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Abstract9

Extensions of Girard’s linear logic by least and greatest fixed point operators (µMALL) have been10

an active field of research for almost two decades. Various proof systems are known viz. finitary11

and non-wellfounded, based on explicit and implicit (co)induction respectively. In this paper, we12

compare the relative expressivity, at the level of provability, of two complementary infinitary proof13

systems: finitely branching non-wellfounded proofs (µMALL∞) vs. infinitely branching well-founded14

proofs (µMALLω,∞). Our main result is that µMALL∞ is strictly contained in µMALLω,∞.15

For inclusion, we devise a novel technique involving infinitary rewriting of non-wellfounded proofs16

that yields a wellfounded proof in the limit. For strictness of the inclusion, we improve previously17

known lower bounds on µMALL∞ provability from Π0
1-hard to Σ1

1-hard, by encoding a sort of Büchi18

condition for Minsky machines.19
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1 Introduction28

Fixed point logics have garnered significant interest from computational logicians over the29

years. In particular the extension of languages by least and fixed point operators, µ and ν30

respectively, has been comprehensively explored in modal logic [24, 38], arithmetic [23, 31],31

first-order logic [32, 15, 1], and linear logic [36, 7].32

In terms of reasoning, least fixed points allow for inductive proof, while greatest fixed33

points, being dual to least fixed points, allow for coinductive proof. Naturally, the corres-34

ponding (co)induction proof rules must incorporate an arbitrary (co)invariant, a fundamental35

barrier to both proof theoretic investigations and (automated) proof search. To this end36

various alternative proof methods have been proposed, incorporating ‘infinitary behaviour’37

at the level of proofs:38

Infinitary branching (but wellfounded) systems have origins in the proof theory of arith-39

metic [11] and have been applied to numerous areas, including the modal µ-calculus [25, 37]40

and extensions of Kleene algebra [34, 28].41

More recently, non-wellfounded (but finitely branching) and cyclic proofs have been42

proposed for (co)inductive reasoning, originating in the modal µ-calculus [33, 2] and43

applied to theories of arithmetic [8, 9], type systems [27, 13, 12], and linear logic [36, 20, 6].44
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23:2 Comparing infinitary systems for linear logic with fixed points

A natural question to ask is whether all these approaches prove the same theorems or not.45

In this work, we examine this question in the setting of linear logic, µMALL. In particular,46

we compare the non-wellfounded system µMALL∞ from [6] with a wellfounded infinitary47

branching system µMALLω,∞ inspired by [17]. This builds on previous work [14] that focused48

on comparing the various finitary systems for µMALL. Our main result is that µMALLω,∞49

proves strictly more theorems than µMALL∞:50

▶ Theorem 1. µMALL∞ ⊊ µMALLω,∞51

Organisation and contributions. In Section 2, we recall the language of µMALL and present52

its various systems, in particular µMALL∞ and µMALLω,∞. In Section 3 we prove the53

inclusion part of Theorem 1. Namely, we give a coinductive translation from µMALL∞ to54

µMALLω,∞, and then exploit the correctness condition of µMALL∞ to deduce that the image55

of this translation is wellfounded, Theorem 14. In Section 4 we reduce a ‘Büchi condition’ for56

Minsky machines to µMALL∞ provability, Proposition 32, implying the latter is Σ1
1-hard by57

[3], Theorem 33, yielding the strictness part of Theorem 1. Finally in Section 5 we give a Π1
258

upper bound for µMALL∞, Theorem 35, by appealing to analytic determinacy of its ‘proof59

search game’. We present concluding remarks in Section 6; supplementary exposition and60

formal proofs can be found in Appendices A–C. All our results are summarised in Figure 1.61

Notation. For a formula φ we write φn(x) for
n︷ ︸︸ ︷

φ(φ(· · · (φ(x)) · · · ). We shall also frequently62

suppress or explicitly indicate variables as convenient, e.g. we often identify φ and φ(x),63

using the latter when we want to distinguish (some occurrences of) the variable x. When64

working with binders, e.g. µ and ν, we shall employ a standard convention of using dots, e.g.65

