# Combining fixpoint and differentiation theory 

 FICS 2024Zeinab Galal, Jean-Simon Pacaud Lemay

February 19, 2024

## Interactions between fixpoints and derivatives

In math and computer science

- Compute or approximate fixpoints more efficiently using derivatives


## Interactions between fixpoints and derivatives

In math and computer science

- Compute or approximate fixpoints more efficiently using derivatives
- Establish existence or approximate solutions of differential equations using fixpoints.

Many uses in numerical analysis, automatic differentiation, enumerative combinatorics, ...

## Interactions between fixpoints and derivatives

In math and computer science

- Compute or approximate fixpoints more efficiently using derivatives
- Establish existence or approximate solutions of differential equations using fixpoints.

Many uses in numerical analysis, automatic differentiation, enumerative combinatorics, ...

In categorical semantics:

- various notions of differentiation for categories (differential categories, Cartesian (closed) differential categories, tangent categories, coherent categories, ...)
- various notions of recursion (fixpoint operators, trace, ...)


## Interactions between fixpoints and derivatives

In math and computer science

- Compute or approximate fixpoints more efficiently using derivatives
- Establish existence or approximate solutions of differential equations using fixpoints.

Many uses in numerical analysis, automatic differentiation, enumerative combinatorics, ...

In categorical semantics:

- various notions of differentiation for categories (differential categories, Cartesian (closed) differential categories, tangent categories, coherent categories, ...)
- various notions of recursion (fixpoint operators, trace, ...)

Goal: general account of the interactions between fixpoints, trace and differentiation

## Cartesian differential categories

Blute, R. F. and Cockett, J. R. B. and Seely, R. A. G. "Cartesian Differential Categories." Theory and Applications of Categories, 22(23):622-672 (2009).

A Cartesian differential category is a Cartesian left additive category $\mathbb{C}$ equipped with an operator $\mathbf{D}$

$$
\begin{aligned}
\mathbf{D}: \mathbb{C}(A, B) & \longrightarrow \mathbb{C}(A \times A, B) \\
f: A \rightarrow B & \longmapsto \mathbb{D}[f]: A \times A \rightarrow B
\end{aligned}
$$

satisfying seven axioms.
There is an associated term calculus

$$
\mathbf{D}[f](a, b):=\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot b
$$

## Chain rule for Cartesian differential categories

Chain rule axiom: for $f: A \rightarrow B$ and $g: B \rightarrow C$,

$$
\frac{\mathrm{d} g(f(x))}{\mathrm{d} x}(a) \cdot b=\frac{\mathrm{d} g(y)}{\mathrm{d} y}(f(a)) \cdot\left(\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot b\right)
$$

## Chain rule for Cartesian differential categories

Chain rule axiom: for $f: A \rightarrow B$ and $g: B \rightarrow C$,

$$
\begin{aligned}
\frac{\mathrm{d} g(f(x))}{\mathrm{d} x}(a) \cdot b & =\frac{\mathrm{d} g(y)}{\mathrm{d} y}(f(a)) \cdot\left(\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot b\right) \\
A \times A \xrightarrow{\mathrm{D}[g f]} C & =A \times A \xrightarrow{\mathrm{~T}(f)} B \times B \xrightarrow{\mathrm{D}[g]} C
\end{aligned}
$$

where $\mathbf{T}$ is the tangent bundle

$$
\mathbf{T}: \mathbb{C} \longrightarrow \mathbb{C}
$$



## Chain rule for Cartesian differential categories

Chain rule axiom: for $f: A \rightarrow B$ and $g: B \rightarrow C$,

$$
\begin{aligned}
\frac{\mathrm{d} g(f(x))}{\mathrm{d} x}(a) \cdot b & =\frac{\mathrm{d} g(y)}{\mathrm{d} y}(f(a)) \cdot\left(\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot b\right) \\
A \times A \xrightarrow{\mathrm{D}[g f]} C & =A \times A \xrightarrow{\mathbf{T}(f)} B \times B \xrightarrow{\mathrm{D}[g]} C
\end{aligned}
$$

where $\mathbf{T}$ is the tangent bundle

$$
\mathbf{T}: \mathbb{C} \longrightarrow \mathbb{C}
$$


$\mathbf{T}$ is a functor $\quad \Leftrightarrow \quad$ the chain rule holds

## Examples

- Smooth functions between Euclidean spaces $\mathbb{R}^{n}$, for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$,

$$
\text { Derivative } \mathbf{D}[f]: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \stackrel{\text { curry }}{\sim} \quad \text { Jacobian } \mathbf{J}[f]: \mathbb{R}^{n} \rightarrow \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)
$$

- Relational and weighted relational models
- Reduced power series
- Convenient vector spaces
- Any model of the differential $\lambda$-calculus (Cartesian closed differential categories)
- And many more...


