Abstract

Extensions of Girard’s linear logic by least and greatest fixed point operators (μMALL) have been an active field of research for almost two decades. Various proof systems are known viz. finitary and non-wellfounded, based on explicit and implicit (co)induction respectively. In this paper, we compare the relative expressivity, at the level of provability, of two complementary infinitary proof systems: finitely branching non-wellfounded proofs (μMALL$_{\omega,\omega}$) vs. infinitely branching well-founded proofs (μMALL$_{\omega,\omega}$). Our main result is that μMALL$_{\omega,\omega}$ is strictly contained in μMALL$_{\omega,\omega}$.

For inclusion, we devise a novel technique involving infinitary rewriting of non-wellfounded proofs that yields a wellfounded proof in the limit. For strictness of the inclusion, we improve previously known lower bounds on μMALL$^{\omega}$ provability from Π^0_1-hard to Σ^1_1-hard, by encoding a sort of Büchi condition for Minsky machines.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation → Proof theory

Keywords and phrases linear logic, fixed points, non-wellfounded proofs, omega-branching proofs, analytical hierarchy

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Funding The first and second authors are supported by a UKRI Future Leaders Fellowship, Structure vs. Invariants in Proofs, project reference MR/S035540/1. The third author is partially funded by the ANR project RECIPROG, project reference ANR-21-CE48-019-01.
A natural question to ask is whether all these approaches prove the same theorems or not. In this work, we examine this question in the setting of linear logic, μMALL. In particular, we compare the non-wellfounded system $\mu\text{MALL}\infty$ from [6] with a wellfounded infinitary branching system $\mu\text{MALL}_{\omega,\infty}$ inspired by [17]. This builds on previous work [14] that focused on comparing the various finitary systems for μMALL. Our main result is that $\mu\text{MALL}_{\omega,\infty}$ proves strictly more theorems than $\mu\text{MALL}\infty$:

Theorem 1. $\mu\text{MALL}\infty \subsetneq \mu\text{MALL}_{\omega,\infty}$

Organisation and contributions. In Section 2, we recall the language of μMALL and present its various systems, in particular $\mu\text{MALL}\infty$ and $\mu\text{MALL}_{\omega,\infty}$. In Section 3 we prove the inclusion part of Theorem 1. Namely, we give a coinductive translation from $\mu\text{MALL}\infty$ to $\mu\text{MALL}_{\omega,\infty}$, and then exploit the correctness condition of $\mu\text{MALL}\infty$ to deduce that the image of this translation is wellfounded, Theorem 14. In Section 4 we reduce a ‘Büchi condition’ for Minsky machines to $\mu\text{MALL}\infty$ provability, Proposition 32, implying the latter is Σ_1-hard by [3], Theorem 33, yielding the strictness part of Theorem 1. Finally in Section 5 we give a Π_1^1 upper bound for $\mu\text{MALL}_{\omega,\infty}$, Theorem 35, by appealing to analytic determinacy of its ‘proof search game’. We present concluding remarks in Section 6; supplementary exposition and formal proofs can be found in Appendices A–C. All our results are summarised in Figure 1.

Notation. For a formula ϕ we write $\phi^n(x)$ for $\underbrace{\phi(\cdots (\phi(x))\cdots)}_{n\text{ times}}$. We shall also frequently suppress or explicitly indicate variables as convenient, e.g. we often identify ϕ and $\phi(x)$, using the latter when we want to distinguish (some occurrences of) the variable x. When working with binders, e.g. μ and ν, we shall employ a standard convention of using dots, e.g. $\mu.x.\phi$ or $\nu.x.\psi$ to signify that the μ or ν binds as far as possible to the right.

A note on (effective) descriptive set theory. In this work, we shall assume some familiarity with notions from (effective) descriptive set theory, namely the classes of the analytical hierarchy, Π_1^1, Σ_1^1, Π_2^1 etc. All necessary notions can be found in well-known textbooks like [29, 35] and via online resources.

2 Background

Linear logic, introduced by Girard [21], refines usual disjunction and conjunction into two orthogonal pairs of connectives: the *multiplicatives* $\&$, \otimes and the *additives* \oplus, \boxplus. Together with their units 1, 0, ⊤ respectively, the resulting logic MALL (‘multiplicative additive linear logic’) is given in Figure 2 (colours may be ignored for now). Note here that the rules operate on *sequents*, which are finite multisets of formulas: as usual commas denote multiset union, and set braces are omitted. All sequents are ‘one-sided’, i.e. a sequent Γ should be read as $\vdash \Gamma$.

MALL is distinguished from usual logics by its notable absence of structural rules for the multiplicatives: $\phi \& \psi \vdash \phi$ and $\mathbf{0} \vdash \phi$ are not always satisfied. This is why sequents must be multisets (or lists), not sets. In a sense linear logic can be seen as a ‘symmetrisation’ of intuitionistic logic, which only controls structural rules on one side of an implication, resulting in a sort of constructive logic that nonetheless enjoys a form of De Morgan duality, hence admitting the one-sided presentation herein.

This lack of structural behaviour is crucially what leads to the high complexity of provability in the presence of ‘exponentials’ in usual linear logic or, in this work, in the
Figure 1 Relationships between systems in this work. Solid arrows \(\rightarrow \) denote inclusion, dashed arrows denote conservative extensions, negated arrows \(\nrightarrow \) denote non-inclusion.

presence of fixed points. See [14, Sect. 2] for some further discussion on the peculiarities of linear logic with fixed points compared to other similar logics.

In the remainder of this section, we shall introduce the language of (multiplicative additive) linear logic with fixed points, and present the systems investigated in this work.

2.1 \(\mu \text{MALL} \) preliminaries

Let us fix two disjoint countable sets of propositional constants \(\mathcal{A} = \{a, b, \ldots\} \) and variables \(\mathcal{V} = \{x, y, \ldots\} \).

Definition 2 ((Pre)-formulas). \(\mu \text{MALL} \) pre-formulas are given by the following grammar:

\[
\varphi, \psi ::= 0 | T | \bot | 1 | a | a^\perp | x | \varphi \otimes \psi | \varphi \oplus \psi | \varphi \& \psi | \mu x \varphi | \nu x \varphi
\]

where \(a \in \mathcal{A}, x \in \mathcal{V}, \) and \(\mu, \nu \) bind the variable \(x \) in \(\varphi \). Free and bound variables, and capture-avoiding substitution are defined as usual. The subformula ordering is denoted \(\leq \).

When a pre-formula is closed (i.e., has no free variable), we simply call it a formula.

\(\mu x \varphi \) and \(\nu x \varphi \) are intended to denote the least and greatest fixed points of the operator \(\lambda x \varphi \) in an appropriate semantics (cf., e.g., [17]). \(a^\perp \) is intended to be the negation of \(a \). Note that, since variables have no negated instances, positivity of fixed point operators is implicit and no further condition is required.

Thanks to De Morgan duality in linear logic we may extend negation to all (pre-)formulas as a meta-operation, in the same way as for classical logic:

Definition 3. Negation of a pre-formula \(\varphi \), denoted \(\varphi^\perp \), is the unique involution that satisfies the following.

\[
(0)^\perp = T; \quad (\bot)^\perp = 1; \quad a^{\perp \perp} = a; \quad x^{\perp} = x;
\]

\[
(\varphi \& \psi)^\perp = \varphi^{\perp} \& \psi^{\perp}; \quad (\varphi \& \psi)^\perp = \varphi^{\perp} \& \psi^{\perp}; \quad (\mu x \varphi)^\perp = \nu x \varphi^\perp.
\]

As expected, \(\mu \) and \(\nu \) are dual to each other; note also that fixed point variables are simply invariant under negation.