µx.φ or νx.ψ to signify that the µ or ν binds as far as possible to the right.66

A note on (effective) descriptive set theory. In this work, we shall assume some familiarity67

with notions from (effective) descriptive set theory, namely the classes of the analytical68

hierarchy, Π1
1, Σ1

1, Π1
2 etc. All necessary notions can be found in well-known textbooks like69

[29, 35] and via online resources.70

2 Background71

Linear logic, introduced by Girard [21], refines usual disjunction and conjunction into two72

orthogonal pairs of connectives: the multiplicatives O,⊗ and the additives ⊕,N. Together73

with their units ⊥, 1,0,⊤ respectively, the resulting logic MALL (‘multiplicative additive74

linear logic’) is given in Figure 2 (colours may be ignored for now). Note here that the rules75

operate on sequents, which are finite multisets of formulas: as usual commas denote multiset76

union, and set braces are omitted. All sequents are ‘one-sided’, i.e. a sequent Γ should be77

read as ⊢ Γ.78

MALL is distinguished from usual logics by its notable absence of structural rules for the79

multiplicatives: φOφ ⊢ φ and 0 ⊢ φ are not always satisfied. This is why sequents must80

be multisets (or lists), not sets. In a sense linear logic can be seen as a ‘symmetrisation’81

of intuitionistic logic, which only controls structural rules on one side of an implication,82

resulting in a sort of constructive logic that nonetheless enjoys a form of De Morgan duality,83

hence admitting the one-sided presentation herein.84

This lack of structural behaviour is crucially what leads to the high complexity of85

provability in the presence of ‘exponentials’ in usual linear logic or, in this work, in the86
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µMALLind µMALL⟳ µMALL∞

µMALLω,∞

µMALLω,ω

Σ0
1-complete [14] Σ1

1-hard Theorem 33

Π1
1Π1

2 Theorem 35

\
[17]

Observation 13

Theorem 14

\Corollary 34

? \[14]

Figure 1 Relationships between systems in this work. Solid arrows → denote inclusion, dashed
arrows denote conservative extensions, negated arrows ̸→ denote non-inclusion.

presence of fixed points. See [14, Sect. 2] for some further discussion on the peculiarities of87

linear logic with fixed points compared to other similar logics.88

In the remainder of this section, we shall introduce the language of (multiplicative additive)89

linear logic with fixed points, and present the systems investigated in this work.90

2.1 µMALL preliminaries91

Let us fix two disjoint countable sets of propositional constants A = {a, b, . . . } and variables92

V = {x, y, . . . }.93

▶ Definition 2 ((Pre)-formulas). µMALL pre-formulas are given by the following grammar.

φ,ψ ::= 0 | ⊤ | ⊥ | 1 | a | a⊥ | x | φOψ | φ⊗ ψ | φ⊕ ψ | φNψ | µxφ | νxφ

where a ∈ A, x ∈ V, and µ, ν bind the variable x in φ. Free and bound variables, and94

capture-avoiding substitution are defined as usual. The subformula ordering is denoted ≤.95

When a pre-formula is closed (i.e. has no free variable), we simply call it a formula.96

µxφ and νxφ are intended to denote the least and greatest fixed points of the operator97

λxφ in an appropriate semantics (cf., e.g., [17]). a⊥ is intended to be the negation of a. Note98

that, since variables have no negated instances, positivity of fixed point operators is implicit99

and no further condition is required.100

Thanks to De Morgan duality in linear logic we may extend negation to all (pre-)formulas101

as a meta-operation, in the same way as for classical logic:102

▶ Definition 3. Negation of a pre-formula φ, denoted φ⊥, is the unique involution that103

satisfies the following.104

(0)⊥ = ⊤; (⊥)⊥ = 1; a⊥⊥ = a; x⊥ = x;105

(φOψ)⊥ = φ⊥ ⊗ ψ⊥; (φ⊕ ψ)⊥ = φ⊥Nψ⊥; (µxφ)⊥ = νxφ⊥.106
107

As expected, µ and ν are dual to each other; note also that fixed point variables are simply108

invariant under negation.109

The first systems for µMALL, here called µMALLind, incorporate explicit (co)induction110

rules for the fixed points, inspired by similar developments in other fixed point logics like111

CVIT 2016



23:4 Comparing infinitary systems for linear logic with fixed points

Structural rules
(id)

φ, φ⊥
Γ1, φ Γ2, φ⊥

(cut)
Γ1, Γ2

Logical rules
Γ, φ1, φ2

(O)
Γ, φ1Oφ2

Γ1, φ1 Γ2, φ2
(⊗)

Γ1, Γ2, φ1 ⊗ φ2

Γ, φi
(⊕i)

Γ, φ1 ⊕ φ2

Γ, φ1 Γ, φ2
(N)

Γ, φ1Nφ2

Logical rules (units)
(1)

1
Γ

(⊥)
Γ, ⊥

(⊤)
Γ, ⊤ No rule for 0

Figure 2 Inference rules for MALL, where i ∈ {1, 2}. Purple formulas in premiss(es) and conclusion
are called auxiliary and principal respectively.

the µ-calculus [24, 39]. In our one-sided setting, µMALLind is formally the extension of the112

system MALL in Figure 2 by:113

Γ, φ(µxφ)
(µ)

