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@ Introduction: Background on Craig-Lyndon Interpolation

e Statement
e An easy proof in the proposition case
e Proof-theoretic interpolation: Maheara 1960 and Prawitz 1965

@ Revisiting proof-theoretic interpolation: proof-relevant
interpolation in linear logic

e Proof-relevant Maheara's method for interpolation
e Disclaimer: Not all of this is new: Cubrié for the A-calculus

© Interpolation as cut-introduction
@ What about proof-relevant interpolation for circular proofs?

© Conclusion
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Outline

@ Introduction: Background on Craig-Lyndon Interpolation
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Statement of Craig's Interpolation Theorem

The interpolation property was first stated and proved by Craig and soon
refined by Lyndon.

Definition (Interpolation property)

A logic L has the interpolation property if, for any formulas A, B such
that Al B, there is a formula C satisfying £ (C) C Z(A)N.Z(B) and
such that A+; C and B+, B.

Z(C) C Z(A)NZL(B) means:

@ in Craig's interpolation, that all predicate symbols occurring in C
occur both in A and B.

@ in Lyndon's interpolation, that all predicate symbols occurring
positively (resp. negatively) in C occur both positively (resp.
negatively) in A and B.

. AFC CH. B
Remark that this amount to a cut-rule: (Cut)
A B
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An easy proof for classical propositional logic
By induction on the cardinality of .Z(A)\.Z(B).
o if Z(A) C Z(B), then A is an interpolant.

@ Otherwise, take some propositional variable p occurring in A and
not in B and consider A= A[T /p]V A[L/p]. Clearly:
(i) AF A" and A+ B (since p does not occur in B) and
(ii) an interpolant of A’ and B exists by induction hypothesis: it is
an interpolant for A and B by transitivity of entailment.

Remark

Does not rely on a specific proof system (provability only);
@ This is constructive;
@ Crucial use of the logical constants 1, T;

@ In fact, the interpolant does not really depend on B, only on the
language of B: this is a uniform interpolant for all formulas with the
same language as B.

v
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Proof(-theoretic) methods for interpolation
Maehara 1960, for Sequent calculus — Prawitz 1965, for Natural Deduction

Maehara:

@ Induction on the structure of a cut-free derivation of A~ B,

@ Strengthen the induction hypothesis, by showing that if = A, then
for any partitioning ', of I and A’, A” of A there exists an
interpolant C with Z(C) C Z(I",A")Nn.Z (", A") such that
M-C,A" and ", CF A",

Prawitz:
LemMa. Let I1 be a normal deduction in C' of A depending on I, and
let I'y and Iy be two disjoint sets such that I'y U I',=1I. Then there is a
formula F, called an interpolation formula to (I, {I's, A>>, such that
I'=F and {F}UI',~A and such that every parameter that occurs
positively [negatively] in F occurs positively [negatively] in some for-
mula of I'y and negatively [positively) in some formula of I'yU {~ A}.

(for NK and NJ)
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Proof(-theoretic) methods for interpolation
Maehara 1960, for Sequent calculus — Prawitz 1965, for Natural Deduction

Maehara:
@ Induction on the structure of a cut-free derivation of AF B,

@ Strengthen the induction hypothesis, by showing that if [ = A, then
for any partitioning ', of I and A’, A” of A there exists an
interpolant C with £(C) C Z(I",A"YnZ(I",A") such that
M-C,A" and ", CF A",

Method of wide applicability for sequent calculi with cut-admissibility:

@ Maehara (1960) proved it for LK, soon extended by Schiitte to LJ
(1962)

@ Roorda gives a proof for LL analyzing in which fragments
interpolation actually holds (1994) (actually the proof covers only the
fragments of MALL...);

@ Application to various modal logics.
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Proof(-theoretic) methods for interpolation
Maehara 1960, for Sequent calculus — Prawitz 1965, for Natural Deduction
Example of (A,), that is if A= AA B, A1, A, and if & ends with

