Virtuous circles in proofs

Virtual proof theory seminar

Alexis Saurin
IRIF, CNRS, INRIA \& Université de Paris

17 novembre 2021

Introduction and Background

Logics with least and greatest fixed points

Logics with least and greatest fixed points, modelling inductive and coinductive reasoning:

- Very useful to encode and reason about inductive and coinductive data structures.
- Their proof theory is not very well studied and understood.
- Not only to express statements, but also a proof system in sequent calculus: LL with fixed points
- $\mu \mathrm{LL}$: proofs are finite trees. Includes rules for induction, local correctness, cut-elimination and focalization but not subformula property
- $\mu \mathrm{LL}$: proofs are infinite trees. Simple inference rules for fixed points, global correctness criterion, cut-elimination with subformula property. Of particular interest is the fragment of circular proofs, which are presentable as finite graphs.
- Extends the proof-program correspondence to recursive and co-recursive programming, with coinductive datatypes.

Outline

(1) Introduction
(2) $\mu \mathrm{LL}^{\infty}$: circular and non-wellfounded proofs
(3) Cut-elimination for $\mu \mathrm{MALL}^{\infty}$

> (joined work with Baelde \& Doumane)
(9) Cut-elimination for $\mu \mathrm{LL}^{\infty}$
(5) Relaxing the thread validity condition (joined work with

Baelde, Doumane \& Kuperberg)
(0) On sequentiality and parallelism in non-wellfounded proofs (joined work with
De \& Pellissier)
(1) Conclusion

Knaster-Tarski fixed-point theorem

Let C be a complete lattice and F a monotonic operator on C.

Theorem
F has a least fixed-point μF.
μF is the least prefixed-point:

- $F(\mu F) \sqsubseteq \mu F$ and
$-\forall S, F(S) \sqsubseteq S \Rightarrow \mu F \sqsubseteq S$.

Theorem
F has a greatest fixed-point $v F$.
$v F$ is the greatest postfixed-point:
$-v F \sqsubseteq F(v F)$ and
$-\forall S, S \sqsubseteq F(S) \Rightarrow S \sqsubseteq v F$.

Knaster-Tarski fixed-point theorem

Let C be a complete lattice and F a monotonic operator on C.

Theorem

F has a least fixed-point μF.
μF is the least prefixed-point:
$-F(\mu F) \sqsubseteq \mu F$ and
$-\forall S, F(S) \sqsubseteq S \Rightarrow \mu F \sqsubseteq S$.

Theorem
F has a greatest fixed-point $v F$.
$v F$ is the greatest postfixed-point:
$-v F \sqsubseteq F(v F)$ and
$-\forall S, S \sqsubseteq F(S) \Rightarrow S \sqsubseteq v F$.

Proof by induction:
To prove that $\mu F \subseteq P$, it is sufficient to find some $S \subseteq P$ and to prove that $\forall x \in F(S), x \in S$.

Proof by coinduction:
To prove that $P \subseteq v F$, it is sufficient to find some $S \supseteq P$ and to prove that $\forall x \in S, x \in F(S)$.

Knaster-Tarski fixed-point theorem

Let C be a complete lattice and F a monotonic operator on C.

Theorem

F has a least fixed-point μF.
μF is the least prefixed-point:
$-F(\mu F) \sqsubseteq \mu F$ and
$-\forall S, F(S) \sqsubseteq S \Rightarrow \mu F \sqsubseteq S$.

Theorem

F has a greatest fixed-point $v F$.
$v F$ is the greatest postfixed-point:
$-v F \sqsubseteq F(v F)$ and
$-\forall S, S \sqsubseteq F(S) \Rightarrow S \sqsubseteq v F$.

Proof by induction:

To prove that $\mu F \subseteq P$, it is sufficient to find some $S \subseteq P$ and to prove that $\forall x \in F(S), x \in S$.
$\frac{H \vdash F[\mu X . F / X]}{H \vdash \mu X . F}\left[\mu_{r}\right] \frac{F[S / X] \vdash S}{\mu X . F \vdash S}\left[\mu_{1}\right]$

Proof by coinduction:

To prove that $P \subseteq v F$, it is sufficient to find some $S \supseteq P$ and to prove that $\forall x \in S, x \in F(S)$.

$$
\frac{F[v X . F / X] \vdash H}{v X . F \vdash H}\left[v_{1}\right] \frac{S \vdash F[S / X]}{S \vdash v X . F}\left[v_{r}\right]
$$

Martin-Löf's induction definitions, LKID

A sequent calculus parameterized by a set of inductive definitions.

Idea: inductive predicates described by production rules.

$$
\frac{Q_{1}\left(u_{1}\right) \ldots Q_{k}\left(u_{k}\right) \quad P_{1}\left(t_{1}\right) \ldots P_{l}\left(t_{l}\right)}{P(t)}
$$

Example:

$$
\overline{N(0)} \quad \frac{N(x)}{N(s(x))}
$$

LK + inferences for the inductively defined predicates:
$\overline{\Gamma \vdash N(0), \Delta}\left(N_{R}^{1}\right) \frac{\Gamma \vdash N(u), \Delta}{\Gamma \vdash N(s(u)), \Delta}\left(N_{R}^{2}\right)$
$\frac{\Gamma \vdash F(0), \Delta \quad \Gamma, F(x) \vdash F(s(x)), \Delta \quad \Gamma, F(t) \vdash \Delta}{\Gamma, N(t) \vdash \Delta}($ Ind $N)$
Mutually dependency:

$$
\overline{E(0)} \quad \frac{O(x)}{E(s x)} \quad \frac{E(x)}{O(s x)}
$$

Fixed-point logics and (co)induction

Some examples from (co)inductive predicates to μ-calculus

- $\operatorname{Nat}(x) \triangleq_{\text {ind }}(x=0) \vee \exists y . x=s(y) \wedge \operatorname{Nat}(y)$
- ListNat $(I) \triangleq \triangleq_{\text {ind }}(I=n i l) \vee \exists h, t . I=h:: t \wedge(N a t(h) \wedge \operatorname{ListNat}(t))$
- StreamNat $(I) \triangleq{ }_{\text {coind }} \exists h, t . I=h:: t \wedge(\operatorname{Nat}(h) \wedge \operatorname{StreamNat}(t))$

Fixed-point logics and (co)induction

Some examples from (co)inductive predicates to μ-calculus

- $\operatorname{Nat}(x) \triangleq_{\text {ind }}(x=0) \vee \exists y . x=s(y) \wedge \operatorname{Nat}(y)$
- ListNat $(I) \triangleq \triangleq_{\text {ind }}(I=n i l) \vee \exists h, t . I=h:: t \wedge(N a t(h) \wedge \operatorname{ListNat}(t))$
- StreamNat $(I) \triangleq{ }_{\text {coind }} \exists h, t . I=h:: t \wedge(\operatorname{Nat}(h) \wedge \operatorname{StreamNat}(t))$
- $\operatorname{Nat}(x) \triangleq \mu N .(x=0) \vee \exists y \cdot x=s(y) \wedge N(y)$
- ListNat $(I) \triangleq \mu L .(I=n i l) \vee \exists h, t . I=h:: t \wedge(N a t(h) \wedge L(t))$
- StreamNat $(I) \triangleq v S . \exists h, t . I=h:: t \wedge(\operatorname{Nat}(h) \wedge S(t))$

Fixed-point logics and (co)induction

Some examples from (co)inductive predicates to μ-calculus

- $\operatorname{Nat}(x) \triangleq_{\text {ind }}(x=0) \vee \exists y . x=s(y) \wedge \operatorname{Nat}(y)$
- ListNat $(I) \triangleq_{\text {ind }}(I=n i l) \vee \exists h, t . I=h:: t \wedge(N a t(h) \wedge \operatorname{ListNat}(t))$
- StreamNat $(I) \triangleq_{\text {coind }} \exists h, t . I=h:: t \wedge(\operatorname{Nat}(h) \wedge \operatorname{StreamNat}(t))$
- $\operatorname{Nat}(x) \triangleq \mu N .(x=0) \vee \exists y . x=s(y) \wedge N(y)$
- ListNat $(I) \triangleq \mu L .(I=n i l) \vee \exists h, t . I=h:: t \wedge(N a t(h) \wedge L(t))$
- StreamNat $(I) \triangleq v S . \exists h, t . I=h:: t \wedge(N a t(h) \wedge S(t))$
- $N a t \triangleq \mu N . T \vee N$
- ListNat $\triangleq \mu L . T \vee(N a t \wedge L)$
- StreamNat $\triangleq v S . N a t \wedge S$
\Rightarrow in the following, the propositional μ-calculus only.

