
Cut-elimination for the circular modal mu-calculus:
linear logic and super exponentials to the rescue

Esaïe Bauer

esaie.bauer@irif.fr

Université Paris Cité

Paris, France

Alexis Saurin

Université Paris Cité & CNRS & INRIA

Paris, France

ABSTRACT
The aim of this paper is twofold: contributing to the non-wellfounded

and circular proof-theory of the modal mu-calculus and to that of

extensions of linear logic with fixed points. Contrarily to Girard’s

linear logic which is equipped with a rich proof theory, Kozen’s

modal mu-calculus has an underdeveloped one: for instance the

modal mu-calculus is lacking a proper syntactic cut-elimination

theorem.

A strategy to prove the cut-elimination theorem for the modal

mu-calculus is to prove cut-elimination for a "linear translation" of

the modal mu-calculus (that is define a translation of the statements

and proofs of the modal mu-calculus into a linear sequent calculus)

and to deduce the desired cut-elimination results as corollaries.

While designing this linear translation, we come up with a sequent

calculus exhibiting several modalities (or exponentials). It happens

that the literature of linear logic offers tools to manage such calculi,

for instance subexponentials byNigam andMiller and super exponentials

by Bauer and Laurent.

We actually extend super exponentials with fixed-points and

non-wellfounded proofs (of which the linear decomposition of

the modal mu-calculus is an instance) and prove a syntactic cut-

elimination theorem for these sequent calculi in the framework

of non-wellfounded proof theory. Back to the classical modal mu-

calculus, we deduce its cut-elimination theorem from the above

results, investigating both non-wellfounded and regular proofs.
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1 INTRODUCTION
On unity and diversity in logic. It is striking how logic can show

at the same time deep unity and diversity, maybe even more when

considering computer science logic. On the one hand, this unity is

embodied by the fundamental objects and questions of logic which

could be broadly summarised as (i) how to design and use logical

languages and logical consequences, from amodel-theoretic or a proof-

theoretic perspective, (ii) how to understand the logical invariants

emerging from models or proofs and – in the CS-oriented part of

logic – (iii) how to provide algorithms and softwares to mechanize

these models and proofs with a specific focus on (iv) how intrinsically

expressive and complex are those formalisms and problems? On the

other hand, the vast diversity of logical languages and the broad

nature of reasoning – and sometimes even the linguistic aspects

of logical design – that one tries to capture logically is a source of

multiplicity of formalisms which, sometimes, turn out to become

incompatible: the ultimate aim of logic to universality can soon be

lost in the technicalities required to achieve the precise and efficient

modelling of a specific phenomenon.

This diversity is of course source of very rich theories and allows

us to regularly revisit the fundamental concepts themselves, which

is highly valuable. For instance, depending on the adopted point of

view (be it classical, intuitionistic or linear), one will be driven to

various perspectives on what a model should be, from models of

truth and provability (expressing invariants on logical statements)

to models of proofs (expressing invariants on reasonings... and

computation). Indeed, as soon as one is adopting the Curry-Howard

perspective – viewing formulas as data types, proofs as programs

and proof simplification as evaluation – it becomes natural to

wonder not only when two formulas are equivalent and could be

interchanged, but also when two proofs are equivalent and when

one can be used to optimize another one.

This choice of point of view will also lead to various structures

for mathematically representing proofs, whether one is primarily

interested in what can be deduced (in which case one often chooses

some optimal representation for deductions minimizing the size of

proofs or the non-determinism in proof objects), or whether one

is primarily interested in how logical statements can be deduced

(in which case one often chooses more structured representations,

allowing for non-trivial proof invariants and proof-equivalences).

Both approaches induce fundamentally different choices in the

structure of the representation of logical judgments themselves (by

nature hypothetical): the various flavours of sequents found in the

literature (as sets, multisets or lists as well as labelled or nested

sequents, etc.) illustrate this variety.

When turning to the structure of proofs, one can approach

proof-invariants either with semantical methods (from denotational
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semantics) or with syntactical methods (inference permutations,

canonical representations of proofs, cut-elimination) but in both

cases a fine-grained analysis of the process and requirements of

cut-elimination is crucial.

When coming back to the expressiveness of the logical language

under study (be it propositional, predicative of higher-order, whether

it allows tomodel time or othermodal aspects orwhether it expresses

(co)inductive statements), this choice has of course a direct and

essential impact on the structure of models and proofs. For instance,

when manipulating a logical language encompassing some form of

inductive statements, one shall have some sort of inductive form

of reasoning at hand, be it in the form of an induction axiom, in

the form of Parks’s inference rules, which reflect Knaster-Tarski’s

theorem, in the form of an infinitely branching 𝜔-rule, or in the

form of non-wellfounded proofs, which correspond to a form of

infinite descent reasoning. On view of the applications of induction

and coinduction in CS, it is natural to investigate the relationships

between such representations of (co)inductive reasoning.

Indeed, studies on the modal 𝜇-calculus have been extremely

fruitful since Kozen’s seminal paper [Koz83], investigating its properties

by employing a number of approaches (model-theoretic, proof-

theoretic, automata-theoretic, complexity-theoretic, etc). Still, cut-

elimination, despite being a crucial property from a proof-theoretic

perspective, only received partial solutions, either in the form of

statements of cut-admissibility (usually deduced from a completeness

theorem and therefore non effective) or syntactic cut-elimination

results capturing only a fragment of the calculus [NW96, BS12,

Min12, MS12, AL17]. The present work aims at contributing to

syntactic cut-elimination theorems for the modal 𝜇-calculus.

Cut-admissibility vs cut-elimination. The treatment of the cut-

inference in sequent-based proof-systems follows twomain traditions:

(i) one can consider cut-free proofs as the primitive proof-objects,

establishing that the cut-inference is admissible (according to that

tradition, the cut-inference essentially lives at the meta level) or

alternatively, (ii) one can consider that the cut inference lives at

the object-level and is a fundamental piece of proofs, establishing

that it is eliminable thus ensuring the sub-formula property (and

its numerous important consequences, ranging from consistency

to interpolation properties). This second tradition often comes

with the investigation of a syntactic, or effective, approach to cut-

elimination, consisting in a cut-reduction relation on proofs, shown

to be (at least) weakly normalizing, the normal forms being cut-free

proofs. In several settings (most notably LJ and LL [Gir87]), such

cut-reductions may have a computational interpretation which was

the starting point of Curry-Howard correspondence built upon

sequent-calculus [CH00].

When considering cuts in the modal 𝜇-calculus, one finds a lot of

works which tried to address cut-elimination in some form. Some

of them are admissibility results [NW96, AL17], possibly using non-

wellfounded or circular systems. Systems with 𝜔-rule also enjoy

cut-admissibility (see [JKS08] for instance), however a problem that

arises when trying to describe a syntactic cut-elimination is the

fact that a choice on the number of time a 𝜇-rule must be made

sometimes before knowing how many times it should be to fit each

hypotheses of a 𝜈-rule. In [BS12], the authors discuss a specific

example where syntactic cut-elimination fails. Syntactic results of

cut-elimination can still be found in 𝜔-rule systems [MS12, BS12,

Min12], however these systems are strict fragments of the modal

𝜇-calculus. In fact, there is no syntactic cut-elimination theorem

for the modal 𝜇-calculus.

Linear logic is often described as a resource-sensitive logic but it

is probably more correct to describe linear logic as a logic designed

for analyzing cut-elimination itself. Indeed, linear logic comes from

an analysis of structural rules, not to weaken them but to control

them and offer a more constructive management of contraction and

weakening, notably by offering means to cancel some fundamental

drawbacks of classical proofs. For instance, linear logic allowed for

decomposing, thanks to the controlled treatment of the structural

rules of weakening and contraction by the exponential modalities,

both intuitionistic and classical logic, in a structured and fine-

grained enough way so that it was possible to refine both the cut-

elimination of those logics as well as their notion of model (allowing

to build a non-trivial denotational model of proofs for classical

logic) [Gir87, DJS97]. Further analyses on these exponential modalities

led to find alternative presentations offering the possibility to tame

their complexity in quite a flexible way, introducing light logics.

Those results were extended to logics with fixed-points in the

finitary and non-wellfounded setting [Dou17, Sau23] and 𝜇LL∞

allowed for the same kind of linear decomposition for (the non-

wellfounded version of) 𝜇LJ and 𝜇LK. A natural question is therefore

whether linear logic and its extensions with fixed-points can help

us in achieving syntactic cut-elimination for the modal mu-calculus.

This suggests a first question: what would be a linear decomposition

of the modal 𝜇-calculus? Let us forget for a moment about the fixed-

point connective since to motivate the system 𝜇LL∞□ , we need to

understand what problem will be encountered by the translation

of 𝜇LK∞□ in it. Let us consider an example:

⊢ 𝐴, 𝐵 □p⊢ □𝐴, ♦𝐵 ⇝
⊢ !□𝐴•, ♦𝐵•

?
d⊢ ?!□𝐴•, ♦𝐵•
?
d
, !p⊢ ?!□𝐴•,?!♦𝐵•

In this example, it would be convenient to have contexts prefixed

with ♦, as applying the rules in this order would leave us with an

unprovable sequent. From cut-elimination steps of exponentials, we

have that adding ♦-formulas in the context of a promotion imposes

to propagate all the structural rules of ? to ♦. This results in a system
that extends 𝜇LL∞ with structural rules on ♦ (♦c and ♦w), as well
as the usual modal rule from modal 𝜇-calculus (□p) and a relaxed

constraint on the context of the promotion rule (!
♦
p
):

⊢ 𝐴, Γ □p⊢ □𝐴, ♦Γ ,
⊢ ♦𝐴, ♦𝐴, Γ

♦c⊢ ♦𝐴, Γ ,
⊢ Γ ♦w⊢ ♦𝐴, Γ ,

⊢ 𝐴, ?Γ, ♦Δ
!
♦
p⊢ !𝐴, ?Γ, ♦Δ
.

Do we break anything by doing so? In fact no, because we

can rely on a theory for treating altogether various exponential

modalities, in the name of subexponentials [NM09] or super exponentials [BL21].

It happens that the latter framework contains as an instance the

sequent calculus LL□ that we just outlined.

Contributions. This therefore suggests the following roadmap

that we adopt in this paper: in Section 2, we recall the necessary

technical background about 𝜇LL∞, superLL, and introduce 𝜇superLL∞

and 𝜇LK∞□ (with list and sequence-based sequents). In Section 3,
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prove the cut-elimination for 𝜇superLL∞ so that, in Section 4, we

deduce various results on the cut-elimination of the modal mu-

calculus in the circular and non-wellfounded setting.

More precisely, we first prove the infinitary weak normalization

of a cut-elimination procedure for the non-wellfounded system

𝜇LK∞□ Then, while the normalization process is infinitary, adapting

our 𝜇LK∞□ proofs to a system where sequents are sets of formulas,

we can simultaneously use a regularisation procedure on them to

get a circular and finitary weak-normalization reduction.

2 BACKGROUND
2.1 Formulas
Throughout this paper, we will work with various logics and will

therefore consider different sets of formulas and sequent calculi

(namely LK, LK□,MALL, LL, superLL, 𝜇LK∞, 𝜇LK∞□ , 𝜇LL∞, 𝜇MALL∞,

𝜇superLL∞). We therefore give an uniform way of defining the

formulas of such logics, to make the presentation generic, precise

and concise, taking inspiration from [Sau23]:

Definition 1 (𝜇-signature). A 𝜇-signature is a set of pairs (𝑐, 𝑝)
of a connective symbol 𝑐 and a 𝑝 ∈ {−, +}𝑛 with an n arity 𝑛 ∈ N.

Example 1 (𝜇-signature associated to our systems). Here

we define some 𝜇-signature for our systems:

• 𝜇MALL∞: CMALL := {⊗,`,&, ⊕} × {(+, +)} ∪ {1,⊥,⊤, 0} ×
{()}.

• one-sided 𝜇LL∞: CLL1
:= CMALL ∪ {!, ?} × {(+)}.

• two-sided 𝜇LL∞: CLL2
:= CLL1

∪ {(⊸, (−, +)), ((·)⊥, (−))}.
• one-sided 𝜇LK∞: CLK1

:= {∧,∨} × {(+, +)} ∪ {T, F} × {()}.
• two-sided 𝜇LK∞: CLK2

:= CLK1
∪ {(→, (−, +)), ((·)⊥, (−))}.

• one-sided 𝜇LK∞□ : CLK□1
:= CLK1

∪ {♦,□} × {(+)}.
• two-sided 𝜇LK∞□ : CLK□2

:= CLK□1
∪{(→, (−, +)), ((·)⊥, (−))}.

Note that the definition of the 𝜇-signature for superLL-systems

is postponed to the next section as it requires some preliminary

definitions.

Definition 2 (Pre-formulas). LetS be a triplet (C,V,A), with
C a 𝜇-signature,V a set of variables and A a set of atomic formulas,

we define the set of pre-formulas FS over S to be the set defined by

induction ((𝑐, 𝑝) ∈ C, 𝑋 ∈ V, 𝑎 ∈ A):

FS ::= 𝑋 | 𝑎 | 𝑐 (FS, . . . , FS) | 𝜇𝑋 .FS | 𝜈𝑋 .FS

Definition 3 (Positive andnegative occurrence of a fixed-point

variable). Let C be a 𝜇-signature and a fixed-point variable 𝑋 ∈ V ,

one defines the fact, for 𝑋 , to occur positively (resp. negatively) in a

pre-formula by induction on the structure of pre-formulas:

• The variable 𝑋 occurs positively in 𝑋 .

• 𝑋 occurs positively (resp. negatively) in 𝑐 (𝐹1, . . . , 𝐹𝑛), for (𝑐, 𝑝) ∈
C, if there is some 1 ≤ 𝑖 ≤ 𝑛 such that𝑋 occurs positively (resp.

negatively) in 𝐹𝑖 and 𝑝𝑖 = + or there is some 1 ≤ 𝑖 ≤ 𝑛 such

that 𝑋 occurs negatively (resp. positively) in 𝐹𝑖 and 𝑝𝑖 = −.
• 𝑋 occurs positively (resp. negatively) in 𝛿𝑋 .𝐺 if it occurs

positively (resp. negatively) in 𝐺 (for 𝛿 ∈ {𝜇, 𝜈}).

Definition 4 (Formulas). Let S be a triplet (C,V,A), with C
a 𝜇-signature, V a set of variables and A a set of atomic formulas, a

formula 𝐹 over S is a closed pre-formula such that for any sub-pre-

formula of 𝐹 of the form 𝛿𝑋 .𝐺 (with 𝛿 ∈ {𝜇, 𝜈}), 𝑋 does not occur

negatively in 𝐺 .

From this definition and definition 1 we get different sets of

formulas, namely one-sided and two-sided versions of 𝜇MALL∞,

𝜇LL∞, 𝜇LK∞ and 𝜇LK∞□ . By considering the 𝜇, 𝜈, 𝑋 -free formulas

of the these systems we get the fixed-point free versions of these

systems: MALL, LL, LK, LK□.

Definition 5 (Negation). Given a 𝜇-signature C containing

only connectives with positive polarity. Let 𝜄 be an involution on C
such that if 𝜄 (𝑐, 𝑝) = (𝑐′, 𝑝′) then 𝑝 = 𝑝′. Let A be a set of atoms

with another involution 𝜅 on it and let V be a set of variables. We

define (−)⊥(𝜄,𝜅 )
to be the involution on formulas satisfying:

Details in

App. A.1.1.

𝑋⊥(𝜄,𝜅 ) = 𝑋 𝑐 (𝐹1, . . . , 𝐹𝑛)⊥(𝜄,𝜅 ) = 𝜄 (𝑐) (𝐹⊥(𝜄,𝜅 )
1

, . . . , 𝐹
⊥(𝜄,𝜅 )
𝑛 )

𝑎⊥(𝜄,𝜅 ) = 𝜅 (𝑎) (𝜇𝑋 .𝐹 )⊥(𝜄,𝜅 ) = 𝜈𝑋 .𝐹⊥(𝜄,𝜅 )

We then define an involution on the union of all positives connectives

of example 1:

Example 2 (Dual connectives associated to our systems).

We define the involution 𝜄
useful

on positive connectives of example 1

to be the only involution satisfying:

𝜄
useful

(⊗, (+, +)) := (`, (+, +)) 𝜄
useful

(&, (+, +)) := (⊕, (+, +))
𝜄
useful

(1, ()) := (⊥, ()) 𝜄
useful

(⊤, ()) := (0, ())
𝜄
useful

(∧, (+, +)) := (∨, (+, +)) 𝜄
useful

(T, ()) := (F, ())
𝜄
useful

(!, +) := (?, +) 𝜄
useful

(□, +) := (♦, +)

Notation 1. For the rest of the article, and for all our systems, we

fix a set of countable variables V ; a set A := A′ ⊎ {𝑎⊥ | 𝑎 ∈ A′},
with an involution 𝜅 on it such that 𝜅 (𝑎) = 𝑎⊥. For each particular

systems containing only connectives with positive polarities, we take

𝜄 to be the restriction of 𝜄
useful

on its 𝜇-signature and use the notation

𝐴⊥
for 𝐴⊥(𝜅,𝜄 )

.

2.2 Sequent calculi
In this section, we define rules and proofs for both infinitary and

finitary systems considered in example 1. Before defining inference

rules, we need the definition of a sequent:

Definition 6 (Seqent). A sequent is a pair of two lists of

formulas Γ,Δ, that we usually write Γ ⊢ Δ. We call Γ the antecedent

of the sequent and Δ the succedent of it. We also refer to the formulas

of Γ (resp. Δ) as the hypotheses (resp. conclusions) of the sequent.

In one-sided systems we still use this definition, however the set

of rules will only allow us to derive sequents with empty antecedent.

Remark 1 (Derivation rules & ancestor relation). Usually,

in the litterature, derivation rules are defined as a scheme of one

conclusion sequent and a list of hypotheses sequents. In our system,

the derivation rules come with an ancestor relation linking one

formula of the conclusion to zero, one or several formulas of the

hypotheses. As we are working with sequent as lists, we define an

ancestor relation, to be a relation from the positions of the formula in

the conclusion, to a couple (𝑖, 𝑗) with 𝑖 the position of the hypothesis



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bauer & Saurin

ax

⊢ 𝐹, 𝐹⊥
⊢ 𝐹⊥Γ ⊢ 𝐹,Δ

cut⊢ Γ,Δ

⊢ 𝐹, Γ
□⊢ □𝐹, ♦Γ

⊢ 𝐹1, Γ ∨1

⊢ 𝐹1 ∨ 𝐹2, Γ

⊢ 𝐹2, Γ ∨2

⊢ 𝐹2 ∨ 𝐹2, Γ

⊢ 𝐹1, Γ ⊢ 𝐹2, Γ ∧⊢ 𝐹1 ∧ 𝐹2, Γ

T⊢ T, Γ
⊢ Γ

w⊢ 𝐹, Γ
⊢ 𝐹, 𝐹, Γ

c⊢ 𝐹, Γ
⊢ Γ,𝐺, 𝐹,Δ

ex⊢ Γ, 𝐹 ,𝐺,Δ

Figure 1: one-sided LK□ rules

ax

⊢ 𝐹, 𝐹⊥
⊢ 𝐹, Γ ⊢ 𝐹⊥,Δ

cut⊢ Γ,Δ

⊢ Γ,𝐺, 𝐹,Δ
ex⊢ Γ, 𝐹 ,𝐺,Δ

⊢ 𝐹,𝐺, Γ `⊢ 𝐹 `𝐺, Γ

⊢ 𝐹,Δ1 ⊢ 𝐺,Δ2 ⊗⊢ 𝐹 ⊗ 𝐺,Δ1,Δ2

⊢ 𝐹1, Γ ⊕1

⊢ 𝐹1 ⊕ 𝐹2, Γ

⊢ 𝐹2, Γ ⊕2

⊢ 𝐹1 ⊕ 𝐹2, Γ

⊢ 𝐹1, Γ ⊢ 𝐹2, Γ
&⊢ 𝐹1 & 𝐹2, Γ

1⊢ 1

⊢ Γ ⊥⊢ ⊥, Γ
⊤⊢ ⊤, Γ

Figure 2: one sidedMALL rules

⊢ Γ
?w⊢ ?𝐹, Γ

⊢ ?𝐹, ?𝐹, Γ
?c⊢ ?𝐹, Γ

⊢ 𝐹, Γ
?
d⊢ ?𝐹, Γ

⊢ 𝐹, ?Γ
!p⊢ !𝐹, ?Γ

Figure 3: one sided exponential fragment of LL

⊢ 𝐹 [𝑋 := 𝜇𝑋 .𝐹 ], Γ
𝜇

⊢ 𝜇𝑋 .𝐹, Γ

⊢ 𝐹 [𝑋 := 𝜈𝑋 .𝐹 ], Γ
𝜈⊢ 𝜈𝑋 .𝐹, Γ

Figure 4: Rules for the fixed-point fragment

and 𝑗 the position of the formula in the given hypothesis. For two-

sided sequent, we would begin at 1 for the left-most formula of the

antecedent.

When defining our rules, we draw the ancestor relation. For instance

in the following example:

⊢ 𝐹,Δ1 ⊢ 𝐺,Δ2 ⊗⊢ 𝐹 ⊗ 𝐺,Δ1,Δ2

,

the first formula of the conclusion (𝐹1 ⊗ 𝐹2) is related to the first

one of the first hypothesis (𝐹1) and also to the first one of the second

hypothesis (𝐹2). Then for a formula in position 𝑖 ∈ J2, #(Δ1) + 1K will
be related to the formula in position 𝑖 of the first hypothesis. Whereas

a formula in position 𝑖 ∈ J#(Δ1) +2, #(Δ1) +#(Δ2) +1K will be related
to the formula in position 𝑖 − #(Δ1) of the second hypothesis. The red
line keeping the order of formulas in a context.

We then consider several sets of rules on the set of formulas

over signatures defined in 1. We define rules for one-sided LK□ in

figure 1. Rules for LK will be the □, ♦-free rules of LK□. Rules for
MALL are defined in figure 2. We add rules of figure 3 to those

of MALL to get the rules of LL. We add rules of figure 4 to LK,
LK□,MALL and LL to get the fixed-point versions of these systems:

𝜇LK∞, 𝜇LK∞□ , 𝜇MALL∞and 𝜇LL∞. The exchange rule (ex) from
figures 1 and 2 allows one to derive the rule

⊢ 𝜎 (Γ)
ex(𝜎)⊢ Γ

for

any permutation 𝜎 of J1, #(Γ)K, where 𝜎 (Γ) designate the action of

𝜎 on the list Γ. In the rest of the article, we will intentionally forget

to write the exchange rule explicitely, the reader can consider that

each of our rules are preceded and followed by a finite number of

rule (ex).
The two-sided versions of LK, MALL and LL are defined as

usual and not recalled here, however we define two-sided rules

for modality in appendix A.2. Proofs of non fixed-point systems,

LK, LK□, MALL, LL, are the trees inductively generated by the

corresponding set of rules of each of these systems. To define non-

wellfounded proofs for fixed-point logics, we first need a definition:

Definition 7 (Pre-proofs). Given a set of derivation rules, we

define pre-proofs to be the trees co-inductively generated by rules of

each of these systems.

Example 3 (Circular proof). Circular pre-proofs are those pre-

proofs having a finite number of sub-proofs. We represent them with

back-edges. Taking 𝐹 := 𝜈𝑋 .♦𝑋 , we give an example of circular proof:

⊢ 𝐹, 𝐹⊥ □p

⊢ ♦𝐹,□𝐹⊥
𝜇, 𝜈

⊢𝐹, 𝐹⊥

⊢ 𝐹⊥, 𝐹 □p

⊢ □𝐹⊥, ♦𝐹
𝜇, 𝜈

⊢ 𝐹⊥, 𝐹
cut

⊢ 𝐹⊥, 𝐹

We consider definitions from Fischer-Ladner sub-formula set

FL(𝐹 ) of a formula 𝐹 in appendix A.1.2. We don’t give the proof of

the following property here, but it can be found in [Dou17]:

Proposition 1 (Fischer-Ladner set finiteness). Let 𝐹 be a

fischer-Ladner sub-formula, then FL(𝐹 ) is a finite set.

Remark 2. Notice that rules create only Fischer-Ladner sub-formulas

from the conclusion sequent to the hypotheses. Therefore by property 1

one can only derive a finite number of formulas from a finite number

of formulas. Meaning that if we represent sequents as sets, starting

with one initial sequent one could derive only a finite number of new

sequents from it.

Definition 8 (Active & Principal occurrence of a rule).

We define active occurrences (resp. principal formula) of the rules of

figures 1, 2, 3 and 4 to be the first occurrence (resp. formula) of each

conclusion sequent of that rule except for:

• the rule (ex) which does not contain any active occurrences

nor principal rules;

• the rule (cut) which does not contain any active occurrences

but has 𝐹 as principal formula;

• the modal rule (□) where all the occurrences are active and
where □𝐹 is the principal formula.

From that, we define the proofs as a subset of the pre-proofs:

Definition 9 (Validity and proofs). Let 𝑏 = (𝑠𝑖 )𝑖∈𝜔 be a

sequence of sequents defining an infinite branch in a pre-proof 𝜋 .

A thread of 𝑏 is a sequence (𝐹𝑖 ∈ 𝑠𝑖 )𝑖>𝑛 of occurrences such that

for each 𝑗 , 𝐹 𝑗 and 𝐹 𝑗+1 are satisfying the ancestor relation. We say

that a thread of 𝑏 is valid if the minimal recurring formula of this

sequence, for sub-formula ordering, exists and is a 𝜈-formula and that

the formulas of this threads are infinitely often active. A branch 𝑏 is

valid if there is a valid thread of 𝑏. A pre-proof is valid and is a proof

if each of its infinite branches is valid.
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2.3 Super exponential systems
In this section, we define a family of parameterized logical systems,

following the methodology of [BL21] and using the formalism from

the previous section. The rules of Bauer and Laurent’s system [BL21]

only include functorial promotion and one needs to use the digging

rule to get the usual Girard’s promotion rule. As we do not cover

the digging rule in our system, we use an alternative superLL
formalization. We give the necessary adaptation of the proofs

of [BL21] in A.3.5.

The first parameters of these systems will allow us to define

formulas:

Definition 10 (Exponential signature). An exponential signature

𝜎 , is a Boolean function on the set of rule names: {?m𝑖
| 𝑖 ∈ N}∪{?c𝑖

|
𝑖 ≥ 2}.

We consider sets of exponential names E, which is an arbitrary

set Ename endowed with a function 𝑓Ename
in a set of exponential

signatures. Each exponentials will be signed by an element of E that

will determine which rules with names from {?m𝑖
| 𝑖 ∈ N} ∪ {?c𝑖

|
𝑖 ≥ 2} can be applied on it. For the sake of clarity, we will write 𝜎

instead of 𝑓Ename
(𝜎), omitting 𝑓Ename

throughout the remainder of

the paper.