MMEALA >+ B,As
M,MoFAAB, A1, A

Consider a partitioning of I and A as ', and A’, A” assuming that
AAB isin A, The partitionings of I' and A induce partitionings of
M1,M2,A1,A% as (M, 1Y), (M5,15), (A}, A]) and (A%, A%) and the
induction hypothesis ensures the existence of interpolants Ci, C; such
that (i) I} F A AL G, (i) T, G =AY, (i) Ty F B,AS, G and (iv)
Iy, Co = A are provable, from which one can derive:

by (i) by (i)
p ; p p by (i) by (iif)
MEAALG I EB,AS G
(Ar) F’l’, G+ A’l’ F’2’, G- A’z’
F’l,r’2 FAA B,A/I,Aé, Cl, C2
(Vy) r,ry,CivCe2re Al A

ML, ThE AAB, AL AL, GV G

(~)
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First-order mulLL sequent calculus

(a) G FILF FFLA FI,G,F,A «
FF.F S Fr.F6a %
FE,G,T FFF. FG,A R o
FPeGE O T FeGA FLE F1

FFFL FGF F AL
NNV AP\ i () le for 0
FRaGr ¥ Faemr @ FT.T (no rule for 0)
B0 FET FR FPFIFT
®)  SEf FiFr P FET E/ A
F G{t/x}T FE.T _
i alt & L L W  xFV(T
() FaxG.r Forr @ (@ xRV
F GlvX.G/X],T  FuX.F/X],T
(d) ) )
FVvX.G,F FuX.F,[

7/41



Outline

© Revisiting proof-theoretic interpolation: proof-relevant
interpolation in linear logic
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Proof-Relevant Interpolation

Theorem

Let T, A be lists of LL formulas and t+=1T,A.
There exists a LL formula C such that Z(C) C Z(INN.Z(A) and two

cut-free proofs mty,my of - T, C and - C*, A respectively such that
T %]

Fr,C  FCHA
FTLA

=cut T

(Cut)

Remark

o We will see (some cases of ) the proof next: the proof goes by
induction on the structure of a cut-free derivation, no surprise...

@ Similar result established by Cubri¢ in 1993 for simply typed
A-calculus with products and sums, adapting a proof of interpolation
by Prawitz for natural deduction. We will discuss this later.

v
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Proof-Relevant Interpolation

Theorem

Let T, A be lists of LL formulas and wt T, A be cut-free.
There exists a LL formula C such that Z(C) C Z(INN.Z(A) and two

cut-free proofs mty,my of - T, C and - C*, A respectively such that
T %]

FT,C  FCha st T
— " (Cu)
FTLA

Remark

o We will see (some cases of ) the proof next: the proof goes by
induction on the structure of a cut-free derivation, no surprise...

@ Similar result established by Cubri¢ in 1993 for simply typed
A-calculus with products and sums, adapting a proof of interpolation
by Prawitz for natural deduction. We will discuss this later.

v
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Proof

TL'Z}_F,FJ_ (AX):

o If T =F, one simply takes C = F* m; = mp =L F FL (Ax) .
(the case when I' = F! is symmetrical, taking C = F.)

o If T'=F,F', one simply takes C= 1, m =

m=r1

T (Cut)

(the case when T is empty is symmetrical, taking C =1.)
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Proof

Last rule is (®)

7:/ 7://

x=FF,T" A G, " A" ) assuming = FQG,I",T".
®
FFRG,I, " A A
By IH, there are interpolants C’,C" and interpolating proofs (i) @1 - F,I", C’, (ii)
m - C'h A (i) & F G, C" and (iv) @l F C" A st.

v b . ny ™ x
PR () e e () et
n/ n//
T () mm
Let C=CBCT, m=FFRGI.I"CC" o R i )
® FChec, AL A"
FFRG,I ", CheC’ N
One observes that:
- B )
T
1 . Fr,c,c” m
FrCc  FctA — (Cut)
— " (Cut) FI,C, A" )
FMLA (Cut)

FrA
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Proof

Last rule is (®)

ﬂ’ ”//
n=kFF,I",A" +GIT" A )’ assuming [ = FQG,I", .
FFRG,I, " A A

By IH, there are interpolants C’,C" and interpolating proofs (i) m; - F,I’, C’, (ii)

m - CH A, (i) @ G, C" and (iv) @) - C"H A7 st.