Fixed-point logics and (co)induction

Some examples from (co)inductive predicates to μ-calculus

- $\operatorname{Nat}(x) \triangleq_{\text {ind }}(x=0) \vee \exists y . x=s(y) \wedge \operatorname{Nat}(y)$
- ListNat $(I) \triangleq_{\text {ind }}(I=n i l) \vee \exists h, t . I=h:: t \wedge(\operatorname{Nat}(h) \wedge \operatorname{ListNat}(t))$
- StreamNat $(I) \triangleq \triangleq_{\text {coind }} \exists h, t . I=h:: t \wedge(\operatorname{Nat}(h) \wedge \operatorname{StreamNat}(t))$
- $\operatorname{Nat}(x) \triangleq \mu N .(x=0) \vee \exists y \cdot x=s(y) \wedge N(y)$
- ListNat $(I) \triangleq \mu L .(I=n i l) \vee \exists h, t . I=h:: t \wedge(N a t(h) \wedge L(t))$
- StreamNat $(I) \triangleq v S . \exists h, t . I=h:: t \wedge(N a t(h) \wedge S(t))$
- $N a t \triangleq \mu N . T \vee N$
- ListNat $\triangleq \mu L . T \vee(N a t \wedge L)$
- StreamNat $\triangleq v S . N a t \wedge S$
\Rightarrow in the following, the propositional μ-calculus only.

Interleavings of inductive/coinductives behaviours; eg. allowing to express fairness properties:

$$
v X . \mu Y .(P \wedge \bigcirc X) \vee \bigcirc Y
$$

$\mu M A L L:$ MALL with least and greatest fixed points

μ MALL formulas and sequent calculus

(Baelde \& Miller 2007, Baelde 2012)
$\mu M A L L$ formulas

$$
\begin{aligned}
F::= & a|T| \perp|F \diamond F| F \& F \\
& \left|a^{\perp}\right| 0|1| F \otimes F \mid F \oplus F \\
& |X| \mu X . F \mid v X . F
\end{aligned}
$$

negative MALL formulas positive MALL formulas least and greatest fixed points

- Negation ($)^{\perp}$: involutive operator on formula, not a connective.
- μ and v are binders, consider closed formulas only.
- μ and v are dual.
- One-sided sequents: $\vdash A_{1}, \ldots, A_{n}$.
- Data types encodings:

Ex: $(v X . X \otimes X)^{\perp}=\mu X . X \ngtr X$.
($\Gamma \vdash \Delta$ is a short for $\vdash \Gamma^{\perp}, \Delta$)

$$
\begin{aligned}
\text { Nat } & \triangleq \mu X .1 \oplus X \\
\operatorname{List}(A) & \triangleq \mu X .1 \oplus(A \otimes X) \\
\operatorname{Stream}(A) & \triangleq v X .1 \&(A \otimes X)
\end{aligned}
$$

μ MALL sequent Calculus

μ MALL Inference Rules

$$
\begin{aligned}
& \overline{\vdash F, F^{\perp}}[\mathrm{Ax}] \quad \frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta}{\vdash \Gamma, \Delta} \text { [Cut] } \quad \frac{\vdash \Gamma, G, F, \Delta}{\vdash \Gamma, F, G, \Delta}[\mathrm{X}] \\
& \frac{\vdash F, G, \Gamma}{\vdash F \& G, \Gamma} \quad[8] \quad \frac{\vdash F, \Gamma \quad \vdash G, \Delta}{\vdash F \otimes G, \Gamma, \Delta} \quad[\otimes] \frac{\vdash \Gamma}{\vdash \perp, \Gamma} \quad[\perp] \quad \frac{}{\vdash 1}{ }^{[1]} \\
& \frac{\vdash F, \Gamma \quad \vdash G, \Gamma}{\vdash F \& G, \Gamma}[\&] \quad \frac{\vdash A_{i}, \Gamma}{\vdash A_{1} \oplus A_{2}, \Gamma} \quad\left[\oplus_{i}\right] \quad \overline{\vdash \top, \Gamma} \quad[\top] \quad \text { (no rule for } 0 \text {) } \\
& \frac{\vdash \Gamma, S \quad S^{\perp}, G[S / X]}{\vdash v X . G, \Gamma}[v] \quad \frac{\vdash F[\mu X . F / X], \Gamma}{\vdash \mu X . F, \Gamma}{ }_{[\mu]}
\end{aligned}
$$

$\mu \mathrm{MALL}$ sequent Calculus

μ MALL Inference Rules (with explicit ancestor relation)

$$
\begin{aligned}
& \overline{\vdash F, F^{\perp}}[\mathrm{Ax}] \quad \frac{\vdash \Gamma_{, ~ F}+F^{\perp}, \Delta}{ค \Gamma, \Delta}[\mathrm{Cut}] \quad \frac{\vdash \Gamma, G, F, \Delta}{\vdash \Gamma, F, G, \Delta}[\mathrm{x}] \\
& \frac{\vdash F, G, \Gamma}{\vdash F>G, \Gamma} \quad[8] \quad \frac{\vdash F, \quad \vdash G, \Delta}{\vdash F \otimes G, \Gamma, \Delta}{ }_{[8]} \frac{\vdash \Gamma}{\vdash \perp, \Gamma} \quad[\perp] \quad \Gamma^{[1]} \\
& \frac{\vdash F, \Gamma \vdash G, \Gamma}{\vdash F \& G, \Gamma}[\&] \quad \frac{\vdash A_{i}, \Gamma}{\vdash A_{1} \oplus A_{2}, \Gamma} \quad\left[\oplus_{i}\right] \quad \overline{\vdash T, \Gamma} \quad[\mathrm{~T}] \quad \text { (no rule for 0) } \\
& \frac{\vdash F, S \quad \vdash S^{\perp}, G[S / X]}{\vdash v X . G, \Gamma}[v] \quad \frac{\vdash F[\mu X . F / X], \Gamma}{\vdash \mu X F, \Gamma}
\end{aligned}
$$

μ MALL sequent Calculus

μ MALL Inference Rules (with explicit ancestor relation)

$$
\begin{aligned}
& \overline{\vdash F, F^{\perp}}[\mathrm{Ax}] \quad \frac{\vdash \Gamma_{, ~ F}+F^{\perp}, \Delta}{\vdash \Gamma, \Delta}[\mathrm{Cut}] \quad \frac{\vdash \Gamma, G, F, \Delta}{\vdash \Gamma, F, G, \Delta}[\mathrm{X}]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\vdash F, \Gamma \vdash G, \Gamma}{\vdash F \& G, V}[\&] \quad \frac{\vdash A_{i}, \Gamma}{\vdash A_{1} \oplus A_{2}, \Gamma} \quad\left[\oplus_{\mathrm{i}}\right] \quad{ }_{\vdash \mathrm{T}, \Gamma}{ }^{[\mathrm{T}]} \quad \text { (no rule for } 0 \text {) } \\
& \frac{\vdash F, S \quad S^{\perp}, G[S / X]}{\vdash v X . G, \Gamma}[v] \quad \frac{\vdash F[\mu X . F / X], \Gamma}{\vdash \mu X, F, V}[\mu]
\end{aligned}
$$

Theorem

Cut elimination holds in μ MALL.

Proof theory of least and greatest fixed points

	$\mu \mathrm{MALL}$
Proof objects	Finite trees
Inferences	Induction rules
	$\frac{\vdash \Gamma, F[\mu X . F / X]}{\vdash \Gamma, \mu X . F}[\mu]$ $\vdash \Gamma, S \vdash S^{\perp}, F[S / X]$ $\vdash \Gamma, v X . F$
Log. correctness	\quad local
Cut-elimination	sort of: $[v]$ hides a cut
Subformula prop.	NO
Focalization	\checkmark, but μ / v have arbitrary polarities

Proof theory of least and greatest fixed points

	$\mu \mathrm{MALL}$
Proof objects	Finite trees
Inferences	Induction rules
	$\frac{\vdash \Gamma, F[\mu X . F / X]}{\vdash \Gamma, \mu X . F}[\mu]$ $\vdash \Gamma, S \vdash S^{\perp}, F[S / X]$ $\vdash \Gamma, v X . F$
Log. correctness	\quad local
Cut-elimination	sort of: $[v]$ hides a cut
Subformula prop.	NO
Focalization	\checkmark, but μ / v have arbitrary polarities

Proof theory of least and greatest fixed points

	$\mu \mathrm{MALL}$	$\mu \mathrm{MALL}^{\infty}$
Proof objects	Finite trees	Non well-founded trees
Inferences MALL rules +	Induction rules $\begin{gathered} \frac{\vdash \Gamma, F[\mu X . F / X]}{\vdash \Gamma, \mu X . F}[\mu] \\ \frac{\vdash \Gamma, S \vdash S^{\perp}, F[S / X]}{\vdash \Gamma, v X . F}[v] \end{gathered}$	Fixed points unfoldings (+ validity conditions) $\begin{aligned} & \frac{\vdash \Gamma, F[\mu X . F / X]}{\vdash \Gamma, \mu X . F}[\mu] \\ & \frac{\vdash \Gamma, F[v X . F / X]}{\vdash \Gamma, v X . F}[v] \end{aligned}$
Log. correctness	local	global
Cut-elimination	sort of: [v] hides a cut	\checkmark
Subformula prop.	NO	\checkmark
Focalization	\checkmark, but μ / v have arbitrary polarities	μ pos. and v neg.

