Virtuous circles in proofs

Virtual proof theory seminar

Alexis Saurin
IRIF, CNRS, INRIA & Université de Paris

17 novembre 2021

1/57

Introduction and Background

2/57

Logics with least and greatest fixed points

Logics with least and greatest fixed points, modelling inductive and
coinductive reasoning:

@ Very useful to encode and reason about inductive and
coinductive data structures.

@ Their proof theory is not very well studied and understood.

@ Not only to express statements, but also a proof system in
sequent calculus: LL with fixed points

o ULL: proofs are finite trees. Includes rules for induction, local
correctness, cut-elimination and focalization but not
subformula property

e ULL™: proofs are infinite trees. Simple inference rules for fixed
points, global correctness criterion, cut-elimination with
subformula property. Of particular interest is the fragment of
circular proofs, which are presentable as finite graphs.

@ Extends the proof-program correspondence to recursive and

co-recursive programming, with coinductive datatypes.
3/57

Outline

Q Introduction
@ uLL™: circular and non-wellfounded proofs

© Cut-elimination for uMALL™ (joined work with
Baelde & Doumane)

@ Cut-elimination for pLL”™

© Relaxing the thread validity condition (joined work with
Baelde, Doumane & Kuperberg)

@ On sequentiality and parallelism in non-wellfounded proofs
(joined work with
De & Pellissier)

@ Conclusion

4/57

Knaster-Tarski fixed-point theorem

Let C be a complete lattice and F a monotonic operator on C.

Theorem
F has a least fixed-point uF.

WF is the least prefixed-point:
- F(uF)C uF and
-VS,F(SYCS = uFLCS.

Theorem
F has a greatest fixed-point VF.

VF is the greatest postfixed-point:
- VFC F(VF) and
-VS5,SCF(S) = SCVF.

5/57

Knaster-Tarski fixed-point theorem

Let C be a complete lattice and F a monotonic operator on C.

Theorem
F has a least fixed-point uF.

WF is the least prefixed-point:
- F(uF)C uF and
-VS,F(SYCS = uFLCS.

Theorem
F has a greatest fixed-point VF.

VF is the greatest postfixed-point:
- VFLC F(VF) and
-VS5,SCF(S) = SCvF.

Proof by induction:

To prove that uF C P, it is
sufficient to find some S C P and
to prove that Vx € F(S), x € S.

Proof by coinduction:

To prove that P C vF, it is
sufficient to find some S D P and
to prove that Vx € S, x € F(S).

5/57

Knaster-Tarski fixed-point theorem

Let C be a complete lattice and F a monotonic operator on C.

Theorem
F has a least fixed-point uF.

WF is the least prefixed-point:
- F(uF)C uF and
-VS,F(SYCS = uFLCS.

Theorem
F has a greatest fixed-point VF.

VF is the greatest postfixed-point:
- VFLC F(VF) and
-VS5,SCF(S) = SCvF.

Proof by induction:

To prove that uF C P, it is
sufficient to find some S C P and
to prove that Vx € F(S), x € S.

HE FluX.F/X]
HFuX.F

FIS/X]F S
uXFrs Ml

(]

Proof by coinduction:

To prove that P C vF, it is
sufficient to find some S D P and
to prove that Vx € S, x € F(S).

FIVX.F/X]+H

SEFIS/X]
vXFrH M

sFvxF

5/57

Martin-Lof's induction definitions, LKID

A sequent calculus parameterized by a set of inductive definitions.

Idea: inductive predi- Ql(ul) Qk(uk) Pl(tl) P/(t/)
cates described by pro- P(t)
duction rules.

N(x)
Example: N(0) N(s(x))

LK + inferences for the inductively defined predicates:
(ML) I N(u), A

PN T s ()
FEFO),A TF(x)FF(s(x).A TFtFA (1nd N)
rN(t) - A
O(x) E(x)
Mutually dependency: E(0)

E(sx) O(sx)

6/57

Fixed-point logics and (co)induction
Some examples from (co)inductive predicates to pi-calculus
o Nat(x) £g (x =0)VIy.x = s(y) A Nat(y)
o ListNat(/) 2,4 (I=nil)Vv3h,t.l = h:: t A\(Nat(h) A ListNat(t))
o StreamNat(l) £ oing 3h, t.I = h:: t A(Nat(h) A StreamNat(t))

7/57

Fixed-point logics and (co)induction
Some examples from (co)inductive predicates to p-calculus
Nat(x) £jng (x = 0) V3y.x = s(y) A Nat(y)
ListNat(/) Zipq (I = nil)V3h,t.I = h:: t A(Nat(h) A ListNat(t))
StreamNat (/) = coing 3h,t.1 = h:: t A(Nat(h) A StreamNat(t))

Nat(x) £ uN.(x =0)VIy.x = s(y) AN(y)
ListNat(l) £ uL.(I = nil)v 3h,t.I = h:: t A(Nat(h) A L(t))
StreamNat(/) £ vS.3h,t.I = h:: t A(Nat(h) A S(t))

7/57

Fixed-point logics and (co)induction
Some examples from (co)inductive predicates to pi-calculus
o Nat(x) £g (x =0)VIy.x = s(y) A Nat(y)
o ListNat(/) 2,4 (I=nil)Vv3h,t.l = h:: t A\(Nat(h) A ListNat(t))
o StreamNat(l) £ oing 3h, t.I = h:: t A(Nat(h) A StreamNat(t))

@ Nat(x) = uN.(x =0)V3Iy.x=s(y)AN(y)
o ListNat(/) = uL.(I = nil)Vv3h,t.l = h:: t A(Nat(h) A L(t))
StreamNat(/) £ vS.3h,t.I = h:: t A(Nat(h) A S(t))

@ NatZuN.TVN = in the following,
o ListNat = uL. TV (NatAL) the propositional
StreamNat 2 vS.Nat A S u-calculus only.

