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Introduction
Various proof-techniques for Craig-Lyndon’s interpolation.

⇒ Maehara’s method which exploits cut-admissibility.

One often has more than cut-admissibility, but also a syntactic
cut-elimination result allowing (i) to give a computational
interpretation to proofs and (ii) to investigate semantics of proofs.

⇒ Focus on syntactic cut-elimination relations.

Relationship between interpolation and cut-introduction.
⇒ Cut-introduction will guide the synthesis of the interpolant.

Computational content to the interpolation theorem?
⇒ Interpolation factors a computation

through the interpolation type.

Results developed for Linear Logic (LL), then extended to classical
logic (LK) and intuitionistic logic (LJ) via proof translations.

⇒ For simplicity, we consider mostly LK in this talk.
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Statement of Craig’s Interpolation Theorem

Definition (Interpolation property)
A logic L has the interpolation property if, for any formulas A,B such
that A `L B, there is a formula C satisfying Voc(C)⊆ Voc(A)∩Voc(B)
and such that A `L C and C `L B.

Voc(C)⊆ Voc(A)∩Voc(B) means:

(in Craig’s interpolation) that all predicate symbols occurring in C
occur both in A and B.

(in Lyndon’s interpolation) that all predicate symbols occurring
positively (resp. negatively) in C occur positively (resp. negatively)
in both A and B.

Remark that this amounts to a cut-rule:
A `L C C `L B

(Cut)
A `L B
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Proof(-theoretic) methods for interpolation
Maehara 1960, for Classical Sequent calculus

Maehara:
Induction on the structure of a cut-free derivation of A ` B,
Strengthen the induction hypothesis, by showing that if Γ `∆, then
for any splitting Γ′,Γ′′ of Γ and ∆′,∆′′ of ∆ there exists an
interpolant C with Voc(C)⊆ Voc(Γ′,∆′)∩Voc(Γ′′,∆′′) such that
Γ′ ` C ,∆′ and Γ′′,C `∆′′.

Method of wide applicability for sequent calculi with cut-admissibility:
Maehara (1960) proved it for LK;
Schütte (1962) extended this to LJ;
Roorda gives a proof for LL analyzing in which fragments
interpolation actually holds (1994) (actually only covers MALL...);
Application to various modal logics;
Also in natural deduction: Prawitz (1965);
Voc refined as Voc+ / Voc− for Lyndon’s inteprolation.
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LK Sequent Calculus and Cut-elimination
One-sided first-order LK sequent calculus, with ancestor relation:

(Ax)
` F ,F⊥

` Γ,F ` F⊥,∆
(Cut)

` Γ,∆

` Γ (W)
` F ,Γ

` F ,F ,Γ
(C)

` F ,Γ
` Γ,G ,F ,∆

(X)
` Γ,F ,G ,∆

(>)
` >

` Γ (⊥)
` ⊥,Γ

` F ,Γ ` G ,∆
(∧)

` F ∧G ,Γ,∆
` F1,F2,Γ

(∨)
` F1∨F2,Γ

` G{t/x},Γ
(∃)

` ∃xG ,Γ
` F ,Γ

(∀)
` ∀xF ,Γ

(in (∀) , x 6∈ FV(Γ))

(Examples of) cut-reduction relation:
Key cases & commutation cases

` A,Γ ` B,Γ′
(∧)

` A∧B,Γ,Γ′
` A⊥,B⊥,∆

(∨)
` A⊥∨B⊥,∆

(Cut)
` Γ,Γ′,∆

−→cut ` A,Γ

` B,Γ′ ` A⊥,B⊥,∆
(Cut)

` A⊥,Γ′,∆
(Cut)

` Γ,Γ′,∆

` A,Γ ` B,Γ′,C
(∧)

` A∧B,Γ,Γ′,C ` C⊥,∆
(Cut)

` A∧B,Γ,Γ′,∆

−→cut ` A,Γ
` B,Γ′,C ` C⊥,∆

(Cut)
` B,Γ′,∆

(∧)
` A∧B,Γ,Γ′,∆
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System L : Term calculi for the Sequent calculus