Γ, µxφ
ψ⊥, φ(ψ) Γ, ψ

(coind)
Γ, νxφ

(1)114

These rules are inspired by the second-order encoding of fixed points: νxφ = ∃x((x⊸ φ)⊗φ).115

Proofs of µMALLind are defined as usual, but the system plays little role in this work; we116

present it only for context. At the level of their rules, the other systems considered in117

this work will only differ from µMALLind in their ν-rules, using alternatives for (coind). All118

systems we consider will have the (µ) rule above (differing from the development in [17]).119

2.2 Non-wellfounded system µMALL∞
120

The standard ‘non-wellfounded’ system for µMALL, here called µMALL∞, was introduced121

in [6], building on earlier work for the fragment without multiplicatives [36, 20]. It is an122

adaptation of systems for the modal µ-calculus from [33, 37] to the setting of linear logic.123

▶ Definition 4 (µMALL∞ pre-proofs). The rules of µMALL∞ extend MALL by:124

Γ, φ(µxφ)
(µ)

Γ, µxφ
Γ, φ(νxφ)

(ν)
Γ, νxφ

(2)125

A pre-proof of µMALL∞, denoted P, P ′, . . . , is a possibly non-wellfounded tree generated126

from the inference rules of µMALL∞.127

Arbitrary non-wellfounded derivations may be fallacious, hence the affectation ‘pre-’128

above. Thus bona fide ‘proofs’ must further satisfy a standard correctness criterion from129

non-wellfounded proof theory. At the same time the progressing criterion distinguishes the130

two fixed points, which have the same rules in Equation (2).131

▶ Definition 5 (Ancestry). A formula occurrence φ in the conclusion of a rule instance is132

a immediate ancestor of an occurrence ψ in a premiss if they have the same colour, as133

typeset in Figure 2 and Equation (2). If φ and ψ are in a context Γ,Γ1,Γ2, we furthermore134

require that they are the same occurrences in the premiss and the conclusion.135

▶ Remark 6 (On occurrences in multisets). Note that, in the definition above, we are implicitly136

assuming that the data structure of a sequent allows us to distinguish different occurrences137

of the same formula. This is a standard convention in structural proof theory that avoids138

low-level peculiarities of working with lists (necessitating additional exchange/permutation139

rules). To be clear, ‘sequents-as-multisets’ should be construed as a sets of occurences of140
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...
(µ)

µx.x
(µ)

µx.x

...
(ν)

νx.x, Γ
(ν)

νx.x, Γ
(cut)

Γ
(a) A pre-proof of arbitrary Γ

...•,ψ (µ)
φ, ψ

(O)
φO ψ

(ν)
ψ = νy.(µx.νz.xOz)Oy

• (µ)
φ = µx.νy.xOy

(b) ν-fairness ⇏ progress

...• (ν)
νx.x, µy.νz.y

(ν)
νx.x, νz.µy.νz.y

(µ)
νx.x, µy.νz.y

• (ν)
νx.x, µy.νz.y

(c) A µMALL∞ proof

Figure 3 Some µMALL∞ pre-proofs. We use identifiers like ‘•’ to describe infinite proofs in a
finite manner. Progressing, non-progressing, and ‘stable’ threads are indicated in green, red, and
yellow respectively.

formulas, e.g. by assigning a name to each occurrence. This is often made explicit in, e.g.,141

type systems with explicit term annotations, but we gloss over this formality in favour of142

lightening the exposition.143

▶ Definition 7 (Threads and proof). Given a branch B through a pre-proof, a thread is a144

maximal path in the graph of immediate ancestry of B. A thread is progressing if it has a145

minimal infinitely often principal formula (under ≤) that is a ν-formula. A pre-proof is a146

proof if each of its infinite branches has a progressing thread.147

A ‘colour-free’ definition of ancestry and threads, along with several other standard148

structural proof theoretic notions, can be found in Appendix A.149

▶ Example 8. In Figure 3 we give several examples of (pre-)proofs. Figure 3a is a pre-proof150

of an arbitrary sequent Γ, exemplifying the inconsistency of arbitrary pre-proofs. It is not151

a proof because the left infinite branch has no progressing thread. Figure 3b is also not a152

proof, despite its only infinite branch having infinitely many (ν)-steps. This is because the153

thread indicated in red has the µ-formula φ as its minimal infinitely often principal formula,154

not the ν-formula ψ. Note that every other thread is eventually stable on ψ (and hence not155

progressing). Finally Figure 3c is indeed a µMALL∞ proof, as its only infinite branch has a156

progressing thread on νxx. (It also happens to have a non-progressing red thread on µyνzy.)157

In this work we shall make crucial use of a (nontrivial) cut-elimination result for µMALL∞:158

▶ Theorem 9 ([6, 5]). Every provable µMALL∞ sequent has a proof without the (cut) rule.159