7/57

Fixed-point logics and (co)induction
Some examples from (co)inductive predicates to pi-calculus
o Nat(x) £g (x =0)VIy.x = s(y) A Nat(y)
o ListNat(/) 2,4 (I=nil)Vv3h,t.l = h:: t A\(Nat(h) A ListNat(t))
o StreamNat(l) £ oing 3h, t.I = h:: t A(Nat(h) A StreamNat(t))

@ Nat(x) = uN.(x =0)V3Iy.x=s(y)AN(y)
o ListNat(/) = uL.(I = nil)Vv3h,t.l = h:: t A(Nat(h) A L(t))
o StreamNat(l) £ vS.3h,t.l = h:: t A(Nat(h) A S(t))

@ NatZuN.TVN = in the following,
o ListNat = uL. TV (NatAL) the propositional
e StreamNat = vS.NatA S U-calculus only.

Interleavings of inductive/coinductives behaviours; eg. allowing to
express fairness properties:

vX.uY.(PAOX)VOY.

7/57

UMALL: MALL with least and greatest
fixed points

8/57

UMALL formulas and sequent calculus
(Baelde & Miller 2007, Baelde 2012)

WMALL formulas

F == a|T|L| FeF|F&F negative MALL formulas
|at|0|1|F®F|F&F positive MALL formulas
| X | uX.F|vX.F least and greatest fixed points

@ Negation ()*: involutive operator on formula, not a connective.

@ U and v are binders, consider closed formulas only.

@ u and v are dual. Ex: (vX.X®X)t =uX.X9X.
@ One-sided sequents: - Aq,...,A,. (TF A is a short for T+ A)
@ Data types encodings: Nat £ uX.1@X
List(A) 2 uX.1®(AxX)
Stream(A) £ vX.1&(A®X)

9/57

UMALL sequent Calculus

WMALL Inference Rules

- [Ad FIL,F FFLA FT,G,F,A i
~F.F FTLA [Curd FT.F.G.A
FF,G,T FFT FGA - -
e B e W g o
FF9G,T FF®G,T,A FLr

FET FG,T - A;,T
bl) 1 - [T] | f O
~Facr ® Faemr ® FT.r o (noruefor0)

FTS R SLGIS/X] - FluX.F/X],T

FVX.G,T ' FuX.F,T

10/57

UMALL sequent Calculus

UMALL Inference Rules (with explicit ancestor relation)

- [Ad FILF FFLA FI,G.F,A i
-F.F B W F1,F,G,A
FEGT FER. G, A o, o
FFeGE Freta,d © FLY -1

AR, HGJ AR

9 3 1y - [T] I f O
- Fatg [&] F AL AT [@i] FT,C (no rule for 0)

RS FSL GIS/X] F FluX.F/ X/

FVXTGLT ' - UX.F,T

10/57

UMALL sequent Calculus

UMALL Inference Rules (with explicit ancestor relation)

T I G o FLGEA
- F.F LA It F1,F,G,A
FEG,T FRR, HG,A L
FFeGE Fretnd P FLY -1

FER. FGJ AR

9 3 K] - [T] | f O
FFetw ¥ Faear © FTT (no rule for 0)

FRS. ST GIS/X] F FluX.F/X]/r

FVXTGLT ' - UX.F,T
Cut elimination holds in uMALL.

10/57

Proof theory of least and greatest fixed points

LMALL

Proof objects

Finite trees

Inferences Induction rules
F T, FluX.F/X]
MALL rules + FroaxF M
FIL,S + SL,F[S/X]
FTVXCF V]
Log. correctness local

Cut-elimination

[v] hides a cut

Subformula prop.

NO

Focalization

v, but

11/57

Proof theory of least and greatest fixed points

LMALL

Proof objects

Finite trees

Inferences Induction rules
F T, FluX.F/X]
MALL rules + “Truxre M
FT.S S FIS/X]
FT,VX.F vl
Log. correctness local

Cut-elimination

[v] hides a cut

Subformula prop.

NO

Focalization

v, but

11/57

Proof theory of least and greatest fixed points

H UMALL UMALL®™
Proof objects Finite trees Non well-founded trees
Inferences Induction rules Fixed points unfoldings
(+ validity conditions)
F T, FluX.F/X] FT,FluX.F/X]
MALL rules + roaxE M TaxrF M
FI,S +SHF[S/X] FT,FIvX.F/X]
FT,VX.F vl Toxr Y
Log. correctness local
Cut-elimination [v] hides a cut v
Subformula prop. NO v
Focalization v, but v

U pos. and V neg.

11/57

uLL”: circular and non-wellfounded
proofs for linear logic with least and
greatest fixed-points

12/57

Circular proofs: an old mathematical story
Back to Euclid's Elements (Book VII)

Circular proofs: an old mathematical story
Back to Euclid's Elements (Book VII)

Root of Fermat's
infinite descent
proof method.

Non-wellfounded proofs: inductive and coinductive cases

even y F nat y
even y - nat (s y)

Inductive case:

Fnat 0 evenyt nat (s (s y))

even x k- nat x
The infinite branch unfolds the inductive predicate even infinitely
often on the left: valid!

14/57

Non-wellfounded proofs: inductive and coinductive cases

even y F nat y
even y - nat (s y)
Fnat 0 even yt nat (s (s y))
even x F nat x
The infinite branch unfolds the inductive predicate even infinitely
often on the left: valid!

Inductive case:

Coinductive case: stepp oo qFstepp ot g Fsimqq
step p o g step p o« gAsim q q
FVYaVq. step p oo gD 3q. step p ot g Asim q q
Fsimpp

/

The infinite branch unfolds the coinductive predicate sim infinitely
often on the right: valid!