From a signature E, we can define two new sets of formulas:

Definition 11 (𝜇-signature specific to superLL systems).

Signature for one-sided 𝜇superLL∞:CsuperLL(E)1
:= CMALL∪{(?𝜎 , +) |

𝜎 ∈ E} ∪ {(!𝜎 , +) | 𝜎 ∈ E} for E a set of exponential signatures.

Signature for two-sided 𝜇superLL∞: CsuperLL(E)2
:= CsuperLL(E)1

∪
{(⊸, (−, +)), ((−)⊥,−)} for E a set of exponential signatures.

Notation 2 (List of exponential signatures). LetΔ = 𝐴1, . . . , 𝐴𝑛

be a list of 𝑛 formulas, and let ®𝜎 = 𝜎1, . . . , 𝜎𝑛 be a list of 𝑛 exponential

signatures. We write ?®𝜎Δ for the list of formulas ?𝜎1
𝐴1, . . . , ?𝜎𝑛𝐴𝑛 .

Moreover, given a relation 𝑅 on exponential signatures, and given two

lists of exponential signatures ®𝜎 = 𝜎1, . . . , 𝜎𝑚 and ®𝜎′ = 𝜎′
1
, . . . , 𝜎′𝑛 ,

we write ®𝜎𝑅 ®𝜎′ for ∧
1≤𝑖≤𝑚
1≤ 𝑗≤𝑛

𝜎𝑖𝑅𝜎
′
𝑗
.

For one set of signatures E, we definemany systems, parametrized

by three relations on E: ≤g, ≤f
and ≤u. First we define the formulas

of superLL(E) to be the 𝜇, 𝜈, 𝑋 -free formulas of 𝜇superLL∞ (E).
Formulas for one-sided superLL(E, ≤g, ≤f

, ≤u) are the formulas

generated from the 𝜇-signature CsuperLL(E)1
. Rules for this system

are the rules of MALL from Figure 2 in combination with rules

of Figure 5. Note that the multiplexing rule, ?m𝑖
, is (?w) for 𝑖 = 0

and (?
d
) for 𝑖 = 1. Proofs from superLL(E, ≤g, ≤f

, ≤u) are those
trees inductively generated by the rules of this system. For its fixed-

point version, 𝜇superLL∞ (E, ≤g, ≤f
, ≤u), we add the fixed-point

rules of Figure 4. Rules for the two-sided versions of superLL(E, ≤g

, ≤
f
, ≤u) (resp. 𝜇superLL∞ (E, ≤g, ≤f

, ≤u)) will be rules of the two-
sided versions of MALL (resp. 𝜇MALL∞) as well as rule defined

in Appendix A.3.1. We get 𝜇superLL∞ (E, ≤g, ≤f
, ≤u) pre-proofs,

proofs, validity, as in the previous section. For the one-sided version,

we extend 𝜄
useful

of Example 2 with every ?𝜎 and !𝜎 where 𝜎 is

an exponential signature, 𝜄
useful

being an involution satisfying

𝜄
useful

(?𝜎 ) := !𝜎 . One can then define the negation fromDefinition 5

for one-sided 𝜇superLL∞ (E) keeping the same set of variables,

atoms and involution 𝜅 than in Notation 1 and taking 𝜄 to be the

restriction of 𝜄
useful

to the 𝜇-signature CsuperLL(E) . We also use the

notation 𝐴⊥
for 𝐴⊥(𝜄,𝜅 )

.

In the remaining of this section, we will focus on fragment

without fixed-points of super exponentials: superLL.
Not all instances of superLL eliminate cuts: one needs to impose

conditions on them, so that cut can indeed be eliminated. The

two following definitions aim at formulating these conditions in a

suitable way.

Definition 12 (Derivability closure). Given a signature 𝜎 ,

we define the derivability closure 𝜎 to be the signature inductively

defined by:

𝜎 (𝑟 ) ⇒ 𝜎 (𝑟 )
𝜎 (?c𝑖 ) ⇒ 𝜎 (?c𝑗 ) ⇒ 𝜎 (?c𝑖+𝑗−1

)
𝜎 (?c2

) ⇒ 𝜎 (?m𝑖
) ⇒ 𝜎 (?m𝑗

) ⇒ 𝜎 (?m𝑖+𝑗 ) 𝑖, 𝑗 ≠ 0

𝜎 (?m1
) ⇒ 𝜎 (?c𝑖 ) ⇒ 𝜎 (?m𝑖

)

Derivability closure comes with the property that for each rule

(𝑟 ) such that 𝜎 (𝑟 ) is true, the rule (𝑟 ) is derivable for ?𝜎 . In that

flavour, we define sets of all possible derivations, which will be

used to define the cut-elimination procedure. We define a notion of See

details in

App. A.3.2

coherent sets of derivations which are sets of derivation having the

same conclusion and open hypotheses. In combination with that,

we use derivability closure to define coherent sets of derivations ?
�̄�
c𝑖

(resp. ?
�̄�
m𝑖

), for 𝑖 ∈ N, that have the same conclusion and hypothesis

than ?c𝑖
(resp. ?m𝑖

). See

details in

App. A.3.3

To help us define a cut-elimination rewriting system, we consider

cut-elimination axioms defined in Table 1. In superLL-systems each

axiom corresponds to one step of cut-elimination. However, as our

reduction systems is based on the (mcut)-rule, which corresponds

to the concatenation of many cuts, some axioms will be used in

more than one case of reduction.

In the original system [BL21], axiom expansion and cut-elimination

property hold. We state here cut-elimination and postpone the

axiom expansion property to Appendix A.3.4.

See details

App. A.3.5

Theorem 1 (Cut Elimination). As soon as the 8 cut-elimination

axioms of Table 1 are satisfied, cut elimination holds for

superLL(E, ≤g, ≤f
, ≤u).

Many existing linear logic systems are instances of superLL.
Here we give the example of Elementary Linear Logic.

Elementary Linear Logic. Elementary Linear Logic (ELL) [Gir98,
DJ03] is a variant of LL where we remove (?

d
) and (!g) and add the

functorial promotion:

⊢ 𝐴, Γ
!
f⊢ !𝐴, ?Γ

This system is captured as the instance of superLL(E, ≤g, ≤f
, ≤u)

system with E = {•}, defined by •(?c2
) = •(?m0

) = true (and

(•)(𝑟 ) = false otherwise), ≤g = ≤u = ∅ and • ≤
f
•. This superLL(E, , ≤g, ≤f

, ≤u)
instance is ELL and satisfies the cut-elimination axioms and the

expansion axiom defined in A.3.4.
See details

in App.

A.3.6

As argumented in [BL21], The superLL-systems subsume many

more existing linear logic systems such as SLL [Laf04], LLL [Gir98],
seLL [NM09]. The last two are particularly interesting as they

require more than one exponential signature to be formalized. We
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⊢

𝑖︷    ︸︸    ︷
𝐴, . . . , 𝐴, Γ 𝜎 (?m𝑖

)
?m𝑖⊢ ?𝜎𝐴, Γ

⊢

𝑖︷           ︸︸           ︷
?𝜎𝐴, . . . , ?𝜎𝐴, Γ 𝜎 (?c𝑖 )

?c𝑖⊢ ?𝜎𝐴, Γ

⊢ 𝐴, ? ®𝜎 ′Δ 𝜎 ≤g
®𝜎 ′

!g⊢ !𝜎𝐴, ? ®𝜎 ′Δ

⊢ 𝐴,Δ 𝜎 ≤f
®𝜎 ′

!f⊢ !𝜎𝐴, ? ®𝜎 ′Δ

⊢ 𝐴, 𝐵 𝜎1 ≤u 𝜎2

!u⊢ !𝜎
1
𝐴, ?𝜎

2
𝐵

Figure 5: Exponential fragment of 𝜇superLL∞

𝜎 ≤g 𝜎
′ ⇒ 𝜎 (?m𝑖

) ⇒ ¯𝜎′ (?c𝑖 ) 𝑖 ≥ 0 (axgmpx)
𝜎 ≤𝑠 𝜎′ ⇒ 𝜎 (?m𝑖

) ⇒ ¯𝜎′ (?m𝑖
) 𝑖 ≥ 0 and 𝑠 ≠ 𝑔 (axfumpx)

𝜎 ≤𝑠 𝜎′ ⇒ 𝜎 (?c𝑖 ) ⇒ ¯𝜎′ (?c𝑖 ) 𝑖 ≥ 2 (axcontr)
𝜎 ≤𝑠 𝜎′ ⇒ 𝜎′ ≤𝑠 𝜎′′ ⇒ 𝜎 ≤𝑠 𝜎′′ (axTrans)
𝜎 ≤g 𝜎

′ ⇒ 𝜎′ ≤𝑠 𝜎′′ ⇒ 𝜎 ≤g 𝜎
′′ (axleqgs)

𝜎 ≤
f
𝜎′ ⇒ 𝜎′ ≤u 𝜎′′ ⇒ 𝜎 ≤

f
𝜎′′ (axleqfu)

𝜎 ≤
f
𝜎′ ⇒ 𝜎′ ≤g 𝜎

′′ ⇒ (𝜎 ≤g 𝜎
′′∧(𝜎 ≤

f
𝜎′′′ ⇒ (𝜎 ≤g 𝜎

′′′ ∧ 𝜎′′′ (?m1
))) (axleqfg)

𝜎 ≤u 𝜎′ ⇒ 𝜎′ ≤𝑠 𝜎′′ ⇒ 𝜎 ≤𝑠 𝜎′′ (axlequs)

with 𝑠 ∈ {𝑔, 𝑓 ,𝑢}, all the axioms are universally quantified.

For convenience, we will use the notation ?c0
:= ?m0

and set 𝜎 (?c1
) = true for all 𝜎 .

Table 1: Cut-elimination axioms

do not discuss them here however, since we will have such an

example with the linear version of the modal 𝜇-calculus in Section 4.

Bauer and Laurent’s aim [BL21] was primarily to formally prove

many cut-elimination theorems in a uniform way. However the

conditions for the cut-elimination towork can be used independently

and that is what we aim to do for the modal 𝜇-calculus.

2.4 Cut-elimination for fixed-point logics
To prove cut-elimination theorems in fixed-point logics, we use an

intermediary rule called the multicut. The multicut is extensively

defined in [Sau23].

See

App. A.4.1
Definition 13 (Multicut rule). The multicut rule is a rule with

an arbitrary number of hypotheses:

⊢ Γ1 . . . ⊢ Γ𝑛 mcut(𝜄,⊥⊥)
Γ

The ancestor relation 𝜄 sends one formula of the conclusion to exactly

one formula of the hypotheses; whereas the ⊥⊥-relation links cut-

formulas together.

Remark 3. The idea of the multicut is to abstract a finite tree of

binary cuts quotiented by cut-commutation rule. We give an example

of a multicut rule and represent graphically 𝜄 in red and ⊥⊥ in blue.

⊢ 𝐴, 𝐵 ⊢ 𝐵⊥,𝐶 ⊢ 𝐶⊥, 𝐷
mcut(𝜄,⊥⊥)⊢ 𝐴, 𝐷

We can understand themulticut rule as a tree of binary cuts through

the (cut/mcut)-principal case:

C
⊢ 𝐹, Γ′ ⊢ 𝐹⊥,Δ

cut⊢ Γ′,Δ
mcut(𝜄,⊥⊥)⊢ Γ

⇝
C ⊢ 𝐹, Γ′ ⊢ 𝐹⊥,Δ

mcut(𝜄′,⊥⊥′)⊢ Γ

Here, 𝜄′ sends on C formulas that were sent on C by 𝜄, either it uses the

ancestor relation of the cut-rule that has been merged. The relation

⊥⊥′
is obtained from ⊥⊥ by adding 𝐹 ⊥⊥′ 𝐹⊥.

To make the multicut reduction rules more readable, we use the

following definition:
See detail in

App. A.4.2.
Definition 14 (Restriction of a multicut context). Let

C mcut(𝜄,⊥⊥)𝑠
be amulticut-occurrence such that C = 𝑠1 . . . 𝑠𝑛

and let 𝑠𝑖 :=⊢ 𝐹1, . . . , 𝐹𝑘𝑖 , we define C𝐹 𝑗 to be the sequents linked to
the formula 𝐹 𝑗 with the ⊥⊥-relation.

We extend this definition to contexts of formulas.

Multicut reduction rules for 𝜇MALL∞ are given inAppendixA.4.3.

Reduction rules for exponential rules of 𝜇LL∞ can be found in [Sau23]

as well as more details on 𝜇MALL∞ reduction rules.

The systems 𝜇MALL∞, 𝜇LL∞ and 𝜇LK∞ enjoy cut-elimination

theorems, proofs can be found in [Sau23]. They are almost strong

normalisation theorems, however because of the infinite nature of

proofs, strong-normalisation cannot readily be true. This is why a

smaller class of reduction sequence is considered: fair reductions.

Definition 15 (fair reduction seqences). A reduction sequence

(𝜋𝑖 )𝑖∈𝜔 is fair, if for each 𝜋𝑖 such that there is a reduction R to a

proof 𝜋 ′, there exist a 𝑗 > 𝑖 such that 𝜋 𝑗 does not contain any residual

of R.
From [BDKS22] and [Sau23] we obtain the following results:

Theorem 2 (𝜇MALL∞Cut-elimination [BDKS22]). Any fair

reduction sequence of 𝜇MALL∞ proofs converges to a cut-free 𝜇MALL∞-

proof.

Note that a result about (ax)-free version of 𝜇MALL∞was proved

in [BDS16].

Theorem 3 (𝜇LL∞Cut-elimination [Sau23]). Any fair reduction

sequence of 𝜇LL∞ proofs converges to a cut-free proof of 𝜇LL∞.

Theorem 4 (𝜇LK∞ Weak-normalization [Sau23]). For any

proof 𝜋 of 𝜇LK∞, there exists a reduction sequence (𝜋𝑖 )𝑖∈1+𝜆 (𝜆 ∈ 𝜔)

such that 𝜋0 = 𝜋 , which converges to a cut-free proof of 𝜇LK∞.
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3 CUT-ELIMINATION FOR 𝜇superLL∞

We now are interested about proving cut-elimination theorems for

𝜇superLL∞ instances that satisfy axioms of Table 1. We start by

defining all the (mcut) reduction rules of the exponential fragment

of 𝜇superLL∞, the (mcut) reduction rules for the non-exponential

fragment are those of 𝜇MALL∞.

In this section, we fix a set of signatures E and three relations

≤g, ≤f
and ≤u such that each 𝜎 ∈ E satisfies the axioms of Table 1.

3.1 (mcut)-elimination steps
In this section, we define the subset of (mcut)-elimination steps of

𝜇superLL∞ that will be necessary for the linear version of modal

𝜇-calculus, the remaining rules can be found in the long version of

the paper.
For the

missing

steps, see

App. B.1

Remark 4. To define (mcut)-elimination steps we will need to use

the derivability closure of the signatures, we will also use the definition

of ?
�̄�
m𝑖

and ?
�̄�
c𝑖
(defined in Definition 25 as well as coherent sets of

derivations). The rewriting relation ⇝ will be described as 𝜋 ⇝ Π′
,

where Π′
is a set of derivations. For that purpose, we will say that a

set of derivations is valid if and only if it is non-empty.

To define (mcut)-elimination steps, it is suitable to have a specific

notation for the contexts containing only proofs concluded by a

promotion. We use notations similar to the notations used in 𝜇LL∞

cut-elimination proof [Sau23]:

Notation 3 ((!)-contexts). C!
denotes a list of 𝜇superLL∞ (E, ≤g

, ≤
f
, ≤u)-proofs which are all concluded by some promotion rule (!g, !f

or !u).

Given 𝑠 ∈ {𝑔, 𝑓 ,𝑢}, C!𝑠
denotes a list of 𝜇superLL∞ (E, ≤g, ≤f

, ≤u)-
proofs which are all concluded by an an (!𝑠 )-rule.

In both cases, C denotes the list of 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-

proofs formed by gathering the immediate subproofs of the last promotion

(being either C!
, or C!𝑠

).

We now give a series of lemmas that will be used to justify the

(mcut)-reduction steps to be defined in the end of the section.

Lemma 1 (Justification for step (comm!g
)). If

𝜋

⊢ 𝐴, ?®𝜏Δ 𝜎 ≤g ®𝜏
!g⊢ !𝜎𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌Γ

is a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof then

𝜋

⊢ 𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ 𝐴, ? ®𝜌Γ 𝜎 ≤g ®𝜌
!g⊢ !𝜎𝐴, ? ®𝜌Γ

is also a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

Proof sketch. We run through the C!
context and use axioms

(axTrans) and (axleqgs) to get that 𝜎 ≤g 𝜏
′
for each signatures 𝜏 ′

appearing in C!
.

As signatures of ®𝜌 are all appearing in C!
, we get that𝜎 ≤g 𝜏

′
. □

See details

in App. B.1

Lemma 2 (Justification for step (comm1

!f

)). If

𝜋

⊢ 𝐴,Δ 𝜎 ≤
f
®𝜏

!
f⊢ !𝜎𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌Γ

is a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof with C!

such that all sequents

which are concluded with an (!g) have an empty context (ie. no ?-

formula), then

𝜋

⊢ 𝐴,Δ C
mcut(𝜄,⊥⊥)

⊢ 𝐴, Γ 𝜎 ≤
f
®𝜌

!
f⊢ !𝜎𝐴, ? ®𝜌 Γ

is a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

Proof sketch. As for Lemma 1, we run through the C!
context

and use axiom (axTrans) and (axleqfu) to get that 𝜎 ≤
f
𝜏 ′ for each

signatures 𝜏 ′ appearing in C!
.

See details

in App. B.1As signatures of ®𝜌 are all appearing in C!
, we get that 𝜎 ≤

f
®𝑔.

For Lemma 2, the emptyness constraint on the !𝑔 rules ensures

that the resulting proof is indeed a 𝜇superLL∞-proof. □

The commutative steps of (?m𝑖
) and (?c𝑖 ) are very straightforward,

we do not provide any lemma of justification for steps (comm?m
)

and (comm?c
).

Lemma 3 (Justification for step (principal?c
)). If

CΔ

𝜋

⊢

𝑖︷            ︸︸            ︷
?𝜎𝐴, . . . , ?𝜎𝐴,Δ 𝜎 (?c𝑖 )

?c𝑖⊢ ?𝜎𝐴,Δ C!

?𝜎𝐴
mcut(𝜄,⊥⊥)

⊢ Γ, ? ®𝜌 Γ
′

is a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof, then

CΔ

𝜋

⊢

𝑖︷            ︸︸            ︷
?𝜎𝐴, . . . , ?𝜎𝐴,Δ

𝑖︷                    ︸︸                    ︷
C!

?𝜎𝐴
. . . C!

?𝜎𝐴
mcut(𝜄′,⊥⊥′ )

Γ, ? ®𝜌 Γ
′, . . . , ? ®𝜌 Γ

′ ¯®𝜌 (?c𝑖 )
?

¯®𝜌
c𝑖⊢ Γ, ? ®𝜌 Γ

′

is also a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

See proof in

App. B.1

Now, we shall state the lemma for the correctness of the principal

reduction for multiplexing, but we need a definition first:

Definition 16. Let 𝑆 !
be a sequent of a 𝜇superLL∞ (E, ≤g, ≤f

, ≤u

)-context C!
, such that C!

is a tree with respect to a cut-relation⊥⊥. We

define a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-context Ompx𝑆 !

(C!) by induction
on this relation taking 𝑆 !

as the root.

We take advantage of this inductive definition to define two sets of

sequent S?m

C!,𝑆 !
and S?c

C!,𝑆 !
. Let C!

1
, . . . , C!

𝑛 be the sons of 𝑆 !
, such that

C! = (𝑆 !, (C!

1
, . . . , C!

𝑛)), we have two cases:

• 𝑆 ! = 𝑆 !g
, then we define Ompx𝑆

(C!) := (𝑆, (C!

1
, . . . , C!

𝑛)) ;
S?m

C!,𝑆 !
= ∅ ; S?c

C!,𝑆 !
:= C!

;
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• 𝑆 ! = 𝑆 !f
ou 𝑆 ! = 𝑆 !u

, then let the root of C!

𝑖
be 𝑆 !

𝑖
, we define

Ompx𝑆
(C!) := (𝑆, Ompx𝑆 !

1

(C!

1
), . . . , Ompx𝑆 !

𝑛
(C!

𝑛)) ; S
?m

C!,𝑆 !
:=

{𝑆 !} ∪⋃S?m

C!

𝑖
,𝑆 !

𝑖

; S?c

C!,𝑆 !
:=

⋃S?c

C!

𝑖
,𝑆 !

𝑖

.

Lemma 4 (Justification for step (comm?m
)). Let

CΔ
⊢

𝑖︷   ︸︸   ︷
𝐴, . . . , 𝐴,Δ 𝜎 (?m𝑖

)
?m𝑖⊢ ?𝜎𝐴,Δ C!

?𝜎𝐴 mcut(𝜄,⊥⊥)
⊢ Γ, ?𝜌 ′Γ′, ?𝜌 ′′Γ′′

be a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof with Γ being sent on CΔ by

𝜄 ; ?𝜌 ′Γ′ being sent on sequents of S?m

C!,𝑆 !
; and ?𝜌 ′′Γ′′ being sent

on S?c

C!,𝑆 !
, where 𝑆 ! (:= !𝜎𝐴

⊥, ? ®𝜏 ′Δ′ ) is the sequent cut-connected to

?𝜎𝐴,Δ on the formula ?𝜎𝐴. We have that

CΔ ⊢

𝑖︷    ︸︸    ︷
𝐴, . . . , 𝐴,Δ

𝑖︷                                              ︸︸                                              ︷
Ompx𝑆

(C!

?𝜎𝐴
) . . . Ompx𝑆

(C!

?𝜎𝐴
)

mcut(𝜄′,⊥⊥′ )

⊢ Γ,

𝑖︷     ︸︸     ︷
Γ′, . . . , Γ′,

𝑖︷                    ︸︸                    ︷
? ®𝜌′′ Γ

′′, . . . , ? ®𝜌′′ Γ
′′ ¯®𝜌′ (?m𝑖 )

?

¯®𝜌′
m𝑖

⊢ Γ, ? ®𝜌′ Γ
′,

𝑖︷                    ︸︸                    ︷
? ®𝜌′′ Γ

′′, . . . , ? ®𝜌′′ Γ
′′ ¯®𝜌′′ (?c𝑖 )

?

¯®𝜌′′
c𝑖⊢ Γ, ? ®𝜌′ Γ

′, ? ®𝜌′′ Γ
′′

is also a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

See proof in

App. B.1 Remark 5. The previous lemma deserves some comments and

explanations. Notably, the lemma capture the cases of usual dereliction

and weakening. Taking the following example with dereliction instead

of ?m1
:

⊢ 𝐴,Δ
?d⊢ ?𝐴,Δ

⊢ 𝐴⊥, 𝐵,𝐶
!f

⊢ !𝐴⊥, ?𝐵, ?𝐶

⊢ 𝐵⊥, ?𝐷, ?𝐸
!g

⊢ !𝐵⊥, ?𝐷, ?𝐸

⊢ 𝐷⊥, 𝐹
!f

⊢ !𝐷⊥, ?𝐹
mcut(𝜄,⊥⊥)⊢ ?𝐶, ?𝐸, ?𝐹,Δ

⇝

⊢ 𝐴,Δ
?d⊢ ?𝐴,Δ ⊢ 𝐴⊥, 𝐵,𝐶 ⊢ 𝐵⊥, ?𝐷, ?𝐸

⊢ 𝐷⊥, 𝐹
!f

⊢ !𝐷⊥, ?𝐹
mcut(𝜄,⊥⊥)⊢ 𝐶, ?𝐸, ?𝐹,Δ

?d⊢ ?𝐶, ?𝐸, ?𝐹,Δ

Note that ?c1
is the empty derivation. We can understand here the

definitions of Ompx𝑆 !
(C!), S?c

C!,𝑆 !
and S?m

C!,𝑆 !
. All the (!

f
) or (!u)

preceding an (!g) are removed during the cut-elimination step, but

promotions that comes after and (!g) still have to be applied as the
!-connective is still there.

Occurrences that are in the context of an (!
f
) or an (!u) coming

before an (!g) are derilicted and thus in S?m

C!,𝑆 !
. They need to be as

this type of promotions removes the exponential connective from the

context.

Occurrences that are in the context of an (!g) are not derilicted as
their exponential connectives is not removed through an (!g) promotion.

Neither are occurrences of an (!
f
) or (!u) that follows an (!g) as their

promotions are still to be applied. These occurrences are therefore all

in S?c

C!,𝑆 !
.

The following lemma is stated only for the case of steps defined

in figure 6 and 7. See App.B.1 for more details.

Lemma 5 (Correctness of the (mcut)-reduction system).

The left proofs and right set of proofs (we identify single proof derivation

to the singleton containing it) of the rules of figures 6 and 7 are valid.

Proof. Weuse lemmas 1, 2, 4, 3, commutative steps for contraction

and multiplexing are obvious. □
See detail in

App.B.13.2 Translating 𝜇superLL∞into 𝜇LL∞

We now give a translation of 𝜇superLL∞ (E, ≤g, ≤f
, ≤u) into 𝜇LL∞

using directly the results of [Sau23] to deduce 𝜇superLL∞ (E, ≤g

, ≤
f
, ≤u) cut-elimination in a more modular way. We define formula

translation:

Definition 17 (Translation of formulas). The translation

(−)◦ is defined by induction on formula by:

𝑐 (𝐹1, . . . , 𝐹𝑛)◦ := 𝑐 (𝐹◦
1
, . . . , 𝐹◦𝑛 ) 𝑋 ◦

:= 𝑋

∀𝜎, (?𝜎𝐴)◦ := ?𝐴◦ 𝑎◦ := 𝑎

(!𝜎𝐴)◦ := !𝐴◦ .

for 𝑐 any non-exponential connectives.

We then define proof translations:

Definition 18 (Proof translations). Wedefine the translations

for exponential rules of 𝜇superLL∞ (E, ≤g, ≤f
, ≤u) into 𝜇LL∞ as sets

of derivations. The set of the translations of another rule (𝑟 ) is just
the singleton {(𝑟 )}.

The set of translations of each rules will be given by all the derivations

obtained from Figure 8 by commuting the (?
d
) and (?c) rules.

Proof translations 𝜋◦ of 𝜋 is the set of proofs coinductively defined

on 𝜋 from rule translations.

The following lemma is immediate and comes from the fact that

fixed-points are not affected by the translation:

Lemma 6 (Robustness of the (−)◦ translation to validity).

Valid pre-proofs 𝜋 translates to valid pre-proofs 𝜋◦. Conversely, if 𝜋◦

is a valid pre-proof, then 𝜋 is also a valid pre-proof.