The first systems for \(\mu \text{MALL} \), here called \(\mu \text{MALL}^{\text{ind}} \), incorporate explicit (co)induction rules for the fixed points, inspired by similar developments in other fixed point logics like...
Structural rules

\[
\begin{align*}
\phi, \phi^\perp & \quad \frac{}{\Gamma, \phi, \phi^\perp} \quad (id) \\
\Gamma, \phi_1, \phi_2 & \quad \frac{}{\Gamma, \phi_1, \phi_2} \quad (\text{cut}) \\
\phi_1, \phi_2 & \quad \frac{}{\phi_1 \otimes \phi_2} \quad (\otimes) \\
\phi_i & \quad \frac{}{\phi_i} \quad (\oplus^i) \\
\phi & \quad \frac{}{\mu \phi} \quad (\mu)
\end{align*}
\]

Logical rules

\[
\begin{align*}
\Gamma, \phi_1, \phi_2 & \quad \frac{}{\Gamma, \phi_1 \otimes \phi_2} \quad (\otimes) \\
\phi_1, \phi_2 & \quad \frac{}{\nu \phi_1 \phi_2} \quad (\nu)
\end{align*}
\]

Logical rules (units)

\[
\begin{align*}
\Gamma & \quad \frac{}{\Gamma} \quad (1) \\
\Gamma, \bot & \quad \frac{}{\Gamma, \top} \quad (L) \\
\Gamma & \quad \frac{}{\Gamma, \top} \quad (T)
\end{align*}
\]

No rule for 0

Figure 2 Inference rules for MALL, where \(i \in \{1, 2\}\). Purple formulas in premiss(es) and conclusion are called auxiliary and principal respectively.

the \(\mu\)-calculus [24, 39]. In our one-sided setting, \(\mu\text{MALL}^{\text{ind}}\) is formally the extension of the system MALL in Figure 2 by:

\[
\begin{align*}
\Gamma, \phi (\mu x \phi) & \quad \frac{}{\Gamma, \mu x \phi} \quad (\mu) \\
\psi, \phi (\nu x \phi) & \quad \frac{}{\Gamma, \nu x \phi} \quad (\nu)
\end{align*}
\]

These rules are inspired by the second-order encoding of fixed points: \(\nu x \phi = \exists x ((x \to \phi) \otimes \phi)\).

2.2 Non-wellfounded system \(\mu\text{MALL}^{\infty}\)

The standard ‘non-wellfounded’ system for \(\mu\text{MALL}\), here called \(\mu\text{MALL}^{\infty}\), was introduced in [6], building on earlier work for the fragment without multiplicatives [36, 20]. It is an adaptation of systems for the modal \(\mu\)-calculus from [33, 37] to the setting of linear logic.

Definition 4 (\(\mu\text{MALL}^{\infty}\) pre-proofs). The rules of \(\mu\text{MALL}^{\infty}\) extend MALL by:

\[
\begin{align*}
\Gamma, \phi (\mu x \phi) & \quad \frac{}{\Gamma, \mu x \phi} \quad (\mu) \\
\psi, \phi (\nu x \phi) & \quad \frac{}{\Gamma, \nu x \phi} \quad (\nu)
\end{align*}
\]

A pre-proof of \(\mu\text{MALL}^{\infty}\), denoted \(P, P', \ldots\), is a possibly non-wellfounded tree generated from the inference rules of \(\mu\text{MALL}^{\infty}\).

Arbitrary non-wellfounded derivations may be fallacious, hence the affectation ‘pre-’ above. Thus bona fide ‘proofs’ must further satisfy a standard correctness criterion from non-wellfounded proof theory. At the same time the progressing criterion distinguishes the two fixed points, which have the same rules in Equation (2).

Definition 5 (Ancestry). A formula occurrence \(\phi\) in the conclusion of a rule instance is an immediate ancestor of an occurrence \(\psi\) in a premiss if they have the same colour, as typeset in Figure 2 and Equation (2). If \(\phi\) and \(\psi\) are in a context \(\Gamma, \Gamma_1, \Gamma_2\), we furthermore require that they are the same occurrences in the premiss and the conclusion.

Remark 6 (On occurrences in multisets). Note that, in the definition above, we are implicitly assuming that the data structure of a sequent allows us to distinguish different occurrences of the same formula. This is a standard convention in structural proof theory that avoids low-level peculiarities of working with lists (necessitating additional exchange/permutation rules). To be clear, ‘sequents-as-multisets’ should be construed as a sets of occurrences of
formulas, e.g. by assigning a name to each occurrence. This is often made explicit in, e.g., type systems with explicit term annotations, but we gloss over this formality in favour of lightening the exposition.

Definition 7 (Threads and proof). Given a branch B through a pre-proof, a thread is a maximal path in the graph of immediate ancestry of B. A thread is progressing if it has a minimal infinitely often principal formula (under \leq) that is a ν-formula. A pre-proof is a proof if each of its infinite branches has a progressing thread.

A ‘colour-free’ definition of ancestry and threads, along with several other standard structural proof theoretic notions, can be found in Appendix A.

Example 8. In Figure 3 we give several examples of (pre-)proofs. Figure 3a is a pre-proof of an arbitrary sequent Γ, exemplifying the inconsistency of arbitrary pre-proofs. It is not a proof because the left infinite branch has no progressing thread. Figure 3b is also not a proof, despite its only infinite branch having infinitely many (ν)-steps. This is because the thread indicated in red has the μ-formula φ as its minimal infinitely often principal formula, not the ν-formula ψ. Note that every other thread is eventually stable on ψ (and hence not progressing). Finally Figure 3c is indeed a μMALL^∞ proof, as its only infinite branch has a progressing thread on νxx. (It also happens to have a non-progressing red thread on $\mu y y z y$.)

In this work we shall make crucial use of a (nontrivial) cut-elimination result for μMALL^∞:

Theorem 9 ([6, 5]). Every provable μMALL^∞ sequent has a proof without the (cut) rule.

Finally, we briefly describe an important subsystem of μMALL^∞ where the underlying proof trees are regular.

Definition 10. A μMALL^∞ pre-proof is cyclic (a.k.a. regular) if it has finitely many distinct sub-pre-proofs. The class of cyclic proofs is denoted by $\mu\text{MALL}^{\circ \circ}$.

For instance the pre-proofs Figure 3a and Figure 3c are indeed regular whereas Figure 3b is not since at each iteration of the bullet the sequent has an extra occurrence of ψ (which is thenceforth non-principal). Like $\mu\text{MALL}^{\text{ind}}$, the circular system $\mu\text{MALL}^{\circ \circ}$ will not play a significant role in this work.

Remark 11 (On exponentials). For the reader familiar with the exponentials of linear logic, it would be reasonable to ask about the expressivity of extensions of $\mu\text{MALL}^{\text{ind}}$, μMALL°, μMALL^∞ by the exponentials $!, ?$. It turns out that the resulting system is fully conservative over $\mu\text{MALL}^{\text{ind}}, \mu\text{MALL}^{\circ}, \mu\text{MALL}^\infty$ respectively, thanks to the fact that exponentials can be ‘coded’ by fixed point formulas, as noticed by Baelde in [4]. This is one of the reasons for omitting the exponentials in the study of linear logic with fixed points.
2.3 A well-founded system $\mu\text{MALL}_{\omega,\infty}$

One of the main points of this work is to compare the non-wellfounded system μMALL^∞ with an orthogonal notion of infinite proof: well-founded but infinitely branching. Such systems are common in proof theory and mathematical logic [11, 30] and have been compared to non-wellfounded systems in other settings [37]. To this end, we consider an ‘ω-rule’ for ν, motivated by continuous models, e.g. the phase semantics of [17].