14/57

Circular & non-wellfounded proofs in the litterature

@ As verification device or for completeness arguments:
Complete deduction sytem giving algorithms for checking
validity (Tableaux, sequent calculi), intermediate objects
between syntax and semantics for modal p-calculus (Kozen,
Kaivola, Walukiewicz)

p-calulus formula — Circular proof — Finite axiomatization

15/57

Circular & non-wellfounded proofs in the litterature

@ As verification device or for completeness arguments:
Complete deduction sytem giving algorithms for checking
validity (Tableaux, sequent calculi), intermediate objects
between syntax and semantics for modal p-calculus (Kozen,
Kaivola, Walukiewicz)

p-calulus formula — Circular proof — Finite axiomatization

@ But rarely as proof—program objects in themselves:
o develop such a proof-theoretical study, from a Curry-Howard
perspective;
o establish focalization and cut-elimination (prior works:
cut-admissibility by Brotherston, additive fragment by Fortier
& Santocanale)

15/57

Circular & non-wellfounded proofs in the litterature

@ As verification device or for completeness arguments:
Complete deduction sytem giving algorithms for checking
validity (Tableaux, sequent calculi), intermediate objects
between syntax and semantics for modal p-calculus (Kozen,
Kaivola, Walukiewicz)

p-calulus formula — Circular proof — Finite axiomatization

o But rarely as proof—program objects in themselves:
o develop such a proof-theoretical study, from a Curry-Howard
perspective;
o establish focalization and cut-elimination (prior works:
cut-admissibility by Brotherston, additive fragment by Fortier
& Santocanale)

@ Recently, development of numerous circular/cyclic proof
systems (Afshari & Leigh, Das, Doumane & Pous, Cohen &

Rowe, Tatsuta et al. etc.)
15/57

Non-Wellfounded Sequent Calculus
Consider your favourite logic .¢ & add fixed points as in uMALL:

Pre-proofs are the trees coinductively generated by:

M FuX.F/X] - A TAVCF/XIEA

. M Vi

@ _Z inference rules MuX.FEA ' MYX.FEA !
@ inference for u,v: M FluX.F/X],A M FlvX.F/X],A

F-uX.F,.a ™ rFvx.ra M

Circular (pre-)proofs: the regular fragment of infinite
(pre-)proofs, ie finitely many sub-(pre)proofs.

Pre-proofs are unsound!! Need for a validity condition
Faxx W ExxF M
Faxx W Euxxr M
[Cut]
-F

16/57

1LL™ Non-Wellfounded Sequent Calculus

Consider your favourite logic LL & add fixed points as in uMALL:

ULL” Pre-proofs are the trees coinductively generated by:

@ LL inference rules

@ inference for u,v: FFluX.F/X],A FFlvX.F/X],A
FuX.F.A FvxFa M

Circular (pre-)proofs: the regular fragment of infinite
(pre-)proofs, ie finitely many sub-(pre)proofs. ulL®
Pre-proofs are unsound!! Need for a validity condition

Faxx W ExxF M

Faxx W Euxxr M

[Cut]
-F

16/57

ULL*” Inference Rules

uLL™ Inferences

S FLF FFLA
FF,F T.A [Cut]
FF,G.T FET FG,A T
FFsGr FFeGrA ® FLir
FFT FG,T F AT
FFaG.T FA @A T o FTT
FFT FF,T T
2] — g
F?F,T FUF, 2T F?F,T
- GIVX.G/X],T - FluX.F/X],T
FVX.G.T X F.T

FIL,G,F,A

T =7 N
FILF,G,A

(] 1 (1]

(7] (no rule for 0)

F?F,?F,T
F2F,T

[?d]

17/57

puLL*™ Inference Rules (with ancestor relation)

uLL™ Inferences

S M FRFFFRA
=5 N, O
FE.G.T FEFR. FG,A
FFRG,T =1 FFoGH, A
FFR. G - AR
FPee ¥ FabAY
FFLT FFar
2] L
FF.T FIF,
- GlvX.G /Xl - FuX.F/X]
FVX.G.F - LXF, T

[Cut]

[®]

FT,r

F R
BT

FI,G.F.A

FI,F,G,A

(] 1 (1]
[T]

F?F,2F,F
FF,F

(no rule for 0)

[?d]

17/57

Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

F € FL(F);

G1% Gy € FL(F) = Gy, Gy € FL(F) for € {®,8,79,8};
6X.B € FL(F) = B[oX.B/X] € FL(F) for o € {u,Vv};
mG € FL(F) = G € FL(F) for me {!,7}.

FL(F) is a finite set for any formula F.

18/57

Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

F € FL(F);

G1% Gy € FL(F) = Gy, Gy € FL(F) for € {®,8,79,8};
6X.B € FL(F) = B[oX.B/X] € FL(F) for o € {u,Vv};
mG € FL(F) = G € FL(F) for me {!,7}.

FL(F) is a finite set for any formula F.

Example: F=vX.((a9al)®@(XauY.X))

18/57

Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

F € FL(F);

G1% Gy € FL(F) = Gy, Gy € FL(F) for € {®,8,79,8};
6X.B € FL(F) = B[oX.B/X] € FL(F) for o € {u,Vv};
mG € FL(F) = G € FL(F) for me {!,7}.

FL(F) is a finite set for any formula F.

Example: F=vX.((a9al)®@(XauY.X))

FL(F)={F, (#9a")®(FoUY.F), }

L J 18/57

Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

F € FL(F);

G1% Gy € FL(F) = Gy, Gy € FL(F) for € {®,8,79,8};
6X.B € FL(F) = B[oX.B/X] € FL(F) for o € {u,Vv};
mG € FL(F) = G € FL(F) for me {!,7}.

FL(F) is a finite set for any formula F.

Example: F=vX.((a9al)®@(XauY.X))

a>gal)

, }

FL(F)={F, (a9a")®@(FouY.F)
FouY.F ,

18/57

Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

F € FL(F);

G1% Gy € FL(F) = Gy, Gy € FL(F) for € {®,8,79,8};
6X.B € FL(F) = B[oX.B/X] € FL(F) for o € {u,Vv};
mG € FL(F) = G € FL(F) for me {!,7}.