Back to 2-sided
sequent calculus!

t

Γ,A ` B,∆
(⇒r)

Γ ` A⇒ B,∆

u

Γ′ ` A,∆′

e

Γ′′,B `∆′′
(⇒l)

Γ′,Γ′′,A⇒ B `∆′,∆′′
(Cut)

Γ,Γ′,Γ′′ `∆,∆′,∆′′

−→cut

u

Γ′ ` A,∆′

t

Γ,A ` B,∆

e

Γ′′,B `∆′′
(Cut)

Γ,Γ′′,A `∆,∆′′
(Cut)

Γ,Γ′,Γ′′ `∆,∆′,∆′

Corresponds (roughly) to a variant of Krivine’s Asbtract Machine (after
Curien-Herbelin’s Duality of computation):

〈λx .t | u·e〉 −→cut 〈u | µ̃x .〈t | e〉〉

(u ·e corresponds to evaluation context e[�u] while
µ̃x .〈t | e〉 corresponds to let x =� in e[t].)

⇒ System L calculi are structured around: terms t (right rules),
contexts e (left rules),

commands 〈t | e〉 (cut rules).
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Proof-Relevant Interpolation as Cut-Introduction
Refining Maehara’s method

Prove that for any splitting of the conclusion sequent, one can find (i) an
interpolant formula and (ii) two interpolating proofs such that cutting
together the interpolating proofs cut-reduces to the original proof.

Interpolation as Cut-Introduction will proceed in two phases:
Bottom-up phase: Starting with a splitting of the root sequent,
traverse the initial proof π bottom-up, from root to axioms, and
split each visited sequent Γ, as (Γ′,Γ′′) according to the ancestor
relation. In the end, there are 4 cases for an axiom rule ` A⊥,A:

` A⊥,A ` A⊥,A ` A⊥,A ` A⊥,A
and similarly for each axiom corresponding to >.

Top-down phase: Equipped with the sequents splitting information,
one shall now apply cut-introduction rules to axioms, progressively
moving the cuts down and merging them in such a way, ultimately,
to reach the root sequent of the original proof.

π
` Γ,∆ interpolated as

πL
` Γ, I

πR
` I⊥,∆

(Cut)
` Γ,∆
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Proof-Relevant Interpolation Situation
Definition (Proof-relevant Interpolation Situation – PRIS)
A PRIS for (Γ,∆) is given by:

a cut-free LK proof π of conclusion ` Γ,∆ and with n ≥ 0 open premises
(` Γi ,∆i )1≤i≤n such that for each 1≤ i ≤ n the formulas in Γi (resp. ∆i )
are ancestors of formulas in Γ (resp. of ∆); – the goal
for each 1≤ i ≤ n, a formula Ii st. Voc+(Ii )⊆ Voc−(Γi )∩Voc+(∆i ) and
Voc−(Ii )⊆ Voc+(Γi )∩Voc−(∆i ); – the partial interpolants
for each 1≤ i ≤ n, derivations πL

i (resp. πR
i ) of conclusion ` Γi , Ii (resp.

` I⊥i ,∆i ). – the partial solutions

Represented as:

πL
1

` Γ1, I1
πR

1
` I⊥1 ,∆1

(Cut)
` Γ1,∆1 . . .

πL
n

` Γn, In
πR

n
` I⊥n ,∆n

(Cut)
` Γn,∆n

π

` Γ,∆
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Special cases of PRIS

πL
1

` Γ1, I1
πR
1

` I⊥1 ,∆1
(Cut)` Γ1,∆1 . . .

πL
n

` Γn, In
πR

n
` I⊥n ,∆n

(Cut)` Γn,∆n

π

` Γ,∆

Initial PRIS: when n = 0,

π

` Γ,∆

Solved PRIS: when n = 1 and π is reduced to one open premise node

` Γ,∆: π =
πL

1
` Γ, I1

πR
1

` I⊥1 ,∆
(Cut)

` Γ,∆
.

I1 is the interpolant and πL
1 ,π

R
1 are the interpolating proofs.