Definition 12. $\mu\text{MALL}_{\omega,\infty}$ is the extension of MALL by the rules:

\[
\frac{\Gamma, \varphi(\mu x \varphi)}{\Gamma, \mu x \varphi} \quad \frac{\Gamma, \top \quad \Gamma, \varphi(\top)}{\Gamma, \nu x \varphi}
\]

Equation (3)

Proofs of $\mu\text{MALL}_{\omega,\infty}$ are defined as usual: they are well-founded (possibly infinite) trees generated by the rules of $\mu\text{MALL}_{\omega,\infty}$.

The (ω) rule is inspired by the inflationary construction of fixed points, $\nu x \varphi = \bigcap_{\alpha \in \text{Ord}} \varphi^\alpha(\top)$. It is implicit in $\mu\text{MALL}_{\omega,\infty}$ that the ν operator is in a sense continuous, closing at ordinal ω, like in the models of phase semantics of [17]. In that work, a similar ω-branching system $\mu\text{MALL}_{\omega,\omega}$ has been proposed for μMALL but it further restricts μ-rules to:

\[
\frac{\Gamma, \varphi^n(0)}{\Gamma, \nu x \varphi} \quad (\mu^n)
\]

[17] shows that $\mu\text{MALL}_{\omega,\omega}$ is actually quite weak and does not even contain $\mu\text{MALL}^\text{ind}$. Retaining the usual (μ) rule in $\mu\text{MALL}_{\omega,\infty}$ is rather inspired by the signatures (a.k.a. markings or assignments) from [33, 12, 18]. In this work, we shall see that $\mu\text{MALL}_{\omega,\infty}$ in fact contains all the systems we have presented. In particular, note that, since there is no rule for 0 in MALL, we immediately have:

Observation 13. $\mu\text{MALL}_{\omega,\omega} \subseteq \mu\text{MALL}_{\omega,\infty}$

3 Inclusion of μMALL^∞ in $\mu\text{MALL}_{\omega,\infty}$

In this section, we show one of our main results:

Theorem 14 (Simulating infinite height by infinite width). $\mu\text{MALL}^\infty \subseteq \mu\text{MALL}_{\omega,\infty}$.

Note in particular the stark contrast with the system $\mu\text{MALL}_{\omega,\omega}$ from [17], which does not even contain $\mu\text{MALL}^\text{ind}$, cf. Figure 1. To prove this result, throughout this section we work only with cut-free μMALL^∞ proofs, without loss of generality by Theorem 9. Furthermore, to prevent issues with productivity along a coinductive definition, we will employ a standard technique (e.g.[30]) of ‘bootstrapping’ our μMALL systems with an explicit repetition rule $\Gamma \quad \Gamma \quad (\omega)$.

While this does affect the notion of pre-proof it does not affect the notion of proof in μMALL^∞: the progressing condition implies that no infinite branch can have a tail of repetitions, and so (\cdot) steps can be contracted while preserving closedness (each sequent still concludes a step).

\[\text{Note that this addition could be avoided by using ‘explicit’ approximants à la [37, 17].}\]
3.1 Projections

In this subsection, we will define a notion of ‘proof projection’. Throughout this section we will consider sequents \(\Gamma = \Gamma(\psi_1, \ldots, \psi_k) \) where some occurrences of \(\psi_1, \ldots, \psi_k \) in \(\Gamma \) are distinguished. Note that the distinguished occurrences of, say \(\psi_i \), may include some, none, or all of the occurrences of \(\psi_i \) in \(\Gamma \). This notation allows for distinguished \(\psi_i \) occurrences to be subformulas of formulas in \(\Gamma \), and also for some \(\psi_i \) and \(\psi_j \) to be the same formula when \(i \neq j \). For \(\vec{\psi} = (\nu x_1 \phi_1, \ldots, \nu x_k \phi_k) \), an assignment is simply a list \(\vec{n} = (n_1, \ldots, n_k) \in \omega^k \).

We will write \(\vec{\psi}_n := (\phi_1^{n_1}(\top), \ldots, \phi_k^{n_k}(\top)) \), the list obtained by assigning each \(n_i \) to each \(\psi_i \).

\[\textbf{Definition 15 (Projections).} \] For a pre-proof \(P \) of \(\Gamma(\vec{\psi}) \), where \(\vec{\psi} = (\nu x_1 \phi_1, \ldots, \nu x_k \phi_k) \), and an assignment \(\vec{n} = (n_1, \ldots, n_k) \in \omega^k \), we define the projection \(P(\vec{n}) \) a pre-proof of \(\Gamma(\vec{\psi}_n) \) by coinduction on \(P \) as follows:

1. If \(P \) ends with a step \(\rho \) for which no distinguished formula occurrence is principal,

\[P(\vec{n}) := \begin{cases} P_1(\vec{n}) & \text{if } \vec{n} \in \vec{\psi}_n^\top, \\ \vdots & \\ P_m(\vec{n}) & \text{if } \vec{n} \in \vec{\psi}_n^\bot \end{cases}. \]

2. If \(P \) ends with a step for which some distinguished formula occurrence is principal,

\[P(n + 1, \vec{n}) := \begin{cases} P(n, \vec{n}) & \text{if } \vec{n} \in \vec{\psi}_n^\top, \\ \vdots & \\ \gamma \phi^{n+1}(\top), \Gamma(\nu x \phi, \vec{\psi}_n) & \text{if } \vec{n} \in \vec{\psi}_n^\bot \end{cases}. \]

Note that, in the final case of the definition above, the length of the assignment may increase if \(\nu x \phi \) distinguishes multiple occurrences in the sequent. This is why, even though we shall only ever use projections on a single formula later, we must make the definition above more general. This is also a barrier towards any arguments by explicit induction on assignments; e.g. Lemma 16 later is demonstrated rather by an argument by infinite descent, a now standard leitmotif of non-wellfounded proof theory.

3.2 Properties of branches along projections

For \(\muMALL^\infty \) pre-proofs \(P \) we associate to each of its (maximal) branches \(B \) its induced branch \(B(\vec{n}) \) in \(P(\vec{n}) \) in the expected way. Formally \(B(\vec{n}) \) is defined by coinduction on \(B \), following the cases of Definition 15:

1. \[B_i \left(\begin{array}{l} \Gamma_{i}(\vec{\psi}_n) \\ \Gamma(\vec{\psi}_n) \end{array} \right) (\vec{n}) := \begin{cases} B_i(\vec{n}) & \text{if } \vec{n} \in \vec{\psi}_n^\top, \\ \vdots & \\ \Gamma_{i}(\vec{\psi}_n) & \text{if } \vec{n} \in \vec{\psi}_n^\bot \end{cases} \]
Comparing infinitary systems for linear logic with fixed points

23:8

\[
\begin{align*}
B' \\
\frac{\varphi(\nu x \varphi), \Gamma(\nu x \varphi, \vec{\psi})}{\nu x \varphi, \Gamma(\nu x \varphi, \vec{\psi})} \\
(x) \quad (0, \vec{n}) & := \frac{\Gamma, \Gamma(\top, \vec{\psi})}{\top, \Gamma(\top, \vec{\psi})} \\