FL(F) is a finite set for any formula F.

Example: F=vX.((a9al)®@(XauY.X))

FL(

F)={F (avat)@(FouUY.F)

a§?al

)

)

FouY.F ,

aJ_

uY.F

18/57

Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

F € FL(F);

G1% Gy € FL(F) = Gy, Gy € FL(F) for € {®,8,79,8};
6X.B € FL(F) = B[oX.B/X] € FL(F) for o € {u,Vv};
mG € FL(F) = G € FL(F) for me {!,7}.

FL(F) is a finite set for any formula F.

Example: F=vX.((a9at)®

_———2a
/ra?a — 4L

FL(F)=F —(ava")@(FouY.F
(wan)el)\F®,uY.F—>uY.F

18/57

Infinite threads, validity

F=vX.((@9a)@(XapY.X)). A thread on an infinite

branch (I})ice is an infinite

Ay sequence of formula occur-

FE o FuY.F
— I® i S rences (F;)i>x such that for
Fawa - EouY.F any i>k, F;eljand Fiyqis
F(a9at)@(FRuUY.F) vl an immediate ancestor of F;.

FF

19/57

i Infinite threads, validity
F=vX((agat)a(Xouy X)) A thread on an infinite
branch (I})ice is an infinite
sequence of formula occur-
rences (Fj)i>k such that for
any i>k, F;el; and F,'+1 is
an immediate ancestor of F;.

Ay
FE o FuY.F

9 g
- agat Feuv.F
n [e]
F(apat)@(FouY.F)
N v

A thread is valid if it unfolds infinitely many v. More precisely, if the
minimal recurring principal formula of the thread is a v-formula.

A proof is valid if every infinite branch contains a valid thread.

19/57

i Infinite threads, validity
F=vX((agat)a(Xouy X)) A thread on an infinite
branch (I})ice is an infinite
sequence of formula occur-
rences (Fj)i>k such that for
any i>k, F;el; and F,'+1 is
an immediate ancestor of F;.

FF
- FF FuY.F
Fapat FFouY.F
n [©]
F(agat)@(FouY.F)
OF v

[u]
[©]

A thread is valid if it unfolds infinitely many v. More precisely, if the
minimal recurring principal formula of the thread is a v-formula.

A proof is valid if every infinite branch contains a valid thread.

Theorem (Nollet, Tasson & S, 2019)

Validity of uLL® (circular) pre-proofs is PSPACE-complete. J
Theorem (Baelde, Doumane & S, 2016)
UMALL™ s sound, and admits cut-elimination. J

19/57

Examples of circular proofs

@ Inductive and coinductive definitions
N=uX1leX S =vX.(1&(N®X))

@ Proofs-programs over these data types

double : N—=N
double(n) 0 if n=0
= succ(succ(double(m))) if n= succ(m)

20/57

Examples of circular proofs

@ Inductive and coinductive definitions
N=uX1leX S =vX.(1&(N®X))

@ Proofs-programs over these data types

double : N—=N
double(n) = 0 if n=0
= succ(succ(double(m))) if n= succ(m)
rl ouble
I doubl
Pl [1] _ 1 M [@]
wErR1eN -1 M NF1oN
RV [01] ———— [
n _ FlaN NEN_
L double FN [E] NE1&N
— —— [
Tt 1 :% [®2] 1-N NN (&
Yy] 1eNEN v
NEN

20/57

Examples of circular proofs

@ Inductive and coinductive definitions
N=uX.16X S =vX.1&(N®X)

@ Proofs-programs over these data types

enum : N—=S
enum(n) = n:: enum(succ(n))

21/57

Examples of circular proofs

@ Inductive and coinductive definitions

N =uX1eX S = vX.1&(N®X)

@ Proofs-programs over these data types

enum : N—=>S
enum(n) = n:: enum(succ(n))
HSLICC
NEN
v
INEN enum
— ag INFIN " INFS
- Mlenum — [T INFS e
we NELON i IN,INF N©S l
NEN Pl AR NSS
INF1 INFNeS
INF1&(N®S5)
wrs

21/57

Circular & finitary proofs

From finitary to circular proofs

Theorem
Finitary proofs can be transformed to (valid) circular proofs.

J

The key translation step is the following:
(7] FSL vXiF o
3

m T FSLFIS] FF[S]Y FIvX.F] Cut]
I t
RS ESLAS) o) G ’

EEE— \Z
FLvX.F kTS FSEVXF

[Cut]

FTLVXCF

From circular to finitary proofs
Open problem for uLL®.

22/57

UMALL” Cut elimination

23/57

UMALL™ Cut Elimination Theorem

Theorem (Baelde, Doumane & S, 2016)

Fair uMALL™ cut-reduction sequences converge to cut-free uMALL®
proofs.

Previous result by Santocanale and Fortier
for the purely additive fragment of pLL*.
Proof uses a locative treatment of occurrences.

@ Strategy: “push” the cuts away from the root.

@ Cut-Cut:
FILF FFLAG FFLA,G FGHE
VA~ ~ lau [Cut]
FTA,G FGL X S T.F FFLAY
[Cut] - [Cut]
FTAL ALY

24/57

UMALL™ Cut Elimination Theorem

Theorem (Baelde, Doumane & S, 2016)

Fair uUMALL®” mcut-reduction sequences converge to cut-free UMALL*
proofs.

Previous result by Santocanale and Fortier
for the purely additive fragment of uLL*.
Proof uses a locative treatment of occurrences.

@ Strategy: “push” the cuts away from the root.