$\mu \mathrm{LL}{ }^{\infty}$: circular and non-wellfounded proofs for linear logic with least and greatest fixed-points

Circular proofs: an old mathematical story

Back to Euclid's Elements (Book VII)

Proposition 31

Any composite number is measured by some prime number.
Let A be a composite number;
I say that A is measured by some prime number.
For, since A is composite,
some number will measure it.
Let a number measure it, and let it be B.
Now, if B is prime, what was enjoined will have been done.

But if it is composite, some number will measure it.
Let a number measure it, and let it be C.
Then, since C measures B,

And, if C is prime, what was enjoined will have been done.
But if it is composite, some number will measure it.
Thus, if the investigation be continued in this way, some prime number will be found which will measure the number before it, which will also measure A.
For, if it is not found, an infinite series of numbers will measure the number A, each of which is less than the other:
which is impossible in numbers.
Therefore some prime number will be found which will measure the one before it, which will also measure A.

Therefore any composite number is measured by some prime number.

Q. E. D.

Circular proofs: an old mathematical story

Back to Euclid's Elements (Book VII)

Proposition 31

Any composite number is measured by some prime number.
Let A be a composite number;
I say that A is measured by some prime number.
For, since A is composite,
some number will measure it.
Let a number measure it, and let it be B.
Now, if B is prime, what was enjoined will have been done.

But if it is composite, some number will measure it.
Let a number measure it, and let it be C.
Then, since C measures B,
and B measures A,
therefore C also measures A.
And, if C is prime, what was enjoined will have been done proof method
But if it is composite, some number will measure it
Thus, if the investigation be continued in this some prime number will found which will measure the number arre it, which will also measure A.
For, if it is not found, an infinite series of numbers will measure the number A, each of which is less than the other:
which is impossible in numbers.
Therefore some prime number will be found which will measure the one before it, which will also measure A.

Therefore any composite number is measured by some prime number.

Q. E. D.

Non-wellfounded proofs: inductive and coinductive cases

Inductive case:

The infinite branch unfolds the inductive predicate even infinitely often on the left: valid!

Non-wellfounded proofs: inductive and coinductive cases

Inductive case:

The infinite branch unfolds the inductive predicate even infinitely often on the left: valid!

Coinductive case:

$$
\begin{aligned}
& \frac{\frac{\operatorname{step} p \alpha q \vdash \operatorname{step} p \alpha q \overline{\vdash \operatorname{sim} q q}}{\operatorname{step} p \alpha q \vdash \operatorname{step} p \alpha q \wedge \operatorname{sim} q q}}{\vdash \forall \alpha \forall q . \operatorname{step} p \alpha q \supset \exists q^{\prime} . \operatorname{step} p \alpha q^{\prime} \wedge \operatorname{sim} q q^{\prime}} \\
& \vdash \operatorname{sim} p p
\end{aligned}
$$

The infinite branch unfolds the coinductive predicate sim infinitely often on the right: valid!

Circular \& non-wellfounded proofs in the litterature

- As verification device or for completeness arguments: Complete deduction sytem giving algorithms for checking validity (Tableaux, sequent calculi), intermediate objects between syntax and semantics for modal μ-calculus (Kozen, Kaivola, Walukiewicz)
μ-calulus formula \rightarrow Circular proof \rightarrow Finite axiomatization

Circular \& non-wellfounded proofs in the litterature

- As verification device or for completeness arguments: Complete deduction sytem giving algorithms for checking validity (Tableaux, sequent calculi), intermediate objects between syntax and semantics for modal μ-calculus (Kozen, Kaivola, Walukiewicz)
μ-calulus formula \rightarrow Circular proof \rightarrow Finite axiomatization
- But rarely as proof-program objects in themselves:
- develop such a proof-theoretical study, from a Curry-Howard perspective;
- establish focalization and cut-elimination (prior works: cut-admissibility by Brotherston, additive fragment by Fortier \& Santocanale)

Circular \& non-wellfounded proofs in the litterature

- As verification device or for completeness arguments: Complete deduction sytem giving algorithms for checking validity (Tableaux, sequent calculi), intermediate objects between syntax and semantics for modal μ-calculus (Kozen, Kaivola, Walukiewicz)
μ-calulus formula \rightarrow Circular proof \rightarrow Finite axiomatization
- But rarely as proof-program objects in themselves:
- develop such a proof-theoretical study, from a Curry-Howard perspective;
- establish focalization and cut-elimination (prior works: cut-admissibility by Brotherston, additive fragment by Fortier \& Santocanale)
- Recently, development of numerous circular/cyclic proof systems (Afshari \& Leigh, Das, Doumane \& Pous, Cohen \& Rowe, Tatsuta et al. etc.)

Non-Wellfounded Sequent Calculus

Consider your favourite logic \mathscr{L} \& add fixed points as in $\mu \mathrm{MALL}$:
Pre-proofs are the trees coinductively generated by:
$\begin{array}{lll}\text { - } \mathscr{L} \text { inference rules } & \frac{\Gamma, F[\mu X . F / X] \vdash \Delta}{\Gamma, \mu X . F \vdash \Delta}\left[\mu_{]}\right] & \frac{\Gamma, F[v X . F / X] \vdash \Delta}{\Gamma, v X . F \vdash \Delta}\left[v_{1}\right] \\ \text { - inference for } \mu, v: & \frac{\Gamma \vdash F[\mu X . F / X], \Delta}{\Gamma \vdash \mu X . F, \Delta}\left[\mu_{r}\right] & \frac{\Gamma \vdash F[v X . F / X], \Delta}{\Gamma \vdash v X . F, \Delta}{ }_{[v /]}\end{array}$
Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely many sub-(pre)proofs.

Pre-proofs are unsound!!
Need for a validity condition

$$
\begin{array}{cccl}
\frac{\vdots}{\vdash \mu X . X} & {[\mu]} & \frac{\vdots}{\vdash v X . X, F} & {[v]} \\
\qquad \vdash F & {[\mu]} & \frac{\square v X . X}{\vdash v X . X} & {[\mathrm{Cut}]}
\end{array}
$$

μL^{∞} Non-Wellfounded Sequent Calculus

Consider your favourite logic LL \& add fixed points as in $\mu \mathrm{MALL}$:
$\mu \mathrm{LL}{ }^{\infty}$ Pre-proofs are the trees coinductively generated by:

- LL inference rules
- inference for μ, v :

$$
\frac{\vdash F[\mu X . F / X], \Delta}{\vdash \mu X . F, \Delta}\left[\mu_{\mathrm{l}}\right] \quad \frac{\vdash F[v X . F / X], \Delta}{\vdash v X . F, \Delta}\left[v_{r}\right]
$$

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely many sub-(pre)proofs.

Pre-proofs are unsound!!
Need for a validity condition

$$
\frac{\left.\begin{array}{ccc}
\frac{\vdots}{\vdash \mu X . X} & {[\mu]} & \frac{\vdots}{\vdash-v X . X, F} \\
\frac{[\mu]}{\vdash \mu X . X} & & {[v]} \\
\vdash F & & {[v]} \\
{[\mathrm{FvX.X}, F} \\
{[\mathrm{Cut}]}
\end{array}\right]}{}
$$

$\mu \mathrm{LL}{ }^{\infty}$ Inferences

$\mu \mathrm{LL}{ }^{\infty}$ Inference Rules

$$
\begin{aligned}
& \overline{\vdash F, F^{\perp}}[\mathrm{Ax}] \quad \frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta}{\vdash \Gamma, \Delta}[\mathrm{Cut}] \quad \frac{\vdash \Gamma, G, F, \Delta}{\vdash \Gamma, F, G, \Delta}[\mathrm{X}] \\
& \frac{\vdash F, G, \Gamma}{\vdash F \& G, \Gamma} \quad[8] \quad \frac{\vdash F, \Gamma \quad \vdash G, \Delta}{\vdash F \otimes G, \Gamma, \Delta}{ }_{[8]}^{\stackrel{\vdash \Gamma}{\vdash \perp, \Gamma} \quad \text { [}] ~} \quad{ }^{\vdash 1}{ }^{[1]} \\
& \frac{\vdash F, \Gamma \quad \vdash G, \Gamma}{\vdash F \& G, \Gamma} \quad[\&] \quad \frac{\vdash A_{i}, \Gamma}{\vdash A_{1} \oplus A_{2}, \Gamma} \quad\left[\oplus_{\mathrm{i}}\right] \quad \overline{\vdash T, \Gamma} \quad[\mathrm{~T}] \quad \text { (no rule for } 0 \text {) } \\
& \frac{\vdash F, \Gamma}{\vdash ? F, \Gamma}[? \mathrm{~d}] \quad \frac{\vdash F, ? \Gamma}{\vdash!F, ? \Gamma}[!\mathrm{p}] \quad \frac{\vdash \Gamma}{\vdash ? F, \Gamma}[? \mathrm{w}] \frac{\vdash ? F, ? F, \Gamma}{\vdash ? F, \Gamma} \text { [?c] } \\
& \frac{\vdash G[v X . G / X], \Gamma}{\vdash v X . G, \Gamma} \quad[v] \quad \frac{\vdash F[\mu X . F / X], \Gamma}{\vdash \mu X . F, \Gamma} \quad[\mu]
\end{aligned}
$$