2. \quad \frac{B'}{\varphi(\nu x \varphi), \Gamma(\nu x \varphi, \vec{\psi})} \\
\frac{\nu x \varphi, \Gamma(\nu x \varphi, \vec{\psi})}{\varphi(\nu x \varphi), \Gamma(\nu x \varphi, \vec{\psi})} \\
(\nu) \quad (n + 1, \vec{n}) & := \frac{\varphi^{\nu}(\top), \Gamma(\varphi^{\nu+1}(\top), \vec{\psi})}{\varphi^{\nu+1}(\top), \Gamma(\varphi^{\nu+1}(\top), \vec{\psi})} (=)
\end{align*}
\]

Clearly the map \(B \mapsto B(\vec{n}) \) from branches of \(P \) to branches of \(P(\vec{n}) \) is surjective. It is also clear that if \(B \) is finite then so is \(B(\vec{n}) \). The remainder of this section is devoted to establishing a stronger property: as long as \(B \) is finite or progressing, so is \(B(\vec{n}) \). To this end we need the following important properties of the action of projections on threads:

- **Lemma 16 (Projections on progressing threads terminate).** For a \(\muMALL^\omega \) pre-proof \(P \) of \(\Gamma(\nu x \varphi, \vec{\psi}) \), a branch \(B \) of \(P \) along which \(\nu x \varphi \) extends to a progressing thread, and \(n \in \omega \), the branch \(B(n, \vec{n}) \) is finite.

Proof sketch. Suppose otherwise and take the (maximal) sequence \((n_i)_{i < \alpha} \subseteq \omega \) of numbers assigned to the progressing thread \(\nu x \varphi \) in the construction of \(B(n, \vec{n}) \) above. By local inspection notice that \((n_i)_{i < \alpha} \) is monotone non-increasing, and furthermore strictly decreases whenever \(\nu x \varphi \) is principal. Thus \(\alpha \) must be finite and bounds the length of \(B(n, \vec{n}) \).

We also have that projections ‘lower threads’ disjoint from their distinguished formulas, by inspection of the description of \(B(\vec{n}) \) above:

- **Lemma 17 (Projections preserve disjoint threads).** Let \(P \) be a pre-proof of \(\Gamma(\vec{\psi}) \) and \(B \) a branch of \(P \) with \(B(\vec{n}) \) is infinite. If \(B \) is progressing then so is \(B(\vec{n}) \). Moreover, if \((\varphi_i)_{i < \omega} \) is a progressing thread along \(B \) disjoint from all \(\vec{\psi} \) with progress points \((\varphi_i)_{i < \omega} \), then \((\varphi_i)_{i < \omega} \) is also progressing in \(B(\vec{n}) \) with progress points \((\varphi_i)_{i < \omega} \).

Note that \(B(\vec{n}) \) may still be finite when \(B \) is infinite in case there is another progressing thread along \(B \) on a distinguished formula, cf. Lemma 16. Recalling that the map \(B \mapsto B(\vec{n}) \) from branches of \(P \) to branches of \(P(\vec{n}) \) is surjective, we have immediately from Lemma 17:

- **Proposition 18 (Projections on proofs are proofs).** If \(P \) is a \(\muMALL^\omega \) proof, so is \(P(\vec{n}) \).

3.3 The \(\omega \)-translation

We need to give a translation from \(\muMALL^\omega \) proofs to \(\muMALL_{\omega, \omega} \) ones. We break this up into two steps: first we give the translation, and then prove that the image of this translation is wellfounded. To this end we shall refer to ‘pre-proofs’ of \(\muMALL_{\omega, \omega} \) too, which may be both infinitely wide and infinitely deep.

- **Definition 19 (\(\omega \)-translation).** For \(\muMALL^\omega \) pre-proofs \(P \), we define the \(\muMALL_{\omega, \omega} \) pre-proof \(P^\omega \) by coinduction on \(P \) as follows:

\[
1. \quad \text{if } P = \frac{P_1}{\Gamma_1} \cdots \frac{P_k}{\Gamma_k} \quad \text{with } \rho \neq \nu, \text{ then } P^\omega := \frac{P_1^\rho}{\Gamma_1} \cdots \frac{P_k^\rho}{\Gamma_k} (\rho)
\]

(i.e. \(\omega \) commutes with \(\rho \) when \(\rho \neq \nu \)).

\[\text{2 Recall that } P \text{ is cut-free, so we may assume the thread starts at the root.}\]
2. Otherwise, if \(P = \Gamma, \varphi(\nu x. \varphi) \) then \(P^\omega := \frac{\Gamma, \varphi(\top)}{\Gamma, \varphi(\top)} \Gamma, \varphi(x. \varphi) \). Note that, whichever rule \(P \) ends with, the translation above is productive (it prints a rule for each coinductive case) and so \(P^\omega \) is indeed well-defined by coinduction (just like projections and induced branches before). Note also that the translation is defined for arbitrary pre-proofs, not only proofs. Indeed a pre-proof \(P \) may be sent to a non-wellfounded pre-proof \(P^\omega \) by the translation, e.g. if \(P \) has no \((\nu)\) step, then already \(P^\omega = P \). In particular, simply having infinitely many \((\nu)\) steps along every infinite branch of \(P \) does not suffice to imply wellfoundedness of \(P^\omega \). Let us see some examples to illustrate this:

Example 20 (\(\nu \)-fairness \(\nRightarrow \) wellfoundedness of \(\cdot^\omega \)). Consider the \(\mu \text{MALL}^\infty \) pre-proof in Figure 3b. Recall that this pre-proof is not regular. This irregularity manifests in each branch of its image under the \(\omega \)-translation:

\[
\begin{array}{c}
\vdots \\
\varphi, \top (\nu) \\
\varphi^\top (\rho) \\
\varphi ^\top (\varphi ^\top (\rho)) (\nu) \\
\vdots \\
\psi (\mu) \\
\end{array}
\]

Example 21. Consider the \(\mu \text{MALL}^\infty \) proof in Figure 3c. To compute its \(\omega \)-translation let us first note that:

- When \(\varphi(x) = x \) we have that \(\varphi^n(\top) = \top \) for all \(n < \omega \).
- When \(\varphi(z) = \mu y. \nu z.y \) we have \(\varphi^n(\top) = \mu y. \nu z.y \) for all \(n < \omega \).

From here we can readily compute the \(\omega \)-translation of Figure 3c as:

\[
\begin{array}{c}
\vdots \\
\top, \mu y. \nu z.y (\nu) \\
\top, \nu z, \mu y. \nu z.y (\mu) \\
\top, \mu y. \nu z.y (\mu) \\
\vdots \\
\nu x, \mu y. \nu z.y \\
\end{array}
\]

3.4 Finiteness of branches in the image of the \(\omega \)-translation

The above examples notwithstanding, we will indeed show that, as long as \(P \) is progressing, \(P^\omega \) is actually wellfounded, and so is a \(\mu \text{MALL}_\omega^\infty \) proof after all. First we shall classify branches in the image of the \(\omega \)-translation, just like we did for projections. Note that every branch of \(P^\omega \) is induced from a branch of \(P \) by choosing, at each \(\nu \)-step, a corresponding projection given by some \(n \in \omega \). Thus, we may specify an arbitrary (possibly non-maximal) branch of \(P^\omega \) by the notation \(B^n \), where \(B \) is a branch of \(P \) and \(n \in \omega^\omega \) is some unique (possibly infinite) list of natural numbers, indexing the premisses of \(\omega \)-steps followed by the branch. Formally \(B^n \) is defined by coinduction on \(B \), following Definition 19, with a case analysis on the head of \(n \) in the case of a \((\nu)\) step:
Comparing infinitary systems for linear logic with fixed points

Observation 22. If B is finite, then so is $B\vec{n}$.