## Fixpoint operators

- Parametrized fixpoint operators are fixpoints for morphisms in context:

$$
\begin{gathered}
f: \Gamma \times X \longrightarrow X \quad \mu x \cdot f(-, x): \Gamma \rightarrow X \\
\text { with } \mu x \cdot f(a, x)=f(a, \mu x . f(a, x)) \text { for all } a \in \Gamma
\end{gathered}
$$

## Fixpoint operators

- Parametrized fixpoint operators are fixpoints for morphisms in context:

$$
\begin{gathered}
f: \Gamma \times X \longrightarrow X \quad \mu x \cdot f(-, x): \Gamma \rightarrow X \\
\text { with } \mu x \cdot f(a, x)=f(a, \mu x . f(a, x)) \text { for all } a \in \Gamma
\end{gathered}
$$

- Example: in PCF, we have an operator fix

$$
\frac{\Gamma, X \vdash M: X}{\Gamma \vdash \operatorname{fix} M: X} \operatorname{FIX}
$$

with reduction $\operatorname{fix} M \rightarrow M(\mathbf{f i x} M)$

## Categorical fixpoint operators

囯 Bloom, S. L., Ésik Z. Iteration theories, 1993.
Simpson, A. and Plotkin, G. Complete axioms for categorical fixed-point operators, 2000.

For a Cartesian category $\mathbb{C}$, a parametrized fixpoint operator on $\mathbb{C}$ is family of functions

$$
\begin{aligned}
\mathbf{f i x}_{x}^{\ulcorner }: \mathbb{C}(\Gamma \times X, X) & \longrightarrow \mathbb{C}(\Gamma, X) \\
f & \longmapsto \mathbf{f i x}_{X}^{\ulcorner }(f)
\end{aligned}
$$

indexed by pairs of objects in $\mathbb{C}$ verifying:

- fixpoint axiom: for all $f: \Gamma \times X \rightarrow X$,

$$
f \circ\left\langle\operatorname{id}_{\Gamma}, \mathbf{f i x}(f)\right\rangle=\mathbf{f i x}(f)
$$

- naturality axiom: for all morphisms $g: \Gamma \rightarrow \Delta$ and $f: \Delta \times X \rightarrow X$,

$$
\mathbf{f i x}(f) \circ g=\boldsymbol{f i x}\left(f \circ\left(g \times \operatorname{id}_{X}\right)\right) .
$$

## Examples

- for domains $\Gamma, X$ and a Scott-continuous map $f: \Gamma \times X \rightarrow X$,

$$
f\left(a, \bigvee_{n \in \omega} f^{n}(a, \perp)\right)=\bigvee_{n \in \omega} f^{n}(a, \perp)
$$

is a least parametrized fixpoint for $f$.

- co-Kleisli category (weighted) relations with the finite multisets comonad
- special case: power series over continuous semi-rings
- any cpo-enriched cartesian closed category
- complete metric spaces and contractive maps
- and many more ...


## Additional axioms

A fixpoint operator fix is a Conway operator if it satisfies

- Dinaturality axiom: for $f: \Gamma \times X \rightarrow Y$ and $g: Y \rightarrow X$

$$
\mu x . g(f(a, x))=g(\mu y \cdot f(a, g(y)))
$$

- Bekić axiom: for $f: \Gamma \times X \times Y \rightarrow X$ and $g: \Gamma \times X \times Y \rightarrow Y$

$$
\begin{aligned}
& \mu(x, y) \cdot(f(a, x, y), g(a, x, y))= \\
& (\mu x \cdot f(a, x, \mu y \cdot g(a, x, y)), \mu y \cdot g(a, \mu x \cdot f(a, x, \mu y \cdot g(a, x, y)), y))
\end{aligned}
$$

Conway fixpoint operator $\quad \Leftrightarrow \quad$ Trace operator with $\times$ as tensor

## Particular cases



## How should derivatives and fixpoints interact?

The function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ has a parametrized fixpoint $g: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{align*}
& (x, y) \mapsto 1-x^{2} y \\
& \quad g(x)=f(x, g(x)) \tag{1}
\end{align*}
$$

$$
x \mapsto \frac{1}{1+x^{2}}
$$

## How should derivatives and fixpoints interact?

The function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ has a parametrized fixpoint $g: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{align*}
& (x, y) \mapsto 1-x^{2} y \\
& \quad g(x)=f(x, g(x)) \tag{1}
\end{align*}
$$

$$
x \mapsto \frac{1}{1+x^{2}}
$$

By the chain rule,

$$
\begin{equation*}
g^{\prime}(x)=\frac{\partial f}{\partial x}(x, g(x))+\frac{\partial f}{\partial y}(x, g(x)) \cdot g^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}} \tag{2}
\end{equation*}
$$