As one-step mcut-reductions of 𝜇superLL∞ (E, ≤g, ≤f
, ≤u) are

defined from proofs to set of proofs, we define a sequence of mcut-

reduction (𝜋𝑖 )𝑖∈1+𝜆 (𝜆 ∈ 𝜔) to be a sequence of proofs such that for

each 𝑖 ∈ 1 + 𝜆, there is a Π𝑖+1 such that 𝜋𝑖 ⇝ Π𝑖+1 and 𝜋𝑖+1 ∈ Π𝑖+1.

The goal of this section is to prove that each such fair reductions

sequences converges to a cut-free proof. We have to make sure

(mcut)-reduction sequences are robust under this translation. In

our proof of the final theorem, we also need one-step reduction-

rules to be simulated by a finite number of reduction steps in the

translation.

Lemma 7. Let 𝜋0 be a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u) proof and let

𝜋0 ⇝ Π1 be a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u) step of reduction. For each

𝜋1 ∈ Π1 and for each 𝜋 ′
0
∈ 𝜋◦

0
, there exist a finite number of 𝜇LL∞

proofs 𝜃0, . . . , 𝜃𝑛 such that 𝜃0 → . . . → 𝜃𝑛, 𝜋 ′
0
= 𝜃0 and 𝜃𝑛 ∈ 𝜋◦

1

up to a finite number of rule permutations, done only on rules that

just permuted down the (mcut).

To prove this lemma, we need the following one. This lemma

prove that when starting from the translation of a proof containing

derelictions promotions and functorial promotions, there exist an
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𝜋

⊢ 𝐴, ?®𝜏Δ 𝜎 ≤g ®𝜏
!g⊢ !𝜎𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌 Γ

⇝

𝜋

⊢ 𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ 𝐴, ? ®𝜌 Γ 𝜎 ≤g ®𝜌
!g⊢ !𝜎𝐴, ? ®𝜌 Γ

(comm!g
)

𝜋

⊢ 𝐴,Δ 𝜎 ≤f ®𝜏
!f⊢ !𝜎𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌 Γ

⇝

𝜋

⊢ 𝐴,Δ C
mcut(𝜄,⊥⊥)⊢ 𝐴, Γ 𝜎 ≤f ®𝜌

!f⊢ !𝜎𝐴, ? ®𝜌 Γ

(comm
1

!f

)

𝜋

⊢

𝑖︷    ︸︸    ︷
𝐴, . . . , 𝐴,Δ 𝜎 (?m𝑖

)
?m𝑖⊢ ?𝜎𝐴,Δ C

mcut(𝜄,⊥⊥)⊢ ?𝜎𝐴, Γ

⇝

𝜋

⊢

𝑖︷    ︸︸    ︷
𝐴, . . . , 𝐴,Δ C

mcut(𝜄′,⊥⊥′ )⊢ 𝐴, . . . , 𝐴, Γ 𝜎 (?m𝑖
)

?m𝑖⊢ ?𝜎𝐴, Γ

(comm?m
)

𝜋

⊢

𝑖︷          ︸︸          ︷
?𝜎𝐴, . . . ?𝜎𝐴,Δ 𝜎 (?c𝑖 )

?c𝑖⊢ ?𝜎𝐴,Δ C
mcut(𝜄,⊥⊥)⊢ ?𝜎𝐴, Γ

⇝

𝜋

⊢

𝑖︷           ︸︸           ︷
?𝜎𝐴, . . . , ?𝜎𝐴,Δ C

mcut(𝜄′,⊥⊥′ )⊢ ?𝜎𝐴, . . . ?𝜎𝐴, Γ 𝜎 (?c𝑖 )
?c𝑖⊢ ?𝜎𝐴, Γ

(comm?c
)

Figure 6: Commutative cut-elimination steps of the exponential fragment of 𝜇superLL∞ (cases specific to 𝜇LL∞□ )

CΔ

𝜋

⊢

𝑖︷           ︸︸           ︷
?𝜎𝐴, . . . , ?𝜎𝐴,Δ 𝜎 (?c𝑖 )

?c𝑖⊢ ?𝜎𝐴,Δ C!

?𝜎𝐴
mcut(𝜄,⊥⊥)

⊢ Γ, ? ®𝜌 Γ
′

⇝ CΔ

𝜋

⊢

𝑖︷           ︸︸           ︷
?𝜎𝐴, . . . , ?𝜎𝐴,Δ

𝑖︷                   ︸︸                   ︷
C!

?𝜎𝐴 . . . C!

?𝜎𝐴
mcut(𝜄′,⊥⊥′ )

Γ, ? ®𝜌 Γ
′, . . . , ? ®𝜌 Γ

′ ¯®𝑒 (?c𝑖 )
?

¯®𝜌
c𝑖⊢ Γ, ? ®𝜌 Γ

′

(principal
?c
)

CΔ
⊢

𝑖︷    ︸︸    ︷
𝐴, . . . , 𝐴,Δ 𝜎 (?m𝑖 )

?m𝑖⊢ ?𝜎𝐴,Δ C!

?𝜎𝐴
mcut(𝜄,⊥⊥)

⊢ Γ, ?𝜌′ Γ
′, ?𝜌′′ Γ

′′

⇝

CΔ ⊢

𝑖︷    ︸︸    ︷
𝐴, . . . , 𝐴,Δ

𝑖︷                                           ︸︸                                           ︷
Ompx𝑆

(C!

?𝜎𝐴 ) . . . Ompx𝑆
(C!

?𝜎𝐴 )
mcut(𝜄′,⊥⊥′ )

⊢ Γ,

𝑖︷     ︸︸     ︷
Γ′, . . . , Γ′,

𝑖︷                  ︸︸                  ︷
? ®𝜌′′ Γ

′′, . . . , ? ®𝜌′′ Γ
′′ ¯®𝜌 ′ (?m𝑖

)
?

¯®𝜌′
m𝑖

⊢ Γ, ? ®𝜌′ Γ
′,

𝑖︷                  ︸︸                  ︷
? ®𝜌′′ Γ

′′, . . . , ? ®𝜌′′ Γ
′′ ¯®𝜌 ′′ (?c𝑖 )

?

¯®𝜌′′
c𝑖⊢ Γ, ? ®𝜌′ Γ

′, ? ®𝜌′′ Γ
′′

(principal
?m

)

with 𝑆 being the sequent cut-connected to ?𝜎𝐴,Δ on the formula ?𝜎𝐴.

Figure 7: Principal cut-elimination steps of the exponential fragment of 𝜇superLL∞ (cases specific to 𝜇LL∞□ )

order of execution of cut-elimination step that will make them

disappear or commute under the cut. This order depends on how

the proof is translated, for instance the following (opened) proof:

⊢ 𝐴, 𝐵,𝐶
!
f⊢ !𝐴, ?𝐵, ?𝐶

⊢ 𝐶⊥
!
f⊢ 𝐶

mcut(𝜄,⊥⊥)⊢ !𝐴, ?𝐵

has two translations:

⊢ 𝐴, 𝐵,𝐶
?
d⊢ 𝐴, 𝐵, ?𝐶
?
d⊢ 𝐴, ?𝐵, ?𝐶

!p⊢ !𝐴, ?𝐵, ?𝐶

⊢ 𝐶⊥
!p⊢ 𝐶
mcut(𝜄,⊥⊥)⊢ !𝐴, ?𝐵

⊢ 𝐴, 𝐵,𝐶
?
d⊢ 𝐴, ?𝐵,𝐶
?
d⊢ 𝐴, ?𝐵, ?𝐶

!p⊢ !𝐴, ?𝐵, ?𝐶

⊢ 𝐶⊥
!p⊢ 𝐶
mcut(𝜄,⊥⊥)⊢ !𝐴, ?𝐵

To eliminate cuts, we apply in both the same cut-elimination steps

but in a different order. We apply in both an (!p) commutative step,

then apply in the first one a dereliction commutative step and a

(!p)/(?d) principal case; whereas in the second one we first apply

the (!p)/(?d) principal case then the dereliction commutative step.
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⊢

𝑖︷    ︸︸    ︷
𝐴, . . . , 𝐴, Γ 𝜎 (?m𝑖

)
?m𝑖⊢ ?𝜎𝐴, Γ

⇝ ⊢

𝑖︷       ︸︸       ︷
𝐴◦, . . . , 𝐴◦, Γ◦

?
d
× 𝑖

⊢ ?𝐴◦, . . . , ?𝐴◦, Γ◦
?c × 𝑖

⊢ ?𝐴◦, Γ◦

⊢

𝑖︷           ︸︸           ︷
?𝜎𝐴, . . . , ?𝜎𝐴, Γ 𝜎 (?c𝑖 )

?c𝑖⊢ ?𝜎𝐴, Γ

⇝ ⊢

𝑖︷          ︸︸          ︷
?𝐴◦, . . . , ?𝐴◦, Γ◦

?c × 𝑖
⊢ ?𝐴◦, Γ◦

⊢ ?𝜎1
𝐴1, . . . , ?𝜎𝑛𝐴𝑛, 𝐴

𝑖 ∈ J1, 𝑛K
𝜎 ≤g 𝜎𝑖

!g⊢ ?𝜎1
𝐴1, . . . , ?𝜎𝑛𝐴𝑛, !𝜎𝐴

⇝
⊢ ?𝐴◦

1
, . . . , ?𝐴◦

𝑛, 𝐴
◦

!p⊢ ?𝐴◦
1
, . . . , ?𝐴◦

𝑛, !𝐴
◦

⊢ 𝐴1, . . . , 𝐴𝑛, 𝐴

𝑖 ∈ J1, 𝑛K
𝜎 ≤

f
𝜎𝑖

!
f⊢ ?𝜎1

𝐴1, . . . , ?𝜎𝑛𝐴𝑛, !𝜎𝐴

⇝

⊢ 𝐴◦
1
, . . . , 𝐴◦

𝑛, 𝐴
◦

?
d⊢ ?𝐴◦

1
, . . . , ?𝐴◦

𝑛, 𝐴
◦

!p⊢ ?𝐴◦
1
, . . . , ?𝐴◦

𝑛, !𝐴
◦

⊢ 𝐵,𝐴 𝜎1 ≤u 𝜎2

!u⊢ ?𝜎2
𝐵, !𝜎1

𝐴
⇝

⊢ 𝐵◦, 𝐴◦
?
d⊢ ?𝐵◦, 𝐴◦

!p⊢ ?𝐵◦, !𝐴◦

Figure 8: Exponential rule translations from 𝜇superLL∞ (E, ≤g, ≤f, ≤u) into 𝜇LL∞

Lemma 8. Let𝑛 ∈ N, let𝑑1, . . . , 𝑑𝑛 ∈ N and let 𝑝1, . . . , 𝑝𝑛 ∈ {0, 1}.
Let 𝜋 be a 𝜇LL∞-proof concluded by an (mcut)-rule, on top of which

there is a list of 𝑛 proofs 𝜋1, . . . , 𝜋𝑛 . We ask for each 𝜋𝑖 to be of one of

the following forms depending on 𝑝𝑖 :

• If 𝑝𝑖 = 1, the 𝑑𝑖 + 1 last rules of 𝜋𝑖 are 𝑑𝑖 derelictions and

then a promotion rule. We ask for the principal formula of this

promotion to be either a formula of the conclusion, or to be cut

with a formula being principal in a proof 𝜋 𝑗 on one of the last

𝑑 𝑗 + 𝑝 𝑗 rules.

• If 𝑝𝑖 = 0, the 𝑑𝑖 last rules of 𝜋𝑖 are 𝑑𝑖 derelictions.

In each of these two cases, we ask for 𝜋𝑖 that each principal formulas

of the 𝑑𝑖 derelictions to be either a formula of the conclusion of the

multicut, either a cut-formula being cut with a formula appearing in

𝜋 𝑗 such that 𝑝 𝑗 = 1.

𝜋 reduces through a finite number of mcut-reductions to a proof

where each of the last 𝑑𝑖 +𝑝𝑖 rules either were eliminated by a (!p/?
d
)-

principal case, or were commuted below the cut.

See proof in

App. 26
Proof of lemma 7. Reductions from the non-exponential part

of 𝜇superLL∞ (E, ≤g, ≤f
, ≤u) translate easily to one step of reduction

in 𝜇LL∞. To prove the result on exponential part, we will describe

each translation of the reductions of Figures 6 and 7 and make sure

that they are finite. The other cases, as well as more details on this

proof are given in Appendix B.2.3. Note that for the commutative

steps no commutation of rules is necessary.

• Step (comm!g
). This step translates to the commutation of

one (!)-rule in 𝜇LL∞, which is a one-step reduction.

• Step (comm
1

!f

). We use lemma 8, which applies to our step

by first taking all 𝑝𝑖 = 1 and 𝑑𝑖 to be the number of formulas

in the context of each promotion.

• Step (comm?m
). We must distinguish the cases based on 𝑖:

– 𝑖 = 0. This step translates to one (?w)-commutative step.

– 𝑖 = 1. This step translates to one (?
d
)-commutative step.

– 𝑖 > 1. This step translates to 𝑖 − 1 commutations of (?c)
and 𝑖 commutations of (?

d
).

• Step (comm?c
). This step translates to 𝑖 − 1 commutations

of (?c).
• Step (principal

?c
). This step translates to 𝑖 − 1 contraction

principal cases, creating 𝑖 − 1 contractions on each formula

of the context that can be permuted together to get the

translation of any of the derivations of ?

¯®𝜌
c𝑖
. Note that for

𝑖 = 2 no rule permutation are needed. (That is the case of

the usual binary contraction.)

• Step (principal
?m

). This step translates in two phases:

(1) First 𝑖 − 1 contraction principal cases;

(2) followed by #(S?m

C!,𝑆
′
!
) (?

d
/!)-principal cases, and #(Γ′′)

dereliction commutative cases.

To prove the second phase we re-use lemma 8 as for steps

(comm
2

!u

) and (comm
1

!f

).We obtain a proof containing contractions

and derelictions on formulas of the conclusions that can be

permuted to obtain the desired property. Note that if 𝑖 = 0,

no rule permutations are needed. (That is the case of usual

weakening.)

□

Now that we know that a step of (mcut)-reduction in 𝜇superLL∞

translates to some steps of (mcut)-reduction 𝜇LL∞, we have to

control the fairness, which is the purpose of the following lemma:

Lemma 9 (Completeness of the (mcut)-reduction system).

If there is a 𝜇LL∞-redex R sending 𝜋◦ to 𝜋 ′◦ then there is also a

𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-redex R′

sending 𝜋 to a proof 𝜋 ′′, such
that in the translation of R′

, R is reduced.

Proof. The proof of this lemma is made in appendix B.2.4 as

we need the full cut-steps of 𝜇superLL∞ to show that they are

complete. □

Corollary 1. For every fair 𝜇superLL∞ (E, ≤g, ≤f
, ≤u) reduction

sequences (𝜋𝑖 )𝑖∈𝜔 , there exists:
• a fair 𝜇LL∞ reduction sequence (𝜃𝑖 )𝑖∈𝜔 ;
• a sequence of strictly increasing (𝜑 (𝑖))𝑖∈𝜔 natural numbers;

• for each 𝑖 , an integer𝑘𝑖 and a finite sequence of rule permutations

(𝑝𝑘
𝑖
)𝑘∈J0,𝑘𝑖−1K starting from a proof 𝜋 ′

𝑖
∈ 𝜋◦

𝑖
that ends on

𝜃𝜑 (𝑖 ) . For convenience in the proof, let’s denote by (𝜋𝑘𝑖 )𝑘∈J0,𝑘𝑖K
be the sequence of proofs associated to the permutation;

• for each 𝑖′ ≥ 𝑖 and for each 𝑘 ∈ J0, 𝑘𝑖 − 1K, 𝑝𝑘
𝑖′ = 𝑝𝑘

𝑖

Proof. We construct the sequence by induction on the steps of

reductions of (𝜋𝑖 )𝑖∈𝜔 .
• For 𝑖 = 0: we take any 𝜃0 (= 𝜋 ′

0
) in 𝜋◦

0
, 𝜑 (0) = 0 and 𝑘0 = 0:
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• For 𝑖 + 1, suppose we constructed everything up to rank

𝑖 . We use lemma 7 on the step 𝜋𝑖 → 𝜋𝑖+1 with 𝜋 ′
𝑖
as the

starting proof from 𝜋◦
𝑖
and get a finite sequence of reduction

𝜃 ′
0
→ · · · → 𝜃 ′𝑛 , such that there is a permutation of rules

(𝑝1, . . . , 𝑝𝑚) (𝑚 ∈ N) starting on a proof 𝜋 ′
𝑖+1

of 𝜋◦
𝑖+1

and

ending on 𝜃 ′𝑛 such that 𝑝1, . . . , 𝑝𝑚 are at the depths of rules

that commuted down the multicut during the sequence 𝜃 ′
0
→

· · · → 𝜃 ′𝑛 . We have that 𝜃 ′
0
= 𝜋 ′

𝑖
, therefore (𝑝0

𝑖
, . . . , 𝑝

𝑘𝑖−1

𝑖
)

is a sequence of reduction starting from 𝜃 ′
0
and ending on

𝜃𝜑 (𝑖 ) . As 𝜃 ′0 and 𝜃 ′
𝑗
are equal under the multicut rules

of 𝜃 ′
0
(for each 𝑗 ∈ J0, 𝑛K) and that rules on top of these

multicuts have empty traces under the permutation of rules

(𝑝0

𝑖
, . . . , 𝑝

𝑘𝑖−1

𝑖
), we have that (𝑝0

𝑖
, . . . , 𝑝

𝑘𝑖−1

𝑖
) is a sequence

of rule permutation starting on proof 𝜃 ′
𝑗
. Let’s denote by

𝜃 ′0𝑗 , . . . , 𝜃
′𝑘𝑖
𝑗
the sequence of proof associated to it. We have

that for the same reason, 𝜃 ′ 𝑗 is equal to 𝜃 ′
𝑘𝑖
𝑗
on top of the

depths ofmulticuts of𝜃 ′
𝑗
.We therefore have that𝜃 ′𝑘𝑖

0
, . . . , 𝜃 ′𝑘𝑖𝑛

is an (mcut) reduction sequence of 𝜇LL∞ starting from 𝜃𝜑 (𝑖 ) .

As the two sequences of reductions 𝑝1, . . . , 𝑝𝑚 and𝑝0

𝑖
, . . . , 𝑝

𝑘𝑖−1

𝑖
have disjoint sets of rules with non-empty traces, we have

that 𝑝0

𝑖
, . . . , 𝑝

𝑘𝑖−1

𝑖
, 𝑝1, . . . , 𝑝𝑚 is a sequence of rule permutation

starting from 𝜋 ′
𝑖+1

and ending on the same proof than the

proof ending the sequence 𝑝1, . . . , 𝑝𝑚, 𝑝0

𝑖
, . . . , 𝑝

𝑘𝑖−1

𝑖
, namely

𝜃 ′𝑘𝑖𝑛 . By setting 𝜑 (𝑖 + 1) := 𝜑 (𝑖) + 𝑛, 𝜃𝜑 (𝑖 )+𝑗 := 𝜃 ′𝑘𝑖
𝑗
(for

𝑗 ∈ J0, 𝑛K), 𝑝
𝑗

𝑖+1
= 𝑝

𝑗
𝑖
for 𝑗 ≤ 𝑘𝑖 − 1 and 𝑝

𝑘𝑖−1+𝑗
𝑖+1

= 𝑝 𝑗
for 𝑗 ∈ J1,𝑚K, we have our property.
Here is a summary of the objects used in the inductive step:

𝜋𝑖 𝜋𝑖+1

𝜋 ′
𝑖+1

∈ 𝜋◦
𝑖+1

𝜋◦
𝑖
∋ 𝜋 ′

𝑖
= 𝜃 ′

0
. . . 𝜃 ′

𝑗
. . . 𝜃 ′𝑛

𝜃 ′1
0

𝜃 ′1𝑗 𝜃 ′1𝑛

.

.

.
.
.
.

.

.

.

𝜃 ′𝑘𝑖
0

= 𝜃𝜑 (𝑖 ) . . . 𝜃 ′
𝑘 𝑗

𝑗
. . . 𝜃𝜑 (𝑖+1)

𝑝0

𝑖

𝑝1,...,𝑝𝑚

We get fairness of (𝜃𝑖 )𝑖∈𝜔 from lemma 9 and from the fact that

after the translation of an (mcut)-step, 𝜋◦ ⇝ 𝜋 ′◦, each residual of

a redex R of 𝜋◦, is contained in the translations of residuals of the

associated redex R′
of lemma 9. □

Finally, we have:

Theorem 5. Every fair (mcut)-reduction sequence of

𝜇superLL∞ (E, ≤g, ≤f
, ≤u) converges to a 𝜇superLL∞ (E, ≤g, ≤f

, ≤u)
cut-free proof.

Proof. Consider a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u) fair reduction sequence

(𝜋𝑖 )𝑖∈1+𝜆 (𝜆 ∈ 𝜔 + 1). If the sequence is finite, we use lemma 7 and

we are done. If the sequence is infinite, using corollary 1 we get

a fair infinite 𝜇LL∞ reduction sequence (𝜃𝑖 )𝑖∈𝜔 and a sequence

(𝜑 (𝑖))𝑖∈𝜔 of natural numbers. By theorem 3, we know that (𝜃𝑖 )𝑖∈𝜔
converges to a cut-free proof 𝜃 of 𝜇LL∞.

We now prove that the sequence (𝜋𝑖 )𝑖∈𝜔 converges to a

𝜇superLL∞ (E, ≤g, ≤f
, ≤u) pre-proof 𝜋 such that 𝜋◦ = 𝜃 up to a

permutation of rules (the permutations of one particular rule being

finite).

First, we prove that for each depth 𝑑 , there is an 𝑖 such that there

are no (mcut)-rules under depth 𝑑 in 𝜋𝑖 . Suppose for the sake of

contradiction that there exist a depth 𝑑 such that there always exist

a (mcut) at depth 𝑑 . There is a rank 𝑖′ and an (mcut) rule in 𝜋𝑖′

such that for each 𝑖 ≥ 𝑖′, 𝜋𝑖 will always contain this (mcut) and
the branch 𝑏 to it never changes. The translations 𝜋◦

𝑖′ contains the

translation of the branch 𝑏 which also ends with an mcut. Since

𝜋◦
𝑖′ is equal to 𝜃𝜑 (𝑖′ ) up to the permutations of rules under the

multicut and that these permutations do not change the depths of

the (mcut) rules, we have that the 𝜃𝜑 (𝑖 ) all contains a (mcut) at a
depth equal to the depth of the translation of 𝑏. This contradicts

the productivity of this sequence of reduction, we therefore have

that (𝜋𝑖 ) converges to a pre-proof 𝜋 .

Second, we prove that 𝜋◦ is equal to 𝜃 up to a permutation of

rules (the permutations of one particular rule being finite). The

condition on the sequence given by corollary 1 defines a sequence

of rule permutation starting from 𝜋◦:

𝑝0

0
, . . . , 𝑝

𝑘0−1

0
, 𝑝

𝑘0

1
, . . . , 𝑝

𝑘1−1

1
, . . . , 𝑝

𝑘𝑛−1

𝑛 , . . . , 𝑝
𝑘𝑛−1

𝑛 , . . . ,

moreover we have that this is a permutation of rules with finite

permutation, therefore this sequence of rule permutation converges

to a 𝜇LL∞ pre-proof 𝜋 ′. We have for each 𝑖 , that the end of the

sequence of rule permutation

𝑝0

0
, . . . , 𝑝

𝑘0−1

0
, 𝑝

𝑘0

1
, . . . , 𝑝

𝑘1−1

1
, . . . , 𝑝

𝑘𝑖−1

𝑖
, . . . , 𝑝

𝑘𝑖−1

𝑖

starting from 𝜋◦ is equal to 𝜋𝑘𝑖
𝑖

under the multicuts (as 𝜋0

𝑖
is equal

to 𝜋◦ under the multicuts). Therefore we have that the sequence

(𝜋𝑘𝑖
𝑖
)𝑖∈𝜔 = (𝜃𝜑 (𝑖 ) )𝑖∈𝜔 converges to 𝜋 ′ and therefore that 𝜋 ′ = 𝜃 .

As rule permutation with finite permutation and (−)◦ translation
are robust to validity (both ways), we have that 𝜋 is valid. □

We obtain another proof of the result of [BL21]:

Corollary 2 (Cut Elimination for superLL). Cut elimination

holds for superLL(E, ≤g, ≤f
, ≤u) as soon as the 8 cut-elimination

axioms of definition 1 are satisfied.

Proof. Any superLL(E, ≤g, ≤f
, ≤u)-proof is also 𝜇superLL∞ (E, ≤g

, ≤
f
, ≤u)-proof therefore any sequence of (mcut)-reductions converges

to a cut-free proof. A cut-free proof of sequents containing only

superLL(E, ≤g, ≤f
, ≤u)-formulas and valid rules from

𝜇superLL∞ (E, ≤g, ≤f
, ≤u) is necessarily a superLL(E, ≤g, ≤f

, ≤u)
(cut-free) proof. □
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This result not only gives another way of proving cut-elimination

for superLL-systems but the sequences of reduction we build in it

are generally different from the one that are built in [BL21]. Indeed,

we are eliminating cuts from the bottom of the proof using the

multicut rule whereas in [BL21] the deepest cuts in the proof are

eliminated first.

4 ON THE CUT-ELIMINATION OF THE MODAL
𝜇-CALCULUS

As discussed in the introduction, to prove the cut-elimination of

𝜇LK∞□ , our approach will consist in encoding 𝜇LK∞□ into a new,

more structured system: 𝜇LL∞□ . The system 𝜇LL∞□ is an instance of

𝜇superLL∞, therefore we get cut-elimination directly as a corollary

of Theorem 5. However, by looking in the details of the proof, we

can state some results in a slightly more general way.

4.1 A linear-logical modal 𝜇-calculus
We start by giving a formal definition of the linear-logical modal

𝜇-calculus: 𝜇LL∞□ . The term logical makes emphasis on the fact that

the logic is linear in the use of resources, not in the structures of

its models as in LTL or linear-time 𝜇-calculus [Sti92].

Definition 19 (𝜇-signature for 𝜇LL∞□ ). Wedefine two 𝜇-signatures

for our systems:

• one-sided 𝜇LL∞□ : CLL□1
:= CLL1

∪ {(□, +), (♦, +)};
• two-sided 𝜇LL∞□ : CLL□2

:= CLL2
∪ {(□, +), (♦, +)}.

From this 𝜇-signature and definition 4, we get the formulas of

𝜇LL∞□ . Rules for our system will be rules of 𝜇LL∞ together with:

⊢ 𝐴, Γ □p⊢ □𝐴, ♦Γ ,
⊢ ♦𝐴, ♦𝐴, Γ

♦c⊢ ♦𝐴, Γ ,
⊢ Γ ♦w⊢ ♦𝐴, Γ ,

⊢ 𝐴, ?Γ, ♦Δ
!
♦
p⊢ !𝐴, ?Γ, ♦Δ

From these rules, we define the sequents, pre-proofs and proofs

in the same way as for systems of Section 2.1. Negation is already

defined for a larger set of formulas.