Finally, we briefly describe an important subsystem of µMALL∞ where the underlying160

proof trees are regular.161

▶ Definition 10. A µMALL∞ pre-proof is cyclic (a.k.a. regular) if it has finitely many162

distinct sub-pre-proofs. The class of cyclic proofs is denoted by µMALL⟳.163

For instance the pre-proofs Figure 3a and Figure 3c are indeed regular whereas Figure 3b164

is not since at each iteration of the bullet the sequent has an extra occurrence of ψ (which165

is thenceforth non-principal). Like µMALLind, the circular system µMALL⟳ will not play a166

significant role in this work.167

▶ Remark 11 (On exponentials). For the reader familiar with the exponentials of linear logic, it168

would be reasonable to ask about the expressivity of extensions of µMALLind, µMALL⟳, µMALL∞
169

by the exponetials !, ?. It turns out that the resulting system is fully conservative over170

µMALLind, µMALL⟳, µMALL∞ respectively, thanks to the fact that exponentials can be171

‘coded’ by fixed point formulas, as noticed by Baelde in [4]. This is one of the reasons for172

omitting the exponentials in the study of linear logic with fixed points.173

CVIT 2016



23:6 Comparing infinitary systems for linear logic with fixed points

2.3 A well-founded system µMALLω,∞174

One of the main points of this work is to compare the non-wellfounded system µMALL∞ with175

an orthogonal notion of infinite proof: well-founded but infinitely branching. Such systems176

are common in proof theory and mathematical logic [11, 30] and have been compared to177

non-wellfounded systems in other settings [37]. To this end, we consider an ‘ω-rule’ for ν,178

motivated by continuous models, e.g. the phase semantics of [17].179

▶ Definition 12. µMALLω,∞ is the extension of MALL by the rules:180

Γ, φ(µxφ)
(µ)

Γ, µxφ
Γ,⊤ Γ, φ(⊤) Γ, φ(φ(⊤)) . . .

(ω)
Γ, νxφ (3)181

Proofs of µMALLω,∞ are defined as usual: they are well-founded (possibly infinite) trees182

generated by the rules of µMALLω,∞.183

The (ω) rule is inspired by the inflationary construction of fixed points, νxφ =
⋂

α∈Ord
φα(⊤).184

It is implicit in µMALLω,∞ that the ν operator is in a sense continuous, closing at ordinal ω,185

like in the models of phase semantics of [17]. In that work, a similar ω-branching system186

µMALLω,ω has been proposed for µMALL but it further restricts µ-rules to:187

Γ, φn(0)
(µn)

Γ, µxφ188

[17] shows that µMALLω,ω is actually quite weak and does not even contain µMALLind.189

Retaining the usual (µ) rule in µMALLω,∞ is rather inspired by the signatures (a.k.a.190

markings or assignments) from [33, 12, 18]. In this work, we shall see that µMALLω,∞ in191

fact contains all the systems we have presented. In particular, note that, since there is no192

rule for 0 in MALL, we immediately have:193

▶ Observation 13. µMALLω,ω ⊆ µMALLω,∞194

3 Inclusion of µMALL∞ in µMALLω,∞195

In this section, we show one of our main results:196

▶ Theorem 14 (Simulating infinite height by infinite width). µMALL∞ ⊆ µMALLω,∞.197

Note in particular the stark contrast with the system µMALLω,ω from [17], which does not198

even contain µMALLind, cf. Figure 1. To prove this result, throughout this section we work199

only with cut-free µMALL∞ proofs, without loss of generality by Theorem 9. Furthermore,200

to prevent issues with productivity along a coinductive definition, we will employ a standard201

technique (e.g.[30]) of ‘bootstrapping’ our µMALL systems with an explicit repetition rule202

Γ
(=)

Γ
.1 While this does affect the notion of pre-proof it does not affect the notion of proof203

in µMALL∞: the progressing condition implies that no infinite branch can have a tail of204

repetitions, and so (=) steps can be contracted while preserving closedness (each sequent205

still concludes a step).206

1 Note that this addition could be avoided by using ‘explicit’ approximants à la [37, 17].
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3.1 Projections207

In this subsection, we will define a notion of ‘proof projection’. Throughout this section208

we will consider sequents Γ = Γ(ψ1, . . . , ψk) where some occurrences of ψ1, . . . , ψk in Γ are209

distinguished. Note that the distinguished occurrences of, say ψi, may include some, none,210

or all of the occurrences of ψi in Γ. This notation allows for distinguished ψi occurrences to211

be subformulas of formulas in Γ, and also for some ψi and ψj to be the same formula when212

i ̸= j. For ψ⃗ = (νx1φ1, . . . , νxkφk), an assignment is simply a list n⃗ = (n1, . . . , nk) ∈ ωk.213