$\mu \mathrm{LL}{ }^{\infty}$ Inferences

$\mu \mathrm{LL}{ }^{\infty}$ Inference Rules (with ancestor relation)

$$
\begin{aligned}
& \overline{\vdash F, F^{\perp}}[\mathrm{Ax}] \quad \frac{\vdash \Gamma_{, ~ F}^{\vdash F^{\perp}, \Delta}}{[\mathrm{Cut}]} \quad \frac{\vdash \Gamma, G, F, \Delta}{\vdash \Gamma, F, G, \Delta}[\mathrm{X}]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\vdash F, \Gamma \vdash G, \Gamma}{\vdash F \& G, \Gamma}[\&] \quad \frac{\vdash A_{i}, \Gamma}{\vdash A_{1} \oplus A_{2}, \Gamma} \quad\left[\oplus_{i}\right] \quad \overline{\vdash T, \Gamma} \quad\left[\begin{array}{l}
{[]}
\end{array} \quad \text { (no rule for } 0\right. \text {) } \\
& \frac{\vdash F, \Gamma}{\vdash ? F, \Gamma} \quad[? \mathrm{~d}]
\end{aligned}
$$

$$
\begin{aligned}
& {[? w] \frac{\vdash ? F, ? F, \Gamma}{\vdash ? F, \Gamma} \text { [?c] }} \\
& \frac{\vdash G[v X . G / X], \Gamma}{\vdash v X, G, \Gamma} \quad[v] \quad \frac{\vdash F[\mu X . F / X], \Gamma}{\vdash \mu X, F, \Gamma}[\mu]
\end{aligned}
$$

Fischer-Ladner subformulas

$F L(F)$ is the least set of formula occurrences such that:

- $F \in F L(F)$;
- $G_{1} \star G_{2} \in F L(F) \Rightarrow G_{1}, G_{2} \in F L(F)$ for $\star \in\{\oplus, \&, \not, \otimes, \otimes\}$;
- $\sigma X . B \in F L(F) \Rightarrow B[\sigma X . B / X] \in F L(F)$ for $\sigma \in\{\mu, v\}$;
- $m G \in F L(F) \Rightarrow G \in F L(F)$ for $m \in\{!, ?\}$.

Fact

$F L(F)$ is a finite set for any formula F.

Fischer-Ladner subformulas

$F L(F)$ is the least set of formula occurrences such that:

- $F \in F L(F)$;
- $G_{1} \star G_{2} \in F L(F) \Rightarrow G_{1}, G_{2} \in F L(F)$ for $\star \in\{\oplus, \&, \not, \otimes, \otimes\}$;
- $\sigma X . B \in F L(F) \Rightarrow B[\sigma X . B / X] \in F L(F)$ for $\sigma \in\{\mu, v\}$;
- $m G \in F L(F) \Rightarrow G \in F L(F)$ for $m \in\{!, ?\}$.

Fact

$F L(F)$ is a finite set for any formula F.

Example: $F=v X .\left(\left(a \oslash a^{\perp}\right) \otimes(X \otimes \mu Y . X)\right)$

$$
F L(F)=\{F,
$$

Fischer-Ladner subformulas

$F L(F)$ is the least set of formula occurrences such that:

- $F \in F L(F)$;
- $G_{1} \star G_{2} \in F L(F) \Rightarrow G_{1}, G_{2} \in F L(F)$ for $\star \in\{\oplus, \&, \not, \otimes, \otimes\}$;
- $\sigma X . B \in F L(F) \Rightarrow B[\sigma X . B / X] \in F L(F)$ for $\sigma \in\{\mu, v\}$;
- $m G \in F L(F) \Rightarrow G \in F L(F)$ for $m \in\{!, ?\}$.

Fact

$F L(F)$ is a finite set for any formula F.

Example: $F=v X .\left(\left(a \oslash a^{\perp}\right) \otimes(X \otimes \mu Y . X)\right)$

$$
F L(F)=\left\{F,\left(a \gtrdot a^{\perp}\right) \otimes(F \otimes \mu Y . F),\right.
$$

Fischer-Ladner subformulas

$F L(F)$ is the least set of formula occurrences such that:

- $F \in F L(F)$;
- $G_{1} \star G_{2} \in F L(F) \Rightarrow G_{1}, G_{2} \in F L(F)$ for $\star \in\{\oplus, \&, \not, \otimes, \otimes\}$;
- $\sigma X . B \in F L(F) \Rightarrow B[\sigma X . B / X] \in F L(F)$ for $\sigma \in\{\mu, v\}$;
- $m G \in F L(F) \Rightarrow G \in F L(F)$ for $m \in\{!, ?\}$.

Fact

$F L(F)$ is a finite set for any formula F.

Example: $F=v X .\left(\left(a \rtimes a^{\perp}\right) \otimes(X \otimes \mu Y . X)\right)$

$$
F L(F)=\left\{F,\left(a \otimes a^{\perp}\right) \otimes(F \otimes \mu Y . F), \quad \begin{array}{l}
a \otimes a^{\perp}, \\
F \otimes \mu Y . F
\end{array}\right.
$$

Fischer-Ladner subformulas

$F L(F)$ is the least set of formula occurrences such that:

- $F \in F L(F)$;
- $G_{1} \star G_{2} \in F L(F) \Rightarrow G_{1}, G_{2} \in F L(F)$ for $\star \in\{\oplus, \&, \not, \otimes, \otimes\}$;
- $\sigma X . B \in F L(F) \Rightarrow B[\sigma X . B / X] \in F L(F)$ for $\sigma \in\{\mu, v\}$;
- $m G \in F L(F) \Rightarrow G \in F L(F)$ for $m \in\{!, ?\}$.

Fact

$F L(F)$ is a finite set for any formula F.

Example: $F=v X .\left(\left(a \diamond a^{\perp}\right) \otimes(X \otimes \mu Y . X)\right)$

$$
F L(F)=\left\{F,\left(a 8 a^{\perp}\right) \otimes(F \otimes \mu Y . F), \begin{array}{cc}
a \& a^{\perp} & , \\
a^{\perp} & a \\
F \otimes \mu Y . F, & \mu Y . F
\end{array}\right\}
$$

Fischer-Ladner subformulas

$F L(F)$ is the least set of formula occurrences such that:

- $F \in F L(F)$;
- $G_{1} \star G_{2} \in F L(F) \Rightarrow G_{1}, G_{2} \in F L(F)$ for $\star \in\{\oplus, \&, \not, \otimes, \otimes\}$;
- $\sigma X . B \in F L(F) \Rightarrow B[\sigma X . B / X] \in F L(F)$ for $\sigma \in\{\mu, v\}$;
- $m G \in F L(F) \Rightarrow G \in F L(F)$ for $m \in\{!, ?\}$.

Fact

$F L(F)$ is a finite set for any formula F.

Example: $F=v X .\left(\left(a \gtrdot a^{\perp}\right) \otimes(X \otimes \mu Y . X)\right)$

$$
F L(F)=\underset{\uparrow \uparrow\left(a 8 a^{\perp}\right) \otimes(F \otimes \mu Y . F)}{F \rightarrow} \begin{aligned}
& \nearrow a 8 a^{\perp} \longrightarrow \\
& \searrow F \otimes \mu Y . F \longrightarrow \mu Y . F
\end{aligned}
$$

Infinite threads, validity
 $$
F=v X .\left(\left(a 8 a^{\perp}\right) \otimes(X \otimes \mu Y . X)\right) .
$$

A thread on an infinite branch $\left(\Gamma_{i}\right)_{i \in \omega}$ is an infinite sequence of formula occurrences $\left(F_{i}\right)_{i \geq k}$ such that for any $i \geq k, F_{i} \in \Gamma_{i}$ and F_{i+1} is an immediate ancestor of F_{i}.

Infinite threads, validity
 $$
F=v X .\left(\left(a 8 a^{\perp}\right) \otimes(X \otimes \mu Y . X)\right) .
$$

A thread on an infinite
 branch $\left(\Gamma_{i}\right)_{i \in \omega}$ is an infinite sequence of formula occurrences $\left(F_{i}\right)_{i \geq k}$ such that for any $i \geq k, F_{i} \in \Gamma_{i}$ and F_{i+1} is an immediate ancestor of F_{i}.

A thread is valid if it unfolds infinitely many v. More precisely, if the minimal recurring principal formula of the thread is a v-formula.

A proof is valid if every infinite branch contains a valid thread.

Infinite threads, validity
 $$
F=v X .\left(\left(a 8 a^{\perp}\right) \otimes(X \otimes \mu Y . X)\right) .
$$

A thread on an infinite branch $\left(\Gamma_{i}\right)_{i \in \omega}$ is an infinite sequence of formula occurrences $\left(F_{i}\right)_{i \geq k}$ such that for any $i \geq k, F_{i} \in \Gamma_{i}$ and F_{i+1} is an immediate ancestor of F_{i}.