Proposition 2. The system 𝜇LL∞□ is the system 𝜇superLL∞ (E, ≤g

, ≤
f
, ≤u) such that:

See detail in

app. C.1.2 • The set of signatures contains two elements E := {•,★}.
• ?c2

(•) = ?c2
(★) = true ?m1

(•) = true, ?m0
(•) = ?m0

(★) =

true, and all the other elements have value false for both

signatures.

• • ≤g • ; • ≤g ★, ★ ≤
f
★, and all couples for the three relations

≤g, ≤f
and ≤u being false.

This system is 𝜇LL∞□ when taking:

?• := ?, !• := !, ?★ := ♦ and !★ := □.

Moreover, the system satisfy cut-elimination axioms of figure 1.

4.2 Cut-elimination for 𝜇LL∞□
To prove cut-elimination for 𝜇LL∞□ , we will translate formulas

and proofs and (mcut)-steps of 𝜇LL∞□ into 𝜇LL∞ and use the cut-

elimination results from [Sau23] (aswe did for 𝜇superLL∞). In [Sau23],

exponential formulas, proofs and cut-steps are encoded into 𝜇MALL∞,

following

(?𝐴)• = 𝜇𝑋 .(𝐴•⊕(⊥⊕(𝑋`𝑋 ))) (!𝐴)• = 𝜈𝑋 .(𝐴•
&(1&(𝑋 ⊗𝑋 )))

Contrary to 𝜇superLL∞ which deals with many exponentials, 𝜇LL∞□
only has two. Therefore we could have made the choice to encode

the modalities of 𝜇LL∞□ directly into 𝜇MALL∞, replaying the proof

of [Sau23] to get cut-elimination. However using the 𝜇LL∞ cut-

elimination theorem as such, makes our approach more modular

and more easy to adapt to future extensions of 𝜇LL∞ validity

condition or variants of its cut-elimination proof.

The translation of 𝜇LL∞□ into 𝜇LL∞ is done using the translation

from 𝜇superLL∞ into 𝜇LL∞ in section 3.2. We recall the translations

of ♦,□-formulas: (♦𝐴)◦ := ?𝐴◦
and (□𝐴)◦ := !𝐴◦ .

Translation of structural rules for ♦, (♦c) and (♦w), are the

contraction and the weakening of ?. Translations of the modal

rule are given by (where the derelictions can permute with each

other):

⊢ 𝐴, Γ
□⊢ □𝐴, ♦Γ ⇝

⊢ 𝐴◦, Γ◦
(?
d
)★

⊢ 𝐴◦, ?Γ◦
!p⊢ !𝐴◦, ?Γ◦

From lemma 6, this translation preserves validity both ways. Finally

we have to make sure (mcut)-reduction sequences are robust under

this translation. In our proof of the final theorem, we also need one-

step reduction-rules to be simulated by a finite number of reduction

steps in the translation:

Lemma 10. Consider a 𝜇LL∞□ reduction step 𝜋0 ⇝ Π1. For each

𝜋1 ∈ Π1 and each 𝜋 ′
0
∈ 𝜋◦

0
, there exist a finite number of 𝜇LL∞

proofs 𝜃0, . . . , 𝜃𝑛 such that:

𝜋◦
0
∋ 𝜋 ′

0
= 𝜃0, 𝜃𝑛 ∈ 𝜋◦

1
, and 𝜃0 → . . . → 𝜃𝑛 .

Proof. To prove this lemma, we replay the proof of lemma 8.

Noticing that the two caseswherewe need to perform rule permutation

are the principal cases of the multiplexing and of the contraction.

However we do not need to do rule permutation for the (?c𝑖 )
principal case for 𝑖 = 2. Neither, do we for (?m0

). For (?m1
) things

are bit more tricky, we notice that in this particular instance of

𝜇superLL∞ (E, ≤g, ≤f
, ≤u) (taking notations from proposition 2, we

only perform ?m1
on ?•-formulas. Moreover, we never have • ≤

f
𝜎

for any 𝜎 ∈ {•,★}, therefore in the left proof of the ?m1
principal

case, Ompx𝑆
(C!

?𝜎𝐴
) = C!

?𝜎𝐴
and Γ′′ is empty. We therefore have

only ?
�̄�
?c

1

-rules that appears under the cut, which is the derivation

containing 0 rules. □

We use the previous lemma, as well as Lemma 9 to prove the

following:

Corollary 3. For every fair 𝜇LL∞□ reduction sequence (𝜋𝑖 )𝑖∈N,
we have:

• a fair 𝜇LL∞ reduction sequence (𝜃𝑖 )𝑖∈𝜔 ;
• a sequence of strictly increasing (𝜑 (𝑖))𝑖∈𝜔 natural numbers;

• for each 𝑖 , 𝜃𝜑 (𝑖 ) ∈ 𝜋◦
𝑖
.

Proof. The proof is done the same way than Corollary 1 but

using Lemma 10 to avoid weakening the statement by authorizing

permutation hypothesis. □

Finally, we have:

Theorem 6. Every fair reduction sequence of 𝜇LL∞□ converges to

a 𝜇LL∞□ proof.
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Proof. To prove it, we can replay the proof from Theorem 5,

using the, specific to 𝜇LL∞□ , Corollary 3, but we do not need to. We

apply Theorem 5 for the instance of 𝜇superLL∞ of Proposition 2.

□

4.3 Cut-elimination of 𝜇LK∞
□

We extend the translation from [Sau23] of 𝜇LK∞ to 𝜇LK∞□ to obtain

a translation into 𝜇LL∞□ . We define out translation for the two-sided

version of both systems:

Definition 20 (Linear translation of 𝜇LK∞□ ). We define the

translation (−)• from formulas of 𝜇LK∞□ to formulas of 𝜇LL∞□ by

induction on these formulas in the following way:

(𝐴1 → 𝐴2)• := !(?𝐴1

• ⊸ ?𝐴2

•) 𝑋 •
:= !𝑋 (𝜇𝑋 .𝐴)• := !𝜇𝑋 .?𝐴•

(𝐴1 ∧𝐴2)• := !(?𝐴1

•
& ?𝐴2

•) T• := !⊤ (𝜈𝑋 .𝐴)• := !𝜈𝑋 .?𝐴•

(𝐴1 ∨𝐴2)• := !(?𝐴1

• ⊕ ?𝐴2

•) F• := !0 (♦𝐴)• := !♦?𝐴•

(𝐴⊥)• := !(?𝐴•)⊥ 𝑎• := !𝑎 (□𝐴)• := !□!?𝐴•

We also have a translation for sequents: (Γ ⊢ Δ)• := Γ• ⊢ ?Δ• .

We give the translations of modal rules in Figure 9. . We thenSee

App. C.1.1

for more

details

define translations of proofs coinductively on the proofs using the

translation of each rules. As the smallest formula (for inclusion

ordering) of a totally ordered set of translations is the translation

of the smallest formula, and that a branch of 𝜋• contains all the

translations of threads from 𝜋 and vice-versa, we have the following:

Lemma 11 (Robustness of (−)• to validity). If 𝜋 is a valid

pre-proof, then 𝜋• also and vice versa.

We define a translation SK(−) going from 𝜇LL∞□ formulas and

pre-proofs to 𝜇LK∞□ formulas and pre-proofs, by forgetting linear

information from formulas and pre-proofs (ie erasing exponential

modalities, as well as dereliction and promotion, and projecting

other connectives or inferences to the corresponding 𝜇LK∞□ connectives

and inferences). This straightforwardly extends the 𝜇LK∞ case [Sau23]

with the modal cases. SK(−) preserves validity and it is compatible

with (−)•: for each proof 𝜋 of 𝜇LK∞□ , we have that SK(𝜋•) = 𝜋 .
See details

in C.2.1

Definition 21 ((mcut)-rewriting system of 𝜇LK∞□ ). We define

(mcut)-rewriting system of 𝜇LK∞□ to be the (mcut)-system obtained

from 𝜇LL∞□ (mcut)-system by forgetting the linear information of

proofs of this system.

Finally, we have the following theorem:

Theorem 7. The (mcut)-reduction system of 𝜇LK∞□ is an infinitary

weak-normalizing reduction relation.

Proof. Consider a 𝜇LK∞□ proof 𝜋 and a fair reduction sequence

𝜎L from 𝜋•. By theorem 6, 𝜎L converges to a cut-free 𝜇LL∞□ proof.

By applying SK(−) to each proof in the sequence, we obtain

a sequence of 𝜇LK∞□ valid proofs which are all valid and such

that either SK(𝜋𝑖 ) = SK(𝜋𝑖+1) or SK(𝜋𝑖 ) reduces to SK(𝜋𝑖+1) with
one step of 𝜇LK∞□ mcut-reduction. By dropping the equality cases,

we obtain a 𝜇LK∞□ cut-reduction sequence 𝜎K that is infinite and

converges to a valid, cut-free 𝜇LK∞□ proof. □

4.4 Finitary circular cut-elimination for 𝜇LK∞
□

The infinitary cut-elimination theorem for non-wellfounded 𝜇LK∞□
proofs, established in the previous section, can be extended to

circular 𝜇LK∞□ proofs, achieving a true weak-normalization (that

is, finitary) result by allowing both cut-reduction and back-edge

introduction rules. Let us explain how we proceed.

First let us notice that, while we established in the previous

sections the cut-elimination for the non-wellfounded 𝜇-calculus

(in the form of an infinitary weak-normalization result) in proof

systems where sequents are (possibly pairs of) lists of formulas,

it is straightforward to derive from this a similar infinitary weak-

normalization result for 𝜇LK∞□ presented with sequents as sets of

formulas. For this, one can simply project the cut-reduction relation

for sequents-as-lists to a relation between 𝜇LK∞□ non-wellfounded

proofs for sequents-as-sets by using the forgetful map from lists to

sets and notice that any valid proof in set-based 𝜇LK∞□ is the erasure

of a valid proof in list-based 𝜇LK∞□ from which the infinitary weak

normalization results follows.

Second, let us just recall that it is well-known that non-wellfounded

cut-free proofs for 𝜇LK∞□ with sequents-as-sets can be regularized,

by using an operation that discards a (potentially infinite) sub-

tree and replaces it with a back-edge to a lower sequent, while

preserving validity. This is due to the fact that only finitely many

distinct sequents can occur in such a cut-free set-based derivation.

From the above two points one can obviously regularize the

(non-wellfounded) cut-free proof obtained thanks to the infinitary

weak-normalization mentioned above. In fact, one can do better and

obtain a purely finitary cut-elimination for the circular modal-mu-

calculus. Indeed, while the regularization process sketched above

assumes proofs to be cut-free, it is possible to inline it in the cut-

reduction process and apply it eagerly. We outline this now.

Let us consider finite representations of circular proofs (ie finite

trees with back-edges) endowed with the following reduction ↦−→
rule which is structured in three types of rules:

cut-reduction steps the usual cut-elimination reduction for 𝜇LK∞□
set-based proofs;

back-edge unfolding a rule that unfolds a finite representation

when the premise of a cut is the target of a back-edge;

back-edge creation a back-edge creation rule that replaces a bottom-

most cut with a back-edge to a lower sequent as soon as it can

be done according to the regularization process for cut-free

non-wellfounded proofs described above.

Finally, we have the following, purely finitaryweak-normalization

theorem:

Theorem 4.1. ↦−→ is a weakly normalizing reduction relation on

circular 𝜇LK∞□ derivations the normal form of which are cut-free

circular proofs.

5 CONCLUSION
We have introduced a family of logical systems, 𝜇superLL∞, and

proved a syntactic cut-elimination theorem for them. Considering

𝜇LL∞□ , one instance of 𝜇superLL∞, and a linear translation of 𝜇LK∞□
in this calculus, we established a cut-elimination theorem the non-

wellfounded sequent calculus for the modal 𝜇-calculus, 𝜇LK∞□ . From
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Δ ⊢ 𝐹, Γ □p

□Δ ⊢ □𝐹, ♦Γ ⇝

Δ• ⊢ ?𝐹 •, ?Γ•
!d, ?p

!?Δ• ⊢ ?𝐹 •, ?Γ•
!p

!?Δ• ⊢ !?𝐹 •, ?Γ• □p

□!?Δ• ⊢ □!?𝐹 •, ♦?Γ•
?d, !

♦
p

□!?Δ• ⊢ ?!□!?𝐹 •,?!♦?Γ•
!d

!□!?Δ• ⊢ ?!□!?𝐹 •,?!♦?Γ•

Δ, 𝐹 ⊢ Γ
♦p

□Δ, ♦𝐹 ⊢ ♦Γ ⇝

Δ•, 𝐹 • ⊢ ?Γ•
!d, ?p

!?Δ•, 𝐹 • ⊢ ?Γ•
?p

!?Δ•, ?𝐹 • ⊢ ?Γ•
♦p

□!?Δ•, ♦?𝐹 • ⊢ ♦?Γ•
!d, ?d, !

♦
p

□!?Δ•, !♦?𝐹 • ⊢ ?!♦?Γ•
!d

!□!?Δ•, !♦?𝐹 • ⊢ ?!♦?Γ•

Figure 9: Translation of the modal rule into 𝜇LL∞□

this result, a finitary weak normalization theorem for the circular

fragment of 𝜇LK∞□ is finally provided.

From the linear logic-theoretic point of view, our system 𝜇superLL∞

subsumes various fixed-point versions of existing linear logic systems

(extended most known light logics with least and greatest fixed-

points and a non-wellfounded proof system) andwe have a relatively

simple and uniform proof of cut-elimination for each of them.

From the modal 𝜇-calculus-theoretic point of view, this is the

first result of a full syntactic cut-elimination for a proof system

for the whole modal 𝜇-calculus. We provide this result in the non-

wellfounded system with sequents as lists of formulas as well as in

the circular fragment, where sequents are sets of formulas. As Linear

Logic has a particularly fine-grained proof theory, we conjecture

that one can construct a non-trivial denotational semantics for the

proofs of 𝜇LK∞□ from the linear translation. However, one cannot

hope the same for the circular version as, for instance, sequents are

translated into sets of formulas.

In our opinion, this work presents a new and non-trivial application

of linear logic to modal 𝜇-calculus, developing proof theories in

both domains and highlighting the potential for cross-fertilization

for the two communities.

The 𝜇superLL∞ system as defined in this paper does not cover

the digging rule as is done in [BL21]. Asking for the digging rule

on modal formulas is equivalent to axiom 4 of modal logic. Other

axioms of modal logic could be seen as rules from Linear Logic, such

as axiom T in modal logic, and co-dereliction rules from Differential

Linear Logic.

Another natural futureworkwill be to fully cover super exponentials

from [BL21], and even bigger systems, capturing more rules from

Linear Logic and transferring its proof-theoretic properties to other

logical systems.
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A APPENDIX ON THE BACKGROUND
SECTION

A.1 Details on the section 2.1
A.1.1 Involutivity of the negation, definition 5. We recall the definition

of the involutive negation:

Definition 22 (Negation). Given a 𝜇-signature C containing

only connectives with positive polarity. Let 𝜄 be an involution on C
such that if 𝜄 (𝑐, 𝑝) = (𝑐′, 𝑝′) then 𝑝 = 𝑝′. Let A be a set of atoms

with another involution 𝜅 on it and let V be a set of variables. We

define (−)⊥(𝜄,𝜅 )
to be the involution on formulas satisfying:

𝑋⊥(𝜄,𝜅 ) = 𝑋 𝑐 (𝐹1, . . . , 𝐹𝑛)⊥(𝜄,𝜅 ) = 𝜄 (𝑐) (𝐹⊥(𝜄,𝜅 )
1

, . . . , 𝐹
⊥(𝜄,𝜅 )
𝑛 )

𝑎⊥(𝜄,𝜅 ) = 𝜅 (𝑎) (𝜇𝑋 .𝐹 )⊥(𝜄,𝜅 ) = 𝜈𝑋 .𝐹⊥(𝜄,𝜅 )

Details in

App. A.1.1.

Involutivity of the negation. We prove that this involution

exists, we define it by induction on formulas. All cases are given by

the definition above, except for 𝜈𝑋 .𝐹 which will be:

(𝜈𝑋 .𝐹 )⊥(𝜄,𝜅 ) = 𝜇𝑋 .𝐹⊥(𝜄,𝜅 ) .

We prove by induction on formulas that it is indeed an involution:

• (𝑋 ∈ V). If our formula is a variable 𝑋 , then 𝑋⊥(𝜄,𝜅 ) = 𝑋

and so (𝑋⊥(𝜄,𝜅 ) )⊥(𝜄,𝜅 ) = 𝑋 .

• (𝑎 ∈ A). If our formula is an atom, we use involutivity of 𝜅.

• (𝑐 (𝐹1, . . . , 𝐹𝑛)). For the connective case, involutivity of 𝜄 give

us 𝜄 (𝜄 (𝑐)) = 𝑐 and induction hypothesis on 𝐹1, . . . , 𝐹𝑛 to get:

(𝑐 (𝐹1, . . . , 𝐹𝑛)⊥(𝜄,𝜅 ) )⊥(𝜄,𝜅 )

=(𝜄 (𝑐) (𝐹⊥(𝜄,𝜅 )
1

, . . . , 𝐹
⊥(𝜄,𝜅 )
𝑛 ))⊥(𝜄,𝜅 )

=(𝜄 (𝑐) (𝐹⊥(𝜄,𝜅 )
1

, . . . , 𝐹
⊥(𝜄,𝜅 )
𝑛 ))⊥(𝜄,𝜅 )

=𝜄 (𝜄 (𝑐)) ((𝐹⊥(𝜄,𝜅 )
1

)⊥(𝜄,𝜅 ) , . . . , (𝐹⊥(𝜄,𝜅 )
𝑛 )⊥(𝜄,𝜅 ) )

=𝑐 (𝐹1, . . . , 𝐹𝑛).

• (𝛿𝑋 .𝐹 ) (𝛿 ∈ {𝜇, 𝜈}). We set 𝜄 (𝜇) = 𝜈 and 𝜄 (𝜈) = 𝜇 and we

have:

((𝛿𝑋 .𝐹 )⊥(𝜄,𝜅 ) ))⊥(𝜄,𝜅 ) )

=(𝜄 (𝛿)𝑋 .𝐹⊥(𝜄,𝜅 ) )⊥(𝜄,𝜅 ) )
=𝜄 (𝜄 (𝛿))𝑋 .(𝐹⊥)⊥

=𝛿𝑋 .𝐹 .

□

A.1.2 Fischer-Ladner sub-formula definition.

Definition 23 (Fischer-Ladner sub-formula). Let 𝐹 be a formula

on a signature C, the set of Fischer-Ladner sub-occurrences of 𝐹 is

the smallest set FL(𝐹 ) containing 𝐹 itself and such that:

(i) If 𝑐 (𝐹1, . . . , 𝐹𝑛) ∈ FL(𝐹 ) then 𝐹1, . . . 𝐹𝑛 ∈ FL(𝐹 ) with (𝑐, 𝑝) ∈ C.
(ii) If 𝛿𝑋 .𝐺 ∈ FL(𝐹 ) then 𝐺 [𝑋 := 𝛿𝑋 .𝐺] ∈ FL(𝐹 ) with 𝛿 ∈ {𝜇, 𝜈}.

A.2 Details on the sequent calculi section 2.2
A.2.1 Two-sided modality rules. Rules of two-sided 𝜇LK∞□ are the

rules of 𝜇LK∞ together with rules of figure 10.

A.3 Details on super exponential systems
A.3.1 Two-sided Exponential rules for superLL. Exponential rules
of two-sided superLL(E, ≤g, ≤f

, ≤u) and 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)

are the same and are defined in figure 11.

A.3.2 Details on the notion of coherent set of derivations.

Definition 24 (Coherent set of derivations). A coherent set

of derivations S is a set of finite (possibly open) derivations, such that

all the derivations have the same root sequents and the same list of

open sequents. If D1, . . . ,D𝑛 (resp. D1, . . . ,D𝑛, . . . ) are 𝑛 coherent

sets (resp. an𝜔-sequence of sets) of derivations such that each elements

of D𝑖 has one open sequent equal to 𝑂𝑖 and a root equal to 𝑅𝑖 , and

such that for each 𝑖 ∈ J1, 𝑛 − 1K (resp. each 𝑖 ≥ 1), 𝑂𝑖 = 𝑅𝑖+1, then

we denote by:

𝑂𝑛 D𝑛
𝑂𝑛−1

.

.

.

𝑂1 D1

𝑅1

resp.

.

.

.

𝑂𝑛 D𝑛
𝑂𝑛−1

.

.

.

𝑂1 D1

𝑅1

the (coherent) set of derivations containing each

𝑂𝑛
𝑑𝑛

𝑂𝑛−1

.

.

.

𝑂1

𝑑1

𝑅1

resp.

.

.

.

𝑂𝑛
𝑑𝑛

𝑂𝑛−1

.

.

.

𝑂1

𝑑1

𝑅1

with 𝑑𝑖 ∈ D𝑖 .

We identify the singleton {𝑑𝑖 } with the derivation 𝑑𝑖 .

A.3.3 Details on the derivability closure.

Definition 25. Let 𝜎 be a signature. For each 𝑖 ∈ N, we define
two sets of derivations ?

�̄�
c𝑖
and ?

�̄�
m𝑖

by induction on 𝑖 . We define ?
�̄�
c𝑖
as

the smallest (coherent) set of derivations containing:

• if 𝜎 (?c𝑖 ), the derivation ?c𝑖
(it is a one-rule derivation).

• For each 𝑗, 𝑗 ′ such that 𝜎 (?c𝑗 ) and 𝜎 (?c𝑗 ′ ) and 𝑗 + 𝑗 ′ − 1 = 𝑖 ,

the derivations of (?c𝑗+𝑗 ′−1
) from figure 12.

We then define ?
�̄�
m𝑖

by induction on 𝑖 as the smallest set containing:

• If 𝜎 (?m𝑖
), the derivation ?m𝑖

(it’s a derivation formed of one

rule).

• If 𝜎 (?c2
), For each 𝑗, 𝑗 ′ such that 𝜎 (?c𝑗 ) and 𝜎 (?c𝑗 ′ ), such that

𝑗 + 𝑗 ′ = 𝑖 , the derivations of (?c2
⇒ ?m𝑗+𝑗 ′ ) of figure 12.

• If𝜎 (?m1
) and𝜎 (?c𝑖 ), the derivations of (?c𝑖 ⇒ ?m𝑖

) of figure 12.
Finally we set ?

�̄�
c0

:= ?
�̄�
m0

and ?
�̄�
c1

being the singleton containing the

0-rule derivation.

Proposition 3. Taking the convention 𝜎 (?c0
) := 𝜎 (?m0

) and
𝜎 (?c1

) = true, we have that 𝑟 �̄� is non-empty if and only if 𝑒 (𝑟 ) = true.

Proof. For ⇒-direction, we do an induction on the derivability

closure of 𝜎 . For⇐-direction, taking ?
�̄�
c𝑖
and ?

�̄�
m𝑖

we do an induction

on 𝑖 using the inductive definition of the derivability closure. □
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Γ, 𝐹 ⊢ Δ ♦p
□Γ, ♦𝐹 ⊢ ♦Δ

Γ ⊢ 𝐹,Δ □p

□Γ ⊢ □𝐹, ♦Δ

Figure 10: Two-sided modality rules

Γ ⊢

𝑖︷   ︸︸   ︷
𝐹, . . . , 𝐹 ,Δ 𝜎 (?m𝑖

)
?m𝑖Γ ⊢ ?𝜎𝐹,Δ

Γ ⊢

𝑖︷         ︸︸         ︷
?𝜎𝐹, . . . , ?𝜎𝐹,Δ 𝜎 (?c𝑖 )

?c𝑖Γ ⊢ ?𝜎𝐹,Δ

! ®𝜎 ′′Γ ⊢ 𝐹, ? ®𝜎 ′Δ 𝜎 ≤g
®𝜎′, ®𝜎′′

!g

! ®𝜎 ′′Γ ⊢ !𝜎𝐹, ? ®𝜎 ′Δ

Γ ⊢ 𝐹,Δ 𝜎 ≤
f
®𝜎′, ®𝜎′′

!
f

! ®𝜎 ′′Γ ⊢ !𝜎𝐹, ? ®𝜎 ′Δ

⊢ 𝐹,𝐺 𝜎1 ≤u 𝜎2

!u
1

⊢ !𝜎1
𝐹, ?𝜎2

𝐺

𝐺 ⊢ 𝐹 𝜎1 ≤u 𝜎2

!u
2

!𝜎2
𝐺 ⊢ !𝜎1

𝐹

Γ,

𝑖︷   ︸︸   ︷
𝐹, . . . , 𝐹 ⊢ Δ 𝜎 (?m𝑖

)
!m𝑖Γ, !𝜎𝐹 ⊢ Δ

Γ,

𝑖︷        ︸︸        ︷
!𝜎𝐹, . . . , !𝜎𝐹 ⊢ Δ 𝜎 (?c𝑖 )

!c𝑖Γ, !𝜎𝐹 ⊢ Δ

! ®𝜎 ′′Γ, 𝐹 ⊢ ? ®𝜎 ′Δ 𝜎 ≤g
®𝜎′, ®𝜎′′

?g

! ®𝜎 ′′Γ, ?𝜎𝐹, ⊢ ? ®𝜎 ′Δ

Γ, 𝐹 ⊢ Δ 𝜎 ≤
f
®𝜎′, ®𝜎′′

?
f

! ®𝜎 ′′Γ, ?𝜎𝐹 ⊢ , ? ®𝜎 ′Δ

𝐹 ⊢ 𝐺 𝜎1 ≤u 𝜎2

?u
1

?𝜎1
𝐹 ⊢ ?𝜎2

𝐺

𝐺, 𝐹 ⊢ 𝜎1 ≤u 𝜎2

?u
2

!𝜎2
𝐺, ?𝜎1

𝐹 ⊢

Figure 11: Two-sided exponential rules for superLL(E, ≤g, ≤f, ≤u) and 𝜇superLL∞ (E, ≤g, ≤f, ≤u)

(?c𝑗+𝑗 ′−1
)

⊢

𝑖︷         ︸︸         ︷
?𝑒𝐴, . . . , ?𝑒𝐴, Γ

?
�̄�
c𝑗 ′

⊢

𝑗︷         ︸︸         ︷
?𝑒𝐴, . . . , ?𝑒𝐴, Γ

?
�̄�
c𝑗⊢ ?𝑒𝐴, Γ

(?c2
⇒ ?m𝑗+𝑗 ′ )

⊢

𝑖︷   ︸︸   ︷
𝐴, . . . , 𝐴, Γ

?
�̄�
m𝑗 ′

⊢

𝑗︷   ︸︸   ︷
𝐴, . . . , 𝐴, ?𝜎𝐴, Γ

?
�̄�
m𝑗⊢ ?𝜎𝐴, ?𝜎𝐴, Γ

?c2⊢ ?𝜎𝐴, Γ

(?c𝑖 ⇒ ?m𝑖
)

⊢

𝑖︷   ︸︸   ︷
𝐴, . . . , 𝐴, Γ

?m1
× 𝑖

⊢

𝑖︷          ︸︸          ︷
?𝜎𝐴, . . . , ?𝜎𝐴, Γ

𝜎 (?c𝑖 )⊢ ?𝜎𝐴, Γ

Figure 12: Derivability of ?
�̄�
c𝑖 and ?

