) := \mathcal{V} + \coprod_{\substack{\mathsf{cons} \in \Sigma \\ \mathsf{ar}(\mathsf{cons}) = ((n_1,b_1),...,(n_k,b_k))}} \prod_{i=1}^{\kappa} [\mathcal{V}]^{n_i} \pi_{b_i}(X,Y).$$

Definition. The algebra of (raw) finite terms is

$$\mathcal{F}_{\Sigma} := \mu Z.\mathcal{F}_{\Sigma}(Z,Z).$$

Fact [GP02]. α-equivalence classes of finite terms form the algebra $\mathcal{F}_{\Sigma}/=_{\alpha}= \mu Z.Q_{\Sigma}(Z,Z)$.

MIXED TERMS ON A MBS

Definition. The coalgebra of (raw) mixed terms is

$$\mathcal{J}_{\Sigma}^{\infty} := \text{PY.}\text{pX.}\mathcal{F}_{\Sigma}(X,Y).$$

Explicitely:

$$\frac{x \in \mathcal{V}}{x \in \mathcal{T}_{\Sigma}^{\infty}} \qquad \frac{t \in \mathcal{T}_{\Sigma}^{\infty}}{\blacktriangleright_{0} \ t \in \mathcal{T}_{\Sigma}^{\infty}} \qquad \frac{t \in \mathcal{T}_{\Sigma}^{\infty}}{\blacktriangleright_{1} \ t \in \mathcal{T}_{\Sigma}^{\infty}}$$

$$\frac{\overline{x_1} \in \mathcal{V}^{n_1} \quad \cdots \quad \overline{x_k} \in \mathcal{V}^{n_k} \quad \blacktriangleright_{b_1} t_1 \in \mathcal{T}_{\Sigma}^{\infty} \quad \cdots \quad \blacktriangleright_{b_k} t_k \in \mathcal{T}_{\Sigma}^{\infty}}{\mathsf{cons}\left(\overline{x_1}.t_1, \ldots, \overline{x_k}.t_k\right) \in \mathcal{T}_{\Sigma}^{\infty}}$$

MIXED TERMS ON A MBS

Definition. The coalgebra of (raw) mixed terms is $\mathcal{T}_{\Sigma}^{\infty} := \nu Y.\mu X.\mathcal{F}_{\Sigma}(X,Y).$

Explicitely:

$$\frac{x \in \mathcal{V}}{x \in \mathcal{T}_{\Sigma}^{\infty}} \qquad \frac{t \in \mathcal{T}_{\Sigma}^{\infty}}{\underset{0}{\longleftarrow} t \in \mathcal{T}_{\Sigma}^{\infty}} \qquad \frac{t \in \mathcal{T}_{\Sigma}^{\infty}}{\underset{1}{\longleftarrow} t \in \mathcal{T}_{\Sigma}^{\infty}}$$

$$\frac{\overline{x_1} \in \mathcal{V}^{n_1} \quad \cdots \quad \overline{x_k} \in \mathcal{V}^{n_k} \quad \blacktriangleright_{b_1} t_1 \in \mathcal{T}_{\Sigma}^{\infty} \quad \cdots \quad \blacktriangleright_{b_k} t_k \in \mathcal{T}_{\Sigma}^{\infty}}{\mathsf{cons}\left(\overline{x_1}.t_1, \dots, \overline{x_k}.t_k\right) \in \mathcal{T}_{\Sigma}^{\infty}}$$

Fact [Bar93]. The set $\mathcal{T}_{\Sigma}^{\infty}$ is the metric completion of \mathcal{T}_{Σ} wrt. (a variant of) the Arnold-Nivat metric [AN80].

MIXED TERMS VIA METRIC COMPLETION

Fact [Bar93]. The set $\mathcal{T}_{\Sigma}^{\infty}$ is the metric completion of \mathcal{T}_{Σ} wrt. (a variant of) the Arnold-Nivat metric [AN80].

