
1/57

Virtuous circles in proofs

Virtual proof theory seminar

Alexis Saurin
IRIF, CNRS, INRIA & Université de Paris

17 novembre 2021

2/57

Introduction and Background

3/57

Logics with least and greatest fixed points
Logics with least and greatest fixed points, modelling inductive and
coinductive reasoning:

Very useful to encode and reason about inductive and
coinductive data structures.
Their proof theory is not very well studied and understood.
Not only to express statements, but also a proof system in
sequent calculus: LL with fixed points

µLL: proofs are finite trees. Includes rules for induction, local
correctness, cut-elimination and focalization but not
subformula property
µLL∞: proofs are infinite trees. Simple inference rules for fixed
points, global correctness criterion, cut-elimination with
subformula property. Of particular interest is the fragment of
circular proofs, which are presentable as finite graphs.

Extends the proof–program correspondence to recursive and
co-recursive programming, with coinductive datatypes.

4/57

Outline

1 Introduction
2 µLL∞: circular and non-wellfounded proofs
3 Cut-elimination for µMALL∞ (joined work with

Baelde & Doumane)
4 Cut-elimination for µLL∞

5 Relaxing the thread validity condition (joined work with
Baelde, Doumane & Kuperberg)

6 On sequentiality and parallelism in non-wellfounded proofs
(joined work with
De & Pellissier)

7 Conclusion

5/57

Knaster-Tarski fixed-point theorem
Let C be a complete lattice and F a monotonic operator on C .

Theorem
F has a least fixed-point µF .
µF is the least prefixed-point:
– F (µF)v µF and
– ∀S,F (S)v S ⇒ µF v S.

Proof by induction:
To prove that µF ⊆ P, it is
sufficient to find some S ⊆ P and
to prove that ∀x ∈ F (S), x ∈ S.

H ` F [µX .F/X]
H ` µX .F [µr]

F [S/X] ` S
µX .F ` S [µl]

Theorem
F has a greatest fixed-point νF .
νF is the greatest postfixed-point:
– νF v F (νF) and
– ∀S,S v F (S) ⇒ S v νF .

Proof by coinduction:
To prove that P ⊆ νF , it is
sufficient to find some S ⊇ P and
to prove that ∀x ∈ S, x ∈ F (S).

F [νX .F/X] ` H
νX .F ` H [νl]

S ` F [S/X]
S ` νX .F [νr]

5/57

Knaster-Tarski fixed-point theorem
Let C be a complete lattice and F a monotonic operator on C .

Theorem
F has a least fixed-point µF .
µF is the least prefixed-point:
– F (µF)v µF and
– ∀S,F (S)v S ⇒ µF v S.

Proof by induction:
To prove that µF ⊆ P, it is
sufficient to find some S ⊆ P and
to prove that ∀x ∈ F (S), x ∈ S.

H ` F [µX .F/X]
H ` µX .F [µr]

F [S/X] ` S
µX .F ` S [µl]

Theorem
F has a greatest fixed-point νF .
νF is the greatest postfixed-point:
– νF v F (νF) and
– ∀S,S v F (S) ⇒ S v νF .

Proof by coinduction:
To prove that P ⊆ νF , it is
sufficient to find some S ⊇ P and
to prove that ∀x ∈ S, x ∈ F (S).

F [νX .F/X] ` H
νX .F ` H [νl]

S ` F [S/X]
S ` νX .F [νr]

5/57

Knaster-Tarski fixed-point theorem
Let C be a complete lattice and F a monotonic operator on C .

Theorem
F has a least fixed-point µF .
µF is the least prefixed-point:
– F (µF)v µF and
– ∀S,F (S)v S ⇒ µF v S.

Proof by induction:
To prove that µF ⊆ P, it is
sufficient to find some S ⊆ P and
to prove that ∀x ∈ F (S), x ∈ S.

H ` F [µX .F/X]
H ` µX .F [µr]

F [S/X] ` S
µX .F ` S [µl]

Theorem
F has a greatest fixed-point νF .
νF is the greatest postfixed-point:
– νF v F (νF) and
– ∀S,S v F (S) ⇒ S v νF .

Proof by coinduction:
To prove that P ⊆ νF , it is
sufficient to find some S ⊇ P and
to prove that ∀x ∈ S, x ∈ F (S).

F [νX .F/X] ` H
νX .F ` H [νl]

S ` F [S/X]
S ` νX .F [νr]

6/57

Martin-Löf’s induction definitions, LKID
A sequent calculus parameterized by a set of inductive definitions.

Idea: inductive predi-
cates described by pro-
duction rules.

Q1(u1) . . . Qk(uk) P1(t1) . . . Pl (tl)
P(t)

Example: N(0)
N(x)

N(s(x))

LK + inferences for the inductively defined predicates:
(N1

R)
Γ ` N(0),∆

Γ ` N(u),∆
(N2

R)
Γ ` N(s(u)),∆

Γ ` F (0),∆ Γ,F (x) ` F (s(x)),∆ Γ,F (t) `∆
(Ind N)

Γ,N(t) `∆

Mutually dependency: E (0)
O(x)
E (sx)

E (x)
O(sx)

7/57

Fixed-point logics and (co)induction
Some examples from (co)inductive predicates to µ-calculus

Nat(x) ,ind (x = 0)∨∃y .x = s(y)∧Nat(y)
ListNat(l),ind (l = nil)∨∃h, t.l = h :: t∧(Nat(h)∧ListNat(t))
StreamNat(l) ,coind ∃h, t.l = h :: t ∧ (Nat(h)∧StreamNat(t))

Nat(x) , µN.(x = 0)∨∃y .x = s(y)∧N(y)
ListNat(l) , µL.(l = nil)∨∃h, t.l = h :: t ∧ (Nat(h)∧L(t))
StreamNat(l) , νS.∃h, t.l = h :: t ∧ (Nat(h)∧S(t))

Nat , µN.>∨N ⇒ in the following,
ListNat , µL.>∨ (Nat ∧L) the propositional
StreamNat , νS.Nat ∧S µ-calculus only.

Interleavings of inductive/coinductives behaviours; eg. allowing to
express fairness properties:

νX .µY .(P ∧©X)∨©Y .

7/57

Fixed-point logics and (co)induction
Some examples from (co)inductive predicates to µ-calculus

Nat(x) ,ind (x = 0)∨∃y .x = s(y)∧Nat(y)
ListNat(l),ind (l = nil)∨∃h, t.l = h :: t∧(Nat(h)∧ListNat(t))
StreamNat(l) ,coind ∃h, t.l = h :: t ∧ (Nat(h)∧StreamNat(t))

Nat(x) , µN.(x = 0)∨∃y .x = s(y)∧N(y)
ListNat(l) , µL.(l = nil)∨∃h, t.l = h :: t ∧ (Nat(h)∧L(t))
StreamNat(l) , νS.∃h, t.l = h :: t ∧ (Nat(h)∧S(t))

Nat , µN.>∨N ⇒ in the following,
ListNat , µL.>∨ (Nat ∧L) the propositional
StreamNat , νS.Nat ∧S µ-calculus only.

Interleavings of inductive/coinductives behaviours; eg. allowing to
express fairness properties:

νX .µY .(P ∧©X)∨©Y .

7/57

Fixed-point logics and (co)induction
Some examples from (co)inductive predicates to µ-calculus

Nat(x) ,ind (x = 0)∨∃y .x = s(y)∧Nat(y)
ListNat(l),ind (l = nil)∨∃h, t.l = h :: t∧(Nat(h)∧ListNat(t))
StreamNat(l) ,coind ∃h, t.l = h :: t ∧ (Nat(h)∧StreamNat(t))

Nat(x) , µN.(x = 0)∨∃y .x = s(y)∧N(y)
ListNat(l) , µL.(l = nil)∨∃h, t.l = h :: t ∧ (Nat(h)∧L(t))
StreamNat(l) , νS.∃h, t.l = h :: t ∧ (Nat(h)∧S(t))

Nat , µN.>∨N ⇒ in the following,
ListNat , µL.>∨ (Nat ∧L) the propositional
StreamNat , νS.Nat ∧S µ-calculus only.

Interleavings of inductive/coinductives behaviours; eg. allowing to
express fairness properties:

νX .µY .(P ∧©X)∨©Y .