## How should derivatives and fixpoints interact?

The function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ has a parametrized fixpoint $g: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{align*}
& (x, y) \mapsto 1-x^{2} y \\
& \quad g(x)=f(x, g(x)) \tag{1}
\end{align*}
$$

$$
x \mapsto \frac{1}{1+x^{2}}
$$

By the chain rule,

$$
\begin{equation*}
g^{\prime}(x)=\frac{\partial f}{\partial x}(x, g(x))+\frac{\partial f}{\partial y}(x, g(x)) \cdot g^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}} \tag{2}
\end{equation*}
$$

Another way of computing $g^{\prime}(x)$ :

- Compute the tangent of $f, \mathbf{T}(f): \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ :

$$
\mathbf{T}(f)(x, y, a, b)=\left(f(x, y), \frac{\partial f}{\partial x}(x, y) \cdot a+\frac{\partial f}{\partial y}(x, y) \cdot b\right)
$$

## How should derivatives and fixpoints interact?

The function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ has a parametrized fixpoint $g: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{align*}
(x, y) & \mapsto 1-x^{2} y
\end{align*}
$$

By the chain rule,

$$
\begin{equation*}
g^{\prime}(x)=\frac{\partial f}{\partial x}(x, g(x))+\frac{\partial f}{\partial y}(x, g(x)) \cdot g^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}} \tag{2}
\end{equation*}
$$

Another way of computing $g^{\prime}(x)$ :

- Compute the tangent of $f, \mathbf{T}(f): \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ :

$$
\mathbf{T}(f)(x, y, a, b)=\left(f(x, y), \frac{\partial f}{\partial x}(x, y) \cdot a+\frac{\partial f}{\partial y}(x, y) \cdot b\right)
$$

- (1) and (2) imply $\mathbf{T}(g)$ is a fixpoint for $\mathbf{T}(f)$

$$
\mathbf{T}(g)(x, a)=\left(g(x), g^{\prime}(x) \cdot a\right)=\mathbf{T}(f)\left(x, g(x), a, g^{\prime}(x) \cdot a\right)
$$

## Cartesian differential fixpoint categories

Computing the derivative of the fixpoint is equivalent to computing the fixpoint of the tangent.

- Option 1 differentiating the fixpoint

$$
\frac{\Gamma \times X \xrightarrow{f} X}{\Gamma \times \Gamma \xrightarrow{\mathrm{D}[\mathrm{fix}(f)]} X} X
$$

## Cartesian differential fixpoint categories

Computing the derivative of the fixpoint is equivalent to computing the fixpoint of the tangent.

- Option 1 differentiating the fixpoint

$$
\frac{\Gamma \times X \xrightarrow{f} X}{\Gamma \times \Gamma \xrightarrow{\mathrm{D}[\mathrm{fix}(f)]} X} X
$$

- Option 2 fixpoint of the tangent

$$
\frac{\frac{\Gamma \times X \xrightarrow{f} X}{\Gamma \times X \times \Gamma \times X \xrightarrow{\mathbf{T}(f)} X \times X}}{\frac{\Gamma \times \Gamma \times X \times X \xrightarrow{c} \Gamma \times X \times \Gamma \times X \xrightarrow{\mathbf{T}(f)} X \times X}{\Gamma \times \Gamma \xrightarrow{\text { fix }(\mathbf{T}(f) \circ c)} X \times X \xrightarrow{\pi_{2}} X} \text { 促 }}
$$

where $c:=\operatorname{id}_{\Gamma} \times\left\langle\pi_{2}, \pi_{1}\right\rangle \times \operatorname{id}_{X}: \Gamma \times \Gamma \times X \times X \xrightarrow{\cong} \Gamma \times X \times \Gamma \times X$

## Cartesian differential fixpoint categories

For a Cartesian differential category $\mathbb{C}$, a parametrized fixpoint operator fix satisfies the

- differential-fixpoint axiom if for every $f: \Gamma \times X \rightarrow X$

$$
\mathbf{D}[\mathbf{f i x}(f)]=\pi_{2} \mathbf{f i x}(\mathbf{T}(f \circ c))
$$

- tangent-fixpoint axiom if for every $f: \Gamma \times X \rightarrow X$

$$
\mathbf{T}[\mathbf{f i x}(f)]=\mathbf{f i x}(\mathbf{T}(f \circ c))
$$

## Lemma

If the fixpoint operator fix is Conway, the following are equivalent:

- fix satisfies the differential-fixpoint rule;
- fix satisfies the tangent-fixpoint rule.