We will write ψ⃗n⃗ := (φn1
1 (⊤), . . . , φnk

k (⊤)), the list obtained by assigning each ni to each ψi.214

▶ Definition 15 (Projections). For a pre-proof P of Γ(ψ⃗), where ψ⃗ = (νx1φ1, . . . , νxkφk),215

and an assignment n⃗ = (n1, . . . , nk) ∈ ωk, we define the projection P (n⃗) a pre-proof of216

Γ(ψ⃗n⃗) by coinduction on P as follows:217

1. If P ends with a step ρ for which no distinguished formula occurrence is principal,218

P1

Γ1(ψ⃗) · · ·

Pm

Γm(ψ⃗)
(ρ)

Γ(ψ⃗)

, then P (n⃗) :=
P1(n⃗)

Γ1(ψ⃗n⃗) · · ·

Pm(n⃗)

Γm(ψ⃗n⃗)
(ρ)

Γ(ψ⃗n⃗)

.219

2. If P ends with a step for which some distinguished formula occurrence is principal,220

P ′

φ(νxφ),Γ(νxφ, ψ⃗)
(ν)

νxφ,Γ(νxφ, ψ⃗)

, then

P (0, n⃗) := (⊤)
⊤,Γ(⊤, ψ⃗n⃗)

P (n+ 1, n⃗) :=
P ′(n,n+1,n⃗)

φ(φn(⊤)),Γ(νxφ, ψ⃗)
(=)

φn+1(⊤),Γ(φn+1(⊤), ψ⃗n⃗)

.221

Note that, in the final case of the definition above, the length of the assignment may222

increase if νxφ distinguishes multiple occurrences in the sequent. This is why, even though223

we shall only ever use projections on a single formula later, we must make the definition224

above more general. This is also a barrier towards any arguments by explicit induction on225

assignments; e.g. Lemma 16 later is demonstrated rather by an argument by infinite descent,226

a now standard leitmotif of non-wellfounded proof theory.227

3.2 Properties of branches along projections228

For µMALL∞ pre-proofs P we associate to each of its (maximal) branches B its induced229

branch B(n⃗) in P (n⃗) in the expected way. Formally B(n⃗) is defined by coinduction on B,230

following the cases of Definition 15:231

1.

 Bi
Γi(ψ⃗)

(ρ)
Γ(ψ⃗)

 (n⃗) :=
Bi(n⃗)
Γi(ψ⃗n⃗)

(ρ)
Γ(ψ⃗n⃗)

232

CVIT 2016



23:8 Comparing infinitary systems for linear logic with fixed points

2.

 B′

φ(νxφ),Γ(νxφ, ψ⃗)
(ν)

νxφ,Γ(νxφ, ψ⃗)

 (0, n⃗) := (⊤)
⊤,Γ(⊤, ψ⃗n⃗) B′

φ(νxφ),Γ(νxφ, ψ⃗)
(ν)

νxφ,Γ(νxφ, ψ⃗)

 (n+ 1, n⃗) :=
B′(n, n+ 1, n⃗)

φ(φn(⊤)),Γ(φn+1(⊤), ψ⃗n⃗)
(=)

φn+1(⊤),Γ(φn+1(⊤), ψ⃗n⃗)

233

Clearly the map B 7→ B(n⃗) from branches of P to branches of P (n⃗) is surjective. It is234

also clear that if B is finite then so is B(n⃗). The remainder of this section is devoted to235

establishing a stronger property: as long as B is finite or progressing, so is B(n⃗). To this236

end we need the following important properties of the action of projections on threads:237

▶ Lemma 16 (Projections on progressing threads terminate). For a µMALL∞ pre-proof P of238

Γ(νxφ, ψ⃗), a branch B of P along which νxφ extends to a progressing thread, and n ∈ ω,239

the branch B(n, n⃗) is finite.240

Proof sketch. Suppose otherwise and take the (maximal) sequence (ni)i<α≤ω of numbers241

assigned to the progressing thread νxφ in the construction of B(n, n⃗) above. By local242

inspection notice that (ni)i<α is monotone non-increasing, and furthermore strictly decreases243

whenever νxφ is principal. Thus α must be finite and bounds the length of B(n, n⃗). ◀244

We also have that projections ‘lower threads’ disjoint from their distinguished formulas,245

by inspection of the description of B(n⃗) above:246

▶ Lemma 17 (Projections preserve disjoint threads). Let P be a pre-proof of Γ(ψ⃗) and B a247

branch of P with B(n⃗) is infinite. If B is progressing then so is B(n⃗). Moreover, if (φi)i<ω is248

a progressing thread2 along B disjoint from all ψ⃗ with progress points (φij )j<ω, then (φi)i<ω249

is also progressing in B(n⃗) with progress points (φij )j<ω.250

Note that B(n⃗) may still be finite when B is infinite in case there is another progressing251

thread along B on a distinguished formula, cf. Lemma 16. Recalling that the map B 7→ B(n⃗)252

from branches of P to branches of P (n⃗) is surjective, we have immediately from Lemma 17:253

