
ruitenburg’s theorem
mechanized and contextualized

or

certified computation of periodic sequences in ipc

resistant to meaningful generalizations

Tadeusz Litak

FiCS, 19–20 February 2024

Informatik 8, FAU Erlangen-Nürnberg

1



• in JSL 1984, a surprising result about periodic sequences in
IPC by Wim Ruitenburg

• heavily syntactic proof
• for years, not too well-known a result

the late Sergey Mardaev one of the few researchers using it

• more recent references quoting Ruitenburg: Ghilardi et al.
2016 (FoSSaCS 2016, ACM ToCL 2020) or Humberstone’s
monograph

• most commonly quoted in the context of definability
(eliminability) of fixpoints, where it is just one of possible
lines of attack: more later

• finally, Ghilardi and Santocanale (AiML 2018, MSCS 2020)
provided a semantic proof via duality
. . . which does not provide tight bounds, unlike Ruitenburg’s approach

• the property deserves still more attention: a surprising
generalization of local finiteness
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what I did, mostly 2015–17

• formalized the proof in the Coq proof assistant ⇒
extracting a verified program computing cycles in IPC

• carried out a comparative study with other natural classes
of implicative logics ⇒
obtaining a confirmation that Ruitenburg did something
remarkable

• referees and Alexis Saurin kindly asked me to focus on the
first point, but some discussion of the second one is
unavoidable

• the formalization should be upgraded anyway
• we need to explain why this paper belongs in FiCS at all
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A wild property in a zoo of logics



• Consider a formula A

• Fix a propositional variable p

It can be thought of as representing a context hole . . . or an argument

variable, while A itself is a polynomial in that variable (other propositional

variables being additional constants).

• Given any other formula B, write A(B) for the result of
substituting B for p.

• Define the obvious iterated substitution operation:

A0(p) := p, An+1(p) := A(An(p)).

In future, we can just write An instead of An(p), where no confusion arises

• Question: modulo provable equivalence in CPC, when are
you going to enter a cycle?

• Actually, how do you know you must enter a cycle at all?

5



• Consider a formula A

• Fix a propositional variable p

It can be thought of as representing a context hole . . . or an argument

variable, while A itself is a polynomial in that variable (other propositional

variables being additional constants).

• Given any other formula B, write A(B) for the result of
substituting B for p.

• Define the obvious iterated substitution operation:

A0(p) := p, An+1(p) := A(An(p)).

In future, we can just write An instead of An(p), where no confusion arises

• Question: modulo provable equivalence in CPC, when are
you going to enter a cycle?

• Actually, how do you know you must enter a cycle at all?

5



• Consider a formula A

• Fix a propositional variable p

It can be thought of as representing a context hole . . . or an argument

variable, while A itself is a polynomial in that variable (other propositional

variables being additional constants).

• Given any other formula B, write A(B) for the result of
substituting B for p.

• Define the obvious iterated substitution operation:

A0(p) := p, An+1(p) := A(An(p)).

In future, we can just write An instead of An(p), where no confusion arises

• Question: modulo provable equivalence in CPC, when are
you going to enter a cycle?

• Actually, how do you know you must enter a cycle at all?

5



• Consider a formula A

• Fix a propositional variable p

It can be thought of as representing a context hole . . . or an argument

variable, while A itself is a polynomial in that variable (other propositional

variables being additional constants).

• Given any other formula B, write A(B) for the result of
substituting B for p.

• Define the obvious iterated substitution operation:

A0(p) := p, An+1(p) := A(An(p)).

In future, we can just write An instead of An(p), where no confusion arises

• Question: modulo provable equivalence in CPC, when are
you going to enter a cycle?

• Actually, how do you know you must enter a cycle at all?

5



• Consider a formula A

• Fix a propositional variable p

It can be thought of as representing a context hole . . . or an argument

variable, while A itself is a polynomial in that variable (other propositional

variables being additional constants).

• Given any other formula B, write A(B) for the result of
substituting B for p.

• Define the obvious iterated substitution operation:

A0(p) := p, An+1(p) := A(An(p)).

In future, we can just write An instead of An(p), where no confusion arises

• Question: modulo provable equivalence in CPC, when are
you going to enter a cycle?

• Actually, how do you know you must enter a cycle at all?

5



• Consider a formula A

• Fix a propositional variable p

It can be thought of as representing a context hole . . . or an argument

variable, while A itself is a polynomial in that variable (other propositional

variables being additional constants).

• Given any other formula B, write A(B) for the result of
substituting B for p.

• Define the obvious iterated substitution operation:

A0(p) := p, An+1(p) := A(An(p)).