A thread is valid if it unfolds infinitely many v. More precisely, if the minimal recurring principal formula of the thread is a v-formula.

A proof is valid if every infinite branch contains a valid thread.
Theorem (Nollet, Tasson \& S, 2019)
Validity of $\mu \mathrm{LL}^{\omega}$ (circular) pre-proofs is PSPACE-complete.
Theorem (Baelde, Doumane \& S, 2016)
$\mu \mathrm{MALL}^{\infty}$ is sound, and admits cut-elimination.

Examples of circular proofs

- Inductive and coinductive definitions

$$
N=\mu X .1 \oplus X \quad S=v X .(1 \&(N \otimes X))
$$

- Proofs-programs over these data types

$$
\begin{array}{llll}
\text { double } & : & N \rightarrow N & \\
\text { double }(n) & =0 & & \text { if } n=0 \\
& =\operatorname{succ}(\operatorname{succ}(\text { double }(m))) & & \text { if } n=\operatorname{succ}(m)
\end{array}
$$

Examples of circular proofs

- Inductive and coinductive definitions

$$
N=\mu X .1 \oplus X \quad S=v X .(1 \&(N \otimes X))
$$

- Proofs-programs over these data types

$$
\begin{aligned}
& \text { double : } N \rightarrow N \\
& \text { double(} n \text {) }=0 \quad \text { if } n=0 \\
& =\operatorname{succ}(\operatorname{succ}(\text { double }(m))) \text { if } n=\operatorname{succ}(m)
\end{aligned}
$$

$$
\begin{aligned}
& \Pi_{\text {double }}=\frac{\frac{\bar{F}_{1-1}}{}{ }^{[1]}\left[\frac{\frac{\Pi_{\text {double }}}{N \vdash N}}{1+1 \oplus N}\right.}{\left[\oplus_{1}\right]} \frac{\frac{\left.\oplus_{2}\right]}{N \vdash N}}{[\mu]}
\end{aligned}
$$

Examples of circular proofs

- Inductive and coinductive definitions

$$
N=\mu X .1 \oplus X \quad S=v X .1 \&(N \otimes X)
$$

- Proofs-programs over these data types

$$
\begin{array}{ll}
\operatorname{enum} & : N \rightarrow S \\
\operatorname{enum}(n) & =n:: \operatorname{enum}(\operatorname{succ}(n))
\end{array}
$$

Examples of circular proofs

- Inductive and coinductive definitions

$$
N=\mu X .1 \oplus X \quad S=v X .1 \&(N \otimes X)
$$

- Proofs-programs over these data types

$$
\begin{aligned}
& \operatorname{enum}: \quad N \rightarrow S \\
& \operatorname{enum}(n)=n:: \operatorname{enum}(\operatorname{succ}(n))
\end{aligned}
$$

Circular \& finitary proofs

From finitary to circular proofs
Theorem
Finitary proofs can be transformed to (valid) circular proofs.
The key translation step is the following:

From circular to finitary proofs
Open problem for $\mu \mathrm{LL}{ }^{\omega}$.

$\mu M A L L^{\infty}$ Cut elimination

$\mu \mathrm{MALL}^{\infty}$ Cut Elimination Theorem

Theorem (Baelde, Doumane \& S, 2016)
Fair μ MALL ${ }^{\infty}$ cut-reduction sequences converge to cut-free μ MALL ${ }^{\infty}$ proofs.

Previous result by Santocanale and Fortier for the purely additive fragment of $\mu \mathrm{LL}$. Proof uses a locative treatment of occurrences.

- Strategy: "push" the cuts away from the root.
- Cut-Cut:

$\mu \mathrm{MALL}^{\infty}$ Cut Elimination Theorem

Theorem (Baelde, Doumane \& S, 2016)
Fair $\mu \mathrm{MALL}^{\infty}$ mcut-reduction sequences converge to cut-free $\mu \mathrm{MALL}^{\infty}$ proofs.

Previous result by Santocanale and Fortier for the purely additive fragment of $\mu \mathrm{LL}$. Proof uses a locative treatment of occurrences.

- Strategy: "push" the cuts away from the root.
- Cut-Cut:

$$
\frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta, G}{\vdash \Gamma, \Delta, G}[\mathrm{Cut}] \quad \vdash G^{\perp}, \Sigma{ }_{[C u t]}^{\vdash \Gamma, \Delta, \Sigma} \quad \rightarrow \frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta, G \quad \vdash G^{\perp}, \Sigma}{\vdash \Gamma, \Delta, \Sigma} \text { [mcut] }
$$

Cut elimination procedure
External phase: Cut-commutation cases

$$
\begin{aligned}
& \left.\frac{\vdash \Delta, F[\mu X . F / X]}{\frac{\vdash \Delta, \mu X . F}{\vdash \Sigma, \mu X . F}[\mu]} \quad \Rightarrow \quad \frac{\vdash \Delta, F[\mu X . F / X] \ldots}{\frac{\vdash \Sigma, F[\mu X . F / X]}{\vdash \Sigma, \mu X . F}} \text { [meut] }{ }^{\circ}\right] \\
& \text { + additional cases }
\end{aligned}
$$

Cut elimination procedure
Internal Phase: Key cases

$$
\begin{aligned}
& \begin{array}{ccc}
& \frac{\vdash \Delta, F_{2} \vdash \Delta, F_{1}}{\vdash \Delta, F_{2} \& F_{1}} \quad[\&] & \frac{\vdash \Gamma, F_{i}^{\perp}}{\vdash \Gamma, F_{1}^{\perp} \oplus F_{2}^{\perp}} \\
\vdash \Sigma & & {\left[\oplus_{\mathrm{i}}\right]} \\
\text { [mcut] }
\end{array} \\
& \Rightarrow \frac{\cdots \quad \vdash \Delta, F_{i} \quad \vdash \Gamma, F_{i}^{\perp}}{\vdash \Sigma} \quad \text { [mcut] } \\
& \frac{\frac{\vdash \Delta, F[\mu X . F / X]}{\vdash \Delta, \mu X . F} \quad[\mu] \quad \frac{\vdash \Gamma, F^{\perp}\left[v X . F^{\perp} / X\right]}{\vdash \Gamma, v X . F^{\perp}} \quad[v]}{[\mathrm{Fcut}]} \\
& \Rightarrow \frac{\cdots \quad \vdash \Delta, F[\mu X . F / X] \vdash \Gamma, F^{\perp}\left[v X . F^{\perp} / X\right]}{\vdash \Sigma} \text { [mcut] } \\
& + \text { additional cases }
\end{aligned}
$$

Cut elimination algorithm

- Internal phase: Perform key case reductions while you cannot do anything else.
- External phase: Build a part of the output tree by applying cut-commutation steps as soon possible.
- Repeat.

Cut elimination algorithm

- Internal phase: Perform key case reductions while you cannot do anything else.
- External phase: Build a part of the output tree by applying cut-commutation steps as soon possible.
- Repeat.

Remark: We consider a fair strategy ie. every reduction which is available at some point will be performed eventually.

Theorem
Internal phases always halt. Cut-elimination produces a pre-proof.

Theorem

The pre-proof obtained by the cut elimination algorithm is valid.
$\mu L L^{\omega}$ is not stable by cut-elimination
Eliminating cuts from a $\mu \mathrm{LL}^{\omega}$ proof (circular) may result in a $\mu \mathrm{LL}^{\infty}$, non circular, proof.

Cut-elimination for $\mu \mathrm{LL}^{\infty}$

Cut-elimination for $\mu \mathrm{LL}^{\infty}$

Theorem
Fair $\mu \mathrm{LL}^{\infty}$ mcut-reduction sequences converge to cut-free $\mu \mathrm{LL}{ }^{\infty}$ proofs.

Idea
The proof goes by:

- considering the following encoding of LL exponential modalities:

$$
\begin{aligned}
& ? \bullet F=\mu X . F \oplus(\perp \oplus(X>X)) \\
& \cdot \bullet F=v X . F \&(1 \&(X \otimes X))
\end{aligned}
$$

- translating $\mu \mathrm{LL}^{\infty}$ sequents and proofs in $\mu \mathrm{MALL}^{\infty}$,
- simulating $\mu \mathrm{LL}{ }^{\infty}$ cut-reduction sequences in $\mu \mathrm{MALL}{ }^{\infty}$ and
- applying μ MALL ${ }^{\infty}$ cut-elimination theorem.

