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Introduction and Background
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Logics with least and greatest fixed points
Logics with least and greatest fixed points, modelling inductive and
coinductive reasoning:

Very useful to encode and reason about inductive and
coinductive data structures.
Their proof theory is not very well studied and understood.
Not only to express statements, but also a proof system in
sequent calculus: LL with fixed points

µLL: proofs are finite trees. Includes rules for induction, local
correctness, cut-elimination and focalization but not
subformula property
µLL∞: proofs are infinite trees. Simple inference rules for fixed
points, global correctness criterion, cut-elimination with
subformula property. Of particular interest is the fragment of
circular proofs, which are presentable as finite graphs.

Extends the proof–program correspondence to recursive and
co-recursive programming, with coinductive datatypes.
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Knaster-Tarski fixed-point theorem
Let C be a complete lattice and F a monotonic operator on C .

Theorem
F has a least fixed-point µF .
µF is the least prefixed-point:
– F (µF )v µF and
– ∀S,F (S)v S ⇒ µF v S.

Proof by induction:
To prove that µF ⊆ P, it is
sufficient to find some S ⊆ P and
to prove that ∀x ∈ F (S), x ∈ S.

H ` F [µX .F/X ]
H ` µX .F [µr]

F [S/X ] ` S
µX .F ` S [µl]

Theorem
F has a greatest fixed-point νF .
νF is the greatest postfixed-point:
– νF v F (νF ) and
– ∀S,S v F (S) ⇒ S v νF .

Proof by coinduction:
To prove that P ⊆ νF , it is
sufficient to find some S ⊇ P and
to prove that ∀x ∈ S, x ∈ F (S).

F [νX .F/X ] ` H
νX .F ` H [νl]

S ` F [S/X ]
S ` νX .F [νr]
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Martin-Löf’s induction definitions, LKID
A sequent calculus parameterized by a set of inductive definitions.

Idea: inductive predi-
cates described by pro-
duction rules.

Q1(u1) . . . Qk(uk) P1(t1) . . . Pl (tl )
P(t)

Example: N(0)
N(x)

N(s(x))

LK + inferences for the inductively defined predicates:
(N1

R)
Γ ` N(0),∆

Γ ` N(u),∆
(N2

R)
Γ ` N(s(u)),∆

Γ ` F (0),∆ Γ,F (x) ` F (s(x)),∆ Γ,F (t) `∆
(Ind N)

Γ,N(t) `∆

Mutually dependency: E (0)
O(x)
E (sx)

E (x)
O(sx)
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Fixed-point logics and (co)induction
Some examples from (co)inductive predicates to µ-calculus

Nat(x) ,ind (x = 0)∨∃y .x = s(y)∧Nat(y)
ListNat(l),ind (l = nil)∨∃h, t.l = h :: t∧(Nat(h)∧ListNat(t))
StreamNat(l) ,coind ∃h, t.l = h :: t ∧ (Nat(h)∧StreamNat(t))

Nat(x) , µN.(x = 0)∨∃y .x = s(y)∧N(y)
ListNat(l) , µL.(l = nil)∨∃h, t.l = h :: t ∧ (Nat(h)∧L(t))
StreamNat(l) , νS.∃h, t.l = h :: t ∧ (Nat(h)∧S(t))

Nat , µN.>∨N ⇒ in the following,
ListNat , µL.>∨ (Nat ∧L) the propositional
StreamNat , νS.Nat ∧S µ-calculus only.

Interleavings of inductive/coinductives behaviours; eg. allowing to
express fairness properties:

νX .µY .(P ∧©X )∨©Y .
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µMALL: MALL with least and greatest
fixed points
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µMALL formulas and sequent calculus
(Baelde & Miller 2007, Baelde 2012)

µMALL formulas
F ::= a | > |⊥| FOF | FNF negative MALL formulas

| a⊥ | 0 | 1 | F⊗F | F ⊕F positive MALL formulas
| X | µX .F | νX .F least and greatest fixed points

Negation ( )⊥: involutive operator on formula, not a connective.

µ and ν are binders, consider closed formulas only.

µ and ν are dual. Ex: (νX .X ⊗X )⊥ = µX .XOX .

One-sided sequents: ` A1, . . . ,An. (Γ `∆ is a short for ` Γ⊥,∆)

Data types encodings: Nat , µX .1⊕X
List(A) , µX .1⊕ (A⊗X )

Stream(A) , νX .1N(A⊗X )
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µMALL sequent Calculus
µMALL Inference Rules

(with explicit ancestor relation)

[Ax]
` F ,F⊥

` Γ,F ` F⊥,∆
[Cut]

` Γ,∆
` Γ,G ,F ,∆

[X]
` Γ,F ,G ,∆

` F ,G ,Γ
[O]

` FOG ,Γ
` F ,Γ ` G ,∆

[⊗]
` F⊗G ,Γ,∆

` Γ
[⊥]

` ⊥,Γ
[1]

` 1

` F ,Γ ` G ,Γ
[N]

` FNG ,Γ
` Ai ,Γ

[⊕i]` A1⊕A2,Γ
[>]

` >,Γ (no rule for 0)

` Γ,S ` S⊥,G [S/X ]
[ν]

` νX .G ,Γ
` F [µX .F/X ],Γ

[µ]
` µX .F ,Γ

Theorem

Cut elimination holds in µMALL.
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Proof theory of least and greatest fixed points