�̄�
m𝑖

A.3.4 Proof of Axiom Expansion property .

Lemma 12 (Axiom Expansion). One-step axiom expansion holds

for formulas ?𝜎𝐴 and !𝜎𝐴 in superLL(E, ≤g, ≤f
, ≤u) if 𝜎 satisfies the

following expansion axiom:

𝜎 ≤u 𝜎 ∨ 𝜎 ≤
f
𝜎 ∨ (𝜎 ≤g 𝜎 ∧ 𝜎 (?m1

)) .
The axiom expansion holds in superLL(E, ≤g, ≤f

, ≤u) if all𝜎 satisfy

the expansion axiom.

Proof. We start by proving the first part of the theorem. We

distinguish three cases depending onwhich branch of the disjunction

holds for 𝜎 :

• If 𝜎 ≤u 𝜎 is true, then we have:

⊢ 𝐴⊥, 𝐴 𝜎 ≤u 𝜎
!u⊢ !𝜎𝐴

⊥, ?𝜎𝐴
• If 𝜎 ≤

f
𝜎 is true, it is similar to the previous case:

⊢ 𝐴⊥, 𝐴 𝜎 ≤
f
𝜎

!
f⊢ !𝜎𝐴

⊥, ?𝜎𝐴

• And if 𝜎 ≤g 𝜎 and (𝜎) (?m1
):

⊢ 𝐴⊥, 𝐴 (𝜎) (?m1
)

?m1⊢ 𝐴⊥, ?𝜎𝐴 𝜎 ≤g 𝜎
!g

⊢ !𝜎𝐴
⊥, ?𝜎𝐴

The second part of the theorem is proved by induction on the size

of the formula, using the first part of the theorem. □

A.3.5 Proof of cut-elimination of superLL (Theorem 1). We first

need three lemmas called the substitution lemmas:

Lemma 13 (Girard Substitution Lemma). Let 𝜎1 be a signature

and ®𝜎2 a list of signatures such that 𝜎1 ≤g ®𝜎2. Let 𝐴 be a formula,

and let Δ be a context, such that for all Γ, if ⊢ 𝐴, Γ is provable without

using any cut then ⊢ ? ®𝜎2

Δ, Γ is provable without using any cut. Then

we have that for all Γ, if ⊢

𝑛︷            ︸︸            ︷
?𝜎1

𝐴, . . . , ?𝜎1
𝐴, Γ is provable without using

any cut then ⊢

𝑛︷            ︸︸            ︷
? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ, Γ.

Proof. First we can notice that for any Γ the following rule:

⊢ 𝐴, . . . , 𝐴, Γ
𝑆𝑔⊢ ? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ, Γ

is admissible in the system without cuts (by an easy induction on

the number of 𝐴).

Now we show the lemma by induction on the proof of

⊢ ?𝜎1
𝐴, . . . , ?𝜎1

𝐴, Γ. We distinguish cases according to the last rule:
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• If it is a rule on a formula of Γ which is not a promotion:

𝜋

⊢ ?𝜎1
𝐴, . . . , ?𝜎1

𝐴, Γ′
𝑟⊢ ?𝜎1

𝐴, . . . , ?𝜎1
𝐴, Γ

⇝

𝐼𝐻 (𝜋)
⊢ ? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ, Γ′
𝑟⊢ ? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ, Γ

• If it is a Girard’s style promotion, thanks to the axiom (axTrans),
we have:

𝜋

⊢ 𝐵, ? ®𝜎3

Γ′, ?𝜎1
𝐴, . . . , ?𝜎1

𝐴 𝜎0 ≤g ®𝜎3 𝜎0 ≤g 𝜎1

!g⊢ !𝜎0
𝐵, ? ®𝜎3

Γ′, ?𝜎1
𝐴, . . . , ?𝜎1

𝐴

⇝

𝐼𝐻 (𝜋 )
⊢ 𝐵, ? ®𝜎

3
Γ′, ? ®𝜎

2
Δ, . . . , ? ®𝜎

2
Δ 𝜎0 ≤g ®𝜎3

𝜎0 ≤g 𝜎1 𝜎1 ≤g ®𝜎2

(axTrans)
𝜎0 ≤g ®𝜎2

!g⊢ !𝜎
0
𝐵, ? ®𝜎

3
Γ′, ? ®𝜎

2
Δ, . . . , ? ®𝜎

2
Δ

• If it is a unary promotion, we use axiom (axlequs):

𝜋

⊢ 𝐵,𝐴 𝜎0 ≤u 𝜎1

!u⊢ !𝜎0
𝐵, ?𝜎1

𝐴

⇝

𝜋

⊢ 𝐵,𝐴
𝑆𝑔⊢ 𝐵, ? ®𝜎2

Δ

𝜎0 ≤u 𝜎1 𝜎1 ≤g ®𝜎2 (axlequs)
𝜎0 ≤g ®𝜎2

!g⊢ !𝜎0
𝐵, ? ®𝜎2

Δ

• If it is a functorial promotion:

𝜋

⊢ 𝐵, Γ′,

𝑛︷   ︸︸   ︷
𝐴, . . . , 𝐴 𝜎0 ≤

f
𝜎1 𝜎0 ≤

f
®𝜎3

!
f⊢ !𝜎0

𝐵, ? ®𝜎3

Γ′, ?𝜎1
𝐴, . . . , ?𝜎1

𝐴

⇝

𝐼𝐻 (𝜋)

⊢ 𝐵, Γ′,

𝑛︷   ︸︸   ︷
𝐴, . . . , 𝐴

𝑆𝑔⊢ 𝐵, Γ′, ? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ

𝜎0 ≤
f
𝜎1 𝜎1 ≤g ®𝜎2 𝑒0 ≤

f
®𝑒3 (axleqfg)

( ®𝜎3) (?m1
)

?m1⊢ 𝐵, ? ®𝜎3

Γ′, ? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ

𝜎0 ≤
f
𝜎1 𝜎1 ≤g ®𝜎2 𝜎0 ≤

f
®𝑒3 (axleqfg)

𝜎0 ≤g ®𝜎3

𝜎0 ≤
f
𝜎1 𝜎1 ≤g ®𝜎2 (axleqfg)
𝜎0 ≤g ®𝜎2

!g⊢ !𝜎0
𝐵, ? ®𝜎3

Γ′, ? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ

• If it is a contraction (?c𝑖
) on a ?𝜎1

𝐴, we use axiom (axcontr):

𝜋

⊢

𝑖+𝑛−1︷            ︸︸            ︷
?𝜎1

𝐴, . . . , ?𝜎1
𝐴, Γ (𝜎1) (?c𝑖 )

?c𝑖⊢ ?𝜎1
𝐴, . . . , ?𝜎1

𝐴, Γ

⇝

𝐼𝐻 (𝜋)

⊢

𝑛−1+𝑖︷            ︸︸            ︷
? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ, Γ

(𝜎1) (?c𝑖 ) 𝜎1 ≤g ®𝜎2 (axcontr)
( ®𝜎2) (?c𝑖 )

?c𝑖⊢ ? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ, Γ

• If it is amultiplexing (?m𝑖
) on a ?𝜎1

𝐴, we use axiom (axgmpx):

𝜋

⊢ ?𝜎1
𝐴, . . . , ?𝜎1

𝐴,

𝑖︷   ︸︸   ︷
𝐴, . . . , 𝐴, ?𝜎1

𝐴, . . . , ?𝜎1
𝐴, Γ (𝜎1) (?m𝑖

)
?m𝑖⊢ ?𝜎1

𝐴, . . . , ?𝜎1
𝐴, Γ

⇝

𝐼𝐻 (𝜋 )

⊢ ? ®𝜎
2
Δ, . . . , ? ®𝜎

2
Δ,

𝑖︷    ︸︸    ︷
𝐴, . . . , 𝐴, ? ®𝜎

2
Δ, . . . , ? ®𝜎

2
Δ, Γ

𝑆𝑔⊢ ? ®𝜎
2
Δ, . . . , ? ®𝜎

2
Δ, Γ

(𝜎1 ) (?m𝑖
) 𝜎1 ≤g ®𝑒2

(axgmpx)
( ®𝜎2 ) (?c𝑖 )

?c𝑖⊢ ? ®𝜎
2
Δ, . . . , ? ®𝜎

2
Δ, Γ

• If it is an (ax) rule on ?𝜎1
𝐴. Then Γ = !𝜎1

𝐴⊥
and we have:

ax

⊢ 𝐴⊥, 𝐴
𝑆𝑔

⊢ 𝐴⊥, ? ®𝜎2

Δ 𝜎1 ≤g ®𝑒2

!g

⊢ !𝜎1
𝐴⊥, ? ®𝜎2

Δ

□

Lemma 14 (Functorial Substitution Lemma). Let 𝜎1 be a

signature and ®𝜎2 a list of signatures such that 𝜎1 ≤
f
®𝜎2. Let 𝐴 be a

formula, and let Δ be a context, such that for all Γ, if ⊢ 𝐴, Γ is provable

without using any cut then ⊢ Δ, Γ is provable without using any cut.

Then we have that for all Γ, if ⊢

𝑛︷            ︸︸            ︷
?𝜎1

𝐴, . . . , ?𝜎1
𝐴, Γ is provable without

using any cut then ⊢

𝑛︷            ︸︸            ︷
? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ, Γ as well.

Proof. First we can notice that for any Γ the following rule:

⊢ 𝐴, . . . , 𝐴, Γ
𝑆𝑓⊢ Δ, . . . ,Δ, Γ

is admissible in the system without cuts (by an easy induction on

the number of 𝐴). Now we show the lemma by induction on the

proof of ⊢ ?𝜎1
𝐴, . . . , ?𝜎1

𝐴, Γ. We distinguish cases according to the

last applied rule :

• If it is a rule on a formula of Γ which is not a promotion:

𝜋

⊢ ?𝜎1
𝐴, . . . , ?𝜎1

𝐴, Γ′
𝑟⊢ ?𝜎1

𝐴, . . . , ?𝜎1
𝐴, Γ

⇝

𝐼𝐻 (𝜋)
⊢ ? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ, Γ′
𝑟⊢ ? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ, Γ

• If it is a Girard’s style promotion. Thanks to the axiom (axleqgs),
we have:

𝜋

⊢ 𝐵, ? ®𝜎3

Γ′, ?𝜎1
𝐴, . . . , ?𝜎1

𝐴 𝜎0 ≤g ®𝜎3 𝜎0 ≤g 𝜎1

!g⊢ !𝜎0
𝐵, ? ®𝜎3

Γ′, ?𝜎1
𝐴, . . . , ?𝜎1

𝐴

⇝

𝐼𝐻 (𝜋 )
⊢ 𝐵, ? ®𝜎

3
Γ′, ? ®𝜎

2
Δ, . . . , ? ®𝜎

2
Δ 𝜎0 ≤g ®𝜎3

𝜎0 ≤g 𝜎1 𝜎1 ≤f ®𝜎2

(axleqgs)
𝜎0 ≤g ®𝜎2

!g⊢ !𝜎
0
𝐵, ? ®𝜎

3
Γ′, ? ®𝜎

2
Δ, . . . , ? ®𝜎

2
Δ
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• If it is a unary promotion, we use axiom (axlequs):
𝜋

⊢ 𝐵,𝐴 𝜎0 ≤u 𝜎1

!u⊢ !𝜎0
𝐵, ?𝜎1

𝐴

⇝

𝜋

⊢ 𝐵,𝐴
𝑆𝑓⊢ 𝐵,Δ

𝜎0 ≤u 𝜎1 𝜎1 ≤
f
®𝜎2 (axlequs)

𝜎0 ≤
f
®𝜎2

!
f⊢ !𝜎0

𝐵, ? ®𝜎2

Δ

• If it is a functorial promotion, thanks to the axiom (axTrans)
we have:

𝜋

⊢ 𝐵, Γ′, 𝐴, . . . , 𝐴 𝜎0 ≤
f
®𝑒3 𝜎0 ≤

f
𝜎1

!
f⊢ !𝜎0

𝐵, ? ®𝑒3

Γ′, ?𝜎1
𝐴, . . . , ?𝜎1

𝐴

⇝

𝐼𝐻 (𝜋 )
⊢ 𝐵, Γ′, 𝐴, . . . , 𝐴

𝑆𝑓⊢ 𝐵, Γ′, ? ®𝜎2
Δ, . . . , ? ®𝜎2

Δ 𝜎0 ≤
f
®𝑒3

𝜎0 ≤
f
𝜎1 𝜎1 ≤

f
®𝜎2 (axTrans)

𝜎0 ≤
f
®𝜎2

!
f⊢ !𝜎0

𝐵, ? ®𝑒3
Γ′, ? ®𝜎2

Δ, . . . , ? ®𝜎2
Δ

• If it is a contraction (?c𝑖
) on ?𝜎1

𝐴, we use axiom (axfumpx):
𝜋

⊢,

𝑛+𝑖−1︷            ︸︸            ︷
?𝜎1

𝐴, . . . , ?𝜎1
𝐴, Γ (𝜎1) (?c𝑖 )

?c𝑖⊢ ?𝜎1
𝐴, . . . , ?𝜎1

𝐴, Γ

⇝

𝐼𝐻 (𝜋)

⊢

𝑛+𝑖−1︷            ︸︸            ︷
? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ, Γ

(𝜎1) (?c𝑖 ) 𝜎1 ≤
f
®𝑒2 (axfumpx)

( ®𝜎2) (?c𝑖 )
?c𝑖⊢ ? ®𝜎2

Δ, . . . , ? ®𝜎2

Δ, Γ

• If it is a multiplexing (?m𝑖
) on ?𝜎1

𝐴, we use axiom (axfumpx):
𝜋

⊢ ?𝜎1
𝐴, . . . , ?𝜎1

𝐴,

𝑖︷   ︸︸   ︷
𝐴, . . . , 𝐴, ?𝜎1

𝐴, . . . , ?𝜎1
𝐴, Γ (𝜎1) (?m𝑖

)
?m𝑖⊢ ?𝜎1

𝐴, . . . , ?𝜎1
𝐴, Γ

⇝

𝐼𝐻 (𝜋 )

⊢ ? ®𝜎
2
Δ, . . . , ? ®𝜎

2
Δ,

𝑖︷    ︸︸    ︷
𝐴, . . . , 𝐴, ? ®𝜎

2
Δ, . . . , ? ®𝜎

2
Δ, Γ

𝑆𝑓⊢ ? ®𝜎
2
Δ, . . . , ? ®𝜎

2
Δ,Δ, . . . ,Δ, ? ®𝜎

2
Δ, . . . , ? ®𝜎

2
Δ, Γ

(𝜎1 ) (?m𝑖
) 𝜎1 ≤f ®𝜎2

(axfumpx)
( ®𝜎2 ) (?m𝑖

)
?m𝑖⊢ ? ®𝜎

2
Δ, . . . , ? ®𝜎

2
Δ, Γ

• If it is an (ax) rule on ?𝜎1
𝐴. Then Γ = !𝜎1

𝐴⊥
and we have:

ax

⊢ 𝐴⊥, 𝐴
𝑆𝑓⊢ 𝐴⊥,Δ 𝜎1 ≤

f
®𝑒2

!
f⊢ !𝜎1

𝐴⊥, ? ®𝜎2

Δ

□

Lemma 15 (Unary Functorial Substitution Lemma). Let 𝜎1

and 𝜎2 be two exponential signatures such that 𝜎1 ≤u 𝜎2. Let 𝐴 and

𝐵 be formulas, such that for all Γ, if ⊢ 𝐴, Γ is provable without using

any cut then ⊢ 𝐵, Γ is provable without using any cut. Then we have

that for all Γ, if ⊢

𝑛︷            ︸︸            ︷
?𝜎1

𝐴, . . . , ?𝜎1
𝐴, Γ is provable without using any cut

then ⊢

𝑛︷            ︸︸            ︷
?𝜎2

𝐵, . . . , ?𝜎2
𝐵, Γ as well, with 𝑘𝑖 positive integers.

Proof. This lemma is proven the same way as Lemma 14. □

Finally we prove cut-elimination theorem 1:

Theorem 8 (Cut Elimination). Cut elimination holds for

superLL(E, ≤g, ≤f
, ≤u) as soon as the 8 cut-elimination axioms of

Table 1 are satisfied.

Proof. We prove the result by induction on the couple (𝑡, 𝑠)
with lexicographic order, where 𝑡 is the size of the cut formula and

𝑠 is the sum of the sizes of the premises of the cut. We distinguish

cases depending on the last rules of the premises of the cut:

• If one of the premises does not end with a rule acting on

the cut formula, we apply the induction hypothesis with the

premise(s) of this rule.

• If both last rules act on the cut formula which does not

start with an exponential connective, we apply the standard

reduction steps for non-exponential cuts leading to cuts

involving strictly smaller cut formulas.We conclude by applying

the induction hypothesis.

• If we have an exponential cut for which the cut formula

!𝜎1
𝐴⊥

is not the conclusion of a promotion rule introducing

!𝜎1
, the rule above !𝜎1

𝐴⊥
cannot be a promotion rule and we

apply the induction hypothesis to its premise(s).

• If we have an exponential cut for which the cut formula

!𝜎1
𝐴⊥

is the conclusion of an (!g)-rule. We can apply:

⊢ 𝐴⊥, ? ®𝜎2

Δ 𝜎1 ≤g ®𝜎2

!g

⊢ !𝜎1
𝐴⊥, ? ®𝜎2

Δ ⊢ ?𝜎1
𝐴, Γ

cut⊢ ? ®𝜎2

Δ, Γ

⇝
⊢ ?𝜎1

𝐴, Γ 𝜎1 ≤g ®𝜎2

Lem. 13⊢ ? ®𝜎2

Δ, Γ

We have that 𝐴 and Δ are such that for every Γ such that

⊢ 𝐴, Γ is provable without cuts, ⊢ ? ®𝜎2

Δ, Γ too. Indeed, 𝐴 and

Δ are such that ⊢ 𝐴⊥, ? ®𝜎2

Δ is provable without cuts and

we can apply the induction hypothesis (#(𝐴) < #(?𝜎1
𝐴)).

Therefore we can apply Lemma 13 on ⊢ ?𝜎1
𝐴, Γ and obtain

that ⊢ ? ®𝜎2

Δ, Γ is provable without cut.

• If we have an exponential cut for which the cut formula

!𝜎1
𝐴⊥

is the conclusion of an (!
f
)-rule. We can apply:

⊢ 𝐴⊥,Δ 𝜎1 ≤
f
®𝜎2

!
f⊢ !𝜎1

𝐴⊥, ? ®𝜎2

Δ ⊢ ?𝜎1
𝐴, Γ

cut⊢ ? ®𝜎2

Δ, Γ

⇝
⊢ ?𝜎1

𝐴, Γ 𝜎1 ≤
f
®𝜎2

Lem. 14⊢ ? ®𝜎2

Δ, Γ

We have that 𝐴 and Δ are such that for every Γ such that

⊢ 𝐴, Γ is provable without cuts, ⊢ Δ, Γ too. Indeed, 𝐴 and

Δ are such that ⊢ 𝐴⊥,Δ is provable without cuts and we

can apply the induction hypothesis. Therefore we can apply
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Lemma 14 on ⊢ ?𝜎1
𝐴, Γ and obtain that ⊢ ? ®𝜎2

Δ, Γ is provable

without cut.

• If we have an exponential cut for which the cut formula

!𝜎1
𝐴⊥

is the conclusion of an (!u)-rule, this case is treated in

the exact same way as (!
f
), using Lemma 15.

□

A.3.6 Details on ELL as instance of superLL.

Elementary Linear Logic. Elementary Linear Logic (ELL) [Gir98,
DJ03] is a variant of LL where we remove (?

d
) and (!g) and add the

functorial promotion:

⊢ 𝐴, Γ
!
f⊢ !𝐴, ?Γ

It is the superLL(E, ≤g, ≤f
, ≤u) system with E = {•}, defined by

•(?c2
) = •(?m0

) = true (and (•)(𝑟 ) = false otherwise), ≤g = ≤u =

∅ and • ≤
f
•. This superLL(E, , ≤g, ≤f

, ≤u) instance is ELL and

satisfies the cut-elimination axioms and the expansion axiom:

• The rule (?m0
) is theweakening rule (?w), (?c2

) is the contraction

rule (?c ), and we can always apply promotion (!
f
) as ≤

f
is

the plain relation on E:

⊢ 𝐴, Γ • ≤
f
•

!
f⊢ !•𝐴, ?•Γ

↭
⊢ 𝐴, Γ

!𝑓⊢ !𝐴, ?𝐴

We have that (!g) is a restriction of (!
f
) in ELL and (!u) is

non-existent.

• Moreover the cut-elimination axioms are satisfied. As E is a

singleton, axioms (axgmpx), (axfumpx), (axcontr), (axTrans),
(axleqgs), (axleqfu), (axlequs) hold. Axiom (axleqfg) is vacuously
satisfied.

• The expansion axiom is satisfied since ≤
f
is reflexive.

A.4 Details on the background on
cut-elimination for fixed-point logics of
section 2.4

A.4.1 Details on the multicut rule 13. The multi-cut rule is a rule

with an arbitrary number of hypotheses:

⊢ Γ1 . . . ⊢ Γ𝑛 mcut(𝜄,⊥⊥)
Γ

The ancestor relation 𝜄 sends one formula of the conclusion to

exactly one formula of the hypotheses. Let 𝐶 := {(𝑖, 𝑗) | 𝑖 ∈
J1, 𝑛K, 𝑗 ∈ J1, #Γ𝑖K}, 𝜄 is a map from J1, #ΓK to 𝐶 and ⊥⊥ is a relation

on couple 𝐶:

• The map 𝜄 is injective;

• The relation ⊥⊥ is defined for 𝐶 \ 𝜄, and is total for this set;

• The relation ⊥⊥ is symmetric;

• Each index can be related at most once to another one;

• If (𝑖, 𝑗) ⊥⊥ (𝑖′, 𝑗 ′), then the Γ𝑖 [ 𝑗] = (Γ𝑖′ [ 𝑗 ′])⊥;
• The projection of ⊥⊥ on the first element is acyclic and

connected.

A.4.2 Details on the restriction of a multicut context (Definition 14).

Definition 26 (Restriction of a multicut context). Let

C mcut(𝜄,⊥⊥)𝑠
be amulticut-occurrence such that C = 𝑠1 . . . 𝑠𝑛

and let 𝑠𝑖 :=⊢ 𝐹1, . . . , 𝐹𝑘𝑖 , we define C𝐹 𝑗 with 𝐹 𝑗 ∈ 𝑠𝑖 to be the least

sub-context of C such that:

• The sequent 𝑠𝑖 is in C𝐹 𝑗 ;
• If there exists 𝑙 such that (𝑖, 𝑗) ⊥⊥ (𝑘, 𝑙) then 𝑠𝑘 ∈ C𝐹 𝑗 ;
• For any 𝑘 ≠ 𝑖 , if there exists 𝑙 such that (𝑘, 𝑙) ⊥⊥ (𝑘′, 𝑙 ′) and
that 𝑠𝑘 ∈ C𝐹 𝑗 then 𝑠𝑘 ′ ∈ C𝐹 𝑗 .

We then extend the notation to contexts, setting C∅ := ∅ and C𝐹,Γ :=

C𝐹 ∪ CΓ .

A.4.3 One-step multicut elimination for 𝜇MALL∞. Commutative

one-step reductions for 𝜇MALL∞ are given in Figure 13 whereas

principal reductions in Figure 14.

B APPENDIX ON THE CUT-ELIMINATION
FOR 𝜇superLL∞ SECTION

B.1 Details on the section 3.1
In this section, we define and give a detailed justification of all

the case of cut-elimination for 𝜇superLL∞. The rules are given in

figure 15. As in section B.1, we write some conditions on the proofs

of this figure in the corresponding lemma.

We start by the commutation cases of the different promotions.

Commutation cases for the multiplexing and the contraction rules

were give in section 3.1.

The case (comm!g
) covers all the case where (!g) commute under

the cut:

Lemma 16 (Justification for step (comm!g
)). If

𝜋

⊢ 𝐴, ?®𝜏Δ 𝜎 ≤g ®𝜏
!g⊢ !𝜎𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌Γ

is a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof then

𝜋

⊢ 𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ 𝐴, ? ®𝜌Γ 𝜎 ≤g ®𝜌
!g⊢ !𝜎𝐴, ? ®𝜌Γ

is also a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

Proof. We prove that for each sequent ⊢ !𝜎 ′𝐴′, ? ®𝜏 ′Δ
′
of C′

:=

C! ∪ {⊢ !𝜎𝐴, ?®𝜏Δ}, we have that 𝜎 ≤g
®𝜏 ′.

The ⊥⊥-relation extended to sequent defines a tree on C′
. Taking

⊢ !𝜎𝐴, ?®𝜏Δ as the root, the ancestor relation of this tree is a well-

founded relation. We can therefore do an induction proof:

• The base case is given by the condition of application of (!g)
in the proof.

• For heredity, we have that there is a sequent ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′, ?𝜎 ′𝐴′

of C′
, connected on !𝜎 ′ (𝐴′)⊥ to our sequent. By induction

hypothesis, we have that 𝜎 ≤g 𝜎′. The rule on top of ⊢
!𝜎 ′𝐴′, ? ®𝜏 ′Δ

′
is a promotion. We have three cases:

– If it’s a (!g)-promotion, we can use axiom (axTrans) with
the application condition of the promotion, to get 𝜎 ≤g

®𝜏 ′.
– If it’s an (!

f
)-promotion or an (!u)-promotion, we can

use axiom (axleqgs) with the application condition of the

promotion, to get 𝜎 ≤g
®𝜏 ′.