7/57

Fixed-point logics and (co)induction
Some examples from (co)inductive predicates to µ-calculus

Nat(x) ,ind (x = 0)∨∃y .x = s(y)∧Nat(y)
ListNat(l),ind (l = nil)∨∃h, t.l = h :: t∧(Nat(h)∧ListNat(t))
StreamNat(l) ,coind ∃h, t.l = h :: t ∧ (Nat(h)∧StreamNat(t))

Nat(x) , µN.(x = 0)∨∃y .x = s(y)∧N(y)
ListNat(l) , µL.(l = nil)∨∃h, t.l = h :: t ∧ (Nat(h)∧L(t))
StreamNat(l) , νS.∃h, t.l = h :: t ∧ (Nat(h)∧S(t))

Nat , µN.>∨N ⇒ in the following,
ListNat , µL.>∨ (Nat ∧L) the propositional
StreamNat , νS.Nat ∧S µ-calculus only.

Interleavings of inductive/coinductives behaviours; eg. allowing to
express fairness properties:

νX .µY .(P ∧©X)∨©Y .

8/57

µMALL: MALL with least and greatest
fixed points

9/57

µMALL formulas and sequent calculus
(Baelde & Miller 2007, Baelde 2012)

µMALL formulas
F ::= a | > |⊥| FOF | FNF negative MALL formulas

| a⊥ | 0 | 1 | F⊗F | F ⊕F positive MALL formulas
| X | µX .F | νX .F least and greatest fixed points

Negation ()⊥: involutive operator on formula, not a connective.

µ and ν are binders, consider closed formulas only.

µ and ν are dual. Ex: (νX .X ⊗X)⊥ = µX .XOX .

One-sided sequents: ` A1, . . . ,An. (Γ `∆ is a short for ` Γ⊥,∆)

Data types encodings: Nat , µX .1⊕X
List(A) , µX .1⊕ (A⊗X)

Stream(A) , νX .1N(A⊗X)

10/57

µMALL sequent Calculus
µMALL Inference Rules

(with explicit ancestor relation)

[Ax]
` F ,F⊥

` Γ,F ` F⊥,∆
[Cut]

` Γ,∆
` Γ,G ,F ,∆

[X]
` Γ,F ,G ,∆

` F ,G ,Γ
[O]

` FOG ,Γ
` F ,Γ ` G ,∆

[⊗]
` F⊗G ,Γ,∆

` Γ
[⊥]

` ⊥,Γ
[1]

` 1

` F ,Γ ` G ,Γ
[N]

` FNG ,Γ
` Ai ,Γ

[⊕i]` A1⊕A2,Γ
[>]

` >,Γ (no rule for 0)

` Γ,S ` S⊥,G [S/X]
[ν]

` νX .G ,Γ
` F [µX .F/X],Γ

[µ]
` µX .F ,Γ

Theorem

Cut elimination holds in µMALL.

10/57

µMALL sequent Calculus
µMALL Inference Rules (with explicit ancestor relation)

[Ax]
` F ,F⊥

` Γ,F ` F⊥,∆
[Cut]

` Γ,∆
` Γ,G ,F ,∆

[X]
` Γ,F ,G ,∆

` F ,G ,Γ
[O]

` FOG ,Γ
` F ,Γ ` G ,∆

[⊗]
` F⊗G ,Γ,∆

` Γ
[⊥]

` ⊥,Γ
[1]

` 1

` F ,Γ ` G ,Γ
[N]

` FNG ,Γ
` Ai ,Γ

[⊕i]` A1⊕A2,Γ
[>]

` >,Γ (no rule for 0)

` Γ,S ` S⊥,G [S/X]
[ν]

` νX .G ,Γ
` F [µX .F/X],Γ

[µ]
` µX .F ,Γ

Theorem

Cut elimination holds in µMALL.

10/57

µMALL sequent Calculus
µMALL Inference Rules (with explicit ancestor relation)

[Ax]
` F ,F⊥

` Γ,F ` F⊥,∆
[Cut]

` Γ,∆
` Γ,G ,F ,∆

[X]
` Γ,F ,G ,∆

` F ,G ,Γ
[O]

` FOG ,Γ
` F ,Γ ` G ,∆

[⊗]
` F⊗G ,Γ,∆

` Γ
[⊥]

` ⊥,Γ
[1]

` 1

` F ,Γ ` G ,Γ
[N]

` FNG ,Γ
` Ai ,Γ

[⊕i]` A1⊕A2,Γ
[>]

` >,Γ (no rule for 0)

` Γ,S ` S⊥,G [S/X]
[ν]

` νX .G ,Γ
` F [µX .F/X],Γ

[µ]
` µX .F ,Γ

Theorem

Cut elimination holds in µMALL.

11/57

Proof theory of least and greatest fixed points

µMALL

µMALL∞

Proof objects Finite trees

Non well-founded trees

Inferences Induction rules

Fixed points unfoldings
(+ validity conditions)

MALL rules +
` Γ,F [µX .F/X]
` Γ,µX .F [µ]

` Γ,F [µX .F/X]
` Γ,µX .F [µ]

` Γ,S ` S⊥,F [S/X]
` Γ,νX .F [ν]

` Γ,F [νX .F/X]
` Γ,νX .F [ν]

Log. correctness local

global

Cut-elimination sort of: [ν] hides a cut

X

Subformula prop. NO

X

Focalization X, but µ/ν have

X

arbitrary polarities

µ pos. and ν neg.

11/57

Proof theory of least and greatest fixed points

µMALL

µMALL∞

Proof objects Finite trees

Non well-founded trees

Inferences Induction rules

Fixed points unfoldings
(+ validity conditions)

MALL rules +
` Γ,F [µX .F/X]
` Γ,µX .F [µ]

` Γ,F [µX .F/X]
` Γ,µX .F [µ]

` Γ,S ` S⊥,F [S/X]
` Γ,νX .F [ν]

` Γ,F [νX .F/X]
` Γ,νX .F [ν]

Log. correctness local

global

Cut-elimination sort of: [ν] hides a cut

X

Subformula prop. NO

X

Focalization X, but µ/ν have

X

arbitrary polarities

µ pos. and ν neg.

11/57

Proof theory of least and greatest fixed points

µMALL µMALL∞

Proof objects Finite trees Non well-founded trees
Inferences Induction rules Fixed points unfoldings

(+ validity conditions)

MALL rules +
` Γ,F [µX .F/X]
` Γ,µX .F [µ]

` Γ,F [µX .F/X]
` Γ,µX .F [µ]

` Γ,S ` S⊥,F [S/X]
` Γ,νX .F [ν]

` Γ,F [νX .F/X]
` Γ,νX .F [ν]

Log. correctness local global
Cut-elimination sort of: [ν] hides a cut X

Subformula prop. NO X

Focalization X, but µ/ν have X
arbitrary polarities µ pos. and ν neg.

12/57

µLL∞: circular and non-wellfounded
proofs for linear logic with least and

greatest fixed-points

13/57

Circular proofs: an old mathematical story
Back to Euclid’s Elements (Book VII) another example

13/57

Circular proofs: an old mathematical story
Back to Euclid’s Elements (Book VII) another example

Root of Fermat’s
infinite descent
proof method.

14/57

Non-wellfounded proofs: inductive and coinductive cases

Inductive case:

` nat 0

. . .

even y ` nat y
even y ` nat (s y)

even y ` nat (s (s y))
even x ` nat x

The infinite branch unfolds the inductive predicate even infinitely
often on the left: valid!

Coinductive case: step p α q ` step p α q
. . .

` sim q q
step p α q ` step p α q∧ sim q q

` ∀α∀q. step p α q ⊃ ∃q′. step p α q′∧ sim q q′
` sim p p

The infinite branch unfolds the coinductive predicate sim infinitely
often on the right: valid!

14/57

Non-wellfounded proofs: inductive and coinductive cases

Inductive case:

` nat 0

. . .

even y ` nat y
even y ` nat (s y)

even y ` nat (s (s y))
even x ` nat x

The infinite branch unfolds the inductive predicate even infinitely
often on the left: valid!

Coinductive case: step p α q ` step p α q
. . .

` sim q q
step p α q ` step p α q∧ sim q q

` ∀α∀q. step p α q ⊃ ∃q′. step p α q′∧ sim q q′
` sim p p

The infinite branch unfolds the coinductive predicate sim infinitely
often on the right: valid!

15/57

Circular & non-wellfounded proofs in the litterature
As verification device or for completeness arguments:
Complete deduction sytem giving algorithms for checking
validity (Tableaux, sequent calculi), intermediate objects
between syntax and semantics for modal µ-calculus (Kozen,
Kaivola, Walukiewicz)

µ-calulus formula → Circular proof → Finite axiomatization

But rarely as proof–program objects in themselves:
develop such a proof-theoretical study, from a Curry-Howard
perspective;
establish focalization and cut-elimination (prior works:
cut-admissibility by Brotherston, additive fragment by Fortier
& Santocanale)

Recently, development of numerous circular/cyclic proof
systems (Afshari & Leigh, Das, Doumane & Pous, Cohen &
Rowe, Tatsuta et al. etc.)