This follows by induction on the length of B. From here we are able to show:

Lemma 23. For a pre-proof, $B\vec{n}$ a branch of P^ω: if B is progressing then $B\vec{n}$ is finite.

Formally this follows by induction on the height of the first progress point of a progressing thread along B, following the definition of branches $B\vec{n}$. During the argument we must often appeal to the properties of branches along projections from Section 3.2. A full proof is given in Appendix B. Of course from here our main result immediately follows:

Proof of Theorem 14. Let P be a μMALL$^\infty$ proof. By Lemma 23 above, all branches of its ω-translation P^ω are finite. Thus P^ω is indeed wellfounded and so a proof of μMALL$_{\omega,\infty}$.

Σ_1^1-hard

A natural question to ask now is if μMALL$_{\omega,\infty}$ can be embedded in μMALL$^\infty$. [37] shows that the ω-branching calculus of the modal μ-calculus can be embedded in its corresponding non-wellfounded calculus. The argument crucially depends on the fact that any proof of a formula φ has finitely many distinct sequents (modulo identifying approximations); however, such a condition does not hold in μMALL due to the absence of structural rules. In fact, we prove that the inclusion result of the previous section, Theorem 14, is strict.

In order to do so we will give a Σ_1^1 lower bound for μMALL$^\infty$ that is incompatible with the natural Π_1^1 upper bound for μMALL$_{\omega,\infty}$. To this end, we encode a Büchi’ condition for Minsky machines in terms of μMALL$^\infty$ provability. This significantly improves a Π_1^1 lower bound from previous work [14], which was proved by reduction from non-halting of Minsky machines.

Throughout this section we shall write a^n for $\underbrace{a \cdots a}_n$ (which is equivalent to $a^n(\bot)$).

Definition 24. A Minsky machine M is a tuple (Q,r_1,r_2,I) where Q is a finite set of states, r_1,r_2 are two registers and I is a set of instructions of the form $\text{INC}(p,r_i,q)$ or $\text{JZDEC}(p,r_i,q_0,q_1)$, for $p,q,q_0,q_1 \in Q$ and $i \in \{1,2\}$, that manipulate the current state and the contents of the registers.

The operational semantics of M is given by its configuration graph, whose vertices are
sequences \(\nu x.\psi, q \)

We construct a pre-proof visualisation). We now argue that

Proof sketch. Let \(R(p_0) = \{ p_1, m_i, n_i \}_{0 \leq i < \omega} \) be an infinite run of \(M \) from \(q_0 \) (so \(p_0 = q_0 \)). We construct a pre-proof \(P(p_0) \) of \(\nu x.\psi, q_0 \) by coinduction on \(R(q_0) \), simply by simulating each step of the run by the one-step ‘move’ gadgets from Lemma 27 (see Figure 4 for a visualisation). We now argue that \(P(p_0) \) is progressing, and so is indeed a \(\mu \text{MALL}^\omega \) proof.

First, observe that \(P(p_0) \) has exactly one infinite branch that has infinitely many occurrences of ‘move’ gadgets (\(\mu \text{ins} \)). Furthermore, every time there is a move rule with a conclusion of the form \(\text{CP}(q_0), q_0, a^n, b^n, \text{inv} \), there is a \((\nu) \) step, necessarily on \(\text{CP}(q_0) = \nu x.\psi \), by Lemma 27. So, since \(q_0 \) occurs infinitely often in the run, and by cut-freeness, there is an infinite thread \(\tau \) along the formulas \(\text{CP}(p_i) \) which is infinitely often principal for \(\text{CP}(q_0) = \nu x.\psi \) (the indicated green thread in Figure 4). Finally, by inspection of the formulas \(\text{CP}(p_i) \) and the rules of \(\mu \text{MALL}^\omega \), every formula occurring in \(\tau \) must have \(\nu x.\psi \) as a subformula. Thus \(\tau \) is indeed progressing, and so \(P(p_0) \) is a \(\mu \text{MALL}^\omega \) proof as required.

A run is a maximal path in the configuration graph.

Theorem 25 ([3]). Given a Minsky machine \(M \) and a state \(q_0 \), checking whether there exists an infinite run starting from \((q_0, 0, 0) \) that visits \(q_0 \) infinitely often is \(\Sigma^1_1 \)-hard.

For the rest of the section, let us fix a Minsky machine \(M = (Q, r_1, r_2, I) \). Construe \(\{ a, b, z_a, z_b \} \cap Q = \emptyset \) and \(\{ x, y \} \) as a set of variables. We use \(a \) and \(z_a \) (respectively, \(b \) and \(z_b \)) to represent the contents of the register \(r_1 \) (respectively, \(r_2 \)). Define \(\text{parity} : Q \rightarrow \{ x, y \} \) by \(\text{parity}(q) = x \) if \(q = q_0 \) and \(\text{parity}(q) = y \) otherwise. Define the following:

\[
[\text{INC}(p, r_1, q)] := p^+ \otimes (q^a \otimes \text{parity}(q))
\]

\[
[\text{JZDEC}(p, r_1, q, q')] := p^+ \otimes (((\text{parity}(q)^a \otimes z_a) \otimes (a^+ \otimes (\text{parity}(q')^a \otimes q'))))
\]

\[
\psi := \mu y. \left(\bigoplus_{\text{ins} \in I} [\text{ins}] \right)
\]

\[
\varphi := \psi(\nu x.\psi / x)
\]

Finally, define \(\text{Inv} := ((b^+)^* \otimes z_a^+ \otimes ((a^+)^* \otimes z_b^+) \) where we write \(\varphi^* = \mu x.(1 \oplus (\varphi \otimes x)) \).

Proposition 26. For any \(n \in \mathbb{N} \), the sequents \(b^n, z_a, \text{Inv} \) and \(a^n, z_b, \text{Inv} \) are provable.

Define \(\text{CP} : Q \rightarrow \{ \nu x.\psi, \varphi \} \) such that \(\text{CP}(q) = \nu x.\psi \) if \(q = q_0 \) and \(\text{CP}(q) = \varphi \) otherwise.

Lemma 27 (One step simulation). Let \(\langle p, m, n \rangle \) be a configuration such that \(\langle p, m, n \rangle \xrightarrow{\text{ins}} \langle q, m', n' \rangle \), for \(\text{ins} \in I \). The following ‘move’ gadget has a finite \(\mu \text{MALL}^\omega \) derivation:

\[
\frac{\text{CP}(q), q, a^{m'}, b^{n'}, \text{inv} \xrightarrow{\text{ins}} \langle m, n \rangle}}{\text{CP}(p), p, a^m, b^n, \text{inv}}
\]

Moreover, if \(p = q_0 \) then \(\langle m, n \rangle \) has a \((\nu) \) step (for which \(\nu x.\psi \) is principal, necessarily).

Lemma 28. If there exists a run of \(M \) from \(q_0 \) such that \(q_0 \) is visited infinitely often, the sequent \(\nu x.\psi, q_0 \) has a \(\mu \text{MALL}^\omega \) proof.