µMALL

µMALL∞

Proof objects Finite trees

Non well-founded trees

Inferences Induction rules

Fixed points unfoldings
(+ validity conditions)

MALL rules +
` Γ,F [µX .F/X ]
` Γ,µX .F [µ]

` Γ,F [µX .F/X ]
` Γ,µX .F [µ]

` Γ,S ` S⊥,F [S/X ]
` Γ,νX .F [ν]

` Γ,F [νX .F/X ]
` Γ,νX .F [ν]

Log. correctness local

global

Cut-elimination sort of: [ν] hides a cut

X

Subformula prop. NO

X

Focalization X, but µ/ν have

X

arbitrary polarities

µ pos. and ν neg.
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Proof theory of least and greatest fixed points

µMALL µMALL∞

Proof objects Finite trees Non well-founded trees
Inferences Induction rules Fixed points unfoldings

(+ validity conditions)

MALL rules +
` Γ,F [µX .F/X ]
` Γ,µX .F [µ]

` Γ,F [µX .F/X ]
` Γ,µX .F [µ]

` Γ,S ` S⊥,F [S/X ]
` Γ,νX .F [ν]

` Γ,F [νX .F/X ]
` Γ,νX .F [ν]

Log. correctness local global
Cut-elimination sort of: [ν] hides a cut X

Subformula prop. NO X

Focalization X, but µ/ν have X
arbitrary polarities µ pos. and ν neg.



12/57

µLL∞: circular and non-wellfounded
proofs for linear logic with least and

greatest fixed-points
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Circular proofs: an old mathematical story
Back to Euclid’s Elements (Book VII) another example
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Circular proofs: an old mathematical story
Back to Euclid’s Elements (Book VII) another example

Root of Fermat’s
infinite descent
proof method.
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Non-wellfounded proofs: inductive and coinductive cases

Inductive case:

` nat 0

. . .

even y ` nat y
even y ` nat (s y)

even y ` nat (s (s y))
even x ` nat x

The infinite branch unfolds the inductive predicate even infinitely
often on the left: valid!

Coinductive case: step p α q ` step p α q
. . .

` sim q q
step p α q ` step p α q∧ sim q q

` ∀α∀q. step p α q ⊃ ∃q′. step p α q′∧ sim q q′
` sim p p

The infinite branch unfolds the coinductive predicate sim infinitely
often on the right: valid!
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Circular & non-wellfounded proofs in the litterature
As verification device or for completeness arguments:
Complete deduction sytem giving algorithms for checking
validity (Tableaux, sequent calculi), intermediate objects
between syntax and semantics for modal µ-calculus (Kozen,
Kaivola, Walukiewicz)

µ-calulus formula → Circular proof → Finite axiomatization

But rarely as proof–program objects in themselves:
develop such a proof-theoretical study, from a Curry-Howard
perspective;
establish focalization and cut-elimination (prior works:
cut-admissibility by Brotherston, additive fragment by Fortier
& Santocanale)

Recently, development of numerous circular/cyclic proof
systems (Afshari & Leigh, Das, Doumane & Pous, Cohen &
Rowe, Tatsuta et al. etc.)
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µLL∞

Non-Wellfounded Sequent Calculus
Consider your favourite logic L & add fixed points as in µMALL:

µLL∞

Pre-proofs are the trees coinductively generated by:

L inference rules
inference for µ,ν :

Γ,F [µX .F/X ] `∆
[µl]Γ,µX .F `∆

Γ,F [νX .F/X ] `∆
[νl]Γ,νX .F `∆

Γ ` F [µX .F/X ],∆
[µr]Γ ` µX .F ,∆

Γ ` F [νX .F/X ],∆
[νr]Γ ` νX .F ,∆

Circular (pre-)proofs: the regular fragment of infinite
(pre-)proofs, ie finitely many sub-(pre)proofs.

µLLω

Pre-proofs are unsound!! Need for a validity condition
...

[µ]
` µX .X

[µ]
` µX .X

...
[ν]

` νX .X ,F
[ν]

` νX .X ,F
[Cut]

` F
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µLL∞ Inferences
µLL∞ Inference Rules

(with ancestor relation)

[Ax]
` F ,F⊥

` Γ,F ` F⊥,∆
[Cut]

` Γ,∆
` Γ,G ,F ,∆

[X]
` Γ,F ,G ,∆

` F ,G ,Γ
[O]

` FOG ,Γ
` F ,Γ ` G ,∆

[⊗]
` F⊗G ,Γ,∆

` Γ
[⊥]

` ⊥,Γ
[1]

` 1

` F ,Γ ` G ,Γ
[N]

` FNG ,Γ
` Ai ,Γ

[⊕i]` A1⊕A2,Γ
[>]

` >,Γ (no rule for 0)

` F ,Γ
[?d]

`?F ,Γ
` F ,?Γ

[!p]
`!F ,?Γ

` Γ
[?w]

`?F ,Γ
`?F ,?F ,Γ

[?c]
`?F ,Γ

` G [νX .G/X ],Γ
[ν]

` νX .G ,Γ
` F [µX .F/X ],Γ

[µ]
` µX .F ,Γ
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Fischer-Ladner subformulas
FL(F ) is the least set of formula occurrences such that:

F ∈ FL(F );
G1 ?G2 ∈ FL(F )⇒ G1,G2 ∈ FL(F ) for ? ∈ {⊕,N,O,⊗};
σX .B ∈ FL(F )⇒ B[σX .B/X ] ∈ FL(F ) for σ ∈ {µ,ν};
mG ∈ FL(F )⇒ G ∈ FL(F ) for m ∈ {!,?}.