L RNV G . -
Frra (@Y T o (O e
7!.'{ 75{/ ’ 1
1t " (e ) L)
Let C=C'%C", m =k FRG,I",I",C',C" (( )) = L An
7 FCtec"—, A A"
FFRG,I ™, CeC’ ©
One observes t7l';at: - z 1 /"
i 2 a2 (Cut) n®
FrC  FchA e FFILA FG A
K K
—————— (Cut)
Fr,A FF®G,I,I" A A"

(®)

(Cu
(®)

t)
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Proof

Last rule is (®)

7[/ 7[//
n=FF,T" A G, A" , assuming ' = FRG,I",I".
FFRG,I, T A A
By IH, there are interpolants C’,C" and interpolating proofs (i) m; - F,I’, C’, (ii)
- C A, (i) @ - G, C" and (iv) 7 - C"*, A" st.

T T ry Ty
* / * /
PR (0 e Ty (G e
T Ty
U 1 ! " ! 1" (®) né né,
Let C=C"9C", m = + F®G,I",I",C',C m=———"— (®)
(®) - C/L®CHL’A/’AH

FFRG,I, 1" CheC"”
One observes that:
T T2
Fr,c rFChA (Cut) —fe T bylH.
LA
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Proof

Last rule is (’®)

ﬂ,

Ifr="FF,GIA , assuming ' = F9G,[". By IH, there is an interpolant C’

= (9)
PG, I A

such that Z(C') C L(F,G,I")NZ(A) as well as proofs 1 - F,G,I",C’ and
m, F C', A such that

FF,GI,C  FChA —a
(Cut)
FF,G,I",A
m
Setting C=C', m :m (®) and m = 7, we get:
" - om _m
FF,.GI,C RO A
Fr,C +FCLA —eut (Cut) —%& =

—Tra (Cut) FF,G I A
J ——— (®)

F P26, I, A
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Proof

, Last rule is (?d)
T

fr=FFIA .y assuming T =7F,I".
F?F.TA

By IH, there is an interpolant C’ (with Z(C") C Z(F,["YN#£(A)) and

proofs 7] - F,I",C’ and 7, - C'*, A such that
T &2
FFI,C RO A —reu -
FE.TA (Cur)

/

By setting C=C', m = (2d) , one gets:

1
F?F,I,C

/
4 &
m o

F?F,I",C FCHA —eut

FFIC O A

Cut '
F?F, T A (€ FRA (2d)

F?7F, 1A

(Cut) —eut -
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Proof

z Last rule is (!p)

fr=FF20"724/ |y assuming Fr=1F,?2"and A=7A.

FEra
By IH, there is an interpolant C’ (with Z(C") C £ (F,?T")N.Z(A)) and proofs
m - F,?1",C" and my + C'",? A such that

/

m _ =
T A
(Cut)
FF2r, 24
nl
— (%) ng
By setting C=7C, m = - F,?I',2C and ; =————— (Ip) , one gets:
ya——C) Fict 7
FIF,?1,2C o
T m
FF2r,C FCtra 1p)
mom — = (d) —— (p
sy (S e FFIMC Lt
S ETEYN (Cut)
——— (xd
F?F, 20,740/ ()
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Proof

Last rule is (!p)

n/

fn=FF2"?7A’ | assuming T =!F, 72" and A=7A".

FIF, 21,20
By IH, there is an interpolant C’ (with £(C') C Z(F,?T")N.Z(A)) and proofs
mFF,?21,C" and @+ C'*,? A’ such that

/

n &
FF2M,C RO A e W
FF2r, 200 (Cu)
il (7d) 0
T A
By setting C=7C', m = + F,?[",7C’ and m;=——— (!p), one gets:
CIFarac ('p) Frot
mn
0 b "
17,2, (Cut)  —ae  FF20,70 (Cut)
F2F, 20 2A MLELAELC
F7F, 70,70/
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Proof

Last rule is (!p)

”/

Ifr=FF70"74 |y assuming Fr=!F,?2Mand A=7A"
FIF,?21 70 P

By IH, there is an interpolant C’' (with Z(C') C Z(F,?7")NZ(A)) and proofs
m - F,2[7,C" and 7, - C'*,? A’ such that

m 7
FF2r,C FCt A —
(Cut)
FF20,20
o
————— (7d) %
By setting C=7C', m = - F,?2I",7C’ and ;m;=————— (!p) , one gets:
————— (p) Fict, 70’
FIF,?207,2C '
1 V(%)