15/57

Circular & non-wellfounded proofs in the litterature
As verification device or for completeness arguments:
Complete deduction sytem giving algorithms for checking
validity (Tableaux, sequent calculi), intermediate objects
between syntax and semantics for modal µ-calculus (Kozen,
Kaivola, Walukiewicz)

µ-calulus formula → Circular proof → Finite axiomatization

But rarely as proof–program objects in themselves:
develop such a proof-theoretical study, from a Curry-Howard
perspective;
establish focalization and cut-elimination (prior works:
cut-admissibility by Brotherston, additive fragment by Fortier
& Santocanale)

Recently, development of numerous circular/cyclic proof
systems (Afshari & Leigh, Das, Doumane & Pous, Cohen &
Rowe, Tatsuta et al. etc.)

15/57

Circular & non-wellfounded proofs in the litterature
As verification device or for completeness arguments:
Complete deduction sytem giving algorithms for checking
validity (Tableaux, sequent calculi), intermediate objects
between syntax and semantics for modal µ-calculus (Kozen,
Kaivola, Walukiewicz)

µ-calulus formula → Circular proof → Finite axiomatization

But rarely as proof–program objects in themselves:
develop such a proof-theoretical study, from a Curry-Howard
perspective;
establish focalization and cut-elimination (prior works:
cut-admissibility by Brotherston, additive fragment by Fortier
& Santocanale)

Recently, development of numerous circular/cyclic proof
systems (Afshari & Leigh, Das, Doumane & Pous, Cohen &
Rowe, Tatsuta et al. etc.)

16/57

µLL∞

Non-Wellfounded Sequent Calculus
Consider your favourite logic L & add fixed points as in µMALL:

µLL∞

Pre-proofs are the trees coinductively generated by:

L inference rules
inference for µ,ν :

Γ,F [µX .F/X] `∆
[µl]Γ,µX .F `∆

Γ,F [νX .F/X] `∆
[νl]Γ,νX .F `∆

Γ ` F [µX .F/X],∆
[µr]Γ ` µX .F ,∆

Γ ` F [νX .F/X],∆
[νr]Γ ` νX .F ,∆

Circular (pre-)proofs: the regular fragment of infinite
(pre-)proofs, ie finitely many sub-(pre)proofs.

µLLω

Pre-proofs are unsound!! Need for a validity condition
...

[µ]
` µX .X

[µ]
` µX .X

...
[ν]

` νX .X ,F
[ν]

` νX .X ,F
[Cut]

` F

16/57

µLL∞ Non-Wellfounded Sequent Calculus
Consider your favourite logic LL & add fixed points as in µMALL:

µLL∞ Pre-proofs are the trees coinductively generated by:

LL inference rules
inference for µ,ν :

Γ,F [µX .F/X] `∆
[µl]Γ,µX .F `∆

Γ,F [νX .F/X] `∆
[νl]Γ,νX .F `∆

Γ

` F [µX .F/X],∆
[µr]

Γ

` µX .F ,∆

Γ

` F [νX .F/X],∆
[νr]

Γ

` νX .F ,∆

Circular (pre-)proofs: the regular fragment of infinite
(pre-)proofs, ie finitely many sub-(pre)proofs. µLLω

Pre-proofs are unsound!! Need for a validity condition
...

[µ]
` µX .X

[µ]
` µX .X

...
[ν]

` νX .X ,F
[ν]

` νX .X ,F
[Cut]

` F

17/57

µLL∞ Inferences
µLL∞ Inference Rules

(with ancestor relation)

[Ax]
` F ,F⊥

` Γ,F ` F⊥,∆
[Cut]

` Γ,∆
` Γ,G ,F ,∆

[X]
` Γ,F ,G ,∆

` F ,G ,Γ
[O]

` FOG ,Γ
` F ,Γ ` G ,∆

[⊗]
` F⊗G ,Γ,∆

` Γ
[⊥]

` ⊥,Γ
[1]

` 1

` F ,Γ ` G ,Γ
[N]

` FNG ,Γ
` Ai ,Γ

[⊕i]` A1⊕A2,Γ
[>]

` >,Γ (no rule for 0)

` F ,Γ
[?d]

`?F ,Γ
` F ,?Γ

[!p]
`!F ,?Γ

` Γ
[?w]

`?F ,Γ
`?F ,?F ,Γ

[?c]
`?F ,Γ

` G [νX .G/X],Γ
[ν]

` νX .G ,Γ
` F [µX .F/X],Γ

[µ]
` µX .F ,Γ

17/57

µLL∞ Inferences
µLL∞ Inference Rules (with ancestor relation)

[Ax]
` F ,F⊥

` Γ,F ` F⊥,∆
[Cut]

` Γ,∆
` Γ,G ,F ,∆

[X]
` Γ,F ,G ,∆

` F ,G ,Γ
[O]

` FOG ,Γ
` F ,Γ ` G ,∆

[⊗]
` F⊗G ,Γ,∆

` Γ
[⊥]

` ⊥,Γ
[1]

` 1

` F ,Γ ` G ,Γ
[N]

` FNG ,Γ
` Ai ,Γ

[⊕i]` A1⊕A2,Γ
[>]

` >,Γ (no rule for 0)

` F ,Γ
[?d]

`?F ,Γ
` F ,?Γ

[!p]
`!F ,?Γ

` Γ
[?w]

`?F ,Γ
`?F ,?F ,Γ

[?c]
`?F ,Γ

` G [νX .G/X],Γ
[ν]

` νX .G ,Γ
` F [µX .F/X],Γ

[µ]
` µX .F ,Γ

18/57

Fischer-Ladner subformulas
FL(F) is the least set of formula occurrences such that:

F ∈ FL(F);
G1 ?G2 ∈ FL(F)⇒ G1,G2 ∈ FL(F) for ? ∈ {⊕,N,O,⊗};
σX .B ∈ FL(F)⇒ B[σX .B/X] ∈ FL(F) for σ ∈ {µ,ν};
mG ∈ FL(F)⇒ G ∈ FL(F) for m ∈ {!,?}.

Fact

FL(F) is a finite set for any formula F .

Example: F = νX .((aOa⊥)⊗(X⊗µY .X))

18/57

Fischer-Ladner subformulas
FL(F) is the least set of formula occurrences such that:

F ∈ FL(F);
G1 ?G2 ∈ FL(F)⇒ G1,G2 ∈ FL(F) for ? ∈ {⊕,N,O,⊗};
σX .B ∈ FL(F)⇒ B[σX .B/X] ∈ FL(F) for σ ∈ {µ,ν};
mG ∈ FL(F)⇒ G ∈ FL(F) for m ∈ {!,?}.

Fact

FL(F) is a finite set for any formula F .

Example: F = νX .((aOa⊥)⊗(X⊗µY .X))

FL(F) = {F , }}

18/57

Fischer-Ladner subformulas
FL(F) is the least set of formula occurrences such that:

F ∈ FL(F);
G1 ?G2 ∈ FL(F)⇒ G1,G2 ∈ FL(F) for ? ∈ {⊕,N,O,⊗};
σX .B ∈ FL(F)⇒ B[σX .B/X] ∈ FL(F) for σ ∈ {µ,ν};
mG ∈ FL(F)⇒ G ∈ FL(F) for m ∈ {!,?}.

Fact

FL(F) is a finite set for any formula F .

Example: F = νX .((aOa⊥)⊗(X⊗µY .X))

FL(F) = {F , (aOa⊥)⊗ (F⊗µY .F) , }}

18/57

Fischer-Ladner subformulas
FL(F) is the least set of formula occurrences such that:

F ∈ FL(F);
G1 ?G2 ∈ FL(F)⇒ G1,G2 ∈ FL(F) for ? ∈ {⊕,N,O,⊗};
σX .B ∈ FL(F)⇒ B[σX .B/X] ∈ FL(F) for σ ∈ {µ,ν};
mG ∈ FL(F)⇒ G ∈ FL(F) for m ∈ {!,?}.

Fact

FL(F) is a finite set for any formula F .

Example: F = νX .((aOa⊥)⊗(X⊗µY .X))

FL(F) = {F , (aOa⊥)⊗ (F⊗µY .F) ,
F⊗µY .F ,

}
aOa⊥ ,

}

18/57

Fischer-Ladner subformulas
FL(F) is the least set of formula occurrences such that:

F ∈ FL(F);
G1 ?G2 ∈ FL(F)⇒ G1,G2 ∈ FL(F) for ? ∈ {⊕,N,O,⊗};
σX .B ∈ FL(F)⇒ B[σX .B/X] ∈ FL(F) for σ ∈ {µ,ν};
mG ∈ FL(F)⇒ G ∈ FL(F) for m ∈ {!,?}.

