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Statement of Craig’s Interpolation Theorem
The interpolation property was first stated and proved by Craig and soon
refined by Lyndon.

Definition (Interpolation property)
A logic L has the interpolation property if, for any formulas A,B such
that A `L B, there is a formula C satisfying L (C)⊆L (A)∩L (B) and
such that A `L C and B `L B.

L (C)⊆L (A)∩L (B) means:

in Craig’s interpolation, that all predicate symbols occurring in C
occur both in A and B.

in Lyndon’s interpolation, that all predicate symbols occurring
positively (resp. negatively) in C occur both positively (resp.
negatively) in A and B.

Remark that this amount to a cut-rule:
A `L C C `L B

(Cut)
A `L B
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An easy proof for classical propositional logic
By induction on the cardinality of L (A)\L (B).

if L (A)⊆L (B), then A is an interpolant.

Otherwise, take some propositional variable p occurring in A and
not in B and consider A′ = A[>/p]∨A[⊥/p]. Clearly:
(i) A ` A′ and A′ ` B (since p does not occur in B) and
(ii) an interpolant of A’ and B exists by induction hypothesis: it is
an interpolant for A and B by transitivity of entailment.

Remark
Does not rely on a specific proof system (provability only);

This is constructive;

Crucial use of the logical constants ⊥,>;

In fact, the interpolant does not really depend on B, only on the
language of B: this is a uniform interpolant for all formulas with the
same language as B.
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Proof(-theoretic) methods for interpolation
Maehara 1960, for Sequent calculus – Prawitz 1965, for Natural Deduction

Maehara:

Induction on the structure of a cut-free derivation of A ` B,

Strengthen the induction hypothesis, by showing that if Γ `∆, then
for any partitioning Γ′,Γ′′ of Γ and ∆′,∆′′ of ∆ there exists an
interpolant C with L (C)⊆L (Γ′,∆′)∩L (Γ′′,∆′′) such that
Γ′ ` C ,∆′ and Γ′′,C `∆′′.

Prawitz:

(for NK and NJ)
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Maehara 1960, for Sequent calculus – Prawitz 1965, for Natural Deduction

Maehara:

Induction on the structure of a cut-free derivation of A ` B,

Strengthen the induction hypothesis, by showing that if Γ `∆, then
for any partitioning Γ′,Γ′′ of Γ and ∆′,∆′′ of ∆ there exists an
interpolant C with L (C)⊆L (Γ′,∆′)∩L (Γ′′,∆′′) such that
Γ′ ` C ,∆′ and Γ′′,C `∆′′.

Method of wide applicability for sequent calculi with cut-admissibility:

Maehara (1960) proved it for LK, soon extended by Schütte to LJ
(1962)

Roorda gives a proof for LL analyzing in which fragments
interpolation actually holds (1994) (actually the proof covers only the
fragments of MALL...);

Application to various modal logics.
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Proof(-theoretic) methods for interpolation
Maehara 1960, for Sequent calculus – Prawitz 1965, for Natural Deduction

Example of (∧r), that is if ∆ = A∧B,∆1,∆2 and if π ends with

Γ1 ` A,∆1 Γ2 ` B,∆2
(∧r)Γ1,Γ2 ` A∧B,∆1,∆2

Consider a partitioning of Γ and ∆ as Γ′,Γ′′ and ∆′,∆′′ assuming that
A∧B is in ∆′. The partitionings of Γ and ∆ induce partitionings of
Γ1,Γ2,∆1,∆2 as (Γ′1,Γ′′1), (Γ′2,Γ′′2),(∆′1,∆′′1) and (∆′2,∆′′2) and the
induction hypothesis ensures the existence of interpolants C1,C2 such
that (i) Γ′1 ` A,∆′1,C1, (ii) Γ′′1,C1 `∆′′1, (iii) Γ′2 ` B,∆′2,C2 and (iv)
Γ′′2,C2 `∆′′2 are provable, from which one can derive:

by (i)
Γ′1 ` A,∆′1,C1

by (iii)
Γ′2 ` B,∆′2,C2

(∧r)
Γ′1,Γ′2 ` A∧B,∆′1,∆′2,C1,C2

(∨r)
Γ′1,Γ′2 ` A∧B,∆′1,∆′2,C1∨C2

by (i)
Γ′′1,C1 `∆′′1

by (iii)
Γ′′2,C2 `∆′′2

(∧l)
Γ′′1,Γ′′2,C1∨C2 `∆′′1,∆′′2
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First-order muLL sequent calculus
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Proof-Relevant Interpolation

Theorem
Let Γ,∆ be lists of LL formulas and π ` Γ,∆.
There exists a LL formula C such that L (C)⊆L (Γ)∩L (∆) and two
cut-free proofs π1,π2 of ` Γ,C and ` C⊥,∆ respectively such that

π1

` Γ,C
π2

` C⊥,∆
(Cut)

` Γ,∆
=cut π.