@ Cut-Cut:
FMF FFLAG
—— " [y N FOLF FFLAG FGHE
FTAG FGH X — [mcut]
[Cut] FILAT
FILAY

24/57

Cut elimination procedure

External phase: Cut-commutation cases

FAF,G FAFG ...
=T = . Fg M
FE,FRG et FEFsc
FAF FAG FAF FAG ...
FaFac = " rrp e Fy.¢g e
FY.FaG [meut] FY. F&G l&d
A, F[uX.F/X] A, FuX.F/X]
FauxF Mo = Cx FaxFix]
F YL UXF (e FYL X F

-+ additional cases

Cut-commutation steps are productive

25/57

Cut elimination procedure

Internal Phase: Key cases

FAR FAR s .
FAaReR Y ErReR
Cy [mcut]
AR T
= [mcut]
Fy
FA,FluX.F/X] FT P VX FE/X] o
— _— '
N FILvXFr
Oy [mcut]
N FACFUX.F/X] FTFAvXFL/X]
[mcut]
Y

-+ additional cases

Key cases are not productive

26/57

Cut elimination algorithm

@ Internal phase: Perform key case reductions while you cannot
do anything else.

@ External phase: Build a part of the output tree by applying
cut-commutation steps as soon possible.

@ Repeat.

27/57

Cut elimination algorithm

@ Internal phase: Perform key case reductions while you cannot
do anything else.

@ External phase: Build a part of the output tree by applying
cut-commutation steps as soon possible.

@ Repeat.

Remark: We consider a fair strategy ie. every reduction which is
available at some point will be performed eventually.

Theorem
Internal phases always halt. Cut-elimination produces a pre-proof.

Theorem
The pre-proof obtained by the cut elimination algorithm is valid.

ULL? is not stable by cut-elimination

Eliminating cuts from a uLL® proof (circular) may result in a pLL*, non
circular, proof.

) 27/57

Cut-elimination for ulLL”

28/57

Cut-elimination for puLL*™

Theorem

Fair uLL> mcut-reduction sequences converge to cut-free uLL*>
proofs.

ldea
The proof goes by:

@ considering the following encoding of LL exponential
modalities:

7*F = uX.Fa(la(XeX))
I'F = vX.F&(1&(X® X))
@ translating uLL* sequents and proofs in uMALL®,

@ simulating uLL” cut-reduction sequences in tMALL* and

@ applying UMALL* cut-elimination theorem.

29/57

Encoding uLL*™ in uMALL®™
PE=uX.Fo(La(XeX)) I°F=vX.F&(1&(X®X))
UMALL* derivability of the exponential rules (?d®,?c®, ?w®, Ip*):

Dereliction : Contraction : Weakening :
F7°F, 7 FA N
o A [1]
FF.A P FeTF, A FLA
fe:] —— [—— e
FF@(La(?*Fe?°F)),A FL® (PR F),A) FL@®(?*FR?°F),A -
F7F.A Wl Fre@emrera).a | FFeae@rerR)a
FFLA . F7FLA e
() ()
FFF,°A FIF,7°A

Promotion: o CrFolrE A A

= we e

FEra Fiea M rFerEra

18l (&l

() FI*F,7°A

Preservation of validity

7 is a valid gMLL" pre-proof of I iff
7 is a valid uMALL®™ pre-proof of FI°.

30/57

Simulation of uLL™ cut-elimination steps

ULL™ cut-elimination steps can be simulated by the previous
encoding.

For instance, the following reduction can be simulated by applying
the external reduction rule [u]/[Cut] followed by the external
reduction rule [®]/[Cut].

BLELCLI FF,GT FGHA
=Fer " reia —2 FFrA [Curd
[Cut] ——— [2d"]
FF LA F?*F,T,A

Challenge: to show that the simulation of derivation also holds

(i) for the reductions involving [!p] as well as
(ii) for reductions occurring above a promotion rule (aka. in a
box) since the encoding of [!p] uses an infinite, circular derivation.

31/57

Simulation of uLL™ cut-elimination steps

External phase: Cut-commutation rules

FRGT FFGT FGHA
FFLG T FGhA 2 FFLA [Cud
[Cut] —— [2d°]
F?*F.TA F?°F,TA
F?°F,?°F,G,T F?*F°F,GT FGLA
— e [] N 3 [Cut]
F7°F,G,T FGHA] — FRFTRTA
FFLTLA ; “reErna
FG,I FGT FGLHA
Lo ~ [?W-] 1 37 | - A [Cut]
F?*F,G,T -Gt A — FrA
TETA e FeEra
FG,7°A
HF,2°G, 7T -G, 7”A —— .]
| Brves el L FF2°G,T HICGh A
HI*F,7°G, 7T HIe G A —0 [Cut]
— : [Cut] FF,2°r,7°A
HI*F,2°T, 7°A e ip]
n HISF 7T, 7°A

32/57

Simulation of uLL™ cut-elimination steps

Internal phase: Key-cut rules

/

b1 _r - T
FFL A L ZN
;FFIF L —2FF,T FFL2A
. . . o = Cu
B a—— Frea
T B T
F7F,2°F,T FFLTA .
—rEr) Teppgg W1 R
Y ey e
T 7 s 4
F2°F,2°F,T FIFL7°A FIFL 7°A
ET.7°A.7°A [meut]
T T e *
Frea
r _r
o T e T
Fr (2w*] ﬂ [lpe] —y3int.3x#Aext Er .
F7F, T FICFL 7oA Craea
AT [Cur] h

33/57

Cut-elimination for puLL*™

Consider a fair cut-reduction sequence ¢ = (7;)iee in HLL™ from 7.

o converges to a cut-free pLL™ pre-proof. Otherwise, a suffix 7 of
o would contain only key-cut steps. The encoding of 7 in uMALL®>,
7°, would be unproductive (contradicting productivity of
cut-elimination).

As o is productive, it strongly converges to some uLL*pre-proof 7’.

o° is therefore a transfinite reduction sequence from 7°® strongly
converging to 7', cut-free (as it is the encoding of 7).