Fact

FL(F) is a finite set for any formula F .

Example: F = νX .((aOa⊥)⊗(X⊗µY .X))

FL(F) = {F , (aOa⊥)⊗ (F⊗µY .F) ,
F⊗µY .F , µY .F

}
aOa⊥ , a

a⊥ }

18/57

Fischer-Ladner subformulas
FL(F) is the least set of formula occurrences such that:

F ∈ FL(F);
G1 ?G2 ∈ FL(F)⇒ G1,G2 ∈ FL(F) for ? ∈ {⊕,N,O,⊗};
σX .B ∈ FL(F)⇒ B[σX .B/X] ∈ FL(F) for σ ∈ {µ,ν};
mG ∈ FL(F)⇒ G ∈ FL(F) for m ∈ {!,?}.

Fact

FL(F) is a finite set for any formula F .

Example: F = νX .((aOa⊥)⊗(X⊗µY .X))

FL(F) = F (aOa⊥)⊗ (F⊗µY .F)
F⊗µY .F µY .F

aOa⊥ a
a⊥

19/57

Infinite threads, validity
F = νX .((aOa⊥)⊗(X⊗µY .X)).

[Ax]
` a,a⊥

[O]
` aOa⊥

` F
` F

[µ]
` µY .F

[⊗]
` F⊗µY .F

[⊗]
` (aOa⊥)⊗(F⊗µY .F)

[ν]
` F

A thread on an infinite
branch (Γi)i∈ω is an infinite
sequence of formula occur-
rences (Fi)i≥k such that for
any i ≥ k, Fi ∈ Γi and Fi+1 is
an immediate ancestor of Fi .

A thread is valid if it unfolds infinitely many ν . More precisely, if the
minimal recurring principal formula of the thread is a ν-formula.

A proof is valid if every infinite branch contains a valid thread.

Theorem (Nollet, Tasson & S, 2019)
Validity of µLLω (circular) pre-proofs is PSPACE-complete. Details

Theorem (Baelde, Doumane & S, 2016)
µMALL∞ is sound, and admits cut-elimination.

19/57

Infinite threads, validity
F = νX .((aOa⊥)⊗(X⊗µY .X)).

[Ax]
` a,a⊥

[O]
` aOa⊥

` F
` F

[µ]
` µY .F

[⊗]
` F⊗µY .F

[⊗]
` (aOa⊥)⊗(F⊗µY .F)

[ν]
` F

A thread on an infinite
branch (Γi)i∈ω is an infinite
sequence of formula occur-
rences (Fi)i≥k such that for
any i ≥ k, Fi ∈ Γi and Fi+1 is
an immediate ancestor of Fi .

A thread is valid if it unfolds infinitely many ν . More precisely, if the
minimal recurring principal formula of the thread is a ν-formula.

A proof is valid if every infinite branch contains a valid thread.

Theorem (Nollet, Tasson & S, 2019)
Validity of µLLω (circular) pre-proofs is PSPACE-complete. Details

Theorem (Baelde, Doumane & S, 2016)
µMALL∞ is sound, and admits cut-elimination.

19/57

Infinite threads, validity
F = νX .((aOa⊥)⊗(X⊗µY .X)).

[Ax]
` a,a⊥

[O]
` aOa⊥

` F
` F

[µ]
` µY .F

[⊗]
` F⊗µY .F

[⊗]
` (aOa⊥)⊗(F⊗µY .F)

[ν]
` F

A thread on an infinite
branch (Γi)i∈ω is an infinite
sequence of formula occur-
rences (Fi)i≥k such that for
any i ≥ k, Fi ∈ Γi and Fi+1 is
an immediate ancestor of Fi .

A thread is valid if it unfolds infinitely many ν . More precisely, if the
minimal recurring principal formula of the thread is a ν-formula.

A proof is valid if every infinite branch contains a valid thread.

Theorem (Nollet, Tasson & S, 2019)
Validity of µLLω (circular) pre-proofs is PSPACE-complete. Details

Theorem (Baelde, Doumane & S, 2016)
µMALL∞ is sound, and admits cut-elimination.

20/57

Examples of circular proofs
Inductive and coinductive definitions

N = µX .1⊕X S = νX .(1N(N⊗X))

Proofs-programs over these data types

double : N → N
double(n) = 0 if n = 0

= succ(succ(double(m))) if n = succ(m)

π0 =
[1]

` 1
[⊕1]

` 1⊕N
[µ]

` N

πk+1 =

πk

` N
[⊕2]

` 1⊕N
[µ]

` N

Πdouble =

[1]
` 1

[⊕1]
` 1⊕N

[µ]
` N

[⊥]
1 ` N

Πdouble

N ` N
[⊕2]

N ` 1⊕N
[µ]

N ` N
[⊕2]

N ` 1⊕N
[µ]

N ` N
[N]

1⊕N ` N
[ν]

N ` N

20/57

Examples of circular proofs
Inductive and coinductive definitions

N = µX .1⊕X S = νX .(1N(N⊗X))

Proofs-programs over these data types

double : N → N
double(n) = 0 if n = 0

= succ(succ(double(m))) if n = succ(m)

π0 =
[1]

` 1
[⊕1]

` 1⊕N
[µ]

` N

πk+1 =

πk

` N
[⊕2]

` 1⊕N
[µ]

` N

Πdouble =

[1]
` 1

[⊕1]
` 1⊕N

[µ]
` N

[⊥]
1 ` N

Πdouble

N ` N
[⊕2]

N ` 1⊕N
[µ]

N ` N
[⊕2]

N ` 1⊕N
[µ]

N ` N
[N]

1⊕N ` N
[ν]

N ` N

21/57

Examples of circular proofs
Inductive and coinductive definitions

N = µX .1⊕X S = νX .1N(N⊗X)

Proofs-programs over these data types

enum : N → S
enum(n) = n :: enum(succ(n))

πsucc =
[Ax]

N ` N
[⊕2]

N ` 1⊕N
[µ]

N ` N
Πenum =

[1]
` 1

[?w]
!N ` 1

[Ax]
!N `!N

πsucc

N ` N
[?d]

!N ` N
[!p]

!N `!N
Πenum

!N ` S
[Cut]

!N ` S
[⊗]

!N, !N ` N⊗S
[?c]

!N ` N⊗S
[N]

!N ` 1N(N⊗S)
[ν]

!N ` S

21/57

Examples of circular proofs
Inductive and coinductive definitions

N = µX .1⊕X S = νX .1N(N⊗X)

Proofs-programs over these data types

enum : N → S
enum(n) = n :: enum(succ(n))

πsucc =
[Ax]

N ` N
[⊕2]

N ` 1⊕N
[µ]

N ` N
Πenum =

[1]
` 1

[?w]
!N ` 1

[Ax]
!N `!N

πsucc

N ` N
[?d]

!N ` N
[!p]

!N `!N
Πenum

!N ` S
[Cut]

!N ` S
[⊗]

!N, !N ` N⊗S
[?c]

!N ` N⊗S
[N]

!N ` 1N(N⊗S)
[ν]

!N ` S

22/57

Circular & finitary proofs

From finitary to circular proofs

Theorem
Finitary proofs can be transformed to (valid) circular proofs.

The key translation step is the following:

π1

` Γ,S
π2

` S⊥,F [S]
[ν]

` Γ,νX .F
7−→ [π1]
` Γ,S

[π2]

` S⊥,F [S]
` S⊥,νX .F

[rF]
` F [S]⊥,F [νX .F]

[Cut]
` S⊥,F [νX .F]

[ν]
` S⊥,νX .F

[Cut]
` Γ,νX .F

From circular to finitary proofs
Open problem for µLLω .

23/57

µMALL∞ Cut elimination

24/57

µMALL∞ Cut Elimination Theorem

Theorem (Baelde, Doumane & S, 2016)
Fair µMALL∞

m

cut-reduction sequences converge to cut-free µMALL∞

proofs.

Previous result by Santocanale and Fortier
for the purely additive fragment of µLL∞.

Proof uses a locative treatment of occurrences.

Strategy: “push” the cuts away from the root.

Cut-Cut:

` Γ,F ` F⊥,∆,G
[Cut]

` Γ,∆,G ` G⊥,Σ
[Cut]

` Γ,∆,Σ
←→ ` Γ,F

` F⊥,∆,G ` G⊥,Σ
[Cut]

` F⊥,∆,Σ
[Cut]

` Γ,∆,Σ

24/57

µMALL∞ Cut Elimination Theorem

Theorem (Baelde, Doumane & S, 2016)
Fair µMALL∞ mcut-reduction sequences converge to cut-free µMALL∞

proofs.

Previous result by Santocanale and Fortier
for the purely additive fragment of µLL∞.