Fact

FL(F ) is a finite set for any formula F .

Example: F = νX .((aOa⊥)⊗(X⊗µY .X ))



18/57

Fischer-Ladner subformulas
FL(F ) is the least set of formula occurrences such that:

F ∈ FL(F );
G1 ?G2 ∈ FL(F )⇒ G1,G2 ∈ FL(F ) for ? ∈ {⊕,N,O,⊗};
σX .B ∈ FL(F )⇒ B[σX .B/X ] ∈ FL(F ) for σ ∈ {µ,ν};
mG ∈ FL(F )⇒ G ∈ FL(F ) for m ∈ {!,?}.

Fact

FL(F ) is a finite set for any formula F .

Example: F = νX .((aOa⊥)⊗(X⊗µY .X ))

FL(F ) = {F , }}



18/57

Fischer-Ladner subformulas
FL(F ) is the least set of formula occurrences such that:

F ∈ FL(F );
G1 ?G2 ∈ FL(F )⇒ G1,G2 ∈ FL(F ) for ? ∈ {⊕,N,O,⊗};
σX .B ∈ FL(F )⇒ B[σX .B/X ] ∈ FL(F ) for σ ∈ {µ,ν};
mG ∈ FL(F )⇒ G ∈ FL(F ) for m ∈ {!,?}.

Fact

FL(F ) is a finite set for any formula F .

Example: F = νX .((aOa⊥)⊗(X⊗µY .X ))

FL(F ) = {F , (aOa⊥)⊗ (F⊗µY .F ) , }}



18/57

Fischer-Ladner subformulas
FL(F ) is the least set of formula occurrences such that:

F ∈ FL(F );
G1 ?G2 ∈ FL(F )⇒ G1,G2 ∈ FL(F ) for ? ∈ {⊕,N,O,⊗};
σX .B ∈ FL(F )⇒ B[σX .B/X ] ∈ FL(F ) for σ ∈ {µ,ν};
mG ∈ FL(F )⇒ G ∈ FL(F ) for m ∈ {!,?}.

Fact

FL(F ) is a finite set for any formula F .

Example: F = νX .((aOa⊥)⊗(X⊗µY .X ))

FL(F ) = {F , (aOa⊥)⊗ (F⊗µY .F ) ,
F⊗µY .F ,

}
aOa⊥ ,

}



18/57

Fischer-Ladner subformulas
FL(F ) is the least set of formula occurrences such that:

F ∈ FL(F );
G1 ?G2 ∈ FL(F )⇒ G1,G2 ∈ FL(F ) for ? ∈ {⊕,N,O,⊗};
σX .B ∈ FL(F )⇒ B[σX .B/X ] ∈ FL(F ) for σ ∈ {µ,ν};
mG ∈ FL(F )⇒ G ∈ FL(F ) for m ∈ {!,?}.

Fact

FL(F ) is a finite set for any formula F .

Example: F = νX .((aOa⊥)⊗(X⊗µY .X ))

FL(F ) = {F , (aOa⊥)⊗ (F⊗µY .F ) ,
F⊗µY .F , µY .F

}
aOa⊥ , a

a⊥ }



18/57

Fischer-Ladner subformulas
FL(F ) is the least set of formula occurrences such that:

F ∈ FL(F );
G1 ?G2 ∈ FL(F )⇒ G1,G2 ∈ FL(F ) for ? ∈ {⊕,N,O,⊗};
σX .B ∈ FL(F )⇒ B[σX .B/X ] ∈ FL(F ) for σ ∈ {µ,ν};
mG ∈ FL(F )⇒ G ∈ FL(F ) for m ∈ {!,?}.

Fact

FL(F ) is a finite set for any formula F .

Example: F = νX .((aOa⊥)⊗(X⊗µY .X ))

FL(F ) = F (aOa⊥)⊗ (F⊗µY .F )
F⊗µY .F µY .F

aOa⊥ a
a⊥



19/57

Infinite threads, validity
F = νX .((aOa⊥)⊗(X⊗µY .X )).

[Ax]
` a,a⊥

[O]
` aOa⊥

` F
` F

[µ]
` µY .F

[⊗]
` F⊗µY .F

[⊗]
` (aOa⊥)⊗(F⊗µY .F )

[ν]
` F

A thread on an infinite
branch (Γi )i∈ω is an infinite
sequence of formula occur-
rences (Fi )i≥k such that for
any i ≥ k, Fi ∈ Γi and Fi+1 is
an immediate ancestor of Fi .

A thread is valid if it unfolds infinitely many ν . More precisely, if the
minimal recurring principal formula of the thread is a ν-formula.

A proof is valid if every infinite branch contains a valid thread.