The compression lemma applies: there exists p an w-indexed
UMALL™ cut-reduction sequence converging to 7'°.

By compression, fairness of ¢® transfers to p which is fair.

Therefore, p has a limit, 7’* which is a valid cut-free uMALL*™
proof. 7’* is cut-free and valid and so is 7/, by the validity
preservation property. O

34/57

Cut-elimination for uLK*, uLJ*
The usual call-by-value embedding of LJ in ILL (intuitionnistic LL) can be
lifted to uLJ*™: indeed, the translation of proofs does not introduce cuts.
For uLK*, it is slightly trickier as the well-known T/Q-translations
introduce cuts breaking validity. An alternative translation which does
not introduce cuts can be used.

Moreover, one gets the skeleton of a uLL™ (resp. uILL™) proof which is
a uLK= (resp. puLJ™) proof, simply by erasing the exponentials
(connectives and inferences), preserving validity.

The skeleton of a puLL*™ (resp. plLL™) cut-reduction sequence is a uLK>
(resp. uLJ™) cut-reduction sequence. As a result, one has:

Theorem

If T is an ULK* (resp. uLJ*) proof of =T (resp. T+ F), there exists a
ULL™ (resp. pILL™) proof of the translated sequents.

Theorem

There are productive cut-reduction strategies producing cut-free uLK*
(resp. uLJ=) proofs.

35/57

Bouncing validity

36/57

A invalid, though productive, proof with cut

Problem: Cuts are not well-managed by the validity condition.

37/57

A invalid, though productive, proof with cut

Problem: Cuts are not well-managed by the validity condition.

Cut-elimination

FvX.X
)
FvX.X

From now, we will refer to s-valid pre-proof for the previous validity

condition and will consider alternative validity conditions.
37/57

A invalid, though productive, proof with cut

Problem: Cuts are not well-managed by the validity condition.

Cut-elimination

FvX.X
)
FvX.X

From now, we will refer to s-valid pre-proof for the previous validity

condition and will consider alternative validity conditions.
37/57

Bouncing threads: visible part
Visible part: survives the

cut-elimination. TEFL [Ax] ol [AX] vl

Hidden part: Must sat- ; P o P 1]

isfy matching constaints. 7RG, FBG i [Cut]
FG

Bouncing thread valid: o v-unfoldings in visible part.

38/57

Bouncing threads: visible part

Visible part: survives the

cut-elimination. CEALLM o ™ vl

Hidden part: Must sat- ; P o P 1]

isfy matching constaints. FRG,FTBG ~Fe6 [Cut]
FG

Bouncing thread valid: o v-unfoldings in visible part.

Valid branch B: exists a valid bouncing
thread with visible part included in B.

B-valid proof: all infinite branches are valid.

38/57

Bouncing threads: visible part

Visible part: survives the

cut-elimination. CEALLM o ™ vl

Hidden part: Must sat- ; P o P rs]

isfy matching constaints. FRG,FTBG ~Fe6 [Cut]
FG

Bouncing thread valid: o v-unfoldings in visible part.

Valid branch B: exists a valid bouncing
thread with visible part included in B.

B-valid proof: all infinite branches are valid.

Theorem (Baelde, Doumane, Kuperberg & S)
Soundness and cut-elimination hold for uMALL> b-valid proofs.

38/57

Decidability of the bouncing validity condition ?

Given a circular proof, can we decide b-validity ?

39/57

Decidability of the bouncing validity condition ?

Given a circular proof, can we decide b-validity 7 NO!

— Reduce termination of Minsky machines to bouncing validity.

39/57

Decidability of the bouncing validity condition ?

Given a circular proof, can we decide b-validity 7 NO!

— Reduce termination of Minsky machines to bouncing validity.
A hierarchy of decidable conditions: Height of a b-thread:
parameter binding the height of bounces.

b(k)-valid proof: b-valid proof using only threads of height < k.

Theorem
Every b-valid circular proof is a b(k)-valid for some k € N. J

For all k € N, it is decidable whether a circular proof is a k-proof.

Theorem J

39/57

Hierarchy of validity criteria

40/57

Hierarchy of validity criteria

40/57

Hierarchy of validity criteria

40/57

Hierarchy of validity criteria

alid Pre-proofs

oofs

proofs

40/57

Hierarchy of validity criteria

e b-valid Pre-proofs

alid Pre-proofs

oofs

proofs

40/57

Hierarchy of validity criteria

e Productive Pre-proofs

e b-valid Pre-proofs

alid Pre-proofs

oofs

proofs

40/57

Hierarchy of validity criteria

e Pre-proofs

e Productive Pre-proofs

e b-valid Pre-proofs

alid Pre-proofs

oofs

proofs

40/57

Sequentiality & parallelism

in non-wellfounded proofs:
proof-nets for uMLL™

41/57

Mismatch between the parallel nature of threads
and the sequential nature of sequent proofs.

— [Ax — X [AXx
FvX X, uXX (4 FvX X, uXX (A
FvX X axx M FVX X XX
FvX XXX FvX XXX

FvX XXX M e uxIx FvX XXX XX
Ci C
VXX (Cu] VXX (e

Non-productive cut-elimination Productive cut-elimination

42/57

MLL proof-nets

. A AL A 4B A tB
An MLL proof structure is
A LAt A®B A%B

a directed finite graph com-

re

posed of:
Proof structures A prOOf structu
o that represents no
Proofs Desequentialisation I Proofnets sequent proof:
Sequentialisation -2
‘A }AL
Canonicity

Two proofs are equivalent up to permutation of rules iff they have the
same proof-net.