Proof uses a locative treatment of occurrences.

Strategy: “push” the cuts away from the root.

Cut-Cut:

` Γ,F ` F⊥,∆,G
[Cut]

` Γ,∆,G ` G⊥,Σ
[Cut]

` Γ,∆,Σ
−→ ` Γ,F ` F⊥,∆,G ` G⊥,Σ

[mcut]
` Γ,∆,Σ

25/57

Cut elimination procedure
External phase: Cut-commutation cases

`∆,F ,G
[O]

`∆,FOG . . .
[mcut]

` Σ,FOG
⇒

`∆,F ,G . . .
[mcut]

` Σ,F ,G
[O]

` Σ,FOG

`∆,F `∆,G
[N]

`∆,FNG . . .
[mcut]

` Σ,FNG
⇒
`∆,F . . .

[mcut]
` Σ,F

`∆,G . . .
[mcut]

` Σ,G
[N]

` Σ,FNG

`∆,F [µX .F/X]
[µ]

`∆,µX .F . . .
[mcut]

` Σ,µX .F
⇒

`∆,F [µX .F/X] . . .
[mcut]

` Σ,F [µX .F/X]
[µ]

` Σ,µX .F

+ additional cases

Cut-commutation steps are productive

26/57

Cut elimination procedure
Internal Phase: Key cases

. . .

`∆,F2 `∆,F1
[N]

`∆,F2NF1

` Γ,F⊥i
[⊕i]

` Γ,F⊥1 ⊕F⊥2
[mcut]

` Σ
⇒ . . . `∆,Fi ` Γ,F⊥i

[mcut]
` Σ

. . .

`∆,F [µX .F/X]
[µ]

`∆,µX .F
` Γ,F⊥[νX .F⊥/X]

[ν]
` Γ,νX .F⊥

[mcut]
` Σ

⇒ . . . `∆,F [µX .F/X] ` Γ,F⊥[νX .F⊥/X]
[mcut]

` Σ

+ additional cases

Key cases are not productive

27/57

Cut elimination algorithm
Internal phase: Perform key case reductions while you cannot
do anything else.
External phase: Build a part of the output tree by applying
cut-commutation steps as soon possible.
Repeat.

Remark: We consider a fair strategy ie. every reduction which is
available at some point will be performed eventually.

Theorem more details

Internal phases always halt. Cut-elimination produces a pre-proof.

Theorem more details

The pre-proof obtained by the cut elimination algorithm is valid.

µLLω is not stable by cut-elimination
Eliminating cuts from a µLLω proof (circular) may result in a µLL∞, non
circular, proof.

27/57

Cut elimination algorithm
Internal phase: Perform key case reductions while you cannot
do anything else.
External phase: Build a part of the output tree by applying
cut-commutation steps as soon possible.
Repeat.

Remark: We consider a fair strategy ie. every reduction which is
available at some point will be performed eventually.

Theorem more details

Internal phases always halt. Cut-elimination produces a pre-proof.

Theorem more details

The pre-proof obtained by the cut elimination algorithm is valid.

µLLω is not stable by cut-elimination
Eliminating cuts from a µLLω proof (circular) may result in a µLL∞, non
circular, proof.

28/57

Cut-elimination for µLL∞

29/57

Cut-elimination for µLL∞

Theorem
Fair µLL∞ mcut-reduction sequences converge to cut-free µLL∞

proofs.

Idea
The proof goes by:

considering the following encoding of LL exponential
modalities:

?•F = µX .F ⊕ (⊥⊕ (XOX))
!•F = νX .FN(1N(X ⊗X))

translating µLL∞ sequents and proofs in µMALL∞,
simulating µLL∞ cut-reduction sequences in µMALL∞ and
applying µMALL∞ cut-elimination theorem.

30/57

Encoding µLL∞ in µMALL∞

?•F = µX .F ⊕ (⊥⊕ (XOX)) !•F = νX .FN(1N(X ⊗X))
µMALL∞ derivability of the exponential rules (?d•,?c•, ?w•, !p•):
Dereliction : Contraction : Weakening :

` F ,∆
[⊕1]

` F ⊕ (⊥⊕ (?•FO?•F)),∆
[µ]

`?•F ,∆

`?•F ,?•F∆
[O]

`?•FO?•F ,∆
[⊕2]

` ⊥⊕ (?•FO?•F),∆
[⊕2]

` F ⊕ (⊥⊕ (?•FO?•F)),∆
[µ]

`?•F ,∆

`∆
[⊥]

` ⊥,∆
[⊕1]

` ⊥⊕ (?•FO?•F),∆
[⊕2]

` F ⊕ (⊥⊕ (?•FO?•F)),∆
[µ]

`?•F ,∆

Promotion:
` F ,?•∆

[1]
` 1

[?w•]
` 1,?•∆

(?)
`!•F ,?•∆

(?)
`!•F ,?•∆

[⊗]
`!•F⊗!•F ,?•∆,?•∆

[?c•]
`!•F⊗!•F ,?•∆

[ν] , [N] , [N]
(?) `!•F ,?•∆

Preservation of validity
π is a valid µMLL∞ pre-proof of ` Γ iff
π• is a valid µMALL∞ pre-proof of ` Γ•.

31/57

Simulation of µLL∞ cut-elimination steps
µLL∞ cut-elimination steps can be simulated by the previous
encoding.

For instance, the following reduction can be simulated by applying
the external reduction rule [µ]/[Cut] followed by the external
reduction rule [⊕]/[Cut].

` F ,G ,Γ
[?d•]

`?•F ,G ,Γ ` G⊥,∆
[Cut]

`?•F ,Γ,∆
−→2

` F ,G ,Γ ` G⊥,∆
[Cut]

` F ,Γ,∆
[?d•]

`?•F ,Γ,∆

Challenge: to show that the simulation of derivation also holds
(i) for the reductions involving [!p] as well as
(ii) for reductions occurring above a promotion rule (aka. in a
box) since the encoding of [!p] uses an infinite, circular derivation.

32/57

Simulation of µLL∞ cut-elimination steps
External phase: Cut-commutation rules

` F ,G ,Γ
[?d•]

`?•F ,G ,Γ ` G⊥,∆
[Cut]

`?•F ,Γ,∆
−→2

` F ,G ,Γ ` G⊥,∆
[Cut]

` F ,Γ,∆
[?d•]

`?•F ,Γ,∆

`?•F ,?•F ,G ,Γ
[?c•]

`?•F ,G ,Γ ` G⊥,∆
[Cut]

`?•F ,Γ,∆
−→3

`?•F ,?•F ,G ,Γ ` G⊥,∆
[Cut]

`?•F ,?•F ,Γ,∆
[?c•]

`?•F ,Γ,∆

` G ,Γ
[?w•]

`?•F ,G ,Γ ` G⊥,∆
[Cut]

`?•F ,Γ,∆
−→3

` G ,Γ ` G⊥,∆
[Cut]

` Γ,∆
[?w•]

`?•F ,Γ,∆

` F ,?•G ,?•Γ
[!p•]

`!•F ,?•G ,?•Γ
` G ,?•∆

[!p•]
`!•G⊥,?•∆

[Cut]
`!•F ,?•Γ,?•∆

−→ω
` F ,?•G ,?•Γ

` G ,?•∆
[!p•]

`!•G⊥,?•∆
[Cut]

` F ,?•Γ,?•∆
[!p•]

`!•F ,?•Γ,?•∆

33/57

Simulation of µLL∞ cut-elimination steps
Internal phase: Key-cut rules

π

` F ,Γ
[?d•]

`?•F ,Γ

π ′

` F⊥,?•∆
[!p•]

`!•F⊥,?•∆
[Cut]

` Γ,?•∆

−→2
π

` F ,Γ
π ′

` F⊥,?•∆
[Cut]

` Γ,?•∆

π

`?•F ,?•F ,Γ
[?c•]

`?•F ,Γ

π ′

` F⊥,?•∆
[!p•]

`!•F⊥,?•∆
[Cut]

` Γ,?•∆

−→4int,4×#∆ext

π

`?•F ,?•F ,Γ
π ′

`!•F⊥,?•∆
π ′

`!•F⊥,?•∆
[mcut]

` Γ,?•∆,?•∆
[?c•] ?

` Γ,?•∆
π

` Γ
[?w•]

`?•F ,Γ

π ′

` F⊥,?•∆
[!p•]

`!•F⊥,?•∆
[Cut]

` Γ,?•∆

−→3int,3×#∆ext
π

` Γ
[?w•] ?

` Γ,?•∆

34/57

Cut-elimination for µLL∞

Consider a fair cut-reduction sequence σ = (πi)i∈ω in µLL∞ from π.