▶ Proposition 18 (Projections on proofs are proofs). If P is a µMALL∞ proof, so is P (n⃗).254

3.3 The ω-translation255

We need to give a translation from µMALL∞ proofs to µMALLω,∞ ones. We break this up256

into two steps: first we give the translation, and then prove that the image of this translation257

is wellfounded. To this end we shall refer to ‘pre-proofs’ of µMALLω,∞ too, which may be258

both infinitely wide and infinitely deep.259

▶ Definition 19 (ω-translation). For µMALL∞ pre-proofs P , we define the µMALLω,∞ pre-260

proof Pω by coinduction on P as follows:261

1. if P =
P1

Γ1 · · ·
Pk

Γk
(ρ)

Γ

with ρ ̸= ν, then Pω :=
Pω

1

Γ1 · · ·
Pω

k

Γk
(ρ)

Γ

262

(i.e. ·ω commutes with ρ when ρ ̸= ν).263

2 Recall that P is cut-free, so we may assume the thread starts at the root.
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2. Otherwise, if P =
P ′

Γ, φ(νxφ)
(ν)

Γ, νxφ

then Pω := (⊤)
Γ,⊤

P ′(0)ω

Γ, φ(⊤)

P ′(1)ω

Γ, φ(φ(⊤)) · · ·
(ω)

Γ, νxφ

.264

Note that, whichever rule P ends with, the translation above is productive (it prints a265

rule for each coinductive case) and so Pω is indeed well-defined by coinduction (just like266

projections and induced branches before). Note also that the translation is defined for267

arbitrary pre-proofs, not only proofs. Indeed a pre-proof P may be sent to a non-wellfounded268

pre-proof Pω by the translation, e.g. if P has no (ν) step, then already Pω = P . In particular,269

simply having infinitely many (ν) steps along every infinite branch of P does not suffice to270

imply wellfoundedness of Pω. Let us see some examples to illustrate this:271

▶ Example 20 (ν-fairness ⇏ wellfoundedness of ·ω). Consider the µMALL∞ pre-proof in Fig-272

ure 3b. Recall that this pre-proof is not regular. This irregularity manifests in each branch273

of its image under the ω translation:274

(⊤)
⊤

...
•,⊤ (µ)

φ,⊤
(O)

φO⊤

...
•,φO⊤ (µ)

φ,φO⊤
(O)

φO(φO⊤) · · ·
(ω)

ψ
• (µ)
φ

275

▶ Example 21. Consider the µMALL∞ proof in Figure 3c. To compute its ω-translation let276

us first note that:277

When φ(x) = x we have that φn(⊤) = ⊤ for all n < ω.278

When φ(z) = µy.νz.y we have φn(⊤) = µy.νz.y for all n < ω.279

From here we can readily compute the ω-translation of Figure 3c as:280

(⊤)
⊤, µy.νz.y

{
(⊤)

⊤, µy.νz.y

}ω
(ω)

⊤, νz.µy.νz.y
(µ)

⊤, µy.νz.y



{
(⊤)

⊤, µy.νz.y

}ω
(ω)

⊤, νz.µy.νz.y
(µ)

⊤, µy.νz.y



ω

(ω)
⊤, νz.µy.νz.y

(µ)
⊤, µy.νz.y · · ·

(ω)
νx.x, µy.νz.y

281

3.4 Finiteness of branches in the image of the ω-translation282

The above examples notwithstanding, we will indeed show that, as long as P is progressing,283

Pω is actually wellfounded, and so is a µMALLω,∞ proof after all. First we shall classify284

branches in the image of the ω-translation, just like we did for projections. Note that every285

branch of Pω is induced from a branch of P by choosing, at each ν-step, a corresponding286

projection given by some n ∈ ω. Thus, we may specify an arbitrary (possibly non-maximal)287

branch of Pω by the notation Bn⃗, where B is a branch of P and n⃗ ∈ ω≤ω is some unique288

(possibly infinite) list of natural numbers, indexing the premisses of ω-steps followed by the289

branch. Formally Bn⃗ is defined by coinduction on B, following Definition 19, with a case290

analysis on the head of n⃗ in the case of a (ν) step:291
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 Bi
Γi

(ρ)
Γ


n⃗

:=
Bn⃗i
Γi

(ρ)
Γ

(4)

 B′

Γ, φ(νxφ)
(ν)

Γ, νxφ


ε

:= Γ, νxφ

 B′

Γ, φ(νxφ)
(ν)