ETETEYY (Cut) ¢ 7mbyIH.
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Proof

Last rule is (V)

n/

Ifn= FF,I"A ") ZFV(M.A) assuming [ = VxF,I".
o= x ,
FVxF, " A

By IH, there is an interpolant C’ such that £(C') C Z(F,I")N¥(A) and proofs
T+ F,I",C" and 7 - C'*, A such that

/

T 7"'2
FFI,.C  FCHA —en T
FEIA (Cut)
n/
. o e O 7
By setting C=3x.C’, m = + F,[",3x.C and ;p=—— (V) one gets:
VTR Fvxct,a
X ,n/, Ix. .
m () (Cut) . 17,2 (Cut)

E— —

FVxF, I, A w  FRIA ()
FVxF, I, A
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Proof

Last rule is (3)

nl

If z=FF{y/x},",A assuming = 3xF,I".

2 @)
F3xF, ", A
We assume that we have no function symbol. By IH, there is an interpolant C’ with
2(C") C L(F{y/x},T")NZ(A) and proofs m; - F{y/x},[",C’ and 7, + C'", A st.

T ™
FF{y/x},I",C’ FC*A (cu) — e T
ut
FF{y/x},T",A

In this case, we reason by case on whether y occurs in I, A:
(ii) If ye FV(I'), y € FV(A), set C=3yC’,
/

m
— (3 ™
m = 3xF,I",C , ip=—— (V) one gets:
—— (3 vyC't A
AxF, I, yC’
IS
m V(%) _
———— (Cut)  — FIF I, C A
F3x.F,I",A (Cut) o T i (Cut)
F3xF, I, A
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Proof

Last ruleis (3)
o
If x=FF{y/x},[",.A @) assuming [ = 3xF,[".
F3xF, I, A
We assume that we have no function symbol. By IH, there is an interpolant C’ with
Z(C) CZ(F{y/x},I")NZ(A) and proofs n; - F{y/x},I",C" and mj ct A st

/ /
b4 T
* /

FF{y/X},F',C’ '_CILaA (C ) cut
ut
FF{y/x}T",A

In this case, we reason by case on whether y occurs in I, A:
(ii) If ye FV(I'), y & FV(A), set C =3yC/,
T ,

(3 A
m = 3IxF,[",C @ , ;ip=—— (V) one gets:
- (3) VyC’J‘,A
AxF, I, JyC’
oM
™ 2] C . T (Cut)
T FUA (Cut)  —x, FF{y/x},M,A a)
F3xF, I, C
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Proof

Last rule is (3)

”/

If g =F F{y/x},[",A assuming [ = 3xF,I".

= @)
F3xF, " A
We assume that we have no function symbol. By IH, there is an interpolant C’ with
2(C") € L(F{y/x},I")NZ(A) and proofs m} - F{y/x},I",C" and )+ C'*", A st.

/

m ™
F F{y/X},r’, c F C,lyA (C ) _>zut 7.
ut
FF{y/x}, T, A

In this case, we reason by case on whether y occurs in ' A:
(i) Fye FV(I'), y € FV(A), set C =3yC,
”/

1 /

m = 3xF,I",C’ @ , ;p=—— (V) one gets:
— 3 vyC'*,A
AxF, 7,3y’
m V(%)
———— (Cut — .
Fax.F,I" A (Cut) cut
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Proof

o Last rule is (3)

If m=FF{y/x},l",A
F3xF, I, A

assuming [ = 3xF,[".

€)

We assume that we have no function symbol. By IH, there is an interpolant C’ with
2L(C) C L(F{y/x},T')NZL(A) and proofs | - F{y/x},I",C’" and @+ C'", A st.

b m
FF{y/x},l",C’ +Ct A
FF{y/x},T",A

(Cut)

In this case, we reason by case on whether y occurs in I, A:
(i) f y e FV(A), y & FV(I'), set C=VyC',
m

J

m = F3IxF,I",C’ (()V) )= — (3) . One gets:
I —— Fdyl'—, A
F3xF, [, Vy.C' Y
n/
T o) I — (€] ,
EV=TN (Cut)  —e F3xF,I,C 7:2
FaxF.I, A

(Cut)
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Proof

o Last rule is (3)

If z=FF{y/x},l",A @ assuming [ = 3IxF,I".