In future, we can just write An instead of An(p), where no confusion arises

• Question: modulo provable equivalence in CPC, when are
you going to enter a cycle?

• Actually, how do you know you must enter a cycle at all?

5



• That is right: for any A,

⊢CPC A ↔ A3.

• How about other logics?

• Say a logic L has “periodic sequences” property if we can
always find b s.t. ⊢L Ab ↔ Ab+c holds
(Ab ⊣⊢L Ab+c when “well-behaved” implication missing)

Generally, Ab ≡L Ac is a good notation

• One universal quantifier (over A) and two existential ones
(over b and c), so several orderings possible:

globally locally
uniform ∃b, c.∀A ∃c.∀A.∃b
parametric ∃b.∀A.∃c ∀A.∃b, c

⊢L Ab ↔ Ab+c
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Substructural logics without lppsp

• Just consider A(p) := p⊗ p. This breaks down:

• Sublogics of Ł∞

(In−)FL(ew), multiplicative-additive fragment of linear logic MALL (and its

intuitionistic fragment IMALL), minimal fuzzy logics like BL, MTL . . .

• the product logic Π

• the bunched implication logic BI—also its boolean variant
BBI, its classical linear variant CBI . . .
In fact, one can find a refuting valuation in the famous heap model of BBI

• The sequence does stabilize for the relevance logic RM (“R
with Mingle”) . . . which, however, is locally finite
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Modal logic: the lppsp appears to coincide with local
finitess too

• A(p) := □p kills lppsp for GL.3 (the modal logic of linear
Noetherian strict orders) and its sublogics
K, K4, GL . . .

• A(p) := q ∨□(q → □p) kills lppsp for Grz.3 (the modal
logic of linear Noetherian posets) and its sublogics
D, T, S4 or Grz . . .

in fact, the same sequence would do for sublogics of GL.3

• We can also break down most intutionistic modal logics
using one of these two sequences: see the abstract.
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• S5, the modal logic of equivalence relations, has the psp . . .

• . . . thanks again to local finiteness
sometimes also known as local tabularity

• Obviously, existence of a sequence not entering a cycle
would directly contradict local finiteness

• A more detailed discussion of connections between local
finiteness and various forms of the psp in a spare slide (if
time)
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We can transfer the above counterexamples into proofs that in
many natural lattices of logic, the (lp)psp is equivalent to local
finiteness. Example:

Theorem
An extension of K4 has the (local parametric) psp iff it is locally
finite (iff it is of finite depth)

Proof.
Use the sequence discussed above and proof of Theorem 12.21 in
Modal Logic by Chagrov & Zakharyaschev

And yet . . .
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The case of IPC



The Rieger-Nishimura lattice (wikipedia screenshot)

Not locally finite even in one variable
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• Note it’s all about the interaction of → and ∨
• ∧ is not even needed to define elements of this lattice

• the Diego-McKay theorem:

the reduct of IPC without ∨ is locally finite

(although few references seem to state clearly the bounds involved; seem

doubly exponential to me) Btw the same property holds for ∨-free PLL

(propositional lax logic, the logic of nuclei, strong monads . . .

• But with ∨ in the full signature, can IPC have the psp??

13



14



• Ruitenburg proves the local uniform psp for IPC

• Very uniform, in fact: ∀A.∃b. ⊢IPC Ab ↔ Ab+2

(so the same c as for CPC does the job)

• Furthermore, b in question is linear in the size of A
In many cases still smaller: constant when p is the only propositional

variable

• This is as good as it gets
• Ruitenburg shows that quantifiers cannot be shifted

∀b.∃A. ⊬IPC Ab & ⊢IPC Ab+1 & ⊢IPC A(⊤)

hence, ∀b.∃A s.t. ⊬IPC Ab ↔ Ab+2

his counterexample works even for the logic of linear orders LC

a.k.a. the Gödel-Dummet logic or—in Johnstone’s Elephant—the logic of

strong de Morgan law—and this logic is locally finite

(unlike its modal counterpart)

So, even local finiteness does not guarantee the globally uniform psp!
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• How is b obtained from A?

• It is sufficient to take begin with the sequence of formulas
B1, . . . , Bn containing

• all atoms occurring in A

• all implicational subformulas of A

• and then replace it with any sequence of formulas
C1, . . . , Cm s.t.