Theorem (Nollet, Tasson & S, 2019)
Validity of µLLω (circular) pre-proofs is PSPACE-complete. Details

Theorem (Baelde, Doumane & S, 2016)
µMALL∞ is sound, and admits cut-elimination.
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Examples of circular proofs
Inductive and coinductive definitions

N = µX .1⊕X S = νX .(1N(N⊗X ))

Proofs-programs over these data types

double : N → N
double(n) = 0 if n = 0

= succ(succ(double(m))) if n = succ(m)

π0 =
[1]

` 1
[⊕1]

` 1⊕N
[µ]

` N

πk+1 =

πk

` N
[⊕2]

` 1⊕N
[µ]

` N

Πdouble =

[1]
` 1

[⊕1]
` 1⊕N

[µ]
` N

[⊥]
1 ` N

Πdouble

N ` N
[⊕2]

N ` 1⊕N
[µ]

N ` N
[⊕2]

N ` 1⊕N
[µ]

N ` N
[N]

1⊕N ` N
[ν]

N ` N
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Examples of circular proofs
Inductive and coinductive definitions

N = µX .1⊕X S = νX .1N(N⊗X )

Proofs-programs over these data types

enum : N → S
enum(n) = n :: enum(succ(n))

πsucc =
[Ax]

N ` N
[⊕2]

N ` 1⊕N
[µ]

N ` N
Πenum =

[1]
` 1

[?w]
!N ` 1

[Ax]
!N `!N

πsucc

N ` N
[?d]

!N ` N
[!p]

!N `!N
Πenum

!N ` S
[Cut]

!N ` S
[⊗]

!N, !N ` N⊗S
[?c]

!N ` N⊗S
[N]

!N ` 1N(N⊗S)
[ν]

!N ` S
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Circular & finitary proofs

From finitary to circular proofs

Theorem
Finitary proofs can be transformed to (valid) circular proofs.

The key translation step is the following:

π1

` Γ,S
π2

` S⊥,F [S]
[ν]

` Γ,νX .F
7−→ [π1]
` Γ,S

[π2]

` S⊥,F [S]
` S⊥,νX .F

[rF]
` F [S]⊥,F [νX .F ]

[Cut]
` S⊥,F [νX .F ]

[ν]
` S⊥,νX .F

[Cut]
` Γ,νX .F

From circular to finitary proofs
Open problem for µLLω .
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µMALL∞ Cut elimination
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µMALL∞ Cut Elimination Theorem

Theorem (Baelde, Doumane & S, 2016)
Fair µMALL∞

m

cut-reduction sequences converge to cut-free µMALL∞

proofs.

Previous result by Santocanale and Fortier
for the purely additive fragment of µLL∞.

Proof uses a locative treatment of occurrences.

Strategy: “push” the cuts away from the root.

Cut-Cut:

` Γ,F ` F⊥,∆,G
[Cut]

` Γ,∆,G ` G⊥,Σ
[Cut]

` Γ,∆,Σ
←→ ` Γ,F

` F⊥,∆,G ` G⊥,Σ
[Cut]

` F⊥,∆,Σ
[Cut]

` Γ,∆,Σ
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Fair µMALL∞ mcut-reduction sequences converge to cut-free µMALL∞

proofs.

Previous result by Santocanale and Fortier
for the purely additive fragment of µLL∞.

Proof uses a locative treatment of occurrences.

Strategy: “push” the cuts away from the root.

Cut-Cut:

` Γ,F ` F⊥,∆,G
[Cut]

` Γ,∆,G ` G⊥,Σ
[Cut]

` Γ,∆,Σ
−→ ` Γ,F ` F⊥,∆,G ` G⊥,Σ

[mcut]
` Γ,∆,Σ
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Cut elimination procedure
External phase: Cut-commutation cases

`∆,F ,G
[O]

`∆,FOG . . .
[mcut]

` Σ,FOG
⇒

`∆,F ,G . . .
[mcut]

` Σ,F ,G
[O]

` Σ,FOG

`∆,F `∆,G
[N]

`∆,FNG . . .
[mcut]

` Σ,FNG
⇒
`∆,F . . .

[mcut]
` Σ,F

`∆,G . . .
[mcut]

` Σ,G
[N]

` Σ,FNG

`∆,F [µX .F/X ]
[µ]

`∆,µX .F . . .
[mcut]

` Σ,µX .F
⇒

`∆,F [µX .F/X ] . . .
[mcut]

` Σ,F [µX .F/X ]
[µ]

` Σ,µX .F

+ additional cases

Cut-commutation steps are productive
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Cut elimination procedure
Internal Phase: Key cases

. . .

`∆,F2 `∆,F1
[N]

`∆,F2NF1

` Γ,F⊥i
[⊕i]

` Γ,F⊥1 ⊕F⊥2
[mcut]

` Σ
⇒ . . . `∆,Fi ` Γ,F⊥i

[mcut]
` Σ

. . .

`∆,F [µX .F/X ]
[µ]

`∆,µX .F
` Γ,F⊥[νX .F⊥/X ]

[ν]
` Γ,νX .F⊥

[mcut]
` Σ

⇒ . . . `∆,F [µX .F/X ] ` Γ,F⊥[νX .F⊥/X ]
[mcut]

` Σ

+ additional cases

Key cases are not productive
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Cut elimination algorithm
Internal phase: Perform key case reductions while you cannot
do anything else.
External phase: Build a part of the output tree by applying
cut-commutation steps as soon possible.
Repeat.