Γ, νxφ


0n⃗

:=
(⊤)

Γ,⊤
(ω)

Γ, νxφ B′

Γ, φ(νxφ)
(ν)

Γ, νxφ


(n+1)n⃗

:=
B′(n)n⃗

Γ, φn+1(⊤)
(ω)

Γ, νxφ

(5)292

▶ Observation 22. If B is finite, then so is Bn⃗.293

This follows by induction on the length of B. From here we are able to show:294

▶ Lemma 23. For P a pre-proof, Bn⃗ a branch of Pω: if B is progressing then Bn⃗ is finite.295

Formally this follows by induction on the height of the first progress point of a progressing296

thread along B, following the definition of branches Bn⃗. During the argument we must often297

appeal to the properties of branches along projections from Section 3.2. A full proof is given298

in Appendix B. Of course from here our main result immediately follows:299

Proof of Theorem 14. Let P be a µMALL∞ proof. By Lemma 23 above, all branches of its300

ω-translation Pω are finite. Thus Pω is indeed wellfounded and so a proof of µMALLω,∞. ◀301

4 µMALL∞ is Σ1
1-hard302

A natural question to ask now is if µMALLω,∞ can be embedded in µMALL∞. [37] shows303

that the ω-branching calculus of the modal µ-calculus can be embedded in its corresponding304

non-wellfounded calculus. The argument crucially depends on the fact that any proof of a305

formula φ has finitely many distinct sequents (modulo identifying approximations); however,306

such a condition does not hold in µMALL due to the absence of structural rules. In fact, we307

prove that the inclusion result of the previous section, Theorem 14, is strict.308

In order to do so we will give a Σ1
1 lower bound for µMALL∞ that is incompatible with309

the natural Π1
1 upper bound for µMALLω,∞. To this end, we encode a Büchi’ condition for310

Minsky machines in terms of µMALL∞ provability. This significantly improves a Π0
1 lower311

bound from previous work [14], which was proved by reduction from non-halting of Minsky312

machines.313

Throughout this section we shall write an for
n︷ ︸︸ ︷

aO . . .Oa (which is equivalent to an(⊥)).314

▶ Definition 24. A Minsky machine M is a tuple (Q, r1, r2, I) where Q is a finite set315

of states, r1, r2 are two registers and I is a set of instructions of the form INC(p, ri, q) or316

JZDEC(p, ri, q0, q1), for p, q, q0, q1 ∈ Q and i ∈ {1, 2}, that manipulate the current state and317

the contents of the registers.318

The operational semantics of M is given by its configuration graph, whose vertices are319
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configurations, of form ⟨q, a, b⟩ ∈ Q× N × N, and whose edges are induced from I by:320

⟨p, a, b⟩ INC(p,r1,q)−−−−−−−→ ⟨q, a+ 1, b⟩ ⟨p, a, b⟩ INC(p,r2,q)−−−−−−−→ ⟨q, a, b+ 1⟩321

⟨p, 0, b⟩ JZDEC(p,r1,q0,q1)−−−−−−−−−−−→ ⟨q0, 0, b⟩ ⟨p, a, 0⟩ JZDEC(p,r2,q0,q1)−−−−−−−−−−−→ ⟨q0, a, 0⟩322

⟨p, a+ 1, b⟩ JZDEC(p,r1,q0,q1)−−−−−−−−−−−→ ⟨q1, a, b⟩ ⟨p, a, b+ 1⟩ JZDEC(p,r2,q0,q1)−−−−−−−−−−−→ ⟨q1, a, b⟩323
324

A run is a maximal path in the configuration graph.325

▶ Theorem 25 ([3]). Given a Minsky machine M and a state q0, checking whether there326

exists an infinite run staring from ⟨q0, 0, 0⟩ that visits q0 infinitely often is Σ1
1-hard.327

For the rest of the section, let us fix a Minsky machine M = (Q, r1, r2, I). Construe328

{a, b, za, zb} ∪ Q as a set of propositional constants (assuming {a, b, za, zb} ∩ Q = ∅) and329

{x, y} as a set of variables. We use a and za (respectively, b and zb) to represent the contents330

of the register r1 (respectively, r2). Define parity : Q → {x, y} by parity(q) = x if q = q0 and331

parity(q) = y otherwise. Define the following:332

[INC(p, r1, q)] := p⊥ ⊗ (qOaOparity(q))333

[JZDEC(p, r1, q, q
′)] := p⊥ ⊗ (((parity(q)Oq)Nza) ⊕ (a⊥ ⊗ (parity(q′)Oq′)))334

ψ := µy.