First define the (mixed) truncation...

$$[t]_0 := *$$

$$[x]_{n+1} := x$$

$$[\cos\left(\overline{x_1}.t_1,...,\overline{x_k}.t_k\right)]_{n+1} := \cos\left(\overline{x_1}.[t_1]_{n+1-b_1},...,\overline{x_k}.[t_k]_{n+1-b_k}\right)$$

... and then the **Arnold-Nivat metric**:

$$\mathbb{d}(t,u) := \inf \left\{ 2^{-n} \, \big| \, n \in \mathbb{N}, \, \lfloor t \rfloor_n = \lfloor u \rfloor_n \right\}.$$

Theorem. When the signature is non-trivial, $(\mathcal{T}_{\Sigma}^{\infty}/=_{\alpha}) \cong (\mathcal{T}_{\Sigma}/=_{\alpha})^{\infty}$ iff \mathcal{V} is uncountable.

The idea of the counter-example:

if
$$V = \{x_0, x_1, ...\}$$
, consider the sequence

$$([\lambda x_n.x_0x_1...x_n]_{\alpha})_{n\in\mathbb{N}}$$

- ▶ it is Cauchy,
- it has no limit in $\mathcal{T}_{\Sigma}^{\infty}/=_{\alpha}$.

 A_{fs} is the (nominal) set of the finitely supported elements of A.

 A_{fs} is the (nominal) set of the finitely supported elements of A.

 $(\mathcal{T}_{\Sigma}^{\infty})_{\mathrm{ffy}}$ is the set of terms $t \in \mathcal{T}_{\Sigma}^{\infty}$ such tht $\mathrm{fv}(t)$ is finite.

 A_{fS} is the (nominal) set of the finitely supported elements of A.

 $(\mathcal{T}_{\Sigma}^{\infty})_{\mathrm{ffy}}$ is the set of terms $t \in \mathcal{T}_{\Sigma}^{\infty}$ such tht $\mathrm{fv}(t)$ is finite.

 A_{fs} is the (nominal) set of the finitely supported elements of A.

 $(\mathcal{T}_{\Sigma}^{\infty})_{\mathrm{ffv}}$ is the set of terms $t \in \mathcal{T}_{\Sigma}^{\infty}$ such tht $\mathrm{fv}(t)$ is finite.

Theorem. $(\mathcal{T}_{\Sigma}^{\infty})_{\mathrm{ffv}}/=_{\alpha}$ carries the nominal set $\nu Y.\mu X.\mathcal{Q}_{\Sigma}(X,Y)$.

Theorem. $(\mathcal{T}_{\Sigma}^{\infty})_{\mathrm{ffv}}/=_{\alpha}$ carries the nominal set $\nu Y. \nu X. \mathcal{Q}_{\Sigma}(X,Y)$.

Proof:

- ▶ We show that $\mu X.\mathcal{F}_{\Sigma}(X,-)$ and $\mu X.\mathcal{Q}_{\Sigma}(X,-)$ satisfy some requirements (being "polynomial").
- ▶ This allows to rebuild [Kur+13]'s work with these functors.

Theorem. $(\mathcal{T}_{\Sigma}^{\infty})_{\mathrm{ffv}}/=_{\alpha}$ carries the nominal set $\nu Y. \nu X. \mathcal{Q}_{\Sigma}(X,Y)$.

Proof:

- ▶ We show that $\mu X.\mathcal{F}_{\Sigma}(X,-)$ and $\mu X.\mathcal{Q}_{\Sigma}(X,-)$ satisfy some requirements (being "polynomial").
- ▶ This allows to rebuild [Kur+13]'s work with these functors.

Conclusion:

- ▶ It makes sense that everything works as in [Kur+13].
- We recover canonicity at the price of a reasonable restriction.