Proof sketch. Let \(R(p_0) = \{ \langle p_1, m_i, n_i \rangle \}_{0 \leq i < \omega} \) be an infinite run of \(M \) from \(q_0 \) (so \(p_0 = q_0 \)). We construct a pre-proof \(P(p_0) \) of \(\nu x.\psi, q_0 \) by coinduction on \(R(q_0) \), simply by simulating each step of the run by the one-step ‘move’ gadgets from Lemma 27 (see Figure 4 for a visualisation). We now argue that \(P(p_0) \) is progressing, and so is indeed a \(\mu \text{MALL}^\omega \) proof.

First, observe that \(P(p_0) \) has exactly one infinite branch that has infinitely many occurrences of ‘move’ gadgets (\(\mu \text{ins} \)). Furthermore, every time there is a move rule with a conclusion of the form \(\text{CP}(q_0), q_0, a^m, b^n, \text{inv} \), there is a \((\nu) \) step, necessarily on \(\text{CP}(q_0) = \nu x.\psi \), by Lemma 27. So, since \(q_0 \) occurs infinitely often in the run, and by cut-freeness, there is an infinite thread \(\tau \) along the formulas \(\text{CP}(p_i) \) which is infinitely often principal for \(\text{CP}(q_0) = \nu x.\psi \) (the indicated green thread in Figure 4). Finally, by inspection of the formulas \(\text{CP}(p_i) \) and the rules of \(\mu \text{MALL}^\omega \), every formula occurring in \(\tau \) must have \(\nu x.\psi \) as a subformula. Thus \(\tau \) is indeed progressing, and so \(P(p_0) \) is a \(\mu \text{MALL}^\omega \) proof as required.
Comparing infinitary systems for linear logic with fixed points

4.1 Background on focusing

In order to prove the converse of Lemma 28 above, we have to account for all possible proofs. In order to tame the space of possibilities we shall appeal to ‘focusing’, a standard technique in proof search. Informally, focused proofs are a family of proofs that have more structure than usual sequent calculus proofs.

We first classify the connectives of μMALL by two polarities: positive and negative. Inferences for negative connectives are invertible, i.e. they preserve provability bottom-up, but the positive inferences do not in general. The negative (respectively, positive) connectives of μMALL$^\infty$ are & $\&$, \bot, \top, ν (respectively, \oplus, \ominus, 1, 0, μ).\(^3\)

By assigning arbitrary polarities to atomic variables one can extend the notion to formulas in such a way that each formula is either positive or negative, depending on its top-level connective. A sequent is positive if it contains only positive or atomic formulas, otherwise it is negative. A focused proof, briefly, is one where bottom-up:

- only negative rules are applied on negative sequents; and,
- only positive rules are applied on positive sequents;
- any positive auxiliary formula of a positive rule must be principal for the next step;

Note that the focusing discipline described above ensure that, when reaching a positive sequent, bottom-up, positive rules are ‘hereditarily applied’ on a particular positive formula, called the focus, until one reaches a negative sequent again. We give an example of (un)focused proofs in Appendix C. Importantly we have:

▶ Theorem 29 ([6]). If Γ has a cut-free μMALL$^\infty$ proof, it also has one that is focused.\(^4\)

4.2 Provability implies run existence

In this subsection we prove the converse of Lemma 28 above:

▶ Lemma 30. If the sequent $\nu x.\psi, q_0, \text{Inv}$ is provable in μMALL$^\infty$, then there exists a run of \mathcal{M} from the configuration $\langle q_0, 0, 0 \rangle$ such that q_0 is visited infinitely often.

We shall henceforth assume that all μMALL$^\infty$ proofs are cut-free, under Theorem 9, and focused, under Theorem 29. More specifically we assign atomic polarities as follows: a, b, z_a, z_b and q are negative for any state $q \in Q$. We first make a simple observation that will aid our proof.

\(^3\) Observe that both the μ and ν rules are invertible. See [6] for an explanation of the choice.

\(^4\) The focusing result in [6] is for a logic without atoms but the proof technique can be straightforwardly extended to account for atoms.
\textbf{Claim 31.} \(\text{Inv}\) is not principal in the lowest rule of any focused proof of \(\psi, p, a^m, b^n, \text{Inv}\).

\textbf{Proof.} The sequent \(\psi, p, a^m, b^n, \text{Inv}\) is positive so if \(\text{Inv}\) is active, then it is the focus. Without loss of generality, assume that the first rule is \((\oplus 1)\) with principal formula \(\text{Inv}\). Then, the auxiliary formula is \((b^r)^+ \otimes z_a\). Since the outermost connective is positive, we must immediately apply the \((\otimes)\) rule. One of the premisses is of the form \(\Delta, z_a^+\) with \(z_a^+\) as focus and we cannot apply any inference rule. Because \(\Delta\) cannot be \(z_a\), the identity rule is ruled out and no other rules are possible since \(z_a\) is an atom.

We can now prove the main result of this subsection:

\textbf{Proposition 32 (Reduction).} \(\mathcal{M}\) has an infinite run from \(q_0\) visiting \(q_0\) infinitely often if and only if there is a \(\mu\text{MALL}^\infty\) proof of \(\nu x.\psi, q_0, \text{Inv}\).

By Theorem 25 we thus have:

\textbf{Theorem 33.} \(\mu\text{MALL}^\infty\) is \(\Sigma_1^1\)-hard.
From here, we can conclude strictness of the inclusion from Theorem 14:

Corollary 34. \(\mu\text{MALL}_\infty\) and \(\mu\text{MALL}_{\omega,\infty}\) prove different sets of theorems.

Proof. Clearly \(\mu\text{MALL}_{\omega,\infty} \in \Pi^1_1\): \(\mu\text{MALL}_{\omega,\infty}\) proves \(\Gamma\) just if:

"every set of sequents closed under \(\mu\text{MALL}_{\omega,\infty}\) rules contains \(\Gamma\"

Note here that closure of a set \(X\) of sequents under \(\mu\text{MALL}_{\omega,\infty}\) is indeed arithmetical; in particular closure under the \((\omega)\)-rule is \(\Pi^0_2\): "for every sequent \(\Gamma, \nu x \varphi\) not in \(X\) there exists \(n \in \omega\) such that \(\Gamma, \varphi^n(\top)\) is not in \(X\)."

On the other hand, if \(\mu\text{MALL}_\infty = \mu\text{MALL}_{\omega,\infty}\) then \(\mu\text{MALL}_{\omega,\infty}\) would be \(\Sigma^1_1\)-hard, by Theorem 33, contradicting its \(\Pi^1_1\) membership as \(\Sigma^1_1 \not\subset \Pi^1_1\).

Finally Corollary 34 and Theorem 14 together imply Theorem 1, our main result.

5 A \(\Pi^1_2\) upper bound on \(\mu\text{MALL}_\infty\)

Our \(\Sigma^1_1\)-hardness result, Theorem 33, places \(\mu\text{MALL}_\infty\) definitively in the analytical hierarchy. Previously the best known lower bound was \(\Pi^1_1\) from [14]. In terms of upper bounds, a naïve \(\Sigma^1_1\) upper bound is readily obtained by the description of \(\mu\text{MALL}_\infty\)-provability:

"there exists a preproof s.t., for all infinite branches, there exists a progressing thread."

Note here that checking whether a given thread is progressing is indeed arithmetical: "there exists some \(n \in \mathbb{N}\) and a formula \(\nu x \varphi\) that is infinitely often principal, and such that every formula in the thread after position \(n\) has \(\nu x \varphi\) as a subformula". In fact we can improve this upper bound considerably, comprising the main result of this section:

Theorem 35 (\(30^\#\)). \(\mu\text{MALL}_\infty \in \Pi^1_2\).