Confluent and terminating cut-elimination

‘ A 1B AL 4B! — A $AL 4B B!
A {AL4 A — &/ &

A it

43/57

UMLL®™ proof structures
An MLL proof structure + the following decorated nodes:

Q{;[px.A/X] E‘};\[vx.A/X]
HX.A VXA
New cut-elimination rules for new operators:

FluX.F/X] FLIvX.FL/X]
W

WX FL s AFIXF/X] g FHvXCFY/X]

Is that enough?

44/57

UMLL®™ proof structures
An MLL proof structure + the following decorated nodes:

Q{;[px.A/X] E‘};\[vx.A/X]
HX.A VXA
New cut-elimination rules for new operators:

FluX.F/X] FLIvX.FL/X]
W

WX FL s AFIXF/X] g FHvXCFY/X]

Is that enough? No! Need more structure & more reductions:

@ Need to consider “infinite axioms” as invariants of infinite branches:

@ Need to add visitable paths to infinite axioms, to prevent
disconnectedness of the proof structure;

@ cut-elimination shall be adapted to those infinite axioms.

< 44/57

Infinite axioms

Let G = vX.(ARAN)® X.
T ™
FAA
—— Isl
FASA *+ G,B
®
FH(A9AN®G,B
*+ G, B

v

*
FELvX X
FEFD T FR XX
“EF VXX

v
[Cut]

and visitable paths

cut, cut,

vX.X

vX.X

Infinite axioms are invariants of infinite branches in proofs. They
may contain “visitable" sequences of axioms and cuts/tensors.

45/57

Infinite axioms and visitable paths
Let G = vX.(A9AL) ® X.

— [A4]
FA At
———]
FADA *x+ G,B
®
FH(A9AN®G,B
*+G,B

v

*
FELvX X
FEFD T FR XX
“EF VXX

v
[Cut]

Infinite axioms are invariants of infinite branches in proofs. They
may contain “visitable" sequences of axioms and cuts/tensors.

45/57

Non-wellfounded proof-structures
An NWFPS has the following components:

e Formulas {F1,F>,...} and their corresponding syntax trees
{T1, To,...}

o Cuts of the form (C,C*t) where C=F; and C*+ = F;.

o Axioms (L,L*) of leaves of some trees T;, T;.

@ Visitable paths: infinite sequences of the form APAPAP...
where A is an axiom and P is either a cut or a ®.

@ Infinite axioms that contain leaves and visitable paths.

Correctness criterion

A correctness criterion ensures sequentialisation and
cut-elimination.

Desequentialisation .
Proofs I Infinets
Sequentialisation

46/57

Infinet cut-elimination
FIX/F] FIX/FY
N7,

V.
uX.F _ vX.FL — \F[X/)FL[X/FL]

But what about the cut/inf-ax case?

Consider k(F) the smallest subnet with F as the conclusion
(corresponding to the kingdom of F).

The limit of any sequence of (fair) reductions is a (cut-free) infinet.

Theorem (De, Pellissier & S, 2021) }

47/57

Conclusion

48/57

Conclusion

o Fixed-point logics extending LL with finite circular or
non-wellfounded proofs;

@ Syntactic cut elimination for various nwf sequent calculi:
UMALL™, pLL>=, ulJ”, ulLK=;

@ More expressive validity condition;

@ Proof-nets in the non-wellfounded multiplicative case.

@ Ongoing and future work:

e Equivalence of circular fragment of uMALL* and uMALL:
Translate infinitrary proofs to finitary ones. Same question as
above by preserving the computational content.

o Relax the conditions on bouncing threads retaining
cut-elimination in infinets.

e Design a good notion of circularity for infinets.

e Extend to circular natural deduction and circular A-calculus.

o Provability and denotational semantics of circular proofs (jww
De, Ehrhard and Jafarrahmani).

49/57

Conclusion

o Fixed-point logics extending LL with finite circular or
non-wellfounded proofs;

@ Syntactic cut elimination for various nwf sequent calculi:
UMALL™, pLL>=, ulJ”, ulLK=;

@ More expressive validity condition;

@ Proof-nets in the non-wellfounded multiplicative case.

@ Ongoing and future work:

e Equivalence of circular fragment of uMALL* and uMALL:
Translate infinitrary proofs to finitary ones. Same question as
above by preserving the computational content.

o Relax the conditions on bouncing threads retaining
cut-elimination in infinets.

e Design a good notion of circularity for infinets.

e Extend to circular natural deduction and circular A-calculus.

o Provability and denotational semantics of circular proofs (jww
De, Ehrhard and Jafarrahmani).

Thank you for your attention!

49/57

Appendix

50/57

For any integer m, /m is either an integer, or irrational.
Another example of infinite descent

Proof
Let m € N and for the sake of contradiction, assume \/m € Q\ N.

51/57

For any integer m, /m is either an integer, or irrational.

Another example of infinite descent

Proof
Let m e N and for the sake of contradiction, assume /m € Q\ N.

@ Choose g,a0,bp € Nst. 0</m—qg<1and/m=ap/bp.
One has bgy/m = ag € N and agy/m = mbgy € N.

51/57

For any integer m, /m is either an integer, or irrational.

Another example of infinite descent

Proof
Let m € N and for the sake of contradiction, assume /m € Q\ N.

@ Choose g,a0,bp € Nst. 0</m—q<1and/m=ay/bo.
One has bgy/m = ap € N and ag\/m = mby € N.

@ Therefore by setting a; £ mbg — apq = ag(/m —q) and
b1 = ap — boq = bo(\/m— q), we have

@ ag,a are integers,
o O0<ai<ay, 0<b;<byand

o \/EZ al/bl.

51/57

For any integer m, /m is either an integer, or irrational.

Another example of infinite descent

Proof

Let m € N and for the sake of contradiction, assume /m € Q\ N.