The definition we want...

```
subst(x, x, N) := N
subst(y, x, N) := y \quad \text{for } y \neq x
subst(\lambda(y.M), x, N) := \lambda(y.subst(M, x, N)) \quad \text{for } y \neq x \text{ and } y \notin fv(N)
subst(@(M_0, M_1), x, N) := @(subst(M_0, x, N), subst(M_1, x, N)).
```

 \dots can be turned into a precise morphism acting directly on $\alpha\text{-equivalence}$ classes.

Definition: subst is defined by

$$\begin{array}{c|c} \mathcal{F}^{\infty}_{\alpha} \times \mathcal{V} \times \mathcal{F}^{\infty}_{\alpha} & ----- & \underbrace{\mathsf{subst}}_{----} - \to \mathcal{F}^{\infty}_{\alpha} \\ \text{unfold} \times \mathcal{V} \times \mathcal{F}^{\infty}_{\alpha} & & & & \\ \mathbb{\mu} X. \mathcal{Q}_{\Sigma}(X, \mathcal{F}^{\infty}_{\alpha}) \times \mathcal{V} \times \mathcal{F}^{\infty}_{\alpha} & & & & \\ h \downarrow & & & & & \\ \mathbb{\mu} X. \mathcal{Q}_{\Sigma}(X, \mathcal{F}^{\infty}_{\alpha} + \mathcal{F}^{\infty}_{\alpha} \times \mathcal{V} \times \mathcal{F}^{\infty}_{\alpha}) & & & \mathbb{\mu} X. \mathcal{Q}_{\Sigma}(X, \mathrm{id} + \mathrm{subst}) \\ \end{array}$$

$$\mathbb{\mu} X. \mathcal{Q}_{\Sigma}(X, \mathcal{F}^{\infty}_{\alpha} + \mathcal{F}^{\infty}_{\alpha} \times \mathcal{V} \times \mathcal{F}^{\infty}_{\alpha}) \xrightarrow{\mathbb{\mu} X. \mathcal{Q}_{\Sigma}(X, \mathrm{id} + \mathrm{subst})} \mathbb{\mu} X. \mathcal{Q}_{\Sigma}(X, \mathcal{F}^{\infty}_{\alpha})$$

where h is recursively defined by:

$$\begin{split} &(\mathsf{invar}(x), x, u) \mapsto \mathop{\mathbb{L}} X. \mathcal{Q}_{\Sigma}(X, \mathsf{inl})(\mathsf{unfold}(u)) \\ &(\mathsf{invar}(y), x, u) \mapsto \mathsf{invar}(y) \quad \mathsf{for} \ y \neq x \\ &\left(\mathsf{incons}\left(\begin{matrix} \langle y_{0,1} \rangle \dots \langle y_{0,n_0} \rangle t_0, \\ \langle y_{1,1} \rangle \dots \langle y_{1,n_1} \rangle t_1 \end{matrix}\right), x, u \right) \mapsto \mathop{\mathbb{L}} X. \mathcal{Q}_{\Sigma}(X, \mathsf{inr}) \left(\mathsf{incons}\left(\begin{matrix} \langle y_{0,1} \rangle \dots \langle y_{0,n_0} \rangle h(t_0, x, u), \\ \tau_{n_1} \langle \langle y_{1,1} \rangle \dots \langle y_{1,n_1} \rangle t_1, x, u) \end{matrix}\right) \right) \end{split}$$

under the condition that (...).

Definition: subst is defined by

Definition: subst is defined by

Definition: subst is defined by

Definition: subst is defined by

$$\begin{array}{c|c} \mathcal{F}^{\infty}_{\alpha} \times \mathcal{V} \times \mathcal{F}^{\infty}_{\alpha} & ----- & \underbrace{\mathsf{subst}}_{----} - \to \mathcal{F}^{\infty}_{\alpha} \\ \text{unfold} \times \mathcal{V} \times \mathcal{F}^{\infty}_{\alpha} & & & & \\ \mathbb{\mu} X. \mathcal{Q}_{\Sigma}(X, \mathcal{F}^{\infty}_{\alpha}) \times \mathcal{V} \times \mathcal{F}^{\infty}_{\alpha} & & & & \\ h \downarrow & & & & & \\ \mathbb{\mu} X. \mathcal{Q}_{\Sigma}(X, \mathcal{F}^{\infty}_{\alpha} + \mathcal{F}^{\infty}_{\alpha} \times \mathcal{V} \times \mathcal{F}^{\infty}_{\alpha}) & & & \mathbb{\mu} X. \mathcal{Q}_{\Sigma}(X, \mathrm{id} + \mathrm{subst}) \\ \end{array}$$