F3xF, I, A
We assume that we have no function symbol. By IH, there is an interpolant C’ with
£(C') C L(F{y/x},[")NZ(A) and proofs @} - F{y/x},",C’ and 7, F C'* A st.

FF{y/x},l",C’  FC*A (cu) —en T
ut
FF{y/x},I",A

In this case, we reason by case on whether y occurs in I, A:
(i) If y e FV(A), y ¢ FV(I'), set C =VyC',
/

T
— (9 ™
m = F3IxF,I",C , iy =———— (3) . One gets:
—— (V) Fayct,A
F3xF,M" Vy.C'
mom
a7 (Cut) =, FF{y/x}I"A (Cut)
F3xF,, A — 2T (3
F3x.F,I",A
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Proof

Last rule is (3)
nl

If n=FF{y/x},I",A . assuming [ = 3xF,I".

F3xF, I A
We assume that we have no function symbol. By IH, there is an interpolant C’ with
2(C") C L(F{y/x},I")N2(A) and proofs | - F{y/x},",C’ and + C'*, A st.

/ /
™ &)
* /

FF{y/x},l’,C’ +C*.A © )—>mn.
ut
FF{y/x},T",A

In this case, we reason by case on whether y occurs in " A:

(i) If y e FV(A), y & FV(I'), set C=Vy(C',
m ,
— (3 o)
m= k3xF,I",C ©) » M =——"——(3). One gets:
— " (V) F3yct, A
F 3xF, [, Vy.C'

1 b1%)

CSFTA (Cut) 2, mhyIH.
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Proof

Last rule is (3)

7[/

If r=FF{y/x},[",A 3 assuming [ = 3xF,[".

F3xF, I, A
We assume that we have no function symbol. By IH, there is an interpolant C’ with
2(C") C L(F{y/x},I")NZ(A) and proofs | - F{y/x},I",C" and &, + C'*, A st.

iy m
FF{y/x},l,C’  FC*A () — e
u
FF{y/x},T",A
In this case, we reason by case on whether y occurs in ['A:
77:,
(i) If y occurs in both, take C = C’ as interpolant, m; :Tll-'r’ (@) and m=m}
X U

and we have Z(C) =2(C') CZ(F,I"NZL(A) = Z(3xF,I")NZL(A). The result
follows by (3)-commutation and IH.
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Proof-relevant interpolation for LK and LJ

@ Either redo the proof, which goes the same way or

@ using the usual linear embeddings, the result is lifted to LK and LJ,
deduce the result.
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Cubri¢'s proof-relevant interpolation
Prawitz gave a natural deduction-based proof of interpolation (for NK
and NJ):

LemMa. Let I1 be a normal deduction in C' of A depending on I, and
let I'y and Iy be two disjoint sets such that I'y U I',=1I. Then there is a
Sformula F, called an interpolation formula to {I';, {I's, A>>, such that
I'=F and {F}UI',~A and such that every parameter that occurs
positively [negatively] in F occurs positively [negatively] in some for-
mula of I'y and negatively [positively) in some formula of I'yU {~A}.

Based on Prawitz' proof of interpolation for natural deduction, Cubri¢
proved the following result in his PhD:

Proposition 3.3. Let L, and L, be two languages, and let T, and T, be two
J.8-theories on the respective languages. Let Ty, be a theory on the language L, N L,
such that Tyc Ty " T, (we may as well assume that the theories are deductively
closed). Let (x®[>t€) be a term in the language L, UL, such that the type B
is in Ly and the type C is in L,. Then, there is a type A in L, L, and terms
(xB>r4) in Ly, and (yA1>5°) in L, such that:

Tyu Thkt=ss(r/y).
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Outline

@ Interpolation as cut-introduction

29/41



Interpolation as Cut-Introduction

The previous synthesis of the interpolating formula / proofs can be split
in two phases, an bottom-up phase and a top-down phase:

@ Ascending phase: This first phase consists in traversing the initial
proof @ bottom-up, from root to axioms, and building, for each
visited sequent ', a partition ([",["”). At the end of the phase, there
are 4 cases for axiom rules - AL, A:

({A+, A}, 2);

({4}, (A);

({AFA{AS]);

(2, {A% A}).

and similarly for each axiom corresponding to some unit (T or 1)

@ Descending phase: Equipped with the sequents partitioning
information, from root to leaves, one shall now apply
cut-introduction rules to axioms, progressively moving the cuts
down and merging them in such a way, ultimately, to reach the root
sequent of the original proof.
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Outline

@ What about proof-relevant interpolation for circular proofs?
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Circular proofs and circular representations

FIT FA T

R

/

FT
FT

(r1)
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Need for a correctness condition

FFuX.X FuX.X
W) (1)
FFUX.X FuX.X

Cu
FF ()
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Issues with interpolating non-wellfounded proofs (1)

Three ingredients are important to carry the proof of the previous section
to circular proofs:

@ the wellfoundedness of proof objects. Indeed this ensures that one
reaches axioms which are the base case of the induction;
wellfoundedness is implicitly used to initiate the descending phase
(that is, after having ended the ascending phase!)

@ the existence of cut-free proofs. Indeed, cut-freeness is important to
reason by induction on inferences of the cut-free proofs and benefit
from analyticity, which is the key for controlling the language of the
interpolant, and

© the preservation of logical correctness during the descending phase
(that is, cut-introduction). Indeed, correctness of the interpolated
proof-objects is of course necessary for the result of interpolation to
simply make sense...
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Issues with interpolating non-wellfounded proofs (II)

In the case of circular proofs, the first two properties are somehow lost
and the third one shall be treated with great care:

@ wellfoundedness is lost, even in presence of circular proofs. In
particular, even given a finite representation of a given circular
proofs, we have leaves which are not axioms but back-edges: how
can we interpolated them?

@ while it is crucial to rely on cut-freeness in the reasoning, circular
proofs are not closed by cut-elimination and actually we know of
sequents which are circularly provable but not cut-free circularly
provable.

© In the course of interpolation, one needs to preserve validity, that is
ensure (i) that one has enough threads and (ii) they support the
appropriate branches.
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FG

FH

Splitting invariance
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FG

FH

T
=

Splitting invariance

T
«

T
o

T T T T T
Q] =
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Splitting invariance

Definition (splitting invariance)

Given a finite representation R of a uLL* pre-proof T and a splitting
s of I in two components I},[,, R is called s-invariant if the result of
applying the splitting-decoration phase to R, initiated with s, results into
a decorated derivation R’ such that for each back-edge b of R’, the
splitting of the source of b coincides with the splitting of the target of b. )

Proposition

Let @ be a circular proof of a sequent =T and let s be a splitting of T in
two components (I';,Tg). To any finite representation R of @, one can
associate another finite representation R’ of ® which is s-invariant.
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Interpolating circular pre-proofs

FT,LA  FT,A

e

T, A
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Interpolating circular pre-proofs

FT,A  FT,A

e

FT,A
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Interpolating circular pre-proofs

FO,LX  FT,LX FX, A FX,A

FLIX, ..., X] FIM[X, .. X], A

37/41



Interpolating circular pre-proofs

FT,X  FD,X FX, A FX,A

-1, I[X 'a X] - IA[X EX],A

"
FT X IX, o x] Y FuXIiX,.. XA

37/41



Interpolating circular pre-proofs

FT,J  FD,J FJLA  FJRA
I—I‘,I[‘li,...,.]] Hl[Jl,.Ii..,JL],A
— v)

X]

(
FT, uX I[X, ... FUuX.IYX, ..., X],A

with J = uX.I[X,..., X].
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How to ensure preservation of validity? (still WIP)

@ Provide a distinct fixed-point variable to each source of a back-edge

@ Consider a stronger notion of validity: strong validity, which ensure
that the proof can be validated in such a way that each time the
thread visit of sequent of the finite representation, it visits the same
formula

@ Reason on the strongly connected component of the finite
representation to find which back-edge should be sequenced first
and whether a it or v should be used there.
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e Conclusion
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Conclusion

Full treatment of the validity condition;

In which other logical system can we apply the method?
Proof nets interpolation as parsing criterion.

Semantical counter-part of this interpolation result.

Connection with uniform inteprolation?
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Questions?
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