Encoding $\mu \mathrm{LL}^{\infty}$ in $\mu \mathrm{MALL}{ }^{\infty}$

$$
?^{\bullet} F=\mu X . F \oplus(\perp \oplus(X \& X)) \quad!^{\bullet} F=v X . F \&(1 \&(X \otimes X))
$$

$\mu \mathrm{MALL}{ }^{\infty}$ derivability of the exponential rules (? $\left.\mathrm{d}^{\bullet}, ? \mathrm{c}^{\bullet}, ? \mathrm{w}^{\bullet},!\mathrm{p}^{\bullet}\right)$:

Dereliction :

$$
\frac{\vdash F, \Delta}{\vdash F \oplus\left(\perp \oplus\left(?^{\bullet} F \gtrdot ?^{\bullet} F\right)\right), \Delta} \vdash^{\bullet} F, \Delta \quad\left[\oplus_{1}\right]
$$

Contraction :

$$
\frac{\frac{\vdash ?^{\bullet} F, ?^{\bullet} F \Delta}{\vdash ?^{\bullet} F \not ?^{\bullet} F, \Delta}}{\frac{\vdash \perp \oplus\left(?^{\bullet} F \gtrdot ?^{\bullet} F\right), \Delta}{\vdash F \oplus\left(\perp \oplus\left(?^{\bullet} F \gtrdot ?^{\bullet} F\right)\right), \Delta}}{ }^{\vdash ?^{\bullet} F, \Delta}{ }_{\left[\oplus_{2}\right]}^{\left[\oplus_{2}\right]}
$$

Weakening :

$$
\left.\left.\frac{\frac{\vdash \Delta}{\vdash \perp, \Delta}}{\frac{{ }^{\vdash \perp]}}{\vdash F \oplus\left(?^{\bullet} F \gtrdot ?^{\bullet} F\right), \Delta}}{ }^{\left[\oplus_{1}\right]}{ }^{\vdash ?^{\bullet} F, \Delta} ?^{\bullet} F \ngtr ?^{\bullet} F\right)\right), \Delta\left(\oplus_{2}\right]
$$

Promotion:

Preservation of validity
π is a valid $\mu \mathrm{MLL}^{\infty}$ pre-proof of $\vdash \Gamma$ iff
π^{\bullet} is a valid $\mu \mathrm{MALL}^{\infty}$ pre-proof of $\vdash \Gamma^{\bullet}$.

Simulation of $\mu \mathrm{LL}^{\infty}$ cut-elimination steps

$\mu \mathrm{LL}{ }^{\infty}$ cut-elimination steps can be simulated by the previous encoding.

For instance, the following reduction can be simulated by applying the external reduction rule $[\mu] /[\mathrm{Cut}]$ followed by the external reduction rule $[\oplus] /[\mathrm{Cut}]$.

Challenge: to show that the simulation of derivation also holds
(i) for the reductions involving $[!p]$ as well as
(ii) for reductions occurring above a promotion rule (aka. in a box) since the encoding of $[!p]$ uses an infinite, circular derivation.

Simulation of $\mu \mathrm{LL}{ }^{\infty}$ cut-elimination steps
External phase: Cut-commutation rules

$$
\begin{aligned}
& \frac{\frac{\vdash F, G, \Gamma}{\vdash ?^{\bullet} F, G, \Gamma}{\left[? d^{\bullet}\right]}_{\vdash ?^{\bullet} F, \Gamma, \Delta}^{\vdash G^{\perp}, \Delta}}{[\mathrm{Cut}]} \longrightarrow^{2} \frac{\vdash F, G, \Gamma \quad \vdash G^{\perp}, \Delta}{\frac{\vdash F, \Gamma, \Delta}{\vdash ?^{\bullet} F, \Gamma, \Delta}} \text { [?dd] } \text { [Cut] }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{\vdash G, \Gamma}{\vdash ?^{\bullet} F, G, \Gamma}{\left[? w^{\bullet}\right]}_{\vdash ?^{\bullet} F, \Gamma, \Delta}^{\vdash G^{\perp}, \Delta}}{[\mathrm{Cut}]} \longrightarrow^{3} \frac{\vdash G, \Gamma \quad \vdash G^{\perp}, \Delta}{\frac{\vdash \Gamma, \Delta}{\vdash ?^{\bullet} F, \Gamma, \Delta}} \text { [? }{ }^{\bullet} \mathrm{w}^{\bullet} \text {] }
\end{aligned}
$$

Simulation of $\mu \mathrm{LL}{ }^{\infty}$ cut-elimination steps
Internal phase: Key-cut rules

$$
\begin{aligned}
& \begin{array}{lll}
\frac{\pi}{\frac{-?^{\bullet} F, ?^{\bullet} F, \Gamma}{\vdash ?^{\bullet} F, \Gamma}} \quad\left[?^{\bullet}\right] & \frac{\pi^{\prime}}{\vdash F^{\perp}, ?^{\bullet} \Delta} \\
\vdash \Gamma, ?^{\bullet} \Delta & {\left[!p^{\bullet}\right]}
\end{array} \longrightarrow^{4 i n t, 4 \times \# \Delta e x t} \\
& \frac{\frac{\pi}{\vdash ?^{\bullet} F, ?^{\bullet} F, \Gamma}}{\frac{\frac{\pi^{\prime}}{\vdash!^{\bullet} F^{\perp}, ?^{\bullet} \Delta}}{\frac{\vdash \Gamma, ?^{\bullet} \Delta, ?^{\bullet} \Delta}{\vdash \Gamma, ?^{\bullet} \Delta}}\left[?^{\bullet} c^{\star}\right.} \frac{\pi^{\prime}}{\vdash!^{\bullet} F^{\perp}, ?^{\bullet} \Delta} \text { [mcut] }
\end{aligned}
$$

Cut-elimination for $\mu \mathrm{LL}^{\infty}$

- Consider a fair cut-reduction sequence $\sigma=\left(\pi_{i}\right)_{i \in \omega}$ in μL^{∞} from π.
- σ converges to a cut-free $\mu \mathrm{LL}{ }^{\infty}$ pre-proof. Otherwise, a suffix τ of σ would contain only key-cut steps. The encoding of τ in $\mu \mathrm{MALL}^{\infty}$, τ^{\bullet}, would be unproductive (contradicting productivity of cut-elimination).
- As σ is productive, it strongly converges to some $\mu \mathrm{LL}^{\infty}$ pre-proof π^{\prime}.
- σ^{\bullet} is therefore a transfinite reduction sequence from π^{\bullet} strongly converging to $\pi^{\prime \bullet}$, cut-free (as it is the encoding of π^{\prime}).
- The compression lemma applies: there exists ρ an ω-indexed $\mu \mathrm{MALL}{ }^{\infty}$ cut-reduction sequence converging to $\pi^{\prime \boldsymbol{\omega}}$.
- By compression, fairness of σ^{\bullet} transfers to ρ which is fair.
- Therefore, ρ has a limit, $\pi^{\prime \bullet}$ which is a valid cut-free $\mu \mathrm{MALL}^{\infty}$ proof. $\pi^{\prime \bullet}$ is cut-free and valid and so is π^{\prime}, by the validity preservation property.

Cut-elimination for $\mu \mathrm{LK}^{\infty}, \mu \mathrm{LJ}{ }^{\infty}$

The usual call-by-value embedding of LJ in ILL (intuitionnistic LL) can be lifted to $\mu \mathrm{LJ}$: indeed, the translation of proofs does not introduce cuts. For $\mu \mathrm{LK}^{\infty}$, it is slightly trickier as the well-known T/Q-translations introduce cuts breaking validity. An alternative translation which does not introduce cuts can be used.

Moreover, one gets the skeleton of a $\mu \mathrm{LL}{ }^{\infty}$ (resp. $\mu \mathrm{ILL}{ }^{\infty}$) proof which is a $\mu \mathrm{LK}{ }^{\infty}$ (resp. $\mu \mathrm{LJ} \mathrm{J}^{\infty}$) proof, simply by erasing the exponentials (connectives and inferences), preserving validity.
The skeleton of a $\mu \mathrm{LL}{ }^{\infty}$ (resp. $\mu \mathrm{ILL}$) cut-reduction sequence is a $\mu \mathrm{LK}^{\infty}$ (resp. $\mu \mathrm{LJ}{ }^{\infty}$) cut-reduction sequence. As a result, one has:

Theorem

If π is an $\mu \mathrm{LK}^{\infty}$ (resp. $\mu \mathrm{LJ}{ }^{\infty}$) proof of $\vdash \Gamma$ (resp. $\left.\Gamma \vdash F\right)$, there exists a $\mu \mathrm{LL}^{\infty}$ (resp. $\mu \mathrm{ILL}{ }^{\infty}$) proof of the translated sequents.

Theorem

There are productive cut-reduction strategies producing cut-free $\mu \mathrm{LK}^{\infty}$ (resp. $\mu \mathrm{LJ} \mathrm{J}^{\infty}$) proofs.

Bouncing validity

A invalid, though productive, proof with cut
Problem: Cuts are not well-managed by the validity condition.

A invalid, though productive, proof with cut
Problem: Cuts are not well-managed by the validity condition.

From now, we will refer to s-valid pre-proof for the previous validity condition and will consider alternative validity conditions.

A invalid, though productive, proof with cut
Problem: Cuts are not well-managed by the validity condition.

From now, we will refer to s-valid pre-proof for the previous validity condition and will consider alternative validity conditions.