σ converges to a cut-free µLL∞ pre-proof. Otherwise, a suffix τ of
σ would contain only key-cut steps. The encoding of τ in µMALL∞,
τ•, would be unproductive (contradicting productivity of
cut-elimination).

As σ is productive, it strongly converges to some µLL∞pre-proof π ′.

σ• is therefore a transfinite reduction sequence from π• strongly
converging to π ′•, cut-free (as it is the encoding of π ′).

The compression lemma applies: there exists ρ an ω-indexed
µMALL∞ cut-reduction sequence converging to π ′•.

By compression, fairness of σ• transfers to ρ which is fair.

Therefore, ρ has a limit, π ′• which is a valid cut-free µMALL∞

proof. π ′• is cut-free and valid and so is π ′, by the validity
preservation property.

35/57

Cut-elimination for µLK∞, µLJ∞

The usual call-by-value embedding of LJ in ILL (intuitionnistic LL) can be
lifted to µLJ∞: indeed, the translation of proofs does not introduce cuts.
For µLK∞, it is slightly trickier as the well-known T/Q-translations
introduce cuts breaking validity. An alternative translation which does
not introduce cuts can be used.

Moreover, one gets the skeleton of a µLL∞ (resp. µILL∞) proof which is
a µLK∞ (resp. µLJ∞) proof, simply by erasing the exponentials
(connectives and inferences), preserving validity.
The skeleton of a µLL∞ (resp. µILL∞) cut-reduction sequence is a µLK∞

(resp. µLJ∞) cut-reduction sequence. As a result, one has:

Theorem
If π is an µLK∞ (resp. µLJ∞) proof of ` Γ (resp. Γ ` F), there exists a
µLL∞ (resp. µILL∞) proof of the translated sequents.

Theorem
There are productive cut-reduction strategies producing cut-free µLK∞

(resp. µLJ∞) proofs.

36/57

Bouncing validity

37/57

A invalid, though productive, proof with cut
Problem: Cuts are not well-managed by the validity condition.

[Ax]
` νX .X ,µX .X

[µ]
` νX .X ,µX .X

` νX .X
[ν]

` νX .X
[ν]

` νX .X
[Cut]

` νX .X

` νX .X
[ν]

` νX .X

Cut-elimination

From now, we will refer to s-valid pre-proof for the previous validity
condition and will consider alternative validity conditions.

37/57

A invalid, though productive, proof with cut
Problem: Cuts are not well-managed by the validity condition.

[Ax]
` νX .X ,µX .X

[µ]
` νX .X ,µX .X

` νX .X
[ν]

` νX .X
[ν]

` νX .X
[Cut]

` νX .X

` νX .X
[ν]

` νX .X

Cut-elimination

From now, we will refer to s-valid pre-proof for the previous validity
condition and will consider alternative validity conditions.

37/57

A invalid, though productive, proof with cut
Problem: Cuts are not well-managed by the validity condition.

[Ax]
` νX .X ,µX .X

[µ]
` νX .X ,µX .X

` νX .X
[ν]

` νX .X
[ν]

` νX .X
[Cut]

` νX .X

` νX .X
[ν]

` νX .X

Cut-elimination

From now, we will refer to s-valid pre-proof for the previous validity
condition and will consider alternative validity conditions.

38/57

Bouncing threads: visible part
Visible part: survives the
cut-elimination.
Hidden part: Must sat-
isfy matching constaints.

[Ax]
` F ,F⊥

[Ax]
` G ,G⊥

[O,⊗]
` FOG ,F⊥⊗G⊥

...
` F ′,G

[ν]
` F ,G

[O]
` FOG

[Cut]
` FOG

Bouncing thread valid: ∞ ν-unfoldings in visible part.

Valid branch B: exists a valid bouncing
thread with visible part included in B.

B-valid proof: all infinite branches are valid.

(Ax)

(Ax)

(Ax)

Theorem (Baelde, Doumane, Kuperberg & S)
Soundness and cut-elimination hold for µMALL∞ b-valid proofs.

38/57

Bouncing threads: visible part
Visible part: survives the
cut-elimination.
Hidden part: Must sat-
isfy matching constaints.

[Ax]
` F ,F⊥

[Ax]
` G ,G⊥

[O,⊗]
` FOG ,F⊥⊗G⊥

...
` F ′,G

[ν]
` F ,G

[O]
` FOG

[Cut]
` FOG

Bouncing thread valid: ∞ ν-unfoldings in visible part.

Valid branch B: exists a valid bouncing
thread with visible part included in B.

B-valid proof: all infinite branches are valid.

(Ax)

(Ax)

(Ax)

Theorem (Baelde, Doumane, Kuperberg & S)
Soundness and cut-elimination hold for µMALL∞ b-valid proofs.

38/57

Bouncing threads: visible part
Visible part: survives the
cut-elimination.
Hidden part: Must sat-
isfy matching constaints.

[Ax]
` F ,F⊥

[Ax]
` G ,G⊥

[O,⊗]
` FOG ,F⊥⊗G⊥

...
` F ′,G

[ν]
` F ,G

[O]
` FOG

[Cut]
` FOG

Bouncing thread valid: ∞ ν-unfoldings in visible part.

Valid branch B: exists a valid bouncing
thread with visible part included in B.

B-valid proof: all infinite branches are valid.

(Ax)

(Ax)

(Ax)

Theorem (Baelde, Doumane, Kuperberg & S)
Soundness and cut-elimination hold for µMALL∞ b-valid proofs.

39/57

Decidability of the bouncing validity condition ?

Given a circular proof, can we decide b-validity ?

NO!

=⇒ Reduce termination of Minsky machines to bouncing validity.

A hierarchy of decidable conditions: Height of a b-thread:
parameter binding the height of bounces.

b(k)-valid proof: b-valid proof using only threads of height ≤ k.

Theorem
Every b-valid circular proof is a b(k)-valid for some k ∈ N.

Theorem
For all k ∈ N, it is decidable whether a circular proof is a k-proof.

39/57

Decidability of the bouncing validity condition ?

Given a circular proof, can we decide b-validity ? NO!

=⇒ Reduce termination of Minsky machines to bouncing validity.

A hierarchy of decidable conditions: Height of a b-thread:
parameter binding the height of bounces.

b(k)-valid proof: b-valid proof using only threads of height ≤ k.

Theorem
Every b-valid circular proof is a b(k)-valid for some k ∈ N.

Theorem
For all k ∈ N, it is decidable whether a circular proof is a k-proof.

39/57

Decidability of the bouncing validity condition ?

Given a circular proof, can we decide b-validity ? NO!

=⇒ Reduce termination of Minsky machines to bouncing validity.

A hierarchy of decidable conditions: Height of a b-thread:
parameter binding the height of bounces.

b(k)-valid proof: b-valid proof using only threads of height ≤ k.

Theorem
Every b-valid circular proof is a b(k)-valid for some k ∈ N.

Theorem
For all k ∈ N, it is decidable whether a circular proof is a k-proof.

40/57

Hierarchy of validity criteria

• cut-free valid Pre-proofs

• s-valid Pre-proofs

• b(k)-valid Pre-proofs
. . .
• b-valid Pre-proofs

• Productive Pre-proofs

• Pre-proofs

40/57

Hierarchy of validity criteria

• cut-free valid Pre-proofs

• s-valid Pre-proofs

• b(k)-valid Pre-proofs
. . .
• b-valid Pre-proofs

• Productive Pre-proofs

• Pre-proofs

40/57

Hierarchy of validity criteria

• cut-free valid Pre-proofs

• s-valid Pre-proofs

• b(k)-valid Pre-proofs
. . .
• b-valid Pre-proofs

• Productive Pre-proofs

• Pre-proofs

40/57

Hierarchy of validity criteria

• cut-free valid Pre-proofs

• s-valid Pre-proofs

• b(k)-valid Pre-proofs

. . .
• b-valid Pre-proofs

• Productive Pre-proofs

• Pre-proofs

40/57

Hierarchy of validity criteria

• cut-free valid Pre-proofs

• s-valid Pre-proofs

• b(k)-valid Pre-proofs
. . .
• b-valid Pre-proofs

• Productive Pre-proofs

• Pre-proofs

40/57

Hierarchy of validity criteria

• cut-free valid Pre-proofs

• s-valid Pre-proofs

• b(k)-valid Pre-proofs
. . .
• b-valid Pre-proofs

• Productive Pre-proofs

• Pre-proofs

40/57

Hierarchy of validity criteria

• cut-free valid Pre-proofs

• s-valid Pre-proofs

• b(k)-valid Pre-proofs
. . .
• b-valid Pre-proofs

• Productive Pre-proofs

• Pre-proofs

41/57

Sequentiality & parallelism
in non-wellfounded proofs:
proof-nets for µMLL∞

42/57

Mismatch between the parallel nature of threads
and the sequential nature of sequent proofs.