Note that this result, strictly speaking, depends on the existence of \(0^\#\) (as indicated), which is equivalent to lightface analytic determinacy over ZFC [22]. To demonstrate this result we employ ideas from proof search, namely game theoretic formulations therein inspired by previous work [26, 19].

Definition 36 (Proof search game, for \(\mu\text{MALL}_\infty\)). The proof search game for \(\mu\text{MALL}_\infty\) is a two-player game played between Prover (P), whose positions are inference steps of \(\mu\text{MALL}_\infty\), and Denier (D), whose positions are sequents of \(\mu\text{MALL}_\infty\). A play of the game starts from a particular sequent: at each turn, P chooses an inference step with the current sequent as conclusion, and D chooses a premiss of that step; the process repeats from this sequent and the two players continue taking turns as long as possible.

P wins an infinite play of the game if the branch constructed has a progressing thread.⁵

It is not hard to see that winning strategies for P correspond to non-wellfounded proofs:

Observation 37. P has a winning strategy from \(\Gamma\) iff there is a \(\mu\text{MALL}_\infty\) proof of \(\Gamma\).

When the state space is finite, e.g. for the \(\mu\)-calculus, the corresponding proof search game is finite-memory determined, yielding regular completeness of the proof system [33]. We do not have this property here, but the characterisation above nonetheless allows us to view D strategies as a form of ‘semantics’ for \(\mu\text{MALL}_\infty\) under determinacy:

⁵ In the case of deadlock, the player with no valid move loses.
Proposition 38 ($\exists^\#_0$). *The proof search game for μMALL$^\infty$ is determined.*

This is a consequence of (lightface) analytic determinacy, as the winning condition is indeed Σ^1_1: “there exists a progressing thread”. From here we readily obtain our upper bound:

Proof of Theorem 35. There is a μMALL$^\infty$ proof of a sequent Γ if and only if P has a winning strategy from Γ by Observation 37, if and only if there is no winning strategy for D from Γ, by Proposition 38. The latter is clearly a Π^1_2 property:

“For every D-strategy there exists a play for which there exists a progressing thread”.

6 Conclusion

In this work, we compared the expressivity of the infinitary systems μMALL$^\infty$ and μMALL$^{\omega,\infty}$ for linear logic with fixed points, and improved bounds on their complexity, cf. Figure 1. We conclude this paper with some remarks on potential future directions of research.

It would be pertinent to extend our comparison to systems with *wider* branching, indexed by some ordinal α, say μMALL$^{\omega,\infty}_\alpha$. Similar systems were considered in [17, 16]. Such systems become weaker (i.e. have fewer theorems) as α increases, as more cases must be proved to derive a ν formula. In this sense it would be particularly interesting if we could show that μMALL$^\infty$ coincides with some μMALL$^{\omega,\infty}_\alpha$, calibrating the strength of μMALL$^\infty$ according to some ordinal measure. Let us point out that such an ordinal must be sufficiently large to evade a Π^1_3 upper bound, as for μMALL$^{\omega,\infty}_\omega$, due to Σ^1_1-hardness of μMALL$^\infty$; at the same time the systems μMALL$^{\omega,\infty}_\alpha$ must reach a limit by $\alpha = \omega_1$, for cardinality reasons, giving a naïve upper bound.

It would also be interesting to prove bona fide metalogical properties, such as cut-elimination and focusing, for μMALL$^{\omega,\infty}_\omega$ (and friends), just like for μMALL$^\infty$ in [6] and for several other infinitely branching systems in related areas [30, 25, 34]. Let us point out that the embedding of μMALL$^\infty$ in μMALL$^{\omega,\infty}$ of Section 3 does not introduce cuts, arguably evidence that μMALL$^{\omega,\infty}$ might enjoy a well-behaved proof theory. We expect such a result to be easier to establish than the analogous results for μMALL$^\infty$, thanks to the underlying wellfoundedness of μMALL$^{\omega,\infty}$.

What is the exact complexity of μMALL$^\infty$? This question remains open after this work, but we have significantly narrowed the gap to the range between Σ^1_1 and Π^1_3. It would also be pertinent to investigate the complexity of the infinitary wellfounded system μMALL$^{\omega,\infty}_\omega$ (and μMALL$^{\omega,\omega}_\omega$ and friends). Let us point out also that the (weaker) Π^1_0 lower bound for μMALL$^\infty$ from [14] applied already to the alternation-free fragment of μMALL$^\infty$.

Our Σ^1_1 lower bound crucially uses a single alternation to mimic the Büchi condition on Minsky machines. It would be interesting to further investigate the effect of alternation on the complexity of systems we have investigated.

References

6 ‘Alternation-free’ means that no μ occurs under a ν and vice-versa.
Comparing infinitary systems for linear logic with fixed points

Appendix for Section 2

Here we give a ‘colour-free’ definition of the system \(\mu \text{MALL}^\infty \). Let us first recall some standard terminology relating to inference rules [10].

The sequent(s) in a rule displayed above the line are \textit{premise(s)} and the unique sequent below the line is the \textit{conclusion}. In a logical or fixed point rule, the \textit{principal formula} is the distinguished formula occurrence in its conclusion in Equation (2) or Figure 2. \textit{Auxiliary formulas} are the formula occurrences distinguished in the premise(s). Other formula occurrences in logical or fixed point rules are \textit{side formulas}.

\begin{definition}
For an inference step \(r \), define the \textbf{immediate ancestor} relation \(\text{IA}(r) \) on formula occurrences of \(r \) by: \((\varphi, \psi) \in \text{IA}(r) \) if \(\varphi \) is principal and \(\psi \) is auxiliary, or \(\varphi \) is a side formula occurrence in the conclusion and \(\psi \) is the corresponding side formula occurrence in a premise; or \(r \) is structural and \(\varphi \) is a formula occurrence in the conclusion and \(\psi \) is the corresponding formula occurrence in a premise.
\end{definition}

\begin{definition}[16] Let \(\beta = (\Gamma_i)_{i<\omega} \) be an infinite branch of a \(\mu \text{MALL}^\infty \) pre-proof \(\pi \) and let \(r_i \) be the rule with conclusion \(\Gamma_i \). A \textbf{thread} of \(\beta \) is given by \(k \in \mathbb{N} \) and a sequence of formula occurrences \(\{\varphi_i\}_{k<i<\omega} \) such that, for \(k < i < \omega \), we have \((\varphi_i, \varphi_{i+1}) \in \text{IA}(r_i) \). A thread \(\tau \) is \textbf{progressing} if it is infinitely often principal and the smallest formula occurring infinitely often in \(\tau \) is a \(\nu \)-formula.
\end{definition}
Proof of Lemma 23. Let \((\varphi_i)_{i<\omega}\) be a progressing thread along \(B\) and let \(\varphi_j\) be its first progress point. We shall show that \(B^\bar{n}\) is finite by induction on \(j\), the height of the first progress point, by consideration of the definition of \(B^\bar{n}\).

When \(j > 0\), have two inductive steps:

1. If \(P\) ends with a step \(\rho \neq \nu\) as in Item 1 then \(B^\bar{n}\) is as in Equation (4) and so we may apply the inductive hypothesis to \(B^\bar{n}\) with respect to the progressing thread \((\varphi_i)_{i\geq 1}\) (the first progress point has lowered).