Remark: We consider a fair strategy ie. every reduction which is
available at some point will be performed eventually.

Theorem more details

Internal phases always halt. Cut-elimination produces a pre-proof.

Theorem more details

The pre-proof obtained by the cut elimination algorithm is valid.

µLLω is not stable by cut-elimination
Eliminating cuts from a µLLω proof (circular) may result in a µLL∞, non
circular, proof.
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Cut-elimination for µLL∞
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Cut-elimination for µLL∞

Theorem
Fair µLL∞ mcut-reduction sequences converge to cut-free µLL∞

proofs.

Idea
The proof goes by:

considering the following encoding of LL exponential
modalities:

?•F = µX .F ⊕ (⊥⊕ (XOX ))
!•F = νX .FN(1N(X ⊗X ))

translating µLL∞ sequents and proofs in µMALL∞,
simulating µLL∞ cut-reduction sequences in µMALL∞ and
applying µMALL∞ cut-elimination theorem.
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Encoding µLL∞ in µMALL∞

?•F = µX .F ⊕ (⊥⊕ (XOX)) !•F = νX .FN(1N(X ⊗X))
µMALL∞ derivability of the exponential rules (?d•,?c•, ?w•, !p•):
Dereliction : Contraction : Weakening :

` F ,∆
[⊕1]

` F ⊕ (⊥⊕ (?•FO?•F )),∆
[µ]

`?•F ,∆

`?•F ,?•F∆
[O]

`?•FO?•F ,∆
[⊕2]

` ⊥⊕ (?•FO?•F ),∆
[⊕2]

` F ⊕ (⊥⊕ (?•FO?•F )),∆
[µ]

`?•F ,∆

`∆
[⊥]

` ⊥,∆
[⊕1]

` ⊥⊕ (?•FO?•F ),∆
[⊕2]

` F ⊕ (⊥⊕ (?•FO?•F )),∆
[µ]

`?•F ,∆

Promotion:
` F ,?•∆

[1]
` 1

[?w•]
` 1,?•∆

(?)
`!•F ,?•∆

(?)
`!•F ,?•∆

[⊗]
`!•F⊗!•F ,?•∆,?•∆

[?c•]
`!•F⊗!•F ,?•∆

[ν] , [N] , [N]
(?) `!•F ,?•∆

Preservation of validity
π is a valid µMLL∞ pre-proof of ` Γ iff
π• is a valid µMALL∞ pre-proof of ` Γ•.
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Simulation of µLL∞ cut-elimination steps
µLL∞ cut-elimination steps can be simulated by the previous
encoding.

For instance, the following reduction can be simulated by applying
the external reduction rule [µ]/[Cut] followed by the external
reduction rule [⊕]/[Cut].

` F ,G ,Γ
[?d•]

`?•F ,G ,Γ ` G⊥,∆
[Cut]

`?•F ,Γ,∆
−→2

` F ,G ,Γ ` G⊥,∆
[Cut]

` F ,Γ,∆
[?d•]

`?•F ,Γ,∆

Challenge: to show that the simulation of derivation also holds
(i) for the reductions involving [!p] as well as
(ii) for reductions occurring above a promotion rule (aka. in a
box) since the encoding of [!p] uses an infinite, circular derivation.



32/57

Simulation of µLL∞ cut-elimination steps
External phase: Cut-commutation rules

` F ,G ,Γ
[?d•]

`?•F ,G ,Γ ` G⊥,∆
[Cut]

`?•F ,Γ,∆
−→2

` F ,G ,Γ ` G⊥,∆
[Cut]

` F ,Γ,∆
[?d•]

`?•F ,Γ,∆

`?•F ,?•F ,G ,Γ
[?c•]

`?•F ,G ,Γ ` G⊥,∆
[Cut]

`?•F ,Γ,∆
−→3

`?•F ,?•F ,G ,Γ ` G⊥,∆
[Cut]

`?•F ,?•F ,Γ,∆
[?c•]

`?•F ,Γ,∆

` G ,Γ
[?w•]

`?•F ,G ,Γ ` G⊥,∆
[Cut]

`?•F ,Γ,∆
−→3

` G ,Γ ` G⊥,∆
[Cut]

` Γ,∆
[?w•]

`?•F ,Γ,∆

` F ,?•G ,?•Γ
[!p•]

`!•F ,?•G ,?•Γ
` G ,?•∆

[!p•]
`!•G⊥,?•∆

[Cut]
`!•F ,?•Γ,?•∆

−→ω
` F ,?•G ,?•Γ

` G ,?•∆
[!p•]

`!•G⊥,?•∆
[Cut]

` F ,?•Γ,?•∆
[!p•]

`!•F ,?•Γ,?•∆
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Simulation of µLL∞ cut-elimination steps
Internal phase: Key-cut rules

π

` F ,Γ
[?d•]

`?•F ,Γ

π ′

` F⊥,?•∆
[!p•]

`!•F⊥,?•∆
[Cut]

` Γ,?•∆

−→2
π

` F ,Γ
π ′

` F⊥,?•∆
[Cut]

` Γ,?•∆

π

`?•F ,?•F ,Γ
[?c•]

`?•F ,Γ

π ′

` F⊥,?•∆
[!p•]

`!•F⊥,?•∆
[Cut]

` Γ,?•∆

−→4int,4×#∆ext

π

`?•F ,?•F ,Γ
π ′

`!•F⊥,?•∆
π ′

`!•F⊥,?•∆
[mcut]

` Γ,?•∆,?•∆
[?c•] ?