$$\mathbb{\mu} X. \mathcal{Q}_{\Sigma}(X, \mathcal{F}^{\infty}_{\alpha} + \mathcal{F}^{\infty}_{\alpha} \times \mathcal{V} \times \mathcal{F}^{\infty}_{\alpha}) \xrightarrow{\mathbb{\mu} X. \mathcal{Q}_{\Sigma}(X, \mathrm{id} + \mathrm{subst})} \mathbb{\mu} X. \mathcal{Q}_{\Sigma}(X, \mathcal{F}^{\infty}_{\alpha})$$

where h is recursively defined by:

$$\begin{split} &(\mathsf{invar}(x), x, u) \mapsto \mathop{\mathbb{L}} X. \mathcal{Q}_{\Sigma}(X, \mathsf{inl})(\mathsf{unfold}(u)) \\ &(\mathsf{invar}(y), x, u) \mapsto \mathsf{invar}(y) \quad \mathsf{for} \ y \neq x \\ &\left(\mathsf{incons}\left(\begin{matrix} \langle y_{0,1} \rangle \dots \langle y_{0,n_0} \rangle t_0, \\ \langle y_{1,1} \rangle \dots \langle y_{1,n_1} \rangle t_1 \end{matrix}\right), x, u \right) \mapsto \mathop{\mathbb{L}} X. \mathcal{Q}_{\Sigma}(X, \mathsf{inr}) \left(\mathsf{incons}\left(\begin{matrix} \langle y_{0,1} \rangle \dots \langle y_{0,n_0} \rangle h(t_0, x, u), \\ \tau_{n_1} \langle \langle y_{1,1} \rangle \dots \langle y_{1,n_1} \rangle t_1, x, u) \end{matrix}\right) \right) \end{split}$$

under the condition that (...).

SUGGESTIONS FOR A FUTURE COFFEE BREAK

- "This may be a particular case of [very abstract work]": please tell me!
- Once a year I want to formalise things about Λ⁰⁰¹ and people tell me, "Don't, it's difficult": really? : '-(

REFERENCES

- [AN80] André Arnold and Maurice Nivat. "The metric space of infinite trees.

 Algebraic and topological properties." In: Fundamenta Informaticae 3.4 (1980), pp. 445–475. DOI: 10.3233/fi-1980-3405.
- [Bar93] Michael Barr. "Terminal coalgebras in well-founded set theory." In: Theoretical Computer Science 114.2 (1993), pp. 299–315. DOI: 10.1016/0304-3975(93)90076-6.
- [FPT99] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. "Abstract syntax and variable binding." In: 14th Symposium on Logic in Computer Science. 1999. DOI: 10.1109/lics.1999.782615.
- [GP02] Murdoch J. Gabbay and Andrew M. Pitts. "A New Approach to Abstract Syntax with Variable Binding." In: Formal Aspects of Computing 13 (2002), pp. 341–363. DOI: 10.1007/s001650200016.
- [Kur+13] Alexander Kurz et al. "Nominal Coalgebraic Data Types with Applications to Lambda Calculus." In: Logical Methods in Computer Science 9.4 (2013). DOI: 10.2168/lmcs-9(4:20)2013.
- [Plo90] Gordon Plotkin. "An Illative Theory of Relations." In: Situation Theory and Its Applications. Vol. 1. Stanford: CSLI, 1990, pp. 133–146. URL: http://hdl.handle.net/1842/180.

Thanks for your attention!