∀i ≤ n.∃j ≤ m s.t. ⊢IPC Bi(⊤) ↔ Cj

• Now set b := 2 ∗m+ 2
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• You may still be curious whether there were additional
reasons to be interested in it

• . . . or, to put it differently, why Albert Visser told me about
this particular result

• See spare slides for the connection with definability of
fixpoints

• Just one remark in connection with Anupam’s talk: we’re
interested in provable equivalence (logic of type
inhabitation)

• From this perspective, fixpoints are definable (via Pitts’
uniform interpolation or Ruitenburg’s result)

• If you’re interested in the Curry-Howard perspective (proof
terms/programs), fixpoints become a very non-trivial
addition to IPC, as you’ve learned from Anupam
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Back to the theorem itself

• The published proof is heavily syntactic

• Some light on how it become the way it is and where it
stands cast by old email remarks by Albert Visser, from
whom I learned about it:
Wim found the result as a PhD student. When he first presented it
Carst Koymans and I did not believe it. We quickly found a mistake
/ gap in the proof. After a few days Wim came back with a repair.
Again we shot at it and found a mistake / gap. This repeated itself
a number of times until the proof seemed airtight. The whole thing is
a singleton result. Nobody ever analysed the methods or connected it
e.g. to Ghilardi’s work or anything. I still think Wim did something
remarkable —not only finding the proof but also asking the question—
and should have gotten far more credit for it.
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• Quite different light cast by email remarks by Wim
Ruitenburg, who actually proved this theorem:
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• A good candidate for a Coq formalization

• A curious property, which does not seem to fit the pattern
seen elsewhere in the large zoo of non-classical logics

• A heavily syntactic proof, which arose via several rounds of
rewriting until all traces of semantics were lost

• Until quite recently:
• Apparently understood just by a very small bunch of

logicians
• Hardly analyzed from either semantic/dual or

Curry-Howard point of view
Recall that Ghilardi and Santocanale published their work after I

developed my formalization . . .
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Formalization

• 3000∼4000 lines of code
A better hacker would do better, I guess

Developed mostly in 2015, when I was still a relative novice in Coq

Uses features available in versions as old as 8.4pl6. To Coq’s credit, it was

surprisingly easy to make it work in recent versions like 8.18

• Formalizes the first part of Ruitenburg’s paper (ca. 5 dense
pages) which contains the actual syntactic proof of the
main theorem
The second part contains (counter-)examples, e.g, such as the one I showed

you before, discussions of improvements possible in concrete cases and

arguments why these cannot be generalized. It also involves Kripke frames,

not just syntax

• Did not uncover any worthwhile errors
• Available at
https://git8.cs.fau.de/software/ruitenburg1984 21
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• Verified implementation of Ruitenburg’s proof
either directly in Coq, or via extracted (and thus certified) Haskell or Ocaml

programs

• Exponential blowup can be painful

• The fact that b itself is linear in the size of A does not
mean that the size of Ab is linear in the size of A!

• Consider A(p) := (q → (p → r)) ∧ ((p → r) → (p ∨ r)).

• Bound b = 10 would work. Now think what A10 is . . .
To the credit of Coq’s core functional language (Gallina), after several

minutes it actually computed the output as a mere 3.2 MB text file.

Extracted Haskell hit stack overflow, at least back in 2015–17
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Still more about the structure

• The first file HilbertIPCsetup, somewhat over 1000 lines,
contains the basic metatheory of (somewhat idiosyncratic
somewhat Gentzen-style formulation) of a Hilbert-style
system for IPC.
This was entirely implicit in Ruitenburg’s paper

• Just the very last part is a proof of an actual lemma from
the paper (Lemma 1.2)

• The second one Ruitenburg1984Aux contains Lemmas
1.6–1.8

• All these lemmas would work in any modal logic over
IPC. . . where local and global consequence coincide

• Modulo the spadework done in opening file, they were
actually nice and easy. Coq proofs follow closely the
structure
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• It is the proof of the key Theorem 1.4 that require most
work: two files BoundsSubformulas and
Ruitenburg1984Key

• BoundsLists contains the apparatus necessary for actual
computation and program extraction and
Ruitenburg1984Main just puts it all together

• Some Coq details: the actual proof is done in terms of
Ensembles, meaning in fact working with Prop

• The extractable code formulated in terms of Lists
The connection between the two setups, while made precise in the

formalization, does not even mention reflection . . .
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How to overhaul it

• Today, Férée and van Gool (2023) or Shillito and coauthors
(2021–24) have closely related formalizations of G4ip-style
terminating sequent calculi for various extensions of IPC
Recently, coming together in the mechanized proof of syntactic strong

interpolation for strong Löb: Iris can tell you more

• Ultimately, this whole formalization should be recast in
such a setting
Also improving on Ruitenburg’s framework, in fact

Tbqh, at some point I needed decidability/completeness of IPC and I didn’t

even bother to formalize it

The nice thing about Coq is that it could be bypassed easily: simply by

sneakily importing meta-level excluded middle in the corresponding

file/submodule
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Future work

• Attack the Lax logic PLL, look for good examples among
(idempotent?) relevance logics
Cf. Diego’s Theorem for nuclear implicative semilattices by Bezhanishvilis

et al, 2021. Note it’s not the PLL you’ve heard about in Gianluca’s talk this

morning!