[Ax]
` νX .X ,µX .X

[ν]
` νX .X ,µX .X

[ν]
` νX .X ,µX .X

[µ]
` νX .X ,µX .X ` νX .X

[Cut]
` νX .X

[Ax]
` νX .X ,µX .X

[ν]
` νX .X ,µX .X

[µ]
` νX .X ,µX .X

[ν]
` νX .X ,µX .X ` νX .X

[Cut]
` νX .X

Non-productive cut-elimination Productive cut-elimination

43/57

MLL proof-nets

An MLL proof structure is
a directed finite graph com-
posed of:

A A⊥ A B A B

A A⊥
ax cut

A⊗B
⊗

AOB
O

Desequentialisation

Sequentialisation
Proofs

Proof structures

Proof-nets

A proof structure
that represents no
sequent proof:

A A⊥
ax

cutCanonicity
Two proofs are equivalent up to permutation of rules iff they have the
same proof-net.

Confluent and terminating cut-elimination
A A⊥ A −→

A

ax

cut

A B A⊥ B⊥ −→ A A⊥ B B⊥

⊗ O

cut

cut cut

44/57

µMLL∞ proof structures
An MLL proof structure + the following decorated nodes:

A[µX .A/X] A[νX .A/X]

µX .A
µ

νX .A
ν

New cut-elimination rules for new operators:

F [µX .F/X] F⊥[νX .F⊥/X]

F [µX .F/X] F⊥[νX .F⊥/X]µX .F
µ

νX .F⊥ −→
ν

cut cut

Is that enough?

No! Need more structure & more reductions:
Need to consider “infinite axioms” as invariants of infinite branches;

Need to add visitable paths to infinite axioms, to prevent
disconnectedness of the proof structure;

cut-elimination shall be adapted to those infinite axioms.

44/57

µMLL∞ proof structures
An MLL proof structure + the following decorated nodes:

A[µX .A/X] A[νX .A/X]

µX .A
µ

νX .A
ν

New cut-elimination rules for new operators:

F [µX .F/X] F⊥[νX .F⊥/X]

F [µX .F/X] F⊥[νX .F⊥/X]µX .F
µ

νX .F⊥ −→
ν

cut cut

Is that enough? No! Need more structure & more reductions:
Need to consider “infinite axioms” as invariants of infinite branches;

Need to add visitable paths to infinite axioms, to prevent
disconnectedness of the proof structure;

cut-elimination shall be adapted to those infinite axioms.

45/57

Infinite axioms and visitable paths
Let G = νX .(AOA⊥)⊗X .

[Ax]
` A,A⊥

[O]
` AOA⊥ ? ` G ,B

[⊗]
` (AOA⊥)⊗G ,B

[ν]
? ` G ,B

A A⊥

...

A A⊥

B

ax

ax

ax∞

O

⊗

ν
O

⊗

G
ν

[Ax]
` F ,F⊥

?

` F ,νX .X
[ν]

` F ,νX .X
[Cut]

? ` F ,νX .X

F F⊥ F F⊥
...

...
ax ax

ax∞

cut cut

νX .X
ν

νX .X
ν

Infinite axioms are invariants of infinite branches in proofs. They
may contain “visitable" sequences of axioms and cuts/tensors.

45/57

Infinite axioms and visitable paths
Let G = νX .(AOA⊥)⊗X .

[Ax]
` A,A⊥

[O]
` AOA⊥ ? ` G ,B

[⊗]
` (AOA⊥)⊗G ,B

[ν]
? ` G ,B

A A⊥

...

A A⊥

B

ax

ax

ax∞O

⊗

ν
O

⊗

G
ν

[Ax]
` F ,F⊥

?

` F ,νX .X
[ν]

` F ,νX .X
[Cut]

? ` F ,νX .X

F F⊥ F F⊥
...

...
ax ax ax∞

cut cut

νX .X
ν

νX .X
ν

Infinite axioms are invariants of infinite branches in proofs. They
may contain “visitable" sequences of axioms and cuts/tensors.

46/57

Non-wellfounded proof-structures
An NWFPS has the following components:

Formulas {F1,F2, . . .} and their corresponding syntax trees
{T1,T2, . . .}
Cuts of the form (C ,C⊥) where C = Fi and C⊥ = Fj .
Axioms (L,L⊥) of leaves of some trees Ti ,Tj .
Visitable paths: infinite sequences of the form APAPAP...
where A is an axiom and P is either a cut or a ⊗.
Infinite axioms that contain leaves and visitable paths.

Correctness criterion
A correctness criterion ensures sequentialisation and
cut-elimination.

Desequentialisation

Sequentialisation
Proofs

NWFPS

Infinets

47/57

Infinet cut-elimination
F [X/F] F⊥[X/F⊥]

F [X/F] F⊥[X/F⊥]µX .F
µ

νX .F⊥ −→
ν

cut cut

But what about the cut/inf-ax case?

Consider k(F) the smallest subnet with F as the conclusion
(corresponding to the kingdom of F).

F⊥

∆

k(F)

Γ F
cut

ax∞

−→ Γ ∆
ax∞

Theorem (De, Pellissier & S, 2021)
The limit of any sequence of (fair) reductions is a (cut-free) infinet.

48/57

Conclusion

49/57

Conclusion
Fixed-point logics extending LL with finite circular or
non-wellfounded proofs;
Syntactic cut elimination for various nwf sequent calculi:
µMALL∞, µLL∞, µLJ∞, µLK∞;
More expressive validity condition;
Proof-nets in the non-wellfounded multiplicative case.
Ongoing and future work:

Equivalence of circular fragment of µMALL∞ and µMALL:
Translate infinitrary proofs to finitary ones. Same question as
above by preserving the computational content.
Relax the conditions on bouncing threads retaining
cut-elimination in infinets.
Design a good notion of circularity for infinets.
Extend to circular natural deduction and circular λ -calculus.
Provability and denotational semantics of circular proofs (jww
De, Ehrhard and Jafarrahmani).

Thank you for your attention!

49/57

Conclusion
Fixed-point logics extending LL with finite circular or
non-wellfounded proofs;
Syntactic cut elimination for various nwf sequent calculi:
µMALL∞, µLL∞, µLJ∞, µLK∞;
More expressive validity condition;
Proof-nets in the non-wellfounded multiplicative case.
Ongoing and future work:

Equivalence of circular fragment of µMALL∞ and µMALL:
Translate infinitrary proofs to finitary ones. Same question as
above by preserving the computational content.
Relax the conditions on bouncing threads retaining
cut-elimination in infinets.
Design a good notion of circularity for infinets.
Extend to circular natural deduction and circular λ -calculus.
Provability and denotational semantics of circular proofs (jww
De, Ehrhard and Jafarrahmani).

Thank you for your attention!

50/57

Appendix

51/57

For any integer m,
√

m is either an integer, or irrational.
Another example of infinite descent another example

Proof
Let m ∈ N and for the sake of contradiction, assume

√
m ∈Q\N.

1 Choose q,a0,b0 ∈ N st. 0<
√
m−q < 1 and

√
m = a0/b0.

One has b0
√
m = a0 ∈ N and a0

√
m = mb0 ∈ N.

2 Therefore by setting a1 ,mb0−a0q = a0(
√
m−q) and

b1 , a0−b0q = b0(
√
m−q), we have

a0,a1 are integers,
0< a1 < a0, 0< b1 < b0 and√
m = a1/b1.

3 In a similar way, one can build (ai)i∈N and (bi)i∈N infinite
sequences of integers, which are strictly decreasing.

4 This is impossible. Therefore
√
m is either integer or

irrational.

51/57

For any integer m,
√

m is either an integer, or irrational.
Another example of infinite descent another example

Proof
Let m ∈ N and for the sake of contradiction, assume

√
m ∈Q\N.

1 Choose q,a0,b0 ∈ N st. 0<
√
m−q < 1 and

√
m = a0/b0.

One has b0
√
m = a0 ∈ N and a0

√
m = mb0 ∈ N.

2 Therefore by setting a1 ,mb0−a0q = a0(
√
m−q) and

b1 , a0−b0q = b0(
√
m−q), we have

a0,a1 are integers,
0< a1 < a0, 0< b1 < b0 and√
m = a1/b1.

3 In a similar way, one can build (ai)i∈N and (bi)i∈N infinite
sequences of integers, which are strictly decreasing.

4 This is impossible. Therefore
√
m is either integer or

irrational.

51/57

For any integer m,
√

m is either an integer, or irrational.
Another example of infinite descent another example

Proof
Let m ∈ N and for the sake of contradiction, assume

√
m ∈Q\N.