Elementary PRIS: for (r) an n-ary inference rule,

π =
πL

1
` Γ1, I1

πR
1

` I⊥1 ,∆1
(Cut)

` Γ1,∆1 . . .

πL
n

` Γn, In
πR

n
` I⊥n ,∆n

(Cut)
` Γn,∆n

(r)
` Γ,∆

How to relate initial and solved PRIS via cut-introduction?

10 / 16



Solving PRIS
πL
1

` Γ1, I1
πR
1

` I⊥1 ,∆1
(Cut)` Γ1,∆1 . . .

πL
n

` Γn, In
πR

n
` I⊥n ,∆n

(Cut)` Γn,∆n
(r)` Γ,∆

Lemma
For any n-ary inference rule (r) and any elementary PRIS π there exist I,πL,πR

such that π ′ =
πL
` Γ, I

πR
` I⊥,∆

(Cut)
` Γ,∆

is a solved PRIS and π ←−?
cut π ′.

Corollary
Any initial PRIS can be reduced, by cut-expansions, to a solved PRIS.

(Indeed, each application of the above lemma decreases by 1 the size of
interpolation goal: the sequence of cut-introductions ends in a solved PRIS.)

Theorem
Let A,B be LL formulas and π be a cut-free LL proof of A ` B.
There exists a LL formula C such that Voc+(C)⊆ Voc+(A)∩Voc+(B) and
Voc−(C)⊆ Voc−(A)∩Voc−(B) and two cut-free LL proofs π1,π2 of A ` C

and C ` B respectively such that
π1

A ` C
π2

C ` B (Cut)
A ` B

−→?
cut π.

(Similar results for LK and LJ.)
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Proof-Relevant Interpolation in System L
Computational Content of Interpolation

terms t (right rules),
contexts e (left rules),

commands 〈t | e〉 (cut rules).
For classical, intuitionistic or linear versions of System L:

Proposition
Assume t (resp. e, resp. c) is a normal L-term (resp. normal L-context, resp.
normal L-command). The following interpolating results hold:

1 If c : (Γ1,Γ2 `∆1,∆2), there exist an I ∈ Voc(Γ1,∆1)∩Voc(Γ2,∆2) and
t,e such that Γ1 ` t : I |∆1 and Γ2 | e : I `∆2, and 〈t | e〉 −→? c.

2 If Γ1,Γ2 ` t : A |∆1,∆2, there exist an I ∈ Voc(Γ1,∆1,A)∩Voc(Γ2,∆2)
and α,t ′,e′ st Γ1 ` t ′ : A | α : I,∆1, Γ2 | e′ : I `∆2, and t ′{e′/α} −→? t.

3 If Γ1,Γ2 | e : A `∆1,∆2, there exist an I ∈ Voc(Γ1,∆1,A)∩Voc(Γ2,∆2)
and α,e′,e′′ st Γ1 | e′ : A | α : I,∆1, Γ2 | e′′ : I `∆2, and e′{e′′/α} −→? e.

4 If Γ1,Γ2 ` t : A |∆1,∆2, there exist an I ∈ Voc(Γ1,∆1)∩Voc(Γ2,∆2,A)
and α,t ′,t ′′ st. Γ1 ` t ′′ : I |∆1, Γ2,x : I ` t ′ : A |∆2, and t ′{t ′′/α} −→? t.

5 If Γ1,Γ2 | e : A `∆1,∆2, there exist an I ∈ Voc(Γ1,∆1)∩Voc(Γ2,∆2,A)
and x ,t ′,e′ st. Γ1 ` t ′ : I |∆1, Γ2,x : I | e′ : A `∆2, and e′{t ′/x} −→? e.
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Related proof-relevant Interpolation results
Quite surprisingly, Maehara’s usual proof technique essentially provides this
result, even though this is not noticed in any published reference.

Prawitz:

(for NK and NJ)
Čubrić: Similar proof-relevant result established in 1993 for simply typed
λ -calculus by refining Prawitz’s result, in a paper that was almost never cited:

Note easily extended to other logics via ND.