We conclude by induction and use the inequalities to prove that

𝜎 ≤g ®𝜌 . □
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ax

⊢ 𝐹, 𝐹⊥
mcut(𝜄,⊥⊥)

⊢ 𝐹, 𝐹⊥
⇝ ax

⊢ 𝐹, 𝐹⊥

CΓ′ CΔ′

⊢ 𝐹, Γ′ ⊢ 𝐺,Δ′
⊗

⊢ 𝐹 ⊗ 𝐺, Γ′,Δ′
mcut(𝜄,⊥⊥)⊢ Γ,Δ

⇝
CΓ′ ⊢ 𝐹, Γ′

mcut(𝜄′,⊥⊥′)⊢ 𝐹, Γ
CΔ′ ⊢ 𝐺,Δ′

mcut(𝜄′′,⊥⊥′′)⊢ 𝐺,Δ ⊗⊢ 𝐹 ⊗ 𝐺, Γ,Δ

C
⊢ 𝐹,𝐺, Γ′ `⊢ 𝐹 `𝐺, Γ′

mcut(𝜄,⊥⊥)⊢ 𝐹 `𝐺, Γ

⇝
C ⊢ 𝐹,𝐺, Γ′

mcut(𝜄′,⊥⊥′)⊢ 𝐹,𝐺, Γ `⊢ 𝐹 `𝐺, Γ

C
⊢ 𝐹𝑖 , Γ′ ⊕𝑖

⊢ 𝐹1 ⊕ 𝐹2, Γ
′

mcut(𝜄,⊥⊥)⊢ 𝐹1 ⊕ 𝐹2, Γ

⇝
C ⊢ 𝐹𝑖 , Γ′ mcut(𝜄,⊥⊥)⊢ 𝐹𝑖 , Γ ⊕𝑖
⊢ 𝐹1 ⊕ 𝐹2, Γ

C
⊢ 𝐹, Γ′ ⊢ 𝐺, Γ′

&⊢ 𝐹 &𝐺, Γ′
mcut(𝜄,⊥⊥)⊢ 𝐹 &𝐺, Γ

⇝
C ⊢ 𝐹, Γ′

mcut(𝜄,⊥⊥)⊢ 𝐹, Γ
C ⊢ 𝐺, Γ′

mcut(𝜄,⊥⊥)⊢ 𝐺, Γ
&⊢ 𝐹 &𝐺, Γ

C
⊢ 𝐹 [𝛿𝑋 .𝐹/𝑋 ], Γ′

𝛿⊢ 𝛿𝑋 .𝐹, Γ′
mcut(𝜄,⊥⊥)⊢ 𝛿𝑋 .𝐹, Γ

⇝
C ⊢ 𝐹 [𝛿𝑋 .𝐹/𝑋 ], Γ′

mcut(𝜄,⊥⊥)
⊢ 𝐹 [𝛿𝑋 .𝐹/𝑋 ], Γ′

𝛿⊢ 𝛿𝑋 .𝐹, Γ

with 𝛿 ∈ {𝜇, 𝜈}

C
⊤

⊢ ⊤, Γ′
mcut(𝜄,⊥⊥)⊢ ⊤, Γ

⇝ ⊤⊢ ⊤, Γ
1⊢ 1 mcut(𝜄,⊥⊥)⊢ 1

⇝ 1⊢ 1
C

⊢ Γ′ ⊥
⊢ ⊥, Γ′

mcut(𝜄,⊥⊥)⊢ ⊥, Γ
⇝

C ⊢ Γ′ mcut(𝜄′,⊥⊥′ )⊢ Γ ⊥⊢ ⊥, Γ

Figure 13: Commutative one-step reduction rules for 𝜇MALL∞

C
ax

⊢ 𝐹, 𝐹⊥
mcut(𝜄,⊥⊥)

Γ
⇝

C mcut(𝜄′,⊥⊥′)
Γ

C
⊢ 𝐹, Γ′ ⊢ 𝐹⊥,Δ

cut⊢ Γ′,Δ
mcut(𝜄,⊥⊥)⊢ Γ

⇝
C ⊢ 𝐹, Γ′ ⊢ 𝐹⊥,Δ

mcut(𝜄′,⊥⊥′)⊢ Γ

C
⊢ 𝐹,𝐺,Δ `⊢ 𝐹 `𝐺,Δ

⊢ 𝐹⊥, Γ1 ⊢ 𝐺⊥, Γ2 ⊗
⊢ 𝐹⊥ ⊗ 𝐺⊥, Γ1, Γ2 mcut(𝜄,⊥⊥)⊢ Γ

⇝
C ⊢ 𝐹,𝐺,Δ ⊢ 𝐹⊥, Γ1 ⊢ 𝐺⊥, Γ2 mcut(𝜄′,⊥⊥′)⊢ Γ

C
⊢ 𝐹𝑖 ,Δ ⊕𝑖⊢ 𝐹1 ⊕ 𝐹2,Δ

⊢ 𝐹⊥
1
, Γ′ ⊢ 𝐹⊥

2
, Γ′

&

⊢ 𝐹1 & 𝐹⊥
2
, Γ′

mcut(𝜄,⊥⊥)⊢ Γ

⇝
C ⊢ 𝐹𝑖 ,Δ ⊢ 𝐹⊥

𝑖
, Γ′

mcut(𝜄′,⊥⊥′)⊢ Γ

C 1⊢ 1

⊢ Γ′ ⊥
⊢ ⊥, Γ′

mcut(𝜄,⊥⊥)⊢ Γ

⇝ C ⊢ Γ′ mcut(𝜄′,⊥⊥′)⊢ Γ

Figure 14: Principal one-step reduction rules for 𝜇MALL∞

The case (comm
1

!f

) covers the case of commutation of an (!
f
)-

promotion but where only (!g)-rules with empty contexts appears

in the hypotheses of the multi-cut. Note that an (!g) occurrence
with empty context could be seen as an (!

f
) occurrence (with empty

context).

Lemma 17 (Justification for step (comm1

!f

)). If

𝜋

⊢ 𝐴,Δ 𝜎 ≤
f
®𝜏

!
f⊢ !𝜎𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌Γ
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is a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof with C!

such that each sequents

concluded by an (!g) have an empty context, then

𝜋

⊢ 𝐴,Δ C
mcut(𝜄,⊥⊥)

⊢ 𝐴, Γ 𝜎 ≤
f
®𝜌

!
f⊢ !𝜎𝐴, ? ®𝜌 Γ

is a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

Proof. We prove that for each sequent ⊢ !𝜎 ′𝐴′, ? ®𝜏 ′Δ
′
of C′

:=

C!g ∪ {⊢ !𝜎𝐴, ?®𝜏Δ}, 𝜎 ≤
f
®𝜏 ′.

The ⊥⊥-relation extended to sequent defines a tree on C′
. Taking

⊢ !𝜎𝐴, ?®𝜏Δ as the root, the ancestor relation of this tree is a well-

founded relation. We can therefore do an induction proof:

• The base case is given by the condition of application of (!
f
)

in the proof.

• For heredity, we have that there is a sequent ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′, ?𝜎 ′𝐴′

of 𝐶′
, connected on !𝜎 ′ (𝐴′)⊥ to our sequent. By induction

hypothesis, we have that 𝜎 ≤
f
𝜎′. The rule on top of ⊢

!𝜎 ′𝐴′, ? ®𝜏 ′Δ
′
is a promotion. We have three cases:

– If it’s an (!g)-promotion, then the context is empty and

the proof is easily satisfied.

– If it’s an (!
f
)-promotion, we can use axiom (axTrans) with

the application condition of the promotion to get 𝜎 ≤g
®𝜏 ′.

– If it’s an (!u)-promotion, we can use axiom (axleqfu) with
the application condition of the promotion to get 𝜎 ≤

f
®𝜏 ′.

We conclude by induction and use the inequalities to prove that

𝜎 ≤
f
®𝜌 . □

We then have the following case where we commute an (!
f
)-rule,

but where there is one (at least) (!g)-promotion with a non-empty

context in the premisses of the multicut rule:

Lemma 18 (Justification for step (comm2

!f

)). If
𝜋

⊢ 𝐴,Δ 𝜎 ≤
f
®𝜏

!
f⊢ !𝜎𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌Γ

is a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof with C!g

containing a sequent

conclusion of an (!g)-rule with at least one formula in the context,

then

𝜋

⊢ 𝐴,Δ ®𝜏 (?m1
)

?m1⊢ 𝐴, ?®𝜏Δ C!g

1
C!f

2
C!u

3

⊢ 𝐴, ? ®𝜌Γ 𝜎 ≤g ®𝜌
!g⊢ !𝜎𝐴, ? ®𝜌Γ

is also a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

Proof. We prove that for each sequent ⊢ !𝜎 ′𝐴′, ? ®𝜏 ′Δ
′
of C :=

C!g

1
∪C!f

2
∪ C!u

3
∪ {⊢ !𝜎𝐴, ?®𝜏Δ}, we have that 𝜎 ≤g

®𝜏 ′. Moreover, we

prove that ®𝜏 (?m1
). We prove that in two steps:

(1) There is a sequent ⊢ !𝜎 ′𝐴′, ? ®𝜏 ′Δ
′
, with Δ′

being non-empty,

which is conclusion of an (!g)-rule. Let’s suppose without
loss of generality, that this sequent is the closest such sequent

to 𝑆 :=⊢ !𝜎𝐴, ?®𝜏Δ. The ⊥⊥-relation extended to sequents

defines a tree with the hypotheses of the multi-cut rule,

therefore there is a path from the sequent 𝑆 to the sequent

𝑆 ′ :=⊢ !𝜎 ′𝐴′, ? ®𝜏 ′Δ
′
, of sequents ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ

′′
. We prove

by induction on this path, starting from 𝑆 and stopping one

sequent before 𝑆 ′ that 𝜎 ≤
f
𝜏 ′′:

• The initialisation comes from the condition of application

of !
f
on 𝑆 .

• For the heredity, we have that the sequent ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′

is cut-connected to a ⊢ !𝜎 (3)𝐴
(3) , ? ®𝜏 (3)Δ

(3)
on !𝜎 ′′𝐴′′

, therefore

𝜎 ≤
f
𝜎′′. We have two cases: either this sequent is the

conclusion of an (!u)-rule and we apply axiom (axleqfu),
either of an (!

f
)-rule and we apply axiom (axTrans). In

each case, we have that 𝜎 ≤
f
®𝜏 ′′.

We conclude by induction and get a sequent 𝑆 ′′ :=⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′

cut-connected to 𝑆 ′ on the formula !𝜎 ′𝐴′
with 𝜎 ≤

f
®𝜏 ′′.

From that we get that 𝜎 ≤
f
𝜎′. Moreover, we have that

𝜎′ ≤g
®𝜏 ′. As Δ′

is non-empty, there is a signature 𝜌′ ∈ ®𝜏 ′
such that 𝜎′ ≤g 𝜌′. We can therefore apply axiom (axleqfg).
We get that for each signatures 𝜎 (3)

such that 𝜎 ≤
f
𝜎 (3)

,

then 𝜎 ≤g 𝜎
(3)

and 𝜎 (3) (?m1
), which we can apply to 𝜎 and

®𝜏 to get that 𝜎 ≤g ®𝜏 and ®𝜏 (?m1
).

(2) Then, we prove by induction on the tree defined with the ⊥⊥-
relation and rooted by 𝑆 that for each sequents ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ

′′
,

𝜎 ≤g
®𝜏 ′′:

• The initialisation is done with the first step.

• For heredity, we have that there is a sequent

⊢ !𝜎 (3)𝐴
(3) , ? ®𝜏 (3)Δ

(3)
cut-connected to ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ

′′

on !𝜎 ′′𝐴′′
, meaning that 𝜎 ≤g 𝜎′′, as the sequent is the

conclusion of a promotion, we have that 𝜎′′ ≤𝑠 𝜏 ′′ for a
𝑠 ∈ {𝑔, 𝑓 ,𝑢}, we conclude using axiom (axleqgs).

We conclude by induction and we use the inequalities from it to

prove that 𝜎 ≤g ®𝜌 .
□

We then cover the cases where we commute an (!u)-rule with the
multi-cut. The first case is where there are only a list of (!u)-rules
in the hypotheses of the multi-cut:

Lemma 19 (Justification for step (comm1

!u

)). If
𝜋

⊢ 𝐴,𝐶 𝜎 ≤u 𝜏
!u⊢ !𝜎𝐴, ?𝜏𝐶 C!u

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ?𝜌𝐵

is a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof, then

𝜋

⊢ 𝐴,𝐶 C
mcut(𝜄,⊥⊥)⊢ 𝐴, 𝐵 𝜎 ≤u 𝜌

!u⊢ !𝜎𝐴, ?𝜌𝐵

is a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

Proof. We prove that for each sequent ⊢ !𝜎 ′𝐴′, ?𝜏 ′𝐵′ of C′
:=

C!u ∪ {⊢ !𝜎𝐴, ?𝜏𝐵}, we have that 𝜎 ≤u 𝜏
′
.

The ⊥⊥-relation extended to sequent defines a tree on C′
. Taking

⊢ !𝜎𝐴, ?𝜏𝐵 as the root, the ancestor relation of this tree is a well-

founded relation. We can therefore do an induction proof:
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• The base case is given by the condition of application of (!u)
in the proof.

• For heredity, we have that there is a sequent

⊢ !𝜎 ′′𝐴′′, ?𝜏 ′′𝐵′′, ?𝜎 ′𝐴′
of 𝐶′

, connected on !𝜎 ′ (𝐴′)⊥ to our

sequent. By induction hypothesis, we have that 𝜎 ≤u 𝜎′. The
rule on top of ⊢ !𝜎 ′𝐴′, ?𝜏 ′𝐵′ is an (!u)-promotion, we can use

axiom (axTrans) and with the application condition of the

promotion, we get that 𝜎 ≤u 𝑓 ′.

We conclude by induction and get that 𝜎 ≤u 𝜌 . □

The second case of (!u)-commutation is where we have an (!
f
)-

rule and where the hypotheses concluded by an (!g)-rule have

empty contexts.

Lemma 20 (Justification for step (comm2

!u

)). Let

𝜋

⊢ 𝐴, 𝐵 𝜎 ≤u 𝜏
!u⊢ !𝜎𝐴, ?𝜏𝐵 C!

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌Γ

be a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof with C containing at least one

proof concluded by an (!
f
)-promotion ; and such that for each sequent

conclusion of an (!g)-promotion has empty context. We have that

𝜋

⊢ 𝐴, 𝐵 C
mcut(𝜄,⊥⊥)⊢ 𝐴, Γ 𝜎 ≤

f
®𝜌

!
f⊢ !𝜎𝐴, ? ®𝜌Γ

is also a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

Proof. We do our proof in two steps:

(1) As always, we notice that the⊥⊥-relation extended to sequent
defines a tree on C′

, meaning that there is a path in this tree,

from 𝑆 :=⊢ !𝜎𝐴, ?𝜏𝐵 to a sequent 𝑆 ′ :=⊢ !𝜎 ′𝐴′, ? ®𝜏 ′Δ being

the conclusion of an !
f
-rule and with Δ being non-empty.

Without loss of generality, we ask for 𝑆 ′ to be the closest

such sequent (with respect to the ⊥⊥-relation). We prove by

induction on this path, starting from 𝑆 and stopping one

sequent before 𝑆 ′, that for each sequent ⊢ !𝜎 ′′𝐴′′, ?𝜏 ′′𝐵′′,
that 𝜎 ≤u 𝜏

′′
:

• The initialization comes from the condition of application

of (!u) on 𝑆 .

• The heredity comes from the condition of application of !u

on the sequent ⊢ !𝜎 ′′𝐴′′, ?𝜏 ′′𝐵′′ and from lemma (axTrans).
Finally, as 𝑆 ′ is linked by the cut-formula !𝜎 ′𝐴′

to one of

these sequents, we get that 𝜎 ≤u 𝜎′. By the condition of

application of (!
f
) on 𝑆 ′, we get that 𝜎′ ≤

f
®𝜏 ′, and from

lemma (axlequs), we have that 𝜎 ≤
f
®𝜏 ′.

(2) We prove, for the remaining tree (which is rooted in 𝑆 ′), that
for each sequents ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ

′′
, that 𝜎 ≤

f
𝜏 ′′. We prove

it by induction.

• Initialization was done at last point.

• For heredity, if the sequent ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′
is the conclusion

of an (!u)-rule, by induction hypothesis, we get that 𝜎 ≤
f

𝜎′′, and by (!u) application condition we get that 𝜎′′ ≤u

®𝜏 ′′, we get 𝜎 ≤
f
®𝜏 ′′ with axiom (axleqfu).

• For heredity, if the sequent ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′
is the conclusion

of an (!
f
)-rule, by induction hypothesis, we get that 𝜎 ≤

f

𝜎′′, and by (!
f
) application condition we get that 𝜎′′ ≤

f
®𝜏 ′′,

we get 𝜎 ≤
f
®𝜏 ′′ with axiom (axTrans).

We conclude by induction and we use the inequalities from it to

prove that 𝜎 ≤
f
®𝜌 . □

The following lemma deals with the casewhere there are sequents

concluded by an (!g)-rule with non-empty context and where the

first rule encountered is an !
f
-rule.

Lemma 21 (Justification for step (comm3

!u

)). Let
𝜋1

⊢ 𝐴, 𝐵 𝜎 ≤u 𝜏
!u⊢ !𝜎𝐴, ?𝜏𝐵 C!u

1

𝜋2

⊢ 𝐶,Δ 𝜎 ′ ≤
f
®𝜏 ′

!
f⊢ !𝜎 ′𝐶, ? ®𝜏 ′Δ C!

2

mcut(𝜄,⊥⊥)
⊢ !𝜎𝐴, ? ®𝜌 Γ

be a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof, such that C!

2
contains a sequent

conclusion of an (!g) rule with non-empty context ;C := {⊢ !𝜎𝐴, ?𝜏𝐵}∪
C!u

1
∪ {⊢ !𝜎 ′𝐶, ? ®𝜏 ′Δ} are a cut-connected subset of sequents ; and

C′
:= {⊢ !𝜎 ′𝐶, ! ®𝜏 ′Δ} ∪ C!

2
another one. We have that

𝜋1

⊢ 𝐴, 𝐵 C1

𝜋2

⊢ 𝐶,Δ ®𝜏 ′ (?m
1
)

?m
1⊢ 𝐶, ? ®𝜏 ′Δ C!

2

mcut(𝜄,⊥⊥)
⊢ 𝐴, ? ®𝜌 Γ 𝜎 ≤g ®𝜌

!g⊢ !𝜎𝐴, ? ®𝜌 Γ

is also a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

Proof. We do our proof in three steps:

(1) There is a sequent 𝑆 ′′ :=⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′
, with Δ′

being non-

empty, which is conclusion of an (!g)-rule. Let’s suppose
without loss of generality, that this sequent is the closest

such sequent to 𝑆 ′ :=⊢ !𝜎 ′𝐶, ? ®𝜏 ′Δ. The ⊥⊥-relation extended

to sequents defines a tree on C′
, therefore there is a path from

the sequent 𝑆 ′ to the sequent 𝑆 ′′, of sequents ⊢ !𝜎 (3)𝐴
(3) , ? ®𝜏 (3)Δ

(3)
.

We prove by induction on this path, starting from 𝑆 ′ and
stopping one sequent before 𝑆 ′′ that 𝜎′ ≤

f
𝜏 (3) :

• The initialisation comes from the condition of application

of !
f
on 𝑆 ′.

• For the heredity, we have that the sequent

⊢ !𝜎 (3)𝐴
′′, ? ®𝜏 (3)Δ

(3)
is cut-connected to

⊢ !𝜎 (4)𝐴
(4) , ? ®𝜏 (4)Δ

(4)
on !𝜎 (3)𝐴

(3)
, therefore 𝜎′ ≤

f
𝜎 (3)

.

We have two cases: either this sequent is the conclusion

of an (!u)-rule and we apply axiom (axleqfu), either of an
(!
f
)-rule and we apply axiom (axTrans). In each case, we

have that 𝜎′ ≤
f

®𝜏 (3) .
We conclude by induction and get a sequent

𝑆 (3) :=⊢ !𝜎 (3)𝐴
(3) , ? ®𝜏 (3)Δ

(3)
cut-connected to 𝑆 ′′ on the

formula !𝜎 ′′𝐴′′
with 𝜎′ ≤

f

®𝜏 (3) . From that we get that

𝜎′ ≤
f
𝜎′′. Moreover, we have that 𝜎′′ ≤g

®𝜏 ′′. As Δ′′
is non-

empty, there is a signature 𝜌′′ ∈ ®𝜏 ′′ such that 𝜎′′ ≤g 𝜌′′.
We can therefore apply axiom (axleqfg). We get that for

each signatures 𝜎 (4)
such that 𝜎′ ≤

f
𝜎 (4)

, 𝜎′ ≤g 𝜎 (4)

and 𝜎 (4) (?m1
), which we can apply to 𝜎′ and ®𝜏 ′ to get that

𝜎′ ≤g
®𝜏 ′ and ®𝜏 ′ (?m1

).
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(2) Again, we notice that the ⊥⊥-relation extended to sequent

defines a tree on C, meaning that there is a path in this tree,

from 𝑆 :=⊢ !𝜎𝐴, ?𝜏𝐵 to 𝑆 ′. We prove by induction on this

path, starting from 𝑆 and stopping one sequent before 𝑆 ′,
that for each sequent ⊢ !𝜎 (3)𝐴

(3) , ?𝜏 (3)𝐵
(3)

, that 𝜎 ≤u 𝜏
(3)

:

• The initialization comes from the condition of application

of (!u) on 𝑆 .

• The heredity comes from the condition of application of !u

on the sequent ⊢ !𝜎 (3)𝐴
(3) , ?𝜏 (3)𝐵

(3)
and from lemma (axTrans).

Finally, as 𝑆 ′ is linked by the cut-formula !𝜎 ′𝐴′
to one of

these sequents, we get that 𝜎 ≤u 𝜎′.
(3) Finally, we prove that for each sequents ⊢ !𝜎 (3)𝐴

(3) , ?𝜏 (3)Δ(3)

of C′
, 𝜎 ≤g 𝜏 (3) . We prove it by induction as C′

is a tree

with the ⊥⊥-relation.
• Initialization comes from the face that 𝜎 ≤u 𝜎′, 𝜎′ ≤g

®𝜏 ′
and axiom (axlequs).

• For heredity, we have that there is a sequent

⊢ !𝜎 (4)𝐴
(4) , ? ®𝜏 (4)Δ

(4) , ?𝜎 (3)𝐴
(3)

ofC′
, connected on !𝜎 (3) (𝐴(3) )⊥

to our sequent. By induction hypothesis, we have that

𝜎 ≤g 𝜎 (3)
. The rule on top of ⊢ !𝜎 (3)𝐴

(3) , ? ®𝜏 (3)Δ
(3)

is a

promotion. We have three cases:

– If it’s a (!g)-promotion, we can use axiom (axTrans)and
with the application condition of the promotion, we get

that 𝜎 ≤g

®𝜏 (3) .
– If it’s an (!

f
)-promotion or an (!u)-promotion, we can

use axiom (axleqgs)and with the application condition

of the promotion, we get that 𝜎 ≤g

®𝜏 (3) .
We conclude by induction.

We got two important properties:

(1) For each sequent ⊢ !𝜎 (3)𝐴
(3) , ? ®𝜏 (3)Δ

′′
of the hypotheses, we

have that 𝜎 ≤g

®𝜏 (3) .
(2) We have ®𝜏 ′ (?m1

).
We conclude using inequalities of the first property to find that

𝜎 ≤g 𝜌 . And we use the second property for the (?m1
)-rule. □

The last lemma of promotion commutation is about the case

where we commute an (!u)-promotion but when first meeting an

(!g)-promotion.

Lemma 22 (Justification for step (comm4

!u

)). Let

𝜋1

⊢ 𝐴, 𝐵 𝜎 ≤u 𝜏
!u⊢ !𝜎𝐴, ?𝜏𝐵 C!u

1

𝜋2

⊢ 𝐶, ? ®𝜏 ′Δ 𝜎 ′ ≤g ®𝜏 ′
!g⊢ !𝜎 ′𝐶, ? ®𝜏 ′Δ C!

2

mcut(𝜄,⊥⊥)
⊢ !𝜎𝐴, ? ®𝜌 Γ

be a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof such that C := {⊢ !𝜎𝐴, ?𝜏𝐵} ∪

C!u

1
∪ {⊢ !𝜎 ′𝐶, ? ®𝜏 ′Δ} are a cut-connected subset of sequents ; and

C′
:= {⊢ !𝜎 ′𝐶, ! ®𝜏 ′Δ} ∪ C!

2
another one. Then,

𝜋1

⊢ 𝐴, 𝐵 C1

𝜋2

⊢ 𝐶, ? ®𝜏 ′Δ C!

2 mcut(𝜄,⊥⊥)⊢ 𝐴, ? ®𝜌Γ 𝜎 ≤g ®𝜌
!g⊢ !𝜎𝐴, ? ®𝜌Γ

is also a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

Proof. We do our proof in two steps:

(1) First, we prove that for each sequents ⊢ !𝜎 ′′𝐴, ?𝜏 ′′𝐵 of C \ {⊢
!𝜎 ′𝐶, ? ®𝜏 ′Δ} that 𝜎 ≤u 𝜏 ′′. We prove it by induction on this

list starting with the sequent 𝑆 :=⊢ !𝜎𝐴, ?®𝜏𝐵 (it is a list with

the ⊥⊥-relation):
• Initialization comes from the condition of application of

(!u) on 𝑆 .

• Heredity comes from the condition of application of (!u)
on the concerned sequent, from induction hypothesis and

from axiom (axTrans).
We conclude by induction and deduce from the obtained

property that 𝜎 ≤u 𝜎′.
(2) We then prove that for each sequents ⊢ !𝜎 ′′𝐴, ?𝜏 ′′Δ of C′

,

𝜎 ≤g
®𝜏 ′′. We prove it by induction on C′

as the ⊥⊥-relation
defines a tree on it, for which we take 𝑆 ′ := !𝜎 ′𝐶, ? ®𝜏 ′Δ as the

root.

• The initialization comes from 𝜎 ≤u 𝜎′ that we showed
for first step, from 𝜎′ ≤g

®𝜏 ′ which is the condition of

application of (!g) on 𝑆 ′ and from axiom (axlequs).
• For heredity, we have that there is a sequent

⊢ !𝜎 (3)𝐴
(3) , ? ®𝜏 (3)Δ

(3) , ?𝜎 (3)𝐴
(3)

ofC′
, connected on !𝜎 ′′ (𝐴′′)⊥

to our sequent. By induction hypothesis, we have that𝜎 ≤g

𝜎′′. The rule on top of ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′
is a promotion. We

have three cases:

– If it’s a (!g)-promotion, we can use axiom (axTrans)and
with the application condition of the promotion, we get

that 𝜎 ≤g
®𝜏 ′′.

– If it’s an (!
f
)-promotion or an (!u)-promotion, we can

use axiom (axleqgs)and with the application condition

of the promotion, we get that 𝜎 ≤g
®𝜏 ′′.

We conclude by induction

From the inequalities that we get from induction, we can easily

prove that 𝜎 ≤g 𝜌 . □

Now, we have the lemma for the principal reduction of the

multiplexing: But we need a definition first:

Definition 27. Let 𝑆 !
be a sequent of a 𝜇superLL∞ (E, ≤g, ≤f

, ≤u)-context C!
, such that C!

is a tree with respect to a cut-relation

⊥⊥. We define a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-context Ompx𝑆 !

(C!) by
induction on this relation taking 𝑆 !

as the root. We take advantage of

this induction definition to define two sets of sequentS?m

C!,𝑆 !
andS?c

C!,𝑆 !
.

Let C!

1
, . . . , C!

𝑛 be the sons of 𝑆 !
, such that C! = (𝑆 !, (C!