@ Choose g,a0,bp € Nst. 0</m—q<1and/m=ay/bo.
One has bgy/m = ap € N and ag\/m = mby € N.
@ Therefore by setting a; £ mbg — apq = ag(/m —q) and
b1 = ap — boq = bo(\/m— q), we have
@ ag,a are integers,
o O0<ai<ay, 0<b;<byand
o Jm=a/bL.
@ In a similar way, one can build (a;);en and (b;)ien infinite
sequences of integers, which are strictly decreasing.

51/57

For any integer m, /m is either an integer, or irrational.

Another example of infinite descent

Proof
Let m € N and for the sake of contradiction, assume /m € Q\ N.

@ Choose g,a0,bp € Nst. 0</m—q<1and/m=ay/bo.
One has byy/m = ag € N and ag\/m = mby € N.
@ Therefore by setting a; £ mbg — apq = ag(/m —q) and
b1 = ap — boq = bo(\/ﬁ— q), we have
@ ag,a are integers,
o O0<ai<ay, 0<b;<byand
o /= a/by.
@ In a similar way, one can build (a;);en and (b;)ien infinite
sequences of integers, which are strictly decreasing.
@ This is impossible. Therefore \/m is either integer or
irrational. L]

51/57

Decidability of the validity condition

52/57

Parity automata

Definition

A parity automaton is a finite state word automaton,

whose states are ordered and given a parity bit v/u,

which accepts runs (q;)ice such that min(inf((g;);)) has parity v.

53/57

Parity automata

Definition

A parity automaton is a finite state word automaton,
whose states are ordered and given a parity bit v/u,
which accepts runs (q;)ice such that min(inf((g;);)) has parity v.

Remarks
@ States are usually given a color in N, equivalently.

@ Only co-accessible states need to be ordered.

53/57

Parity automata

Definition

A parity automaton is a finite state word automaton,

whose states are ordered and given a parity bit v/u,

which accepts runs (q;)ice such that min(inf((g;);)) has parity v.

Remarks
@ States are usually given a color in N, equivalently.

@ Only co-accessible states need to be ordered.

Properties

PA can be determinized,

PA are closed by complementation and intersection,

The emptiness problem is decidable,

(Thus) inclusion of parity automata is decidable.

W
53/57

Theorem: The validity of circular pre-proofs is decidable.

Proof.

Consider a pre-proof I i.e. a graph with nodes s; = (F}i)je[l;n,-]-

The proof goes as follows:
@ One builds a parity automaton recognizing the language %5
of infinite branches of I1;
@ One builds a parity automaton recognizing the language Zr
the valid branches of I1.

e Validity amounts to the inclusion of g in %7, that is
showing that £ \ %1 = 0 which is decidable.

Branch automaton: Let @/g be the branch automaton with
states s;, transitions s; —X s; when s; is the k-th premise of s;, and
which accepts all runs.

< 54757

Theorem: The validity of circular pre-proofs is decidable.
Proof.

Consider a pre-proof I1i.e. a graph with nodes s; = (Ff)je[l;,,i].
()
Thread automaton: Let </t be the thread automaton with

states F,H, F,j_ or s;, with transitions:

o s, —Xs, and s; =K FJ~ when s, is the k-th premise of s;

o FIT sk Fgﬁ (e € {+,—}) when s; —yk sp and F/ is active in

]]

the rule of conclusion s; and has ancestor F,?

° F{; —kKFJE (g€ {+,—}) when s; —* sp and Flj is passive in

the rule of conclusion s; and has ancestor F,?

acceptance based on subformula ordering with the active/passive
distinction: only active v-formulas have coinductive parity.

Validity of I equivalent to .Z(e7g) \ £ (%/T) = 0, thus decidable.
L]

< 54/57

Cut elimination is productive
Theorem J

Internal phase always halts.

55/57

Cut elimination is productive

Theorem
Internal phase always halts. J

Proof by contradiction: Suppose that there is a proof of F for
which the internal phase does not halt.

FF

55/57

Cut elimination is productive

Theorem J

Internal phase always halts.

Proof by contradiction: Consider the trace of this divergent
reduction.

FF

55/57

Cut elimination is productive

Theorem
Internal phase always halts. J

Proof by contradiction: No rule on F is applied in the trace,
otherwise the internal phase would halt.

FX,F

FF

55/57

Cut elimination is productive

Theorem
Internal phase always halts. J

Proof by contradiction: We can eliminate the occurrences of F
from the trace. This yields a "proof" of |-

55/57

Cut elimination is productive

Theorem
Internal phase always halts. J

Proof by contradiction: We show that the proof system is sound.
Contradiction.

55/57

Cut elimination is productive (Details)

Theorem J

Internal phase always halts.

56/57

Cut elimination is productive (Details)

Theorem
Internal phase always halts. J

Proof: Suppose that the internal phase diverges for a proof @ A.

@ Let O be the sub-derivation of 7w explored by the reduction.

@ No rule is applied to a formula of A in 6,
as this would contradict the divergence of internal phase.

@ Let 8 be the proof obtained from 6 by dropping all the
formulas from A.

@ 0 is then a proof for I in a proof system with "truncation”.

o We define a truth semantics for u MALL™ formulas and show
soundness of the proof system with truncation wrt. it.

@ Contradiction. O
56/57

Cut elimination produces a proof

The pre-proof obtained by the cut elimination algorithm is valid.

Theorem J

57/57

Cut elimination produces a proof

Theorem

The pre-proof obtained by the cut elimination algorithm is valid.

Proof: Let ©* be the pre-proof obtained from 7+ A by cut
elimination. Suppose that a branch b of 7* is not valid.

@ Let O be the sub-derivation of m explored by the reduction
that produces b.

@ Fact: Threads of 6 are the threads of b, together with
threads starting from cut formulas.

@ The validity of 6 cannot rely on the threads of b.

@ Define 6" to be 6 where we replace in A any v by a u and
any 1, T by 1,0.

@ Show that formulas containing only p, 1,0 and MALL binary
connectives are false.

@ 6" proves a false sequent which contradicts soundness.

57/57