13 / 16



Related proof-relevant Interpolation results
Quite surprisingly, Maehara’s usual proof technique essentially provides this
result, even though this is not noticed in any published reference.
Prawitz:

(for NK and NJ)

Čubrić: Similar proof-relevant result established in 1993 for simply typed
λ -calculus by refining Prawitz’s result, in a paper that was almost never cited:

Note easily extended to other logics via ND.

13 / 16



Related proof-relevant Interpolation results
Quite surprisingly, Maehara’s usual proof technique essentially provides this
result, even though this is not noticed in any published reference.
Prawitz:

(for NK and NJ)
Čubrić: Similar proof-relevant result established in 1993 for simply typed
λ -calculus by refining Prawitz’s result, in a paper that was almost never cited:

Note easily extended to other logics via ND.

13 / 16



Outline

1 Background on Proof-theoretic Methods Craig-Lyndon
Interpolation and Cut-Elimination

2 Proof-Relevant Interpolation as Cut-Introduction

3 Conclusion & Perspectives for Future Works

14 / 16



Conclusion & Perspectives for future works
classical intuitionistic linear

Sequent calculus X[Maehara] X[Schütte] X[Roorda]
PR int X[S] X[S] X[S]

System L X[S] X[S] X[S]
Natural deduction X[Prawitz] X[Prawitz] X[Fiorillo, Osorio, S]

PR int ongoing X[Čubrić] X[S]
λ -calculi X[Fiorillo] X[Čubrić] ?

Denotational semantics ? X[Čubrić] ongoing

Cut-introduction as a mean to synthetise PR interpolants.
Computational interpretation: interpolant as an interface datatype
through which a given computation can be factored.
Computational interpretation of uniform interpolation?
Other directions of ongoing and future works:

PR interpolation in the µ-calculus (ongoing with Osorio).
To which other proof systems can we apply the method?
Semantical interpolation result (ongoing with Fiorillo).
Impact of the proof-relevant approach on other applications of
interpolation (in database theory or model-checking)?
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Proof of the Main Lemma
Axiom case

If π = (Ax)
` F ,F⊥ , one simply takes I = F⊥, π l

1 = (Ax)
` F ,F⊥ and

πr
1 = (Ax)
` F ,F⊥ .

The cut between π l
1 and πr

1 reduces to π by one cut-axiom reduction step.

If π = (Ax)
` F ,F⊥ , the case is symmetrical taking I = F .

If π = (Ax)
` F ,F⊥ , one takes I =⊥, π l

1 =
π

(⊥)
` F ,F⊥,⊥

and

πr
1 = (>)
` > .

The cut of π l
1 and πr

1 reduces to π by a key >/⊥ case.

If π = (Ax)
` F ,F⊥ , the case is symmetrical, taking I =>.
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Proof of the Main Lemma

If π =
πL

1
` Γ, I

πR
1

` I⊥,∆,A,B
(Cut)

` Γ,∆,A,B
(∨)

` Γ,∆,A∨B

then taking I ′ = I, πL = πL
1 and

πR =
πR

1
` I⊥,∆,A,B

(∨)
` I⊥,∆,A∨B

we obtain a solved PRIS π ′ such that π ←−cut π ′

by a commutative reduction of (Cut).

If π =
πL

1
` Γ1, I1

πR
1

` I⊥1 ,∆1,A
(Cut)

` Γ1,∆1,A

πL
2

` Γ2, I2
πR

2
` I⊥2 ,∆2,B

(Cut)
` Γ2,∆2,B

(∧)
` Γ1,Γ2,∆1,∆2,A∧B

, then setting

I = I1∧ I2, πL =
πL

1
` Γ1, I1

πL
2

` Γ2, I2
(∧)

` Γ1,Γ2, I1∧ I2
and πR =

πR
1

` I⊥1 ,∆1,A
πR

2
` I⊥2 ,∆2,B

(∧)
` I⊥1 , I⊥2 ,∆1,∆2,A∧B

(∨)
` (I1∧ I2)⊥,∆1,∆2,A∧B

one gets a solved PRIS π ′ such that π ←−?
cut π ′ by a commutative

reduction of (Cut) and a key (∧)/(∨) case.
Other cases are treated similarly.
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