2. Otherwise, if \(P\) ends with a \(\nu\)-step as in Item 2, note that the principal formula \(\nu \times \varphi\) must be disjoint from the progressing thread \((\varphi_i)_{i<\omega}\) by assumption that \(j > 0\). Now \(B^\bar{n}\) is as in Equation (5) so we proceed by a case analysis on the head of \(\bar{n}\):
 - \(B^\bar{n} = \Gamma, \nu \times \varphi\) is finite as required;
 - \(B^{(n+1)\bar{n}} = \Gamma, \varphi^{n+1}(\top)(\omega)\) so, if \(B'(n)\bar{n}\) is not already finite (and so also \(B'(n)\) by Observation 22), we may apply the inductive hypothesis to \(B'(n)\bar{n}\) with respect to the progressing thread \((\varphi'_{i+1})_{i\geq 1}\) along \(B'(n)\) obtained by Lemma 17 (again, the first progress point is lower).

For the base case, when \(j = 0\), \(P\) must end with a \(\nu\)-step as in Item 2 for which \(\varphi_0 = \nu \times \varphi\) is indeed principal. We proceed by case analysis on the head of \(\bar{n}\):

- \(B^\bar{n} = \Gamma, \nu \times \varphi\) is finite as required;
- \(B^{(n+1)\bar{n}} = \Gamma, \varphi^{n+1}(\top)(\omega)\). Now, \(B'(n)\) is finite by Lemma 16, and so \(B'(n)\bar{n}\) is finite by Observation 22, and so indeed \(B^{(n+1)\bar{n}}\) is finite as required.

\[\square\]

C Appendix for Section 4

Proof of Proposition 26. We will show for the sequent \(b^n, z_a, \text{Inv}\) (and it will follow similarly for \(a^n, z_b, \text{Inv}\)). We have the following.

\[
\frac{b^n, (b^\bot)^*}{b^n, z_a, (b^\bot)^* \otimes z_a} \quad \frac{(\otimes)}{b^n, z_a, \text{Inv}}
\]

We now proceed by induction on \(n\). We call \(\pi_m\) the proof of \(b^n, (b^\bot)^*\).
\[\begin{align*}
\text{Base Case: } n = 0. & \quad \text{We have} \\
& \frac{1}{1} \quad \frac{1 \oplus (b^+ \otimes (b^+)^*)^{(\oplus_1)}}{(b^+)^*} \quad \text{(\(\mu\))}
\end{align*}\]

\[\begin{align*}
\text{Induction Case: } n = m + 1. & \quad \text{We have} \\
& \frac{\beta \cdot (id)}{b^m, (b^+)^*} \quad \frac{b^{m+1}, b^+ \otimes (b^+)^*}{b^{m+1}, (b^+)^*} \quad \text{(\(\otimes\))}
\end{align*}\]

Proof of Lemma 27. If \(\text{CP}(p) = \varphi\) apply a \((\mu)\) rule on \(\text{CP}(p)\) otherwise apply a \((\nu)\) rule to obtain \(\varphi\) and then apply the \((\mu)\) rule as before. Now, apply a rule such that the \(|I| + 1\)-ary \(\oplus\)-formula is principal and project on \([\text{ins}]\). We will now do a case analysis on \([\text{ins}]\).

Suppose \(\text{ins}\) is an increment. Wlog assume it increments register \(r_1\). So, \(m' = m + 1\) and \(n' = n\). We have the following.

\[\begin{align*}
& \frac{\beta \cdot (id)}{p^+, p} \quad \frac{q, \text{CP}(q), a^{m+1}, b^n, \text{Inv}}{q \otimes a \otimes \text{CP}(q), a^m, b^n, \text{Inv}} \quad \text{(\(\otimes\))} \\
& \frac{\beta \cdot (id)}{p^+, p} \quad \frac{((\text{CP}(q) \otimes q) \& z_a) \oplus (a^+ \otimes (\text{CP}(q) \otimes q')), a^m, b^n, \text{Inv}}{(\text{CP}(q) \otimes q) \& z_a, b^n, \text{Inv}} \quad \text{(\(\otimes\))} \\
& \frac{\beta \cdot (id)}{p^+, p} \quad \frac{(\text{CP}(q) \otimes q) \& z_a, b^n, \text{Inv}}{(\text{CP}(q) \otimes q) \& z_a) \oplus (a^+ \otimes (\text{CP}(q) \otimes q')), p, a^m, b^n, \text{Inv}} \quad \text{(\(\otimes\))}
\end{align*}\]

Suppose \(\text{ins}\) is a decrement of a non-zero register. Again, wlog assume it is \(r_1\). So, \(m' = m - 1\) and \(n' = n\). We have the following.

\[\begin{align*}
& \frac{\beta \cdot (id)}{p^+, p} \quad \frac{\text{CP}(q), q', a^{m-1}, b^n, \text{Inv}}{\text{CP}(q') \otimes q', a^m, b^n, \text{Inv}} \quad \text{(\(\otimes\))} \\
& \frac{\beta \cdot (id)}{p^+, p} \quad \frac{((\text{CP}(q) \otimes q) \& z_a) \oplus (a^+ \otimes (\text{CP}(q) \otimes q')), a^m, b^n, \text{Inv}}{(\text{CP}(q) \otimes q) \& z_a, b^n, \text{Inv}} \quad \text{(\(\otimes\))} \\
& \frac{\beta \cdot (id)}{p^+, p} \quad \frac{(\text{CP}(q) \otimes q) \& z_a, b^n, \text{Inv}}{(\text{CP}(q) \otimes q) \& z_a) \oplus (a^+ \otimes (\text{CP}(q) \otimes q')), p, a^m, b^n, \text{Inv}} \quad \text{(\(\otimes\))}
\end{align*}\]
Example 41 (Focusing). The following proof is unfocused, where principal formulas are underlined:

\[
\begin{array}{ccc}
1 \quad 1 \quad 1 \\
\frac{A, \perp}{A, A \perp} \quad \frac{B, B \perp}{B, C \perp} \quad \frac{C, C \perp}{C, C \perp} \\
\frac{1 \otimes A, A \perp \oplus D}{1 \otimes A, A \perp \oplus D} \quad \frac{B, C \perp \oplus B \perp}{B \& C, C \perp \oplus B \perp} \quad \frac{A, C \perp}{A, C \perp} \\
\frac{1 \otimes A, B \& C, (A \perp \oplus D) \otimes (C \perp \oplus B \perp)}{1 \otimes A, B \& C, (A \perp \oplus D) \otimes (C \perp \oplus B \perp)}
\end{array}
\]

Read bottom-up, the proof begins with a rule on a positive formula, despite being a negative sequent due to the occurrence of \(B \& C\). On the left branch, the first principal formula is not auxiliary for the lower step, despite there being a positive auxiliary subformula \(A \perp \oplus D\).

Here is a focused version of the ‘same’ proof, where principal formulas are underlined:

\[
\begin{array}{ccc}
1 \quad 1 \quad 1 \\
\frac{A, \perp}{A, A \perp} \quad \frac{B, B \perp}{B, C \perp} \quad \frac{C, C \perp}{C, C \perp} \\
\frac{1 \otimes A, A \perp \oplus D}{1 \otimes A, A \perp \oplus D} \quad \frac{B, C \perp \oplus B \perp}{B \& C, C \perp \oplus B \perp} \quad \frac{A, C \perp}{A, C \perp} \\
\frac{1 \otimes A, B \& C, (A \perp \oplus D) \otimes (C \perp \oplus B \perp)}{1 \otimes A, B \& C, (A \perp \oplus D) \otimes (C \perp \oplus B \perp)}
\end{array}
\]