1 Choose q,a0,b0 ∈ N st. 0<
√
m−q < 1 and

√
m = a0/b0.

One has b0
√
m = a0 ∈ N and a0

√
m = mb0 ∈ N.

2 Therefore by setting a1 ,mb0−a0q = a0(
√
m−q) and

b1 , a0−b0q = b0(
√
m−q), we have

a0,a1 are integers,
0< a1 < a0, 0< b1 < b0 and√
m = a1/b1.

3 In a similar way, one can build (ai)i∈N and (bi)i∈N infinite
sequences of integers, which are strictly decreasing.

4 This is impossible. Therefore
√
m is either integer or

irrational.

51/57

For any integer m,
√

m is either an integer, or irrational.
Another example of infinite descent another example

Proof
Let m ∈ N and for the sake of contradiction, assume

√
m ∈Q\N.

1 Choose q,a0,b0 ∈ N st. 0<
√
m−q < 1 and

√
m = a0/b0.

One has b0
√
m = a0 ∈ N and a0

√
m = mb0 ∈ N.

2 Therefore by setting a1 ,mb0−a0q = a0(
√
m−q) and

b1 , a0−b0q = b0(
√
m−q), we have

a0,a1 are integers,
0< a1 < a0, 0< b1 < b0 and√
m = a1/b1.

3 In a similar way, one can build (ai)i∈N and (bi)i∈N infinite
sequences of integers, which are strictly decreasing.

4 This is impossible. Therefore
√
m is either integer or

irrational.

51/57

For any integer m,
√

m is either an integer, or irrational.
Another example of infinite descent another example

Proof
Let m ∈ N and for the sake of contradiction, assume

√
m ∈Q\N.

1 Choose q,a0,b0 ∈ N st. 0<
√
m−q < 1 and

√
m = a0/b0.

One has b0
√
m = a0 ∈ N and a0

√
m = mb0 ∈ N.

2 Therefore by setting a1 ,mb0−a0q = a0(
√
m−q) and

b1 , a0−b0q = b0(
√
m−q), we have

a0,a1 are integers,
0< a1 < a0, 0< b1 < b0 and√
m = a1/b1.

3 In a similar way, one can build (ai)i∈N and (bi)i∈N infinite
sequences of integers, which are strictly decreasing.

4 This is impossible. Therefore
√
m is either integer or

irrational.

52/57

Decidability of the validity condition

53/57

Parity automata back to main slide

Definition
A parity automaton is a finite state word automaton,
whose states are ordered and given a parity bit ν/µ,
which accepts runs (qi)i∈ω such that min(inf((qi)i)) has parity ν .

Remarks
States are usually given a color in N, equivalently.
Only co-accessible states need to be ordered.

Properties
PA can be determinized,
PA are closed by complementation and intersection,
The emptiness problem is decidable,
(Thus) inclusion of parity automata is decidable.

53/57

Parity automata back to main slide

Definition
A parity automaton is a finite state word automaton,
whose states are ordered and given a parity bit ν/µ,
which accepts runs (qi)i∈ω such that min(inf((qi)i)) has parity ν .

Remarks
States are usually given a color in N, equivalently.
Only co-accessible states need to be ordered.

Properties
PA can be determinized,
PA are closed by complementation and intersection,
The emptiness problem is decidable,
(Thus) inclusion of parity automata is decidable.

53/57

Parity automata back to main slide

Definition
A parity automaton is a finite state word automaton,
whose states are ordered and given a parity bit ν/µ,
which accepts runs (qi)i∈ω such that min(inf((qi)i)) has parity ν .

Remarks
States are usually given a color in N, equivalently.
Only co-accessible states need to be ordered.

Properties
PA can be determinized,
PA are closed by complementation and intersection,
The emptiness problem is decidable,
(Thus) inclusion of parity automata is decidable.

54/57

Theorem: The validity of circular pre-proofs is decidable.
Proof.
Consider a pre-proof Π i.e. a graph with nodes si = (F j

i)j∈[1;ni].

The proof goes as follows:
One builds a parity automaton recognizing the language LB
of infinite branches of Π;
One builds a parity automaton recognizing the language LT
the valid branches of Π.
Validity amounts to the inclusion of LB in LT , that is
showing that LB \LT = /0 which is decidable.

Branch automaton: Let AB be the branch automaton with
states si , transitions si →k sj when sj is the k-th premise of si , and
which accepts all runs.

(...)

54/57

Theorem: The validity of circular pre-proofs is decidable.
Proof.
Consider a pre-proof Π i.e. a graph with nodes si = (F j

i)j∈[1;ni].
(...)
Thread automaton: Let AT be the thread automaton with
states F j+

i , F j−
i or si , with transitions:

si →k sp and si →k F q−
p when sp is the k-th premise of si

F j+
i →k F qε

p (ε ∈ {+,−}) when si →k sp and F j
i is active in

the rule of conclusion si and has ancestor F q
p

F j−
i →k F qε

p (ε ∈ {+,−}) when si →k sp and F j
i is passive in

the rule of conclusion si and has ancestor F q
p

acceptance based on subformula ordering with the active/passive
distinction: only active ν-formulas have coinductive parity.

Validity of Π equivalent to L (AB)\L (AT) = /0, thus decidable.

55/57

Cut elimination is productive back to the statement

Theorem
Internal phase always halts.

55/57

Cut elimination is productive back to the statement

Theorem
Internal phase always halts.

Proof by contradiction: Suppose that there is a proof of F for
which the internal phase does not halt.

` F

55/57

Cut elimination is productive back to the statement

Theorem
Internal phase always halts.

Proof by contradiction: Consider the trace of this divergent
reduction.

` F

55/57

Cut elimination is productive back to the statement

Theorem
Internal phase always halts.

Proof by contradiction: No rule on F is applied in the trace,
otherwise the internal phase would halt.

` F

. . . [r]
`Σ,F

55/57

Cut elimination is productive back to the statement

Theorem
Internal phase always halts.

Proof by contradiction: We can eliminate the occurrences of F
from the trace. This yields a "proof" of `.

`

. . . [r]
`Σ

55/57

Cut elimination is productive back to the statement

Theorem
Internal phase always halts.

Proof by contradiction: We show that the proof system is sound.
Contradiction.

`

. . . [r]
`Σ

56/57

Cut elimination is productive (Details) back to the statement

Theorem
Internal phase always halts.

Proof: Suppose that the internal phase diverges for a proof π `∆.

Let θ be the sub-derivation of π explored by the reduction.

No rule is applied to a formula of ∆ in θ ,
as this would contradict the divergence of internal phase.

Let θ be the proof obtained from θ by dropping all the
formulas from ∆.

θ is then a proof for ` in a proof system with ”truncation”.

We define a truth semantics for µMALL∞ formulas and show
soundness of the proof system with truncation wrt. it.
Contradiction.

56/57

Cut elimination is productive (Details) back to the statement

Theorem
Internal phase always halts.

Proof: Suppose that the internal phase diverges for a proof π `∆.

Let θ be the sub-derivation of π explored by the reduction.

No rule is applied to a formula of ∆ in θ ,
as this would contradict the divergence of internal phase.

Let θ be the proof obtained from θ by dropping all the
formulas from ∆.

θ is then a proof for ` in a proof system with ”truncation”.

We define a truth semantics for µMALL∞ formulas and show
soundness of the proof system with truncation wrt. it.
Contradiction.

57/57

Cut elimination produces a proof back to the statement

Theorem
The pre-proof obtained by the cut elimination algorithm is valid.

Proof: Let π? be the pre-proof obtained from π `∆ by cut
elimination. Suppose that a branch b of π? is not valid.

Let θ be the sub-derivation of π explored by the reduction
that produces b.
Fact: Threads of θ are the threads of b, together with
threads starting from cut formulas.
The validity of θ cannot rely on the threads of b.
Define θ µ to be θ where we replace in ∆ any ν by a µ and
any 1,> by ⊥,0.
Show that formulas containing only µ,⊥,0 and MALL binary
connectives are false.
θ µ proves a false sequent which contradicts soundness.

57/57

Cut elimination produces a proof back to the statement

Theorem
The pre-proof obtained by the cut elimination algorithm is valid.

Proof: Let π? be the pre-proof obtained from π `∆ by cut
elimination. Suppose that a branch b of π? is not valid.

Let θ be the sub-derivation of π explored by the reduction
that produces b.
Fact: Threads of θ are the threads of b, together with
threads starting from cut formulas.
The validity of θ cannot rely on the threads of b.
Define θ µ to be θ where we replace in ∆ any ν by a µ and
any 1,> by ⊥,0.
Show that formulas containing only µ,⊥,0 and MALL binary
connectives are false.
θ µ proves a false sequent which contradicts soundness.