` Γ,?•∆
π

` Γ
[?w•]

`?•F ,Γ

π ′

` F⊥,?•∆
[!p•]

`!•F⊥,?•∆
[Cut]

` Γ,?•∆

−→3int,3×#∆ext
π

` Γ
[?w•] ?

` Γ,?•∆
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Cut-elimination for µLL∞

Consider a fair cut-reduction sequence σ = (πi )i∈ω in µLL∞ from π.

σ converges to a cut-free µLL∞ pre-proof. Otherwise, a suffix τ of
σ would contain only key-cut steps. The encoding of τ in µMALL∞,
τ•, would be unproductive (contradicting productivity of
cut-elimination).

As σ is productive, it strongly converges to some µLL∞pre-proof π ′.

σ• is therefore a transfinite reduction sequence from π• strongly
converging to π ′•, cut-free (as it is the encoding of π ′).

The compression lemma applies: there exists ρ an ω-indexed
µMALL∞ cut-reduction sequence converging to π ′•.

By compression, fairness of σ• transfers to ρ which is fair.

Therefore, ρ has a limit, π ′• which is a valid cut-free µMALL∞

proof. π ′• is cut-free and valid and so is π ′, by the validity
preservation property.
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Cut-elimination for µLK∞, µLJ∞

The usual call-by-value embedding of LJ in ILL (intuitionnistic LL) can be
lifted to µLJ∞: indeed, the translation of proofs does not introduce cuts.
For µLK∞, it is slightly trickier as the well-known T/Q-translations
introduce cuts breaking validity. An alternative translation which does
not introduce cuts can be used.

Moreover, one gets the skeleton of a µLL∞ (resp. µILL∞) proof which is
a µLK∞ (resp. µLJ∞) proof, simply by erasing the exponentials
(connectives and inferences), preserving validity.
The skeleton of a µLL∞ (resp. µILL∞) cut-reduction sequence is a µLK∞

(resp. µLJ∞) cut-reduction sequence. As a result, one has:

Theorem
If π is an µLK∞ (resp. µLJ∞) proof of ` Γ (resp. Γ ` F), there exists a
µLL∞ (resp. µILL∞) proof of the translated sequents.

Theorem
There are productive cut-reduction strategies producing cut-free µLK∞

(resp. µLJ∞) proofs.
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Bouncing validity
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A invalid, though productive, proof with cut
Problem: Cuts are not well-managed by the validity condition.

[Ax]
` νX .X ,µX .X

[µ]
` νX .X ,µX .X

` νX .X
[ν]

` νX .X
[ν]

` νX .X
[Cut]

` νX .X

` νX .X
[ν]

` νX .X

Cut-elimination

From now, we will refer to s-valid pre-proof for the previous validity
condition and will consider alternative validity conditions.
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Bouncing threads: visible part
Visible part: survives the
cut-elimination.
Hidden part: Must sat-
isfy matching constaints.

[Ax]
` F ,F⊥

[Ax]
` G ,G⊥

[O,⊗]
` FOG ,F⊥⊗G⊥

...
` F ′,G

[ν]
` F ,G

[O]
` FOG

[Cut]
` FOG

Bouncing thread valid: ∞ ν-unfoldings in visible part.

Valid branch B: exists a valid bouncing
thread with visible part included in B.

B-valid proof: all infinite branches are valid.

(Ax)

(Ax)

(Ax)

Theorem (Baelde, Doumane, Kuperberg & S)
Soundness and cut-elimination hold for µMALL∞ b-valid proofs.
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` FOG ,F⊥⊗G⊥

...
` F ′,G

[ν]
` F ,G

[O]
` FOG

[Cut]
` FOG

Bouncing thread valid: ∞ ν-unfoldings in visible part.

Valid branch B: exists a valid bouncing
thread with visible part included in B.

B-valid proof: all infinite branches are valid.

(Ax)

(Ax)

(Ax)

Theorem (Baelde, Doumane, Kuperberg & S)
Soundness and cut-elimination hold for µMALL∞ b-valid proofs.
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Decidability of the bouncing validity condition ?

Given a circular proof, can we decide b-validity ?

NO!

=⇒ Reduce termination of Minsky machines to bouncing validity.

A hierarchy of decidable conditions: Height of a b-thread:
parameter binding the height of bounces.

b(k)-valid proof: b-valid proof using only threads of height ≤ k.

Theorem
Every b-valid circular proof is a b(k)-valid for some k ∈ N.

Theorem
For all k ∈ N, it is decidable whether a circular proof is a k-proof.
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Hierarchy of validity criteria

• cut-free valid Pre-proofs

• s-valid Pre-proofs

• b(k)-valid Pre-proofs
. . .
• b-valid Pre-proofs

• Productive Pre-proofs

• Pre-proofs
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Sequentiality & parallelism
in non-wellfounded proofs:
proof-nets for µMLL∞
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Mismatch between the parallel nature of threads
and the sequential nature of sequent proofs.