Bouncing threads: visible part

Visible part: survives the

Bouncing thread valid: ∞v-unfoldings in visible part.

Bouncing threads: visible part

Visible part: survives the

Bouncing thread valid: ∞v-unfoldings in visible part.

Valid branch B : exists a valid bouncing thread with visible part included in B.

B-valid proof: all infinite branches are valid.

Bouncing threads: visible part

Visible part: survives the

Bouncing thread valid: ∞v-unfoldings in visible part.

Valid branch B : exists a valid bouncing thread with visible part included in B.

B-valid proof: all infinite branches are valid.

Theorem (Baelde, Doumane, Kuperberg \& S)
Soundness and cut-elimination hold for $\mu \mathrm{MALL}^{\infty} b$-valid proofs.

Decidability of the bouncing validity condition?

Given a circular proof, can we decide b-validity ?

Decidability of the bouncing validity condition ?

Given a circular proof, can we decide b-validity ? NO!
\Longrightarrow Reduce termination of Minsky machines to bouncing validity.

Decidability of the bouncing validity condition ?

Given a circular proof, can we decide b-validity? NO!
\Longrightarrow Reduce termination of Minsky machines to bouncing validity.
A hierarchy of decidable conditions: Height of a b-thread: parameter binding the height of bounces.
$b(k)$-valid proof: b-valid proof using only threads of height $\leq k$.
Theorem
Every b-valid circular proof is a $b(k)$-valid for some $k \in \mathbb{N}$.

Theorem
For all $k \in \mathbb{N}$, it is decidable whether a circular proof is a k-proof.

Hierarchy of validity criteria

Hierarchy of validity criteria

- cut-free valid Pre-proofs

Hierarchy of validity criteria

- s-valid Pre-proofs
- cut-free valid Pre-proofs

Hierarchy of validity criteria

- $b(k)$-valid Pre-proofs
- s-valid Pre-proofs
- cut-free valid Pre-proofs

Hierarchy of validity criteria

- b-valid Pre-proofs
- b(k)-valid Pre-proofs
- s-valid Pre-proofs
- cut-free valid Pre-proofs

Hierarchy of validity criteria

Hierarchy of validity criteria

Sequentiality \& parallelism in non-wellfounded proofs: proof-nets for $\mu \mathrm{MLL}^{\infty}$

Mismatch between the parallel nature of threads and the sequential nature of sequent proofs.

Non-productive cut-elimination

Productive cut-elimination

MLL proof-nets

An MLL proof structure is a directed finite graph composed of:

A proof structure that represents no sequent proof:

Canonicity

Two proofs are equivalent up to permutation of rules iff they have the same proof-net.

Confluent and terminating cut-elimination

$\mu \mathrm{MLL}^{\infty}$ proof structures

An MLL proof structure + the following decorated nodes:

New cut-elimination rules for new operators:

Is that enough?

$\mu \mathrm{MLL}^{\infty}$ proof structures

An MLL proof structure + the following decorated nodes:

New cut-elimination rules for new operators:

Is that enough? No! Need more structure \& more reductions:

- Need to consider "infinite axioms" as invariants of infinite branches;
- Need to add visitable paths to infinite axioms, to prevent disconnectedness of the proof structure;
- cut-elimination shall be adapted to those infinite axioms.

Infinite axioms and visitable paths

$$
\begin{aligned}
& \text { Let } G=v X .\left(A>A^{\perp}\right) \otimes X \text {. } \\
& \frac{\frac{{\overline{\vdash A, A^{\perp}}}^{\vdash}{ }^{[A x]}}{\frac{\vdash A 8 A^{\perp}}{}{ }^{[8]} \quad \star \vdash\left(A 8 A^{\perp}\right) \otimes G, B}}{\star \vdash G, B}{ }_{[\otimes]}^{[v]} \\
& \frac{\overbrace{\vdash, F^{\perp}}[\mathrm{Ax}] \frac{\star}{\star \vdash F, v X . X} \frac{\stackrel{\star}{\vdash}, v X . X}{\vdash F, v X . X}}{}[\mathrm{v}]
\end{aligned}
$$

Infinite axioms are invariants of infinite branches in proofs. They may contain "visitable" sequences of axioms and cuts/tensors.

Infinite axioms and visitable paths

$$
\begin{aligned}
& \text { Let } G=v X .\left(A>A^{\perp}\right) \otimes X \text {. }
\end{aligned}
$$

Infinite axioms are invariants of infinite branches in proofs. They may contain "visitable" sequences of axioms and cuts/tensors.

Non-wellfounded proof-structures

An NWFPS has the following components:

- Formulas $\left\{F_{1}, F_{2}, \ldots\right\}$ and their corresponding syntax trees $\left\{T_{1}, T_{2}, \ldots\right\}$
- Cuts of the form $\left(C, C^{\perp}\right)$ where $C=F_{i}$ and $C^{\perp}=F_{j}$.
- Axioms $\left(L, L^{\perp}\right)$ of leaves of some trees T_{i}, T_{j}.
- Visitable paths: infinite sequences of the form APAPAP... where A is an axiom and P is either a cut or a \otimes.
- Infinite axioms that contain leaves and visitable paths.

Correctness criterion
A correctness criterion ensures sequentialisation and cut-elimination.

Infinet cut-elimination

But what about the cut/inf-ax case?

Consider $k(F)$ the smallest subnet with F as the conclusion (corresponding to the kingdom of F).

Theorem (De, Pellissier \& S, 2021)
The limit of any sequence of (fair) reductions is a (cut-free) infinet.

Conclusion

Conclusion

- Fixed-point logics extending LL with finite circular or non-wellfounded proofs;
- Syntactic cut elimination for various nwf sequent calculi: $\mu \mathrm{MALL}^{\infty}, \mu \mathrm{LL}^{\infty}, \mu \mathrm{LJ}{ }^{\infty}, \mu \mathrm{LK}^{\infty}$;
- More expressive validity condition;
- Proof-nets in the non-wellfounded multiplicative case.
- Ongoing and future work:
- Equivalence of circular fragment of $\mu \mathrm{MALL}^{\infty}$ and $\mu \mathrm{MALL}$: Translate infinitrary proofs to finitary ones. Same question as above by preserving the computational content.
- Relax the conditions on bouncing threads retaining cut-elimination in infinets.
- Design a good notion of circularity for infinets.
- Extend to circular natural deduction and circular λ-calculus.
- Provability and denotational semantics of circular proofs (jww De, Ehrhard and Jafarrahmani).

Conclusion

- Fixed-point logics extending LL with finite circular or non-wellfounded proofs;
- Syntactic cut elimination for various nwf sequent calculi: $\mu \mathrm{MALL}^{\infty}, \mu \mathrm{LL}^{\infty}, \mu \mathrm{LJ}{ }^{\infty}, \mu \mathrm{LK}^{\infty}$;
- More expressive validity condition;
- Proof-nets in the non-wellfounded multiplicative case.
- Ongoing and future work:
- Equivalence of circular fragment of $\mu \mathrm{MALL}^{\infty}$ and $\mu \mathrm{MALL}$: Translate infinitrary proofs to finitary ones. Same question as above by preserving the computational content.
- Relax the conditions on bouncing threads retaining cut-elimination in infinets.
- Design a good notion of circularity for infinets.
- Extend to circular natural deduction and circular λ-calculus.
- Provability and denotational semantics of circular proofs (jww De, Ehrhard and Jafarrahmani).

Thank you for your attention!

Appendix

For any integer m, \sqrt{m} is either an integer, or irrational.
Another example of infinite descent
Proof
Let $m \in \mathbb{N}$ and for the sake of contradiction, assume $\sqrt{m} \in \mathbb{Q} \backslash \mathbb{N}$.

For any integer m, \sqrt{m} is either an integer, or irrational.
Another example of infinite descent

Proof

Let $m \in \mathbb{N}$ and for the sake of contradiction, assume $\sqrt{m} \in \mathbb{Q} \backslash \mathbb{N}$.
(1) Choose $q, a_{0}, b_{0} \in \mathbb{N}$ st. $0<\sqrt{m}-q<1$ and $\sqrt{m}=a_{0} / b_{0}$. One has $b_{0} \sqrt{m}=a_{0} \in \mathbb{N}$ and $a_{0} \sqrt{m}=m b_{0} \in \mathbb{N}$.

For any integer m, \sqrt{m} is either an integer, or irrational.
Another example of infinite descent

Proof

Let $m \in \mathbb{N}$ and for the sake of contradiction, assume $\sqrt{m} \in \mathbb{Q} \backslash \mathbb{N}$.
(1) Choose $q, a_{0}, b_{0} \in \mathbb{N}$ st. $0<\sqrt{m}-q<1$ and $\sqrt{m}=a_{0} / b_{0}$. One has $b_{0} \sqrt{m}=a_{0} \in \mathbb{N}$ and $a_{0} \sqrt{m}=m b_{0} \in \mathbb{N}$.
(2) Therefore by setting $a_{1} \triangleq m b_{0}-a_{0} q=a_{0}(\sqrt{m}-q)$ and $b_{1} \triangleq a_{0}-b_{0} q=b_{0}(\sqrt{m}-q)$, we have

- a_{0}, a_{1} are integers,
- $0<a_{1}<a_{0}, \quad 0<b_{1}<b_{0}$ and
- $\sqrt{m}=a_{1} / b_{1}$.