## Examples

- Differential fixpoint axiom: any category with finite biproducts where $\mathbf{D}[f]=f \circ \pi_{2}$ provided that the fixpoint is uniform wrt projection maps
- Tangent fixpoint axiom: weighted relations
- Special case: formal power series over continuous semi-rings
- General case: quantale enriched profunctors with the free exponential
- More generally: any Cartesian differential category where the fixpoint operator is obtained from bifree algebras and is uniform wrt linear maps.


## Cartesian closed differential fixpoint categories

Ehrhard, T. "A coherent differential PCF." Logical Methods in Computer Science, 19 (2023).

For a Cartesian closed differential category $\mathbb{C}$, a fixpoint combinator $\mathbf{Y}: X \Rightarrow X \rightarrow X$ satisfies the

- differential-fixpoint axiom if

$$
\mathbf{D}[\mathbf{Y}]=\pi_{2} \mathbf{Y} \lambda(\mathbf{T}(\text { eval }) \circ c)
$$

- tangent-fixpoint axiom if

$$
\mathbf{T}[\mathbf{Y}]=\mathbf{Y} \lambda(\mathbf{T}(\mathrm{eval}) \circ c)
$$

Examples cpo-enriched cartesian closed categories, categories with fixpoint objects

## Fixpoints and linearity

In a Cartesian differential category $\mathbb{C}$, a morphism $f: X \rightarrow Y$ is linear if

$$
\mathbf{D}[f]=X \times X \xrightarrow{\pi_{2}} X \xrightarrow{f} Y
$$

## Fixpoints and linearity

In a Cartesian differential category $\mathbb{C}$, a morphism $f: X \rightarrow Y$ is linear if

$$
\mathbf{D}[f]=X \times X \xrightarrow{\pi_{2}} X \xrightarrow{f} Y
$$

$\leadsto$ linear maps form a subcategory $\operatorname{Lin}(\mathbb{C}) \hookrightarrow \mathbb{C}$ with finite biproducts.

## Fixpoints and linearity

In a Cartesian differential category $\mathbb{C}$, a morphism $f: X \rightarrow Y$ is linear if

$$
\mathbf{D}[f]=X \times X \xrightarrow{\pi_{2}} X \xrightarrow{f} Y
$$

$\leadsto$ linear maps form a subcategory $\operatorname{Lin}(\mathbb{C}) \hookrightarrow \mathbb{C}$ with finite biproducts.

## Lemma

If $\mathbb{C}$ is a Cartesian differential fixpoint category, then the fixpoint of a linear morphism is linear.

## Fixpoints and linearity

In a Cartesian differential category $\mathbb{C}$, a morphism $f: X \rightarrow Y$ is linear if

$$
\mathbf{D}[f]=X \times X \xrightarrow{\pi_{2}} X \xrightarrow{f} Y
$$

$\leadsto$ linear maps form a subcategory $\operatorname{Lin}(\mathbb{C}) \hookrightarrow \mathbb{C}$ with finite biproducts.

## Lemma

If $\mathbb{C}$ is a Cartesian differential fixpoint category, then the fixpoint of a linear morphism is linear.

- Differential fixpoint axiom $\quad \Rightarrow \quad \operatorname{Lin}(\mathbb{C})$ has a fixpoint operator.
- Differential fixpoint axiom $\Rightarrow \operatorname{Lin}(\mathbb{C})$ has a repetition operator.
+ Conway fixpoint


## Newton-Raphson approximation

Inspired by:

- Combinatorics: Newton's method for combinatorial species (Decoste, Labelle, Leroux, Pivoteau, Salvy, Soria, ...)
- Formal languages and dataflow analysis: Newton's method for power series over $\omega$-continuous semirings (Esparza, Kiefer, Luttenberger, Schlund,...)

Main idea: assuming the differential-fixpoint axiom
compute the non-linear fixpoint more efficiently
the derivative and the linear repetition operator

## What about differential categories?



$$
\frac{f: A \rightarrow B}{\mathrm{D}[f]:!A \otimes A \rightarrow B}
$$

## What about differential categories?



$$
\frac{f: A \rightarrow B}{\mathrm{D}[f]:!A \otimes A \rightarrow B}
$$

A natural notion of fixpoint for differential categories a trace for the monoidal product $\otimes$, how should it interact with differentiation?

## Future work

- More general iterative schemes than Newton-Raphson
- Approximation of solutions of differential equations
- Reverse differential categories and fixpoints
- Restriction differential category for local implicit function theorems
- Guarded recursion and differentiation for fixpoints in metric models
- Syntactic counterpart (Taylor expansion)
- Differentiation in the coinductive world (e.g. stream calculus)


## Thank you