1
, . . . , C!

𝑛)), we
have two cases:

• 𝑆 ! = 𝑆 !g
, then we define Ompx𝑆

(C!) := (𝑆, (C!

1
, . . . , C!

𝑛)) ;
S?m

C!,𝑆 !
= ∅ ; S?c

C!,𝑆 !
:= C!

.

• 𝑆 ! = 𝑆 !f
ou 𝑆 ! = 𝑆 !u

, then let the root of C!

𝑖
be 𝑆 !

𝑖
, we define

Ompx𝑆
(C!) := (𝑆, Ompx𝑆 !

1

(C!

1
), . . . , Ompx𝑆 !

𝑛
(C!

𝑛)) ; S
?m

C!,𝑆 !
:=

{𝑆 !} ∪⋃S?m

C!

𝑖
,𝑆 !

𝑖

; S?c

C!,𝑆 !
:=

⋃S?c

C!

𝑖
,𝑆 !

𝑖

Then we have the principal cases, starting with the contraction:
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Lemma 23 (Justification for step (principal?c
)). If

CΔ

𝜋

⊢

𝑖︷          ︸︸          ︷
?𝜎𝐴, . . . , ?𝜎𝐴,Δ 𝜎 (?c𝑖 )

?c𝑖⊢ ?𝜎𝐴,Δ C!

?𝜎𝐴 mcut(𝜄,⊥⊥)
⊢ Γ, ? ®𝜌Γ

′

is a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof, then

CΔ

𝜋

⊢

𝑖︷            ︸︸            ︷
?𝜎𝐴, . . . , ?𝜎𝐴,Δ

𝑖︷                    ︸︸                    ︷
C!

?𝜎𝐴
. . . C!

?𝜎𝐴
mcut(𝜄′,⊥⊥′ )

Γ, ? ®𝜌 Γ
′, . . . , ? ®𝜌 Γ

′ ¯®𝜌 (?c𝑖 )
?

¯®𝜌
c𝑖⊢ Γ, ? ®𝜌 Γ

′

is also a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

Proof. We prove for each sequent ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′ ∈ C!

?𝜎𝐴
, we

have that 𝜎 ≤𝑠 ®𝜏 ′′ (for one 𝑠 ∈ {𝑔, 𝑓 ,𝑢}. As the relation ⊥⊥ defines

a tree on C′
: C!

?𝜎𝐴
(rooted on the sequent 𝑆 :=⊢ !𝜎𝐴, ? ®𝜏 ′Δ

′
which

is the sequent connected to ⊢ ?𝜎𝐴,Δ on ?𝜎𝐴), we do a proof by

induction on this tree:

• Initialization comes from the application condition of the

promotion.

• For heredity, we get from induction hypothesis that 𝜎 ≤𝑠 𝜎′′
for a 𝑠 ∈ {𝑔, 𝑓 ,𝑢}, from the condition of application of the

promotion, we get that 𝜎′′ ≤𝑠′ ®𝜏 ′′ (again for a 𝑠′ ∈ {𝑔, 𝑓 ,𝑢}),
depending on the cases, from axioms (axTrans), (axleqgs),
(axleqfu), (axleqfg), (axlequs), we get that 𝜎 ≤𝑠′′ ®𝜏 ′′ for a
𝑠′′ ∈ {𝑔, 𝑓 ,𝑢}.

We conclude by induction, we get using the obtained property, the

fact that 𝜎 (?c𝑖 ) and from axiom (axcontr), that for each sequent

⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′ ∈ C!

?𝜎𝐴
,

¯®𝜏 ′′ (?c𝑖 ). We use that and property 3 to get

that
¯®𝜌 (?c𝑖 ) is not empty, making the derivation valid in the proof

of the statement. □

Finally, we have the multiplexing principal case:

Lemma 24 (Justification for step (comm?m
)). Let

CΔ
⊢

𝑖︷   ︸︸   ︷
𝐴, . . . , 𝐴,Δ 𝜎 (?m𝑖

)
?m𝑖⊢ ?𝜎𝐴,Δ C!

?𝜎𝐴 mcut(𝜄,⊥⊥)
⊢ Γ, ?𝜌 ′Γ′, ?𝜌 ′′Γ′′

be a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof with Γ being sent on CΔ by 𝜄

; ?𝜌 ′𝐴′
being sent on sequents of S?m

C!,𝑆 !
; and ?𝜌 ′′Γ′′ being sent on

S?c

C!,𝑆 !
, where 𝑆 (:= !𝜎𝐴, ? ®𝜏 ′ is the sequent cut-connected to ?𝜎𝐴,Δ on

the formula ?𝜎𝐴. We have that

CΔ ⊢

𝑖︷    ︸︸    ︷
𝐴, . . . , 𝐴,Δ

𝑖︷                                              ︸︸                                              ︷
Ompx𝑆

(C!

?𝜎𝐴
) . . . Ompx𝑆

(C!

?𝜎𝐴
)

mcut(𝜄′,⊥⊥′ )

⊢ Γ,

𝑖︷     ︸︸     ︷
Γ′, . . . , Γ′,

𝑖︷                    ︸︸                    ︷
? ®𝜌′′ Γ

′′, . . . , ? ®𝜌′′ Γ
′′ ¯®𝜌′ (?m𝑖 )

?

¯®𝜌′
m𝑖

⊢ Γ, ? ®𝜌′ Γ
′,

𝑖︷                    ︸︸                    ︷
? ®𝜌′′ Γ

′′, . . . , ? ®𝜌′′ Γ
′′ ¯®𝜌′′ (?c𝑖 )

?

¯®𝜌′′
c𝑖⊢ Γ, ? ®𝜌′ Γ

′, ? ®𝜌′′ Γ
′′

is also a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof.

Proof. We prove that for each sequents ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′

of

S?c

C!,𝑆 !
, 𝜎 ≤g

®𝜏 ′′ and that for each sequents ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′
of

S?m

C!,𝑆 !
, 𝜎 ≤

f
®𝜏 ′′ or 𝜎 ≤u

®𝜏 ′′. We have two cases:

• Either 𝑆 is the conclusion of an !
f
or !u-promotion. In this case,

we prove by induction following the inductive definition

of Ompx𝑆 ′ (C
!

?𝜎𝐴
) supposing that for 𝑆 ′ :=⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ

′′
,

𝜎 ≤
f
𝜎′′ or 𝜎 ≤u 𝜎′′. Which is true for 𝑆 ′ = 𝑆 :

– If 𝑆
′
! = 𝑆

′
!g

:=⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ
′′
, by hypothesis we have

that 𝜎 ≤𝑠 𝜎′′ for 𝑠 ∈ {𝑓 ,𝑢}. We prove by induction on C!

that each sequents ⊢ !𝜎 (3)𝐴
(3) , ? ®𝜏 (3)Δ

(3)
of it are such that

𝜎 ≤g
®𝜏 ′′.

∗ For initialization, as 𝜎 ≤𝑠 𝜎′′, we have by the condition

of application of (!g) that 𝜎′′ ≤g
®𝜏 ′′ therefore by axiom

(axleqfg)and (axlequs), that 𝜎 ≤g
®𝜏 ′′.

∗ For heredity, we get for induction hypothesis that 𝜎 ≤g

𝜎 (3)
, from application condition of the promotion of the

sequent in question, we get𝜎 (3) ≤𝑠 ®𝜏 (3) for 𝑠 ∈ {𝑔, 𝑓 ,𝑢},
using axioms (axleqgs) we get 𝜎 ≤g

®𝜏 (3) .
We conclude by induction and get the desired property.

(As S?m

C!,𝑆
′
!
is empty, sequents from it also satisfies the

property.)

– 𝑆
′
! = 𝑆

′
!f
ou 𝑆

′
! = 𝑆

′
!u
. Let ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ

′′
be this sequent,

then by hypothesis we have that 𝜎 ≤𝑠 𝜎′′ for 𝑠 ∈ {𝑓 ,𝑢}.
From condition of application of the promotion, we get

that 𝜎′′ ≤𝑠′ ®𝜏 ′′ (𝑠 ∈ {𝑓 ,𝑢}), therefore by lemma (axleqfu),
and (axlequs), we get that 𝜎 ≤𝑠′′ ®𝜏 ′′ for 𝑠′′ ∈ {𝑓 ,𝑢}, we
can therefore apply induction hypothesis 𝑖 times on each

Ompx𝑆 !

𝑖
(C!

𝑖
). The inequality 𝜎 ≤𝑠′′ ®𝜏 ′′ gets us also that

the sequent 𝑆
′
!
satisfies the desired property and we can

conclude for both S?m

C!,𝑆
′
!
and S?c

C!,𝑆
′
!

• Either 𝑆 is the conclusion of an !g-promotion. In that case, we

prove by inductionC!

?𝜎𝐴
that for each sequents ⊢ !𝜎 ′′𝐴′′, ? ®𝜏 ′′Δ

′′

are such that 𝜎 ≤g
®𝜏 ′′. We prove it by induction on the the

tree defined by the ⊥⊥-relation:
– The initialization comes from the condition of application

of (!g) on 𝑆 .

– For heredity, we get that 𝜎′′ ≤𝑠 ®𝜏 ′′ for 𝑠 ∈ {𝑔, 𝑓 ,𝑢},
𝜎 ≤g 𝜎′′ from induction hypothesis and we conclude

using axiom (axleqgs).
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Finally we get that for all sequents ⊢ !𝜎 ′′𝐴, ? ®𝜏 ′′Δ of S?m

C!,𝑆
′
!
,

¯®𝜏 ′′ (?m𝑖
)

are true, as 𝜎 ≤𝑠 ®𝜏 ′′, ?m𝑖
(𝜎) (𝑠 ∈ {𝑓 ,𝑢}) and by lemma (axfumpx).

We also get that for all sequents ⊢ !𝜎 ′′𝐴, ? ®𝜏 ′′Δ of S?c

C!,𝑆
′
!
,

¯®𝜏 ′′ (?c𝑖 ) are
true as 𝜎 ≤g

®𝜏 ′′, ?c𝑖
(𝜎) and by lemma (axgmpx).

From the condition on the proof of the statement and from

property 3, we get that

¯®𝑔′ (?m𝑖
) and ¯®𝑔′′ (?c𝑖 ) are non-empty and

so that the right proof is correct. □

B.2 Details on the section 3.2
B.2.1 Rule permutations.

Definition 28 (Permutation of rules). We define one-step

rule permutation on (pre-)proofs of 𝜇LL∞ with rules of figure 17.

Given a 𝜇LL∞ (pre-)proof 𝜋 and 𝑝 ∈ {𝑙, 𝑟 , 𝑖}∗ a path in the proof,

we define perm(𝜋, 𝑝) by induction on 𝑝 :

• the proof perm(𝜋, 𝜖) is the proof obtained by applying the one-
step rule permutation at the root of 𝜋 if it is possible, either it

is not defined;

• we define perm(𝑞(𝜋 ′), 𝑖 ·𝑝′) := 𝑟 (perm(𝜋 ′, 𝑞′)) if perm(𝜋 ′, 𝑞′)
is defined, otherwise it is not defined;

• we defineperm(𝑞(𝜋𝑙 , 𝜋𝑟 ), 𝑙 ·𝑞′) := 𝑞(perm(𝜋𝑙 , 𝑞′), 𝜋𝑟 ) if perm(𝜋𝑙 , 𝑞′)
is defined, otherwise it is not defined;

• we defineperm(𝑞(𝜋𝑙 , 𝜋𝑟 ), 𝑟 ·𝑞′) := 𝑞(perm(𝜋𝑙 , 𝑞′), 𝜋𝑟 ) if perm(𝜋𝑙 , 𝑞′)
is defined, otherwise it is not defined;

• for each other cases, perm(𝜋, 𝑝) is not defined.
A sequence of rule permutation starting from a 𝜇LL∞ pre-proof

𝜋 is a (possibly empty) sequence (𝑝𝑖 )𝑖∈𝜆 (𝜆 ∈ 𝜔), where 𝑝𝑖 ∈ {𝑙, 𝑟 , 𝑖}
such that if we set 𝜋0 := 𝜋 , then the sequence (𝜋𝑖 )𝑖∈1+𝜆 defined

by induction by 𝜋𝑖+1 := perm(𝜋𝑖 , 𝑝𝑖 ) are all defined. We say that

the sequence (𝜋𝑖 )𝑖∈1+𝜆 is the sequence of proofs associated to the

sequence of rule permutation. We say that the sequence ends on 𝜋𝜆
if 𝜆 is finite, we also write it perm(𝜋, (𝑝𝑖 )𝑖∈𝜆).

Lemma 25 (Robustness of the proof structure to rule

permutation). One-step rule permutation does notmodify the structure

of the proof.

Proof. This lemma is immediate as the substitutions are defined

between unary rule. □

Definition 29 (Finiteness of permutation of rules). Let 𝜋 be

a 𝜇LL∞ (pre-)proof, and let (𝑝𝑖 )𝑖∈𝜆 be a sequence of rule permutation

starting from 𝜋 and let (𝜋𝑖 )𝑖∈1+𝜆 be the sequence of proofs associated

to it, let 𝑞 ∈ {𝑙, 𝑟 , 𝑖}∗ be a path to the conclusion sequent of a rule (𝑟 )
of 𝜋 , we define the sequence of residuals (𝑞𝑖 )𝑖∈1+𝜆 of (𝑟 ) in 𝜋𝑖 to be

a sequence of path defined by induction on 𝑖 :

• if 𝑖 = 0, 𝑞0 = 𝑞;

• if 𝑝𝑖 = 𝑞𝑖 , then 𝑞𝑖+1 := 𝑞𝑖 · 𝑖 .
• if 𝑞𝑖 = 𝑝𝑖 · 𝑖 then 𝑞𝑖+1 := 𝑝𝑖 .

• else 𝑞𝑖+1 := 𝑞𝑖 .

We say that a rule (𝑟 ) in 𝜋 is finitely permuted if its sequence

of residuals is ultimately constant. We say that (𝑝𝑖 )𝑖∈𝜆 is a rule

permutation sequence with finite permutation of rules if each rule

of 𝜋0 is finitely permuted.

Proposition 4 (Convergence of permutation with finite

permutation of rules). Let 𝜋 be a 𝜇LL∞ pre-proof and let (𝑝𝑖 )𝑖∈𝜔
be a permutation sequence with finite permutation of rules starting

from 𝜋 , then the sequence is converging.

Proof. Let (𝜋𝑖 )𝑖∈𝜔 be the sequence of proofs associated to the

sequence. Let’s suppose for the sake of contradiction that the

sequence is not converging. It implies, using lemma 25, that there

is an infinite sequence of strictly increasing indexes 𝜑 (𝑖) such that

the (𝑟𝜑 (𝑖 ) ) are all at the same position. This implies by finiteness

of permutation of one rules, than there are an infinite number of

rules of 𝜋0 which have (𝑟𝜑 (𝑖 ) ) in their residuals, implying that one

of the rules below the position of (𝑟𝜑 (𝑖 ) ) in 𝜋0 has infinitely many

residuals being equal to (𝑟𝑖 ) or below (𝑟𝑖 ) contradicting the finitess
of permutation of one rule hypothesis. □

Proposition 5 (Preservation of validity for permutations

with finite permutation of rules). Let 𝜋 be a 𝜇LL∞ pre-proof

and let (𝑝𝑖 )𝑖∈𝜔 be a permutation sequence with finite permutation of

rules starting from 𝜋 and converging (thanks to lemma 4 to a pre-proof

𝜋 ′. Then 𝜋 is valid if and only if 𝜋 ′ is.

Proof. From lemma 25, we have that the structure of the trees

of the sequence stays the same, therefore the structure of 𝜋 is the

same than the structure of 𝜋 ′, moreover the threads of 𝜋 and 𝜋 ′

are the same if we remove indexes where the thread is not active.

Therefore validity is easily preserved both ways. □

B.2.2 Proof of lemma 8.

Lemma 26. Let 𝑛 ∈ N, let 𝑑1, . . . , 𝑑𝑛 ∈ N and let 𝑝1, . . . , 𝑝𝑛 ∈
{0, 1}. Let 𝜋 be a 𝜇LL∞-proof concluded by an (mcut)-rule, on top of

which there is a list of 𝑛 proofs 𝜋1, . . . , 𝜋𝑛 . We ask for each 𝜋𝑖 to be of

one of the following forms depending on 𝑝𝑖 :

• If 𝑝𝑖 = 1, the 𝑑𝑖 + 1 last rules of 𝜋𝑖 are 𝑑𝑖 derelictions and

then a promotion rule. We ask for the principal formula of this

promotion to be either a formula of the conclusion, either to be

cut with a formula being principal in a proof 𝜋 𝑗 on one of the

last 𝑑 𝑗 + 𝑝 𝑗 rules.

• If 𝑝𝑖 = 0, the 𝑑𝑖 last rules of 𝜋𝑖 are 𝑑𝑖 derelictions.

In each of these two cases, we ask for 𝜋𝑖 that each principal formulas

of the 𝑑𝑖 derelictions to be either a formula of the conclusion of the

multicut, either a cut-formula being cut with a formula appearing in

𝜋 𝑗 such that 𝑝 𝑗 = 1. We prove that 𝜋 reduces through a finite number

of mcut-reductions to a proof where each last 𝑑𝑖 + 𝑝𝑖 rules either were
eliminated by a (!p/?

d
)-principal case, either were commuted under

the cut.

Proof. We prove the property by induction on the sum of all

the 𝑑𝑖 and of all the 𝑝𝑖 :

• (Initialization). As the sum of the 𝑑𝑖 and 𝑝𝑖 is 0, all 𝑑𝑖 and 𝑝𝑖
are equal to 0, meaning that our statement is vacuously true.

• (Heredity). We have several cases:

– If the last rule of a proof 𝜋𝑖 is a promotion or a dereliction

for which the principal formula is in the conclusion of the

(mcut), we do a commutation step on this rule obtaining

𝜋 ′. We apply our induction hypothesis on the proof ending

with the (mcut); and with parameters 𝑑′
1
, . . . , 𝑑′𝑛 as well as
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𝜋

⊢ 𝐴, ?®𝜏Δ 𝜎 ≤g ®𝜏
!g⊢ !𝜎𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌Γ

⇝

𝜋

⊢ 𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ 𝐴, ? ®𝜌Γ 𝜎 ≤g ®𝜌
!g⊢ !𝜎𝐴, ? ®𝜌Γ

(comm!g
)

𝜋

⊢ 𝐴,Δ 𝜎 ≤
f
®𝜏

!
f⊢ !𝜎𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌Γ

⇝

𝜋

⊢ 𝐴,Δ C
mcut(𝜄,⊥⊥)⊢ 𝐴, Γ 𝜎 ≤

f
®𝜌

!
f⊢ !𝜎𝐴, ? ®𝜌Γ

(comm
1

!f

)

𝜋

⊢ 𝐴,Δ 𝜎 ≤
f
®𝜏

!
f⊢ !𝜎𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)
⊢ !𝜎𝐴, ? ®𝜌 Γ

⇝

𝜋

⊢ 𝐴,Δ ®𝜏 (?m
1
)

?m
1⊢ 𝐴, ?®𝜏Δ C!

mcut(𝜄,⊥⊥)
⊢ 𝐴, ? ®𝜌 Γ 𝜎 ≤g ®𝜌

!g⊢ !𝜎𝐴, ? ®𝜌 Γ

(comm
2

!f

)

𝜋

⊢ 𝐴,𝐶 𝜎 ≤u 𝜏
!u⊢ !𝜎𝐴, ?𝜏𝐶 C!u

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ?𝜌𝐵

⇝

𝜋

⊢ 𝐴,𝐶 C
mcut(𝜄,⊥⊥)⊢ 𝐴, 𝐵 𝜎 ≤u 𝜌

!u⊢ !𝜎𝐴, ?𝜌𝐵

(comm
1

!u

)

𝜋

⊢ 𝐴, 𝐵 𝜎 ≤u 𝜏
!u⊢ !𝜎𝐴, ?𝜏𝐵 C!

mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌Γ

⇝

𝜋

⊢ 𝐴, 𝐵 C
mcut(𝜄,⊥⊥)⊢ 𝐴, Γ 𝜎 ≤

f
®𝜌

!
f⊢ !𝜎𝐴, ? ®𝜌Γ

(comm
2

!u

)

𝜋1

⊢ 𝐴, 𝐵 𝜎 ≤u 𝜏
!u⊢ !𝜎𝐴, ?𝜏𝐵 C!u

1

𝜋2

⊢ 𝐶,Δ 𝜎′ ≤
f
®𝜏 ′

!
f⊢ !𝜎 ′𝐶, ? ®𝜏 ′Δ C!

2 mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌Γ

⇝

𝜋1

⊢ 𝐴, 𝐵 C1

𝜋2

⊢ 𝐶,Δ ®𝜏 ′ (?m1
)

?m1⊢ 𝐶, ? ®𝜏 ′Δ C!

2 mcut(𝜄,⊥⊥)⊢ 𝐴, ? ®𝜌Γ 𝜎 ≤g ®𝜌
!g⊢ !𝜎𝐴, ? ®𝜌Γ

(comm
3

!u

)

𝜋1

⊢ 𝐴, 𝐵 𝜎 ≤u 𝜏
!u⊢ !𝜎𝐴, ?𝜏𝐵 C!u

1

𝜋2

⊢ 𝐶, ? ®𝜏 ′Δ 𝜎′ ≤g
®𝜏 ′

!g⊢ !𝜎 ′𝐶, ? ®𝜏 ′Δ C!

2 mcut(𝜄,⊥⊥)⊢ !𝜎𝐴, ? ®𝜌Γ

⇝

𝜋1

⊢ 𝐴, 𝐵 C1

𝜋2

⊢ 𝐶, ? ®𝜏 ′Δ C!

2 mcut(𝜄,⊥⊥)⊢ 𝐴, ? ®𝜌Γ 𝜎 ≤g ®𝜌
!g⊢ !𝜎𝐴, ? ®𝜌Γ

(comm
4

!u

)

Figure 15: Commutative cut-elimination steps of the exponential fragment of 𝜇superLL∞(remaining cases)

𝑝′
1
, . . . , 𝑝′𝑛 and proofs𝜋 ′

1
, . . . , 𝜋 ′𝑛 . To describe these parameters

we have two cases:

∗ If the rule is a promotion. We take for each 𝑗 ∈ J1, 𝑛K,
𝑑′
𝑗
= 𝑑 𝑗 ; 𝑝

′
𝑗
= 𝑝 𝑗 if 𝑗 ≠ 𝑖 , 𝑝′

𝑖
= 0; 𝜋 ′

𝑗
= 𝜋 𝑗 if 𝑗 ≠ 𝑖 .

∗ If the rule is a dereliction. We take for each 𝑗 ∈ J1, 𝑛K,
𝑑′
𝑗
= 𝑑 𝑗 if 𝑗 ≠ 𝑖 , 𝑑′

𝑖
= 𝑑𝑖 − 1; 𝑝′

𝑗
= 𝑝 𝑗 .

The 𝜋 ′
𝑗
will be the hypotheses of the (mcut) of 𝜋 ′′. Note

that

∑
𝑑′
𝑗
+∑

𝑝′
𝑗
=
∑
𝑑 𝑗 +

∑
𝑝 𝑗 − 1 meaning that we can

apply our induction hypothesis. Combining our reduction

step with the reduction steps of the induction hypothesis,

we obtain the desired result.

– If there are no rules from the conclusion but that one 𝜋𝑖
ends with 𝑑𝑖 > 0 and 𝑝𝑖 = 0, meaning that the proof ends
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CΔ

𝜋

⊢

𝑖︷          ︸︸          ︷
?𝜎𝐴, . . . , ?𝜎𝐴,Δ 𝜎 (?c𝑖 )

?c𝑖⊢ ?𝜎𝐴,Δ C!

?𝜎𝐴 mcut(𝜄,⊥⊥)
⊢ Γ, ? ®𝜌Γ

′

⇝

CΔ

𝜋

⊢

𝑖︷          ︸︸          ︷
?𝜎𝐴, . . . , ?𝜎𝐴,Δ

𝑖︷                  ︸︸                  ︷
C!

?𝜎𝐴
. . . C!

?𝜎𝐴 mcut(𝜄′,⊥⊥′)
Γ, ? ®𝜌Γ

′, . . . , ? ®𝜌Γ
′ ¯®𝑒 (?c𝑖 )

?

¯®𝜌
c𝑖⊢ Γ, ? ®𝜌Γ

′

(principal
?c
)

CΔ
⊢

𝑖︷   ︸︸   ︷
𝐴, . . . , 𝐴,Δ 𝜎 (?m𝑖

)
?m𝑖⊢ ?𝜎𝐴,Δ C!

?𝜎𝐴 mcut(𝜄,⊥⊥)
⊢ Γ, ?𝜌 ′Γ′, ?𝜌 ′′Γ′′

⇝

CΔ ⊢

𝑖︷   ︸︸   ︷
𝐴, . . . , 𝐴,Δ

𝑖︷                                          ︸︸                                          ︷
Ompx𝑆

(C!

?𝜎𝐴
) . . . Ompx𝑆

(C!

?𝜎𝐴
)

mcut(𝜄′,⊥⊥′)

⊢ Γ,

𝑖︷     ︸︸     ︷
Γ′, . . . , Γ′,

𝑖︷                 ︸︸                 ︷
? ®𝜌 ′′Γ

′′, . . . , ? ®𝜌 ′′Γ
′′ ¯®𝜌′ (?m𝑖

)
?

¯®𝜌 ′
m𝑖

⊢ Γ, ? ®𝜌 ′Γ
′,

𝑖︷                 ︸︸                 ︷
? ®𝜌 ′′Γ

′′, . . . , ? ®𝜌 ′′Γ
′′ ¯®𝜌′′ (?c𝑖 )

?

¯®𝜌 ′′
c𝑖⊢ Γ, ? ®𝜌 ′Γ

′, ? ®𝜌 ′′Γ
′′

(principal
?m

)

with 𝑆 being the sequent cut-connected to ?𝜎𝐴,Δ on the formula ?𝜎𝐴.