[Ax]
` νX .X ,µX .X

[ν]
` νX .X ,µX .X

[ν]
` νX .X ,µX .X

[µ]
` νX .X ,µX .X ` νX .X

[Cut]
` νX .X

[Ax]
` νX .X ,µX .X

[ν]
` νX .X ,µX .X

[µ]
` νX .X ,µX .X

[ν]
` νX .X ,µX .X ` νX .X

[Cut]
` νX .X

Non-productive cut-elimination Productive cut-elimination
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MLL proof-nets

An MLL proof structure is
a directed finite graph com-
posed of:

A A⊥ A B A B

A A⊥
ax cut

A⊗B
⊗

AOB
O

Desequentialisation

Sequentialisation
Proofs

Proof structures

Proof-nets

A proof structure
that represents no
sequent proof:

A A⊥
ax

cutCanonicity
Two proofs are equivalent up to permutation of rules iff they have the
same proof-net.

Confluent and terminating cut-elimination
A A⊥ A −→

A

ax

cut

A B A⊥ B⊥ −→ A A⊥ B B⊥

⊗ O

cut

cut cut
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µMLL∞ proof structures
An MLL proof structure + the following decorated nodes:

A[µX .A/X ] A[νX .A/X ]

µX .A
µ

νX .A
ν

New cut-elimination rules for new operators:

F [µX .F/X ] F⊥[νX .F⊥/X ]

F [µX .F/X ] F⊥[νX .F⊥/X ]µX .F
µ

νX .F⊥ −→
ν

cut cut

Is that enough?

No! Need more structure & more reductions:
Need to consider “infinite axioms” as invariants of infinite branches;

Need to add visitable paths to infinite axioms, to prevent
disconnectedness of the proof structure;

cut-elimination shall be adapted to those infinite axioms.
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Infinite axioms and visitable paths
Let G = νX .(AOA⊥)⊗X .

[Ax]
` A,A⊥

[O]
` AOA⊥ ? ` G ,B

[⊗]
` (AOA⊥)⊗G ,B

[ν]
? ` G ,B

A A⊥

...

A A⊥

B

ax

ax

ax∞

O

⊗

ν
O

⊗

G
ν

[Ax]
` F ,F⊥

?

` F ,νX .X
[ν]

` F ,νX .X
[Cut]

? ` F ,νX .X

F F⊥ F F⊥
...

...
ax ax

ax∞

cut cut

νX .X
ν

νX .X
ν

Infinite axioms are invariants of infinite branches in proofs. They
may contain “visitable" sequences of axioms and cuts/tensors.
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⊗

ν
O

⊗

G
ν

[Ax]
` F ,F⊥

?

` F ,νX .X
[ν]

` F ,νX .X
[Cut]

? ` F ,νX .X

F F⊥ F F⊥
...

...
ax ax ax∞

cut cut

νX .X
ν

νX .X
ν

Infinite axioms are invariants of infinite branches in proofs. They
may contain “visitable" sequences of axioms and cuts/tensors.
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Non-wellfounded proof-structures
An NWFPS has the following components:

Formulas {F1,F2, . . .} and their corresponding syntax trees
{T1,T2, . . .}
Cuts of the form (C ,C⊥) where C = Fi and C⊥ = Fj .
Axioms (L,L⊥) of leaves of some trees Ti ,Tj .
Visitable paths: infinite sequences of the form APAPAP...
where A is an axiom and P is either a cut or a ⊗.
Infinite axioms that contain leaves and visitable paths.

Correctness criterion
A correctness criterion ensures sequentialisation and
cut-elimination.

Desequentialisation

Sequentialisation
Proofs

NWFPS

Infinets
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Infinet cut-elimination
F [X/F ] F⊥[X/F⊥]

F [X/F ] F⊥[X/F⊥]µX .F
µ

νX .F⊥ −→
ν

cut cut

But what about the cut/inf-ax case?

Consider k(F ) the smallest subnet with F as the conclusion
(corresponding to the kingdom of F ).

F⊥

∆

k(F )

Γ F
cut

ax∞

−→ Γ ∆
ax∞

Theorem (De, Pellissier & S, 2021)
The limit of any sequence of (fair) reductions is a (cut-free) infinet.
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Conclusion
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Conclusion
Fixed-point logics extending LL with finite circular or
non-wellfounded proofs;
Syntactic cut elimination for various nwf sequent calculi:
µMALL∞, µLL∞, µLJ∞, µLK∞;
More expressive validity condition;
Proof-nets in the non-wellfounded multiplicative case.
Ongoing and future work:

Equivalence of circular fragment of µMALL∞ and µMALL:
Translate infinitrary proofs to finitary ones. Same question as
above by preserving the computational content.
Relax the conditions on bouncing threads retaining
cut-elimination in infinets.
Design a good notion of circularity for infinets.
Extend to circular natural deduction and circular λ -calculus.
Provability and denotational semantics of circular proofs (jww
De, Ehrhard and Jafarrahmani).

Thank you for your attention!
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For any integer m,
√

m is either an integer, or irrational.
Another example of infinite descent another example

Proof
Let m ∈ N and for the sake of contradiction, assume

√
m ∈Q\N.

1 Choose q,a0,b0 ∈ N st. 0<
√
m−q < 1 and

√
m = a0/b0.

One has b0
√
m = a0 ∈ N and a0

√
m = mb0 ∈ N.