For any integer m, \sqrt{m} is either an integer, or irrational.
Another example of infinite descent

Proof

Let $m \in \mathbb{N}$ and for the sake of contradiction, assume $\sqrt{m} \in \mathbb{Q} \backslash \mathbb{N}$.
(1) Choose $q, a_{0}, b_{0} \in \mathbb{N}$ st. $0<\sqrt{m}-q<1$ and $\sqrt{m}=a_{0} / b_{0}$. One has $b_{0} \sqrt{m}=a_{0} \in \mathbb{N}$ and $a_{0} \sqrt{m}=m b_{0} \in \mathbb{N}$.
(2) Therefore by setting $a_{1} \triangleq m b_{0}-a_{0} q=a_{0}(\sqrt{m}-q)$ and $b_{1} \triangleq a_{0}-b_{0} q=b_{0}(\sqrt{m}-q)$, we have

- a_{0}, a_{1} are integers,
- $0<a_{1}<a_{0}, \quad 0<b_{1}<b_{0}$ and
- $\sqrt{m}=a_{1} / b_{1}$.
(3) In a similar way, one can build $\left(a_{i}\right)_{i \in \mathbb{N}}$ and $\left(b_{i}\right)_{i \in \mathbb{N}}$ infinite sequences of integers, which are strictly decreasing.

For any integer m, \sqrt{m} is either an integer, or irrational.

Proof

Let $m \in \mathbb{N}$ and for the sake of contradiction, assume $\sqrt{m} \in \mathbb{Q} \backslash \mathbb{N}$.
(1) Choose $q, a_{0}, b_{0} \in \mathbb{N}$ st. $0<\sqrt{m}-q<1$ and $\sqrt{m}=a_{0} / b_{0}$. One has $b_{0} \sqrt{m}=a_{0} \in \mathbb{N}$ and $a_{0} \sqrt{m}=m b_{0} \in \mathbb{N}$.
(2) Therefore by setting $a_{1} \triangleq m b_{0}-a_{0} q=a_{0}(\sqrt{m}-q)$ and $b_{1} \triangleq a_{0}-b_{0} q=b_{0}(\sqrt{m}-q)$, we have

- a_{0}, a_{1} are integers,
- $0<a_{1}<a_{0}, \quad 0<b_{1}<b_{0}$ and
- $\sqrt{m}=a_{1} / b_{1}$.
(3) In a similar way, one can build $\left(a_{i}\right)_{i \in \mathbb{N}}$ and $\left(b_{i}\right)_{i \in \mathbb{N}}$ infinite sequences of integers, which are strictly decreasing.
(9) This is impossible. Therefore \sqrt{m} is either integer or irrational.

Decidability of the validity condition

Parity automata

Definition
A parity automaton is a finite state word automaton, whose states are ordered and given a parity bit v / μ, which accepts runs $\left(q_{i}\right)_{i \in \omega}$ such that $\min \left(\inf \left(\left(q_{i}\right)_{i}\right)\right)$ has parity v.

Parity automata

Definition

A parity automaton is a finite state word automaton, whose states are ordered and given a parity bit v / μ, which accepts runs $\left(q_{i}\right)_{i \in \omega}$ such that $\min \left(\inf \left(\left(q_{i}\right)_{i}\right)\right)$ has parity v.

Remarks

- States are usually given a color in \mathbb{N}, equivalently.
- Only co-accessible states need to be ordered.

Parity automata

Definition

A parity automaton is a finite state word automaton, whose states are ordered and given a parity bit v / μ, which accepts runs $\left(q_{i}\right)_{i \in \omega}$ such that $\min \left(\inf \left(\left(q_{i}\right)_{i}\right)\right)$ has parity v.

Remarks

- States are usually given a color in \mathbb{N}, equivalently.
- Only co-accessible states need to be ordered.

Properties

- PA can be determinized,
- PA are closed by complementation and intersection,
- The emptiness problem is decidable,
- (Thus) inclusion of parity automata is decidable.

Theorem: The validity of circular pre-proofs is decidable.

Proof.

Consider a pre-proof Π i.e. a graph with nodes $s_{i}=\left(F_{i}^{j}\right)_{j \in\left[1 ; n_{i}\right]}$.

The proof goes as follows:

- One builds a parity automaton recognizing the language \mathscr{L}_{B} of infinite branches of Π;
- One builds a parity automaton recognizing the language \mathscr{L}_{T} the valid branches of Π.
- Validity amounts to the inclusion of \mathscr{L}_{B} in \mathscr{L}_{T}, that is showing that $\mathscr{L}_{B} \backslash \mathscr{L}_{T}=\emptyset$ which is decidable.

Branch automaton: Let \mathscr{A}_{B} be the branch automaton with states s_{i}, transitions $s_{i} \rightarrow^{k} s_{j}$ when s_{j} is the k-th premise of s_{i}, and which accepts all runs.

Theorem: The validity of circular pre-proofs is decidable.

Proof.

Consider a pre-proof Π i.e. a graph with nodes $s_{i}=\left(F_{i}^{j}\right)_{j \in\left[1 ; n_{i}\right]}$. (...)

Thread automaton: Let \mathscr{A}_{T} be the thread automaton with states F_{i}^{j+}, F_{i}^{j-} or s_{i}, with transitions:

- $s_{i} \rightarrow^{k} s_{p}$ and $s_{i} \rightarrow^{k} F_{p}^{q-}$ when s_{p} is the k-th premise of s_{i}
- $F_{i}^{j+} \rightarrow^{k} F_{p}^{q \varepsilon} \quad(\varepsilon \in\{+,-\})$ when $s_{i} \rightarrow^{k} s_{p}$ and F_{i}^{j} is active in the rule of conclusion s_{i} and has ancestor F_{p}^{q}
- $F_{i}^{j-} \rightarrow^{k} F_{p}^{q \varepsilon} \quad(\varepsilon \in\{+,-\})$ when $s_{i} \rightarrow^{k} s_{p}$ and F_{i}^{j} is passive in the rule of conclusion s_{i} and has ancestor F_{p}^{q}
acceptance based on subformula ordering with the active/passive distinction: only active v-formulas have coinductive parity.

Validity of Π equivalent to $\mathscr{L}\left(\mathscr{A}_{B}\right) \backslash \mathscr{L}\left(\mathscr{A}_{T}\right)=\emptyset$, thus decidable.

Cut elimination is productive

Theorem
Internal phase always halts.

Cut elimination is productive

Theorem
Internal phase always halts.
Proof by contradiction: Suppose that there is a proof of F for which the internal phase does not halt.

Cut elimination is productive

Theorem
Internal phase always halts.
Proof by contradiction: Consider the trace of this divergent reduction.

Cut elimination is productive

Theorem
Internal phase always halts.
Proof by contradiction: No rule on F is applied in the trace, otherwise the internal phase would halt.

Cut elimination is productive

Theorem
Internal phase always halts.
Proof by contradiction: We can eliminate the occurrences of F from the trace. This yields a "proof" of \vdash.

Cut elimination is productive

Theorem
Internal phase always halts.
Proof by contradiction: We show that the proof system is sound. Contradiction.

Cut elimination is productive (Details)

Theorem
Internal phase always halts.

Cut elimination is productive (Details)

Theorem

Internal phase always halts.
Proof: Suppose that the internal phase diverges for a proof $\pi \vdash \Delta$.

- Let θ be the sub-derivation of π explored by the reduction.
- No rule is applied to a formula of Δ in θ, as this would contradict the divergence of internal phase.
- Let $\bar{\theta}$ be the proof obtained from θ by dropping all the formulas from Δ.
- $\bar{\theta}$ is then a proof for \vdash in a proof system with "truncation".
- We define a truth semantics for $\mu M A L L^{\infty}$ formulas and show soundness of the proof system with truncation wrt. it.
- Contradiction.

Cut elimination produces a proof

Theorem
The pre-proof obtained by the cut elimination algorithm is valid.

Cut elimination produces a proof

Theorem

The pre-proof obtained by the cut elimination algorithm is valid.
Proof: Let π^{\star} be the pre-proof obtained from $\pi \vdash \Delta$ by cut elimination. Suppose that a branch b of π^{\star} is not valid.

- Let θ be the sub-derivation of π explored by the reduction that produces b.
- Fact: Threads of θ are the threads of b, together with threads starting from cut formulas.
- The validity of θ cannot rely on the threads of b.
- Define θ^{μ} to be θ where we replace in Δ any v by a μ and any $1, \top$ by $\perp, 0$.
- Show that formulas containing only $\mu, \perp, 0$ and MALL binary connectives are false.
- θ^{μ} proves a false sequent which contradicts soundness.