Remark
We will see (some cases of) the proof next: the proof goes by
induction on the structure of a cut-free derivation, no surprise...

Similar result established by Čubrić in 1993 for simply typed
λ -calculus with products and sums, adapting a proof of interpolation
by Prawitz for natural deduction. We will discuss this later.
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Proof-Relevant Interpolation

Theorem
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Proof-relevant interpolation for LK and LJ

Either redo the proof, which goes the same way or

using the usual linear embeddings, the result is lifted to LK and LJ,
deduce the result.
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Čubrić’s proof-relevant interpolation
Prawitz gave a natural deduction-based proof of interpolation (for NK
and NJ):

Based on Prawitz’ proof of interpolation for natural deduction, Čubrić
proved the following result in his PhD:
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Interpolation as Cut-Introduction
The previous synthesis of the interpolating formula / proofs can be split
in two phases, an bottom-up phase and a top-down phase:

Ascending phase: This first phase consists in traversing the initial
proof π bottom-up, from root to axioms, and building, for each
visited sequent Γ, a partition (Γ′,Γ′′). At the end of the phase, there
are 4 cases for axiom rules ` A⊥,A:

({A⊥,A},∅);
({A⊥},{A});
({A},{A⊥});
(∅,{A⊥,A}).

and similarly for each axiom corresponding to some unit (> or 1)

Descending phase: Equipped with the sequents partitioning
information, from root to leaves, one shall now apply
cut-introduction rules to axioms, progressively moving the cuts
down and merging them in such a way, ultimately, to reach the root
sequent of the original proof.
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Circular proofs and circular representations
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Need for a correctness condition
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Issues with interpolating non-wellfounded proofs (I)

Three ingredients are important to carry the proof of the previous section
to circular proofs:

1 the wellfoundedness of proof objects. Indeed this ensures that one
reaches axioms which are the base case of the induction;
wellfoundedness is implicitly used to initiate the descending phase
(that is, after having ended the ascending phase!)

2 the existence of cut-free proofs. Indeed, cut-freeness is important to
reason by induction on inferences of the cut-free proofs and benefit
from analyticity, which is the key for controlling the language of the
interpolant, and

3 the preservation of logical correctness during the descending phase
(that is, cut-introduction). Indeed, correctness of the interpolated
proof-objects is of course necessary for the result of interpolation to
simply make sense...
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Issues with interpolating non-wellfounded proofs (II)

In the case of circular proofs, the first two properties are somehow lost
and the third one shall be treated with great care:

1 wellfoundedness is lost, even in presence of circular proofs. In
particular, even given a finite representation of a given circular
proofs, we have leaves which are not axioms but back-edges: how
can we interpolated them?

2 while it is crucial to rely on cut-freeness in the reasoning, circular
proofs are not closed by cut-elimination and actually we know of
sequents which are circularly provable but not cut-free circularly
provable.

3 In the course of interpolation, one needs to preserve validity, that is
ensure (i) that one has enough threads and (ii) they support the
appropriate branches.
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Splitting invariance
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Splitting invariance

Definition (splitting invariance)
Given a finite representation R of a µLL∞ pre-proof π ` Γ and a splitting
s of Γ in two components Γl ,Γr , R is called s-invariant if the result of
applying the splitting-decoration phase to R, initiated with s, results into
a decorated derivation R ′ such that for each back-edge b of R ′, the
splitting of the source of b coincides with the splitting of the target of b.

Proposition
Let π be a circular proof of a sequent ` Γ and let s be a splitting of Γ in
two components (ΓL,ΓR). To any finite representation R of π, one can
associate another finite representation R ′ of π which is s-invariant.
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Interpolating circular pre-proofs
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Interpolating circular pre-proofs

with J = µX .I[X , . . . ,X ].
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How to ensure preservation of validity? (still WIP)

Provide a distinct fixed-point variable to each source of a back-edge

Consider a stronger notion of validity: strong validity, which ensure
that the proof can be validated in such a way that each time the
thread visit of sequent of the finite representation, it visits the same
formula

Reason on the strongly connected component of the finite
representation to find which back-edge should be sequenced first
and whether a µ or ν should be used there.
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Conclusion

Full treatment of the validity condition;
In which other logical system can we apply the method?
Proof nets interpolation as parsing criterion.
Semantical counter-part of this interpolation result.
Connection with uniform inteprolation?
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Questions?
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