2 Therefore by setting a1 ,mb0−a0q = a0(
√
m−q) and

b1 , a0−b0q = b0(
√
m−q), we have

a0,a1 are integers,
0< a1 < a0, 0< b1 < b0 and√
m = a1/b1.

3 In a similar way, one can build (ai )i∈N and (bi )i∈N infinite
sequences of integers, which are strictly decreasing.

4 This is impossible. Therefore
√
m is either integer or

irrational.
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Decidability of the validity condition
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Parity automata back to main slide

Definition
A parity automaton is a finite state word automaton,
whose states are ordered and given a parity bit ν/µ,
which accepts runs (qi )i∈ω such that min(inf((qi )i )) has parity ν .

Remarks
States are usually given a color in N, equivalently.
Only co-accessible states need to be ordered.

Properties
PA can be determinized,
PA are closed by complementation and intersection,
The emptiness problem is decidable,
(Thus) inclusion of parity automata is decidable.
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Theorem: The validity of circular pre-proofs is decidable.
Proof.
Consider a pre-proof Π i.e. a graph with nodes si = (F j

i )j∈[1;ni ].

The proof goes as follows:
One builds a parity automaton recognizing the language LB
of infinite branches of Π;
One builds a parity automaton recognizing the language LT
the valid branches of Π.
Validity amounts to the inclusion of LB in LT , that is
showing that LB \LT = /0 which is decidable.

Branch automaton: Let AB be the branch automaton with
states si , transitions si →k sj when sj is the k-th premise of si , and
which accepts all runs.

(...)
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Theorem: The validity of circular pre-proofs is decidable.
Proof.
Consider a pre-proof Π i.e. a graph with nodes si = (F j

i )j∈[1;ni ].
(...)
Thread automaton: Let AT be the thread automaton with
states F j+

i , F j−
i or si , with transitions:

si →k sp and si →k F q−
p when sp is the k-th premise of si

F j+
i →k F qε

p (ε ∈ {+,−}) when si →k sp and F j
i is active in

the rule of conclusion si and has ancestor F q
p

F j−
i →k F qε

p (ε ∈ {+,−}) when si →k sp and F j
i is passive in

the rule of conclusion si and has ancestor F q
p

acceptance based on subformula ordering with the active/passive
distinction: only active ν-formulas have coinductive parity.

Validity of Π equivalent to L (AB)\L (AT ) = /0, thus decidable.
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Cut elimination is productive back to the statement

Theorem
Internal phase always halts.
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Cut elimination is productive back to the statement

Theorem
Internal phase always halts.

Proof by contradiction: Suppose that there is a proof of F for
which the internal phase does not halt.

` F
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Cut elimination is productive back to the statement

Theorem
Internal phase always halts.

Proof by contradiction: Consider the trace of this divergent
reduction.

` F
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Cut elimination is productive back to the statement

Theorem
Internal phase always halts.

Proof by contradiction: No rule on F is applied in the trace,
otherwise the internal phase would halt.

` F

. . . [r]
`Σ,F
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Cut elimination is productive back to the statement

Theorem
Internal phase always halts.

Proof by contradiction: We can eliminate the occurrences of F
from the trace. This yields a "proof" of `.

`

. . . [r]
`Σ
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Cut elimination is productive back to the statement

Theorem
Internal phase always halts.

Proof by contradiction: We show that the proof system is sound.
Contradiction.

`

. . . [r]
`Σ
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Cut elimination is productive (Details) back to the statement

Theorem
Internal phase always halts.

Proof: Suppose that the internal phase diverges for a proof π `∆.

Let θ be the sub-derivation of π explored by the reduction.

No rule is applied to a formula of ∆ in θ ,
as this would contradict the divergence of internal phase.

Let θ be the proof obtained from θ by dropping all the
formulas from ∆.

θ is then a proof for ` in a proof system with ”truncation”.

We define a truth semantics for µMALL∞ formulas and show
soundness of the proof system with truncation wrt. it.
Contradiction.
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Cut elimination produces a proof back to the statement

Theorem
The pre-proof obtained by the cut elimination algorithm is valid.

Proof: Let π? be the pre-proof obtained from π `∆ by cut
elimination. Suppose that a branch b of π? is not valid.

Let θ be the sub-derivation of π explored by the reduction
that produces b.
Fact: Threads of θ are the threads of b, together with
threads starting from cut formulas.
The validity of θ cannot rely on the threads of b.
Define θ µ to be θ where we replace in ∆ any ν by a µ and
any 1,> by ⊥,0.
Show that formulas containing only µ,⊥,0 and MALL binary
connectives are false.
θ µ proves a false sequent which contradicts soundness.



57/57

Cut elimination produces a proof back to the statement

Theorem
The pre-proof obtained by the cut elimination algorithm is valid.

Proof: Let π? be the pre-proof obtained from π `∆ by cut
elimination. Suppose that a branch b of π? is not valid.

Let θ be the sub-derivation of π explored by the reduction
that produces b.
Fact: Threads of θ are the threads of b, together with
threads starting from cut formulas.
The validity of θ cannot rely on the threads of b.
Define θ µ to be θ where we replace in ∆ any ν by a µ and
any 1,> by ⊥,0.
Show that formulas containing only µ,⊥,0 and MALL binary
connectives are false.
θ µ proves a false sequent which contradicts soundness.