Figure 16: Principal cut-elimination steps of the exponential fragment of 𝜇superLL∞ (cases specific to 𝜇LL∞□ )

𝜋

⊢ ?𝐴, ?𝐴, ?𝐵, ?𝐵, Γ
?c⊢ ?𝐴, ?𝐵, ?𝐵, Γ

?c⊢ ?𝐴, ?𝐵, Γ

⇝

𝜋

⊢ ?𝐴, ?𝐴, ?𝐵, ?𝐵, Γ
?c⊢ ?𝐴, ?𝐴, ?𝐵, Γ

?c⊢ ?𝐴, ?𝐵, Γ

𝜋

⊢ ?𝐴, ?𝐴, 𝐵, Γ
?c⊢ ?𝐴, 𝐵, Γ

?
d⊢ ?𝐴, ?𝐵, Γ

↭

𝜋

⊢ ?𝐴, ?𝐴, 𝐵, Γ
?
d⊢ ?𝐴, ?𝐴, ?𝐵, Γ

?c⊢ ?𝐴, ?𝐵, Γ

𝜋

⊢ ?𝐴, ?𝐴, Γ
?c⊢ ?𝐴, Γ
?w⊢ ?𝐴, ?𝐵, Γ

↭

𝜋

⊢ ?𝐴, ?𝐴, Γ
?w⊢ ?𝐴, ?𝐴, ?𝐵, Γ
?c⊢ ?𝐴, ?𝐵, Γ

𝜋

⊢ Γ
?w⊢ ?𝐴, Γ

?w⊢ ?𝐴, ?𝐵, Γ

⇝

𝜋

⊢ Γ
?w⊢ ?𝐵, Γ

?w⊢ ?𝐴, ?𝐵, Γ

𝜋

⊢ 𝐴, Γ
?w⊢ 𝐴, ?𝐵, Γ
?
d⊢ ?𝐴, ?𝐵, Γ

↭

𝜋

⊢ 𝐴, Γ
?
d⊢ ?𝐴, Γ
?w⊢ ?𝐴, ?𝐵, Γ

⊢ 𝐴, 𝐵, Γ
?
d⊢ 𝐴, ?𝐵, Γ
?
d⊢ ?𝐴, ?𝐵, Γ
⇝

⊢ 𝐴, 𝐵, Γ
?
d⊢ ?𝐴, 𝐵, Γ
?
d⊢ ?𝐴, ?𝐵, Γ

Figure 17: One-step rule permutation

by a dereliction on a formula ?𝐹 . This means that there

is proof 𝜋 𝑗 such that 𝑝 𝑗 = 1 and such that ?𝐹 is cut with

one of the formula of 𝜋 𝑗 , namely !𝐹⊥. As there are only
one !-formula, and as 𝑝 𝑗 = 1, !𝐹⊥ is the principal rule of

the last rule applied on 𝜋 𝑗 . We therefore can perform an

(!p/?
d
) principal case on the last rules from 𝜋𝑖 and 𝜋 𝑗 ,

leaving us with a proof 𝜋 ′ with an (mcut) as conclusion.

We apply the induction hypothesis on this proof with

parameters 𝑑′
1
= 𝑑1, . . . 𝑑

′
𝑖
= 𝑑′

𝑖
− 1 . . . , 𝑑′𝑛 = 𝑑′𝑛 , 𝑝

′
1
=

𝑝1, . . . , 𝑝
′
𝑗
= 𝑝′

𝑗
− 1, . . . , 𝑝′𝑛 = 𝑝𝑛 and with the proofs being

the hypotheses of the multicut. Combining our steps with
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the steps from the induction hypotheses, we obtain the

desired result.

– We will show that the case where there are no rules from

the conclusion and that no 𝜋𝑖 are such that 𝑑𝑖 > 0 and 𝑝𝑖 =

0, is impossible. Supposing, for the sake of contradiction,

that this case is possible. We will construct an infinite

sequence of proofs (𝜃𝑖 )𝑖∈N all different and all being hypotheses

of the multi-cut, which is impossible. We know that there

exist a proof 𝜃0 := 𝜋 𝑗 ending with a promotion on a

formula !𝐴 and that this formula is not a formula from the

conclusion. This proof is in relation by the ⊥⊥-relation
to another proof 𝜃1 := 𝜋 𝑗 ′ . We know that this proof

cannot be 𝜋 𝑗 because the ⊥⊥-relation extended to sequents

is acyclic. This proof also ends with a promotion on a

principal formula which is not from the conclusion. By

repeating this process, we obtain the desired sequence

(𝜃𝑖 )𝑖∈N, giving us a contradiction.
The statement is therefore true by induction □

B.2.3 Details on proof of lemma 7.

Lemma 27. Consider a 𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-reduction step

𝜋0 → 𝜋1. There exist a finite number of 𝜇LL∞ proofs 𝜃0, . . . , 𝜃𝑛 such

that 𝜃0 → . . . → 𝜃𝑛, 𝜋◦
0

:= 𝜃0 and 𝜃𝑛 is equal to 𝜋◦
1
up to a finite

number of rule permutations, done only on rules that just permuted

down the (mcut).

Proof. Here we give some details on the proof of lemma 7 as

well as cases that were not covered it. Reductions from the non-

exponential part of 𝜇superLL∞ (E, ≤g, ≤f
, ≤u) translates easily to

one step of reduction in 𝜇LL∞. To prove the result on exponential

part, we will describe each translation of the reductions of figure

6, 7,15 and ??. For the commutative steps no commutation of rules

are necessary.

• Step (comm!g
). This step translates to the commutation of

one (!)-rule in 𝜇LL∞, which is one step of reduction.

• Step (comm
1

!f

).We prove that lemma 8 applies to step (comm
1

!f

).
Taking the left proof from step (comm

1

!f

) and translating it

in 𝜇LL∞, we obtain a proof:

𝜋◦
1

⊢ 𝐴◦
1
,Δ◦

1

?
d⊢ 𝐴◦

1
, ?Δ◦

1
!p⊢ !𝐴◦

1
, ?Δ◦

1

. . .

𝜋◦𝑛
⊢ 𝐴◦

𝑛,Δ
◦
𝑛

?
d⊢ 𝐴◦

𝑛, ?Δ
◦
𝑛

!p⊢ !𝐴◦
𝑛, ?Δ

◦
𝑛

mcut(𝜄,⊥⊥)
⊢ !𝐴◦, ?Γ◦

with one of the 𝜄 (1) = (𝑖, 1) for some 𝑖 and 𝑛 = 1 + #(C). We

apply our result on this proof with all the 𝑝𝑖 being equal to 1

and with 𝑑𝑖 = #(Δ𝑖 ). Moreover, we notice that there will be

only one promotion rule commuting under the cut and that

it commutes before any dereliction, giving us one translation

of the functorial promotion.

• Step (comm
2

!f

). As for (comm!g
), this step only translates to

the commutation of one (!)-rule in 𝜇LL∞, which is one step

of reduction.

• Step (comm
1

!u

). This step translates to the commutation of

one (!)-rule, followed by #(C!u ) (!/?
d
) principal steps and

finally one (?
d
) commutation.

• Step (comm
2

!u

). We prove this step using lemma 26 as for

step (comm
1

!f

).
• Step (comm

3

!u

) and (comm
4

!u

). Both of these steps translate

to the commutation of one (!), followed by #(C!u

1
) + 1 (!/?

d
)

principal steps.

• Step (comm?m
). We must distinguish three cases based on 𝑖:

– 𝑖 = 0. This step translate to one (?w)-commutative step.

– 𝑖 = 1. This step translate to one (?
d
)-commutative step.

– 𝑖 > 1. This step translates to 𝑖 − 1 commutation of (?c)
and 𝑖 commutation of (?

d
).

• Step (comm?c
). This step translates to 𝑖 − 1 commutation of

(?c).
• Step (principal

?c
). This step translates to 𝑖 − 1 contraction

principal cases. At the endwe obtain the following derivation

under the multi-cut:

⊢ Γ◦,

𝑖︷           ︸︸           ︷
?Γ′◦, . . . , ?Γ′◦

?c

⊢ Γ◦,

𝑖−1︷           ︸︸           ︷
?Γ′◦, . . . , ?Γ′◦

.

.

.

⊢ Γ◦, ?Γ′◦, ?Γ′◦
?c

⊢ Γ◦, ?Γ′◦

which we can re-arrange to get the translation of any of the

derivations of ?

¯®𝜌
c𝑖
. Note that for 𝑖 = 2 no rule permutation

are needed.

• Step (principal
?m

). This step translates in two phases:

(1) First 𝑖 − 1 contraction principal cases;

(2) followed by #(S?m

C!,𝑆
′
!
) (?

d
/!)-principal cases, and #(Γ′′)

dereliction commutative cases.

To prove the second phase we re-use lemma 26 as for steps

(comm
2

!u

) and (comm
1

!f

).
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Finally, the obtained proof under the multi-cut look like this:

⊢ Γ◦,

𝑖︷           ︸︸           ︷
?Γ′◦, . . . , ?Γ′◦,

𝑖︷          ︸︸          ︷
Γ′′◦, . . . , Γ′′◦

?
d

⊢ Γ◦,

𝑖︷           ︸︸           ︷
?Γ′◦, . . . , ?Γ′◦,

𝑖−1︷          ︸︸          ︷
Γ′′◦, . . . , Γ′′◦, ?Γ′′◦

.

.

.

⊢ Γ◦,

𝑖︷           ︸︸           ︷
?Γ′◦, . . . , ?Γ′◦, Γ′′◦,

𝑖−1︷             ︸︸             ︷
?Γ′′◦, . . . , ?Γ′′◦

?
d

⊢ Γ◦,

𝑖︷           ︸︸           ︷
?Γ′◦, . . . , ?Γ′◦,

𝑖︷             ︸︸             ︷
?Γ′′◦, . . . , ?Γ′′◦

?c

⊢ Γ◦,

𝑖−1︷           ︸︸           ︷
?Γ′◦, . . . , ?Γ′◦,

𝑖−1︷             ︸︸             ︷
?Γ′′◦, . . . , ?Γ′′◦

.

.

.

⊢ Γ◦, ?Γ′◦, ?Γ′◦, ?Γ′′◦, ?Γ′′◦
?c

⊢ Γ◦, ?Γ′◦, ?Γ′′◦

which we can re-arrange these rules to get the translation of any

of the derivations of ?

¯®𝜌 ′′
m𝑖

, followed by any of the derivations of ?

¯®𝜌 ′
c𝑖
.

Note that if 𝑖 = 0, no re-arrangement is needed. □

B.2.4 Proof of lemma 9.

Lemma 28 (Completeness of the (mcut)-reduction system).

If there is a 𝜇LL∞-redex R sending 𝜋◦ to 𝜋 ′◦ then there is also a

𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-redex R′

sending 𝜋 to a proof 𝜋 ′′, such
that in the translation of R′

, R is applied.

Proof. Weonly prove the exponential cases, the non-exponential

cases being immediate. We have several cases:

• If the case is the commutative step of a contraction or a

dereliction or weakening (𝑟 ), as it is on top of a (mcut), it

necessarily means that (𝑟 ) comes from the translation of a

multiplexing or a contraction rule (𝑟 ′) which is also on top

of an (mcut) in 𝜋 , we can take R′
as the step commutating

(𝑟 ′) under the cut.
• If it is a principal case again, we have that there is a contraction

or a dereliction or weakening rule (𝑟 ) on top of a (mcut) on

a formula ?𝐴. It also means that each proofs cut-connected

to ?𝐴 ends with a promotion. As 𝜋◦ is the translation of a

𝜇superLL∞ (E, ≤g, ≤f
, ≤u)-proof, it means that (𝑟 ) is contained

in the translation of a multiplexing or contraction rule (𝑟 ′)
on a formula ?𝜎𝐴 on top of a (mcut). It also means that all the

proofs cut-connected for this (mcut) to ?𝜎𝐴 are translations

of promotions (no other rules than a promotion in 𝜇superLL∞ (E, ≤g

, ≤
f
, ≤u) translates to a derivation ending with a promotion).

Therefore the principal case on (𝑟 ′) is possible, we can take

R′
as it.

• If it is the commutative step of a promotion (𝑟 ), it means that

all the proofs of the contexts of the (mcut) are promotions.

Meaning that (𝑟 ) is contained in the translation of a promotion

(𝑟 ′) on top of (mcut). We also have that the context of this

(mcut) are only proof ending with a promotion for the same

reasons that last point. We therefore need to make sure that

each (mcut) with a context full of promotions are covered

by the ⇝-relation. Looking back at figure 15 together with

conditions given by each corresponding lemmas, we have

that:

– Each (!g)-commutation is covered by the first case.

– Each (!
f
)-commutation is covered by the two cases that

follows. The second of the two covers the case where

there is an (!g)-promotion in hypotheses of the multicut

with non-empty context, whereas the first one covers

the case where there are no such (!g)-promotions in the

hypotheses.

– The (!u)-commutation is covered by all the remaining

cases:

∗ The first one covers (!u)-commutationwhen the hypotheses

are all concluded by an (!u)-rule.
∗ The second one covers the case where there are one

proof ending with an (!
f
)-rule and where all the proof

ended by an (!g)-promotions have a conclusion with

empty context.

∗ The two last ones cover the cases where there is a proof

ending by an (!g)-promotion having conclusion with

non-empty context.

□

C APPENDIX ON THE CUT-ELIMINATION OF
MODAL 𝜇-CALCULUS SECTION

C.1 Details on the linear-logical modal
𝜇-calculus of section 4.1

C.1.1 Details on linear translation of 𝜇LK∞□ .

Definition 30 (Linear translation of 𝜇LK∞□ ). We consider

the translation of the rules in figure 18 which complete the rules of

figure 9.

We define translations of proofs coinductively on the proofs using

the translation of each rules.

C.1.2 Proofs that 𝜇LL∞□ -instance of superLL satisfy the cut-elimination
axioms (property 2).

Proof. • Hypotheses of axiom (axcontr) are ony true for

𝑖 = 2 in two cases: for 𝜎 = 𝜎′ = •, in that case 𝜎 (?c2
is true

because 𝜎 (?c2
) is; or for 𝜎 = • and 𝜎′ = ★, in that case the

axiom is satisfied as 𝜎′ (?c2
) is true.

• Hypotheses of axiom (axgmpx) are true for 𝑖 = 0 when

𝜎 = 𝜎′ = •, or for 𝜎 = • and 𝜎′ = ★, in both cases we have

that
¯𝜎′ (?c0

) is true because 𝜎′ (?m0
) is true.

• Axiom (axgmpx) is always true for 𝑖 = 1

• Hypotheses of axiom (axgmpx) are not satisfied for 𝑖 > 1.

• Hypotheses of axiom (axfumpx) are satisfied only for 𝜎 =

𝜎′ = ★ and so easily satisfied.

• Axiom (axTrans) is satisfied as ≤g and ≤
f
are transitive.

• Hypotheses of axiom (axleqgs)are only satisfied for 𝜎 = •
and 𝜎′ = 𝜎′′ = ★, and in this case the conclusion is one of

the hypothesis.
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𝜋

Γ, 𝐹1 ⊢ 𝐹2,Δ →𝑟
Γ ⊢ 𝐹1 → 𝐹2,Δ

⇝

𝜋•

Γ•, 𝐹1

• ⊢ 𝐹2

•, ?Δ•
?p, ?d

Γ•, ?𝐹1

• ⊢ ?𝐹2

•, ?Δ•
⊸𝑟

Γ• ⊢ ?𝐹1

• ⊸ ?𝐹2

•, ?Δ•
?d, !p

Γ• ⊢ ?!(?𝐹1

• ⊸ ?𝐹2

• ), ?Δ•

𝜋1

Γ1 ⊢ 𝐹1,Δ1

𝜋2

Γ2, 𝐹2 ⊢ Δ2 →𝑟
Γ1, Γ2, 𝐹1 → 𝐹2 ⊢ Δ1,Δ2

⇝
𝜋1

•

Γ1

• ⊢ ?𝐹1

•, ?Δ2

•

𝜋2

•

Γ2

•, 𝐹2

• ⊢ ?Δ2

•
?p

Γ2

•, ?𝐹2

• ⊢ ?Δ2

•
⊸𝑙

Γ1

•, Γ2

•, ?𝐹1

• ⊸ ?𝐹2

• ⊢ ?Δ1

•, ?Δ2

•
!d

Γ1

•, Γ2

•, !(?𝐹1

• ⊸ ?𝐹2

• ) ⊢ ?Δ1

•, ?Δ2

•

𝜋1

Γ ⊢ 𝐹1,Δ

𝜋2

Γ ⊢ 𝐹2,Δ ∧𝑟
Γ ⊢ 𝐹1 ∧ 𝐹2,Δ

⇝

𝜋1

•

Γ• ⊢ ?𝐹1

•, ?Δ•
𝜋2

•

Γ• ⊢ ?𝐹2

•, ?Δ•
&𝑟

Γ• ⊢ ?𝐹1

•
& ?𝐹2

•, ?Δ•
?
d
, !p

Γ• ⊢ ?!(?𝐹1

•
& ?𝐹2

•), ?Δ•

𝜋

Γ, 𝐹𝑖 ⊢ Δ ∧𝑖
𝑙Γ, 𝐹1 ∧ 𝐹2 ⊢ Δ
⇝

𝜋•

Γ•, 𝐹𝑖• ⊢ ?Δ•
?p

Γ•, ?𝐹𝑖• ⊢ ?Δ•
&
𝑖
𝑙Γ•, ?𝐹1

•
& ?𝐹2

• ⊢ ?Δ•
!
d

Γ•, !(?𝐹1

•
& ?𝐹2

•) ⊢ ?Δ•

𝜋1

Γ, 𝐹1 ⊢ Δ

𝜋2

Γ, 𝐹2 ⊢ Δ ∨𝑙
Γ, 𝐹1 ∨ 𝐹2 ⊢ Δ

⇝

𝜋1

•

Γ•, 𝐹1

• ⊢ ?Δ•
?p

Γ•, ?𝐹1

• ⊢ ?Δ•

𝜋2

•

Γ•, 𝐹2

• ⊢ ?Δ•
?p

Γ•, ?𝐹2

• ⊢ ?Δ•
⊕𝑙

Γ•, ?𝐹1

• ⊕ ?𝐹2

• ⊢ ?Δ•
!
d

Γ•, !(?𝐹1

• ⊕ ?𝐹2

•) ⊢ ?Δ•

𝜋

Γ ⊢ 𝐹𝑖 ,Δ ∨𝑖𝑟Γ ⊢ 𝐹1 ∨ 𝐹2,Δ
⇝

𝜋•

Γ• ⊢ ?𝐹𝑖
•, ?Δ•

⊕𝑖
𝑟Γ• ⊢ ?𝐹1

• ⊕ ?𝐹2

•, ?Δ•
?
d
, !p

Γ• ⊢ ?!(?𝐹1

• ⊕ ?𝐹2

•), ?Δ•

Δ ⊢ 𝐹, Γ □p

□Δ ⊢ □𝐹, ♦Γ ⇝

Δ• ⊢ ?𝐹•, ?Γ•
!
d
, ?p

!?Δ• ⊢ ?𝐹•, ?Γ•
!p

!?Δ• ⊢ !?𝐹•, ?Γ• □p

□!?Δ• ⊢ □!?𝐹•, ♦?Γ•
?
d
, !♦
p

□!?Δ• ⊢ ?!□!?𝐹•,?!♦?Γ•
!
d

!□!?Δ• ⊢ ?!□!?𝐹•,?!♦?Γ•

Δ, 𝐹 ⊢ Γ ♦p
□Δ, ♦𝐹 ⊢ ♦Γ ⇝

Δ•, 𝐹• ⊢ ?Γ•
!
d
, ?p

!?Δ•, 𝐹• ⊢ ?Γ•
?p

!?Δ•, ?𝐹• ⊢ ?Γ• ♦p
□!?Δ•, ♦?𝐹• ⊢ ♦?Γ•

!
d

□!?Δ•, !♦?𝐹• ⊢ ?!♦?Γ•
!
d

!□!?Δ•, !♦?𝐹• ⊢ ?!♦?Γ•

𝜋

Γ ⊢ 𝐹,Δ ⊥𝑙
Γ, 𝐹⊥ ⊢ Δ

⇝

𝜋•

Γ• ⊢ ?𝐹•, ?Δ•
⊥𝑙

Γ•, (?𝐹•)⊥ ⊢ ?Δ•
!
d

Γ•, !((?𝐹•)⊥) ⊢ ?Δ•

𝜋

Γ, 𝐹 ⊢ Δ ⊥𝑟
Γ ⊢ 𝐹⊥,Δ

⇝

𝜋•

Γ•, 𝐹• ⊢ ?Δ•
?p

Γ•, ?𝐹• ⊢ ?Δ•
⊥𝑟

Γ• ⊢ (?𝐹•)⊥, ?Δ•
?
d
, !p

Γ• ⊢ ?!((?𝐹•)⊥), ?Δ•

𝜋

Γ ⊢ 𝐹 [𝑋 := 𝛿𝑋 .𝐹 ],Δ
𝛿𝑟

Γ ⊢ 𝛿𝑋 .𝐹,Δ
⇝

𝜋•

Γ• ⊢ ?𝐹• [𝑋 := 𝛿𝑋 .?𝐹•], ?Δ•
𝛿𝑟

Γ• ⊢ 𝛿𝑋 .?𝐹•, ?Δ•
?
d
, !p

Γ• ⊢ ?!(𝛿𝑋 .?𝐹•), ?Δ•

𝜋

Γ, 𝐹 [𝑋 := 𝛿𝑋 .𝐹 ] ⊢ Δ
𝛿𝑙Γ, 𝛿𝑋 .𝐹 ⊢ Δ

⇝

𝜋•

Γ•, 𝐹• [𝑋 := 𝛿𝑋 .?𝐹•] ⊢ ?Δ•
?p

Γ•, ?𝐹• [𝑋 := 𝛿𝑋 .?𝐹•] ⊢ ?Δ•
𝛿𝑙

Γ•, 𝛿𝑋 .?𝐹• ⊢ ?Δ•
!
d

Γ•, !(𝛿𝑋 .?𝐹•) ⊢ ?Δ•
with 𝛿 ∈ {𝜇, 𝜈}

T𝑟Γ ⊢ T,Δ ⇝
⊤𝑟

Γ• ⊢ ⊤, ?Δ•
?
d
, !p

Γ• ⊢ ?!⊤, ?Δ•
F𝑙Γ, F ⊢ Δ ⇝

0𝑙
Γ•, 0 ⊢ ?Δ•

!
d

Γ•, !0 ⊢ ?Δ•

𝜋

Γ1,𝐺, 𝐹, Γ2 ⊢ Δ
ex𝑙

Γ1, 𝐹 ,𝐺, Γ2 ⊢ Δ
⇝

𝜋•

Γ1

•,𝐺•, 𝐹•, Γ2

• ⊢ ?Δ•
ex𝑙

Γ1

•, 𝐹•,𝐺•, Γ2

• ⊢ ?Δ•

𝜋

Γ ⊢ Δ1,𝐺, 𝐹,Δ2
ex𝑟

Γ ⊢ Δ1, 𝐹 ,𝐺,Δ2

⇝
𝜋•

Γ• ⊢ ?Δ1

•, ?𝐺•, ?𝐹•, ?Δ2

•
ex𝑟

Γ• ⊢ ?Δ1

•, ?𝐹•, ?𝐺•, ?Δ2

•

ax

𝐹 ⊢ 𝐹 ⇝
ax

𝐹• ⊢ 𝐹•
?
d

𝐹• ⊢ ?𝐹•

𝜋1

Γ1 ⊢ 𝐹,Δ1

𝜋2

Γ2, 𝐹 ⊢ Δ2

cut

Γ1, Γ2 ⊢ Δ1,Δ2

⇝
𝜋1

•

Γ1

• ⊢ ?𝐹•, ?Δ1

•

𝜋2

•

Γ2

•, 𝐹• ⊢ ?Δ2

•
?p

Γ2

•, ?𝐹• ⊢ ?Δ2

•
cut

Γ1

•, Γ2

• ⊢ Δ1

•,Δ2

•

𝜋

Γ ⊢ Δ
w𝑙

Γ, 𝐹 ⊢ Δ
⇝

𝜋•

Γ• ⊢ ?Δ•
!w

Γ•, 𝐹• ⊢ ?Δ•

𝜋

Γ ⊢ Δ
w𝑟

Γ ⊢ 𝐹,Δ
⇝

𝜋•

Γ• ⊢ ?Δ•
?w

Γ• ⊢ ?𝐹•, ?Δ•
𝜋

Γ, 𝐹 , 𝐹 ⊢ Δ
c𝑙

Γ, 𝐹 ⊢ Δ
⇝

𝜋•

Γ•, 𝐹•, 𝐹• ⊢ ?Δ•
!c

Γ•, 𝐹• ⊢ ?Δ•

𝜋

Γ ⊢ 𝐹, 𝐹,Δ
c𝑟

Γ ⊢ 𝐹,Δ
⇝

𝜋•

Γ• ⊢ ?𝐹•, ?𝐹•, ?Δ•
?c

Γ• ⊢ ?𝐹•, ?Δ•

Figure 18: Full translation of rules of 𝜇LK∞□ into 𝜇LL∞□
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• Hypotheses of the other axioms are never fully satisfied.

□

C.2 Details on cut-elimination for 𝜇LK∞
□ of

section 4.3
C.2.1 Definition of skeleton.

Definition 31 (𝜇LK∞□ -Skeleton). The 𝜇LK∞-skeleton of a 𝜇LL∞formula

is defined inductively as follows (𝛿 ∈ {𝜇, 𝜈}):

SK(𝐹 ⊗ 𝐺) = SK(𝐹 ) ∧ SK(𝐺) SK(𝐹 `𝐺) = SK(𝐹 ) ∨ SK(𝐺)
SK(!𝐹 ) = SK(𝐹 ) SK(𝐹 &𝐺) = SK(𝐹 ) ∧ SK(𝐺)

SK(𝐹 ⊕ 𝐺) = SK(𝐹 ) ∨ SK(𝐺) SK(?𝐹 ) = SK(𝐹 )
SK(1) = T SK(⊥) = F
SK(𝑎) = 𝑎 SK(⊤) = ⊤
SK(0) = F SK(𝑎⊥) = ¬𝑎

SK(𝐹 ⊸ 𝐺) = SK(𝐹 ) → SK(𝐺) SK(𝛿𝑋 .𝐹 ) = 𝛿𝑋 .SK(𝐹 )
SK(𝑋 ) = 𝑋 SK(□𝐹 ) = □SK(𝐹 )
SK(♦𝐹 ) = ♦SK(𝐹 )

Sequents of formulas of 𝜇LL∞□ are translated to sequent of skeletons

of these formulas. Translations of pre-proofs are obtained co-inductively

by translating the rules of each connectives independantly. Exponential

rules are replaced by the derivation with no rules.

Lemma 29 (Robustness of the skeleton to validity). If 𝜋

is a 𝜇LL∞□ valid pre-proof, SK(𝜋) is a 𝜇LK∞□ valid pre-proof, and

vice-versa.

Proof. This comes from the fact that (i) minimal formula of a set

of translated formulas is the translation of the minimal formula of

the set of initial formulas; (ii) translations of branches contains all

the translations of formulas of the initial branch and vice-versa. □

Lemma 30 (Composition of SK() and of (−)•). Let 𝜋 be a 𝜇LK∞□
pre-proof. We have that SK(𝜋•) is equal to 𝜋 .

Proof. This comes from the fact that (−)•-translation translates
each rules (𝑟 ) of 𝜇LK∞□ to a derivation containing the pre-image

of (𝑟 ) by the translation SK(), adding only exponential rules. As

exponential rules disappears from the proof by SK(), we get that
SK(𝑟•) is equal to (𝑟 ). We coinductively apply this result on pre-

proofs □
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