• Are all four forms of the psp encountered independently in
nature? Finite ⇒ global psp? Locally finite ⇒ upsp?

• Replace Hilbert-style with Gentzen-style, extend to
syntactic cut elimination, compare with the
Pitts-uniform-interpolation route
And do all the other things I mentioned on the other slide

• A TACL’17 question: is psp related to “good” properties of
1-generated free algebras?
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Spare slides



• Local finiteness guarantees at least locally parametric psp

• As the example of CPC shows, for concrete finite logics we
may get the globally uniform psp: and with very tight
bounds at that
(in such cases, the size of resulting Ab is also pleasant:

something we will say much more about later on)

• I don’t have an argument that the globally uniform psp
would obtain in general for finite implicative logics
We’ll see further it does not obtain in general for locally finite ones

• In fact, I don’t even know if globally parametric psp
obtains in general for locally finite implicative ones, or even
for finite implicative ones
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Connection with definability of fixpoints



• It is easy to define what it means for A to have a definable
L-fixpoint B:

p#B and ⊢L A(B) ↔ B

• It is also easy to define L-least fixpoints: the satisfy in
addition

for some/any fresh q, A(q) → q ⊢L B → q

• Dually, L-greatest fixpoints satisfy in addition

for some/any fresh q, q → A(q) ⊢L q → B

• If a fixpoint is both least and greatest, it is called unique
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• It is easy to realize that the psp + presence of ⊥ implies
definable least L-fixpoints of monotone formulas

• It is easy to realize that the psp + presence of ⊤ implies
definable greatest L-fixpoints of monotone formulas

• In other words, extending such logics with fixpoint
operators does not improve expressivity!
Well, one has to be a bit careful that B in question preserves

monotonicity/positivity: Mardaev and other references discuss this

• But as it turns out, even when the logic itself does not have
the psp, it may be useful to have a propositional reduct
which has this property to establish fixpoint results

31



• Consider intuitionistic or classical logics with the Löb
axiom □(□p → p) → □p

in stronger, but classically useless variant (□p → p) → p

• In the classical setup, these logics arise as modal logics of
well-founded transitive structures
think of finite trees, for example

• In the intuitionistic setup, these logics arise as the
Curry-Howard counterparts of calculi with guarded
(co-)recursion
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• We’ve seen that these logics do not have the psp

• But they do have unique fixpoints of guarded or modalized
formulas
i.e., those where every occurrence of p is within the scope of □

curiously enough, in numerous calculi for guarded (co-)recursion—from

Nakano LiCS 2000 to Clouston, Birkedal et al. FoSSaCS 2015—people found

it useful to add explicit fixpoint operators for such formulas

• van Benthem around 2005: a semantic proof that this result
can be used to prove definability of ordinary fixpoints in GL

Seems that it was independently and even earlier found by Mardaev

• Visser around the same time: a syntactic proof relying on
the psp of CPC. . .

• In fact, we can even define not-quite-least fixpoints of
mixed formulas which contain both positive and guarded
occurrences of p . . .
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and finally, one more puzzling connection

• There is a well-known trick of defining fixpoints (of
monotone formulas) using propositional quantifiers in, say,
system F:

µp.A = ∀p.(A → p) → p.

See, e.g., Wadler’s Recursive types for free! manuscript for a discussion of

this in connection with parametricity

• We know the name for definability of (a certain kind of)
propositional quantifiers in L . . .

• . . . it’s uniform interpolation, of course!

• How does it relate to definability of fixpoints? And, for
that matter, to the psp?
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• For an arbitrary L, uniform interpolation does not imply
definability of fixpoints of monotone formulas

• Consider K and µp.□p . . .

• What one needs in addition is a form of global deduction
theorem . . .

• . . . which in the modal context, boils down to definability of
master modality
. . . and for AAL, it boils down to the EDPC—equationally definable

principal congruences

• A trick used by d’Agostino and Lenzi in TCS 2005 when
showing that PDL with bisimulation quantifiers is
equivalent to µ-calculus
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• IPC, though, has trivially such a global deduction theorem,
as long as we do not add modalities etc. to it

• So here lies another route for fixpoints

• See Ghilardi et al. for a more detailed comparison

• Funnily enough, even though Ruitenburg’s paper was
written many years before Pitts, it does hint at a
connection with uniform interpolation at the very end!
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