(⊕
ins∈I

[ins]
)

335

φ := ψ(νx.ψ/x)336
337

Finally, define Inv := ((b⊥)∗ ⊗ z⊥
a ) ⊕ ((a⊥)∗ ⊗ z⊥

b ) where we write φ∗ = µx.(1 ⊕ (φ⊗ x)).338

▶ Proposition 26. For any n ∈ N, the sequents bn, za, Inv and an, zb, Inv are provable.339

Define CP : Q → {νx.ψ, φ} such that CP(q) = νx.ψ if q = q0 and CP(q) = φ otherwise.340

▶ Lemma 27 (One step simulation). Let ⟨p,m, n⟩ be a configuration such that ⟨p,m, n⟩ ins−→341

⟨q,m′, n′⟩, for ins ∈ I. The following ‘move’ gadget has a finite µMALL∞ derivation:342

CP(q), q, am
′
, bn

′
, Inv

(mvins )
CP(p), p, am, bn, Inv343

Moreover, if p = q0 then (mvins) has a (ν) step (for which νxψ is principal, necessarily).344

▶ Lemma 28. If there exists a run of M from q0 such that q0 is visited infinitely often, the345

sequent νx.ψ, q0, Inv has a µMALL∞ proof.346

Proof sketch. Let R(p0) = (⟨pi,mi, ni⟩)0≤i<ω be an infinite run of M from q0 (so p0 = q0).347

We construct a pre-proof P (p0) of νx.ψ, q0, Inv by coinduction on R(q0), simply by simulating348

each step of the run by the one-step ‘move’ gadgets from Lemma 27 (see Figure 4 for a349

visualisation). We now argue that P (p0) is progressing, and so is indeed a µMALL∞ proof.350

First, observe that P (p0) has exactly one infinite branch that has infinitely many oc-351

currences of ‘move’ gadgets (mvins). Furthermore, every time there is a move rule with a352

conclusion of the form CP(q0), q0, a
m, bn, Inv, there is a (ν) step, necessarily on CP(q0) = νxψ,353

by Lemma 27. So, since q0 occurs infinitely often in the run, and by cut-freeness, there is an354

infinite thread τ along the formulas CP(pi) which is infinitely often principal for CP(q0) = νxψ355

(the indicated green thread in Figure 4). Finally, by inspection of the formulas CP(pi) and356

the rules of µMALL∞, every formula occurring in τ must have νxψ as a subformula. Thus τ357

is indeed progressing, and so P (p0) is a µMALL∞ proof as required. ◀358
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...

⟨pi(= q0),mi, ni⟩

⟨p2,m2, n2⟩

⟨p1,m1, n1⟩

⟨p0(= q0),m0, n0⟩
ins0

ins1

····
CP(pi(= q0)), pi, ami , bni , Inv

(mvinsi−1 )
...

(mvins2 )
CP(p2), p2, a

m2 , bn2 , Inv
(mvins1 )

CP(p1), p1, a
m1 , bn1 , Inv

(mvins0 )
CP(p0(= q0)), p0, a

m0 , bn0 , Inv

Lemma 30

Figure 4 Simulation of an infinite run by a µMALL∞ proof.

4.1 Background on focusing359

In order to prove the converse of Lemma 28 above, we have to account for all possible proofs.360

In order to tame the space of possibilities we shall appeal to ‘focusing’, a standard technique361

in proof search. Informally, focused proofs are a family of proofs that have more structure362

than usual sequent calculus proofs.363

We first classify the connectives of µMALL by two polarities: positive and negative.364

Inferences for negative connectives are invertible, i.e. they preserve provability bottom-up,365

but the positive inferences do not in general. The negative (respectively, positive) connectives366

of µMALL∞ are N,O,⊥,⊤, ν (respectively, ⊗,⊕, 1, 0, µ).3367

By assigning arbitrary polarities to atomic variables one can extend the notion to formulas368

in such a way that each formula is either positive or negative, depending on its top-level369

connective. A sequent is positive if it contains only positive or atomic formulas, otherwise it370

is negative. A focused proof , briefly, is one where bottom-up:371

only negative rules are applied on negative sequents; and,372

only positive rules are applied on positive sequents;373

any positive auxiliary formula of a positive rule must be principal for the next step;374

Note that the focusing discipline described above ensure that, when reaching a positive375

sequent, bottom-up, positive rules are ‘hereditarily applied’ on a particular positive formula,376

called the focus, until one reaches a negative sequent again. We give an example of (un)focused377

proofs in Appendix C. Importantly we have:378

▶ Theorem 29 ([6]). If Γ has a cut-free µMALL∞ proof, it also has one that is focused.4379

4.2 Provability implies run existence380

In this subsection we prove the converse of Lemma 28 above:381

▶ Lemma 30. If the sequent νx.ψ, q0, Inv is provable in µMALL∞, then there exists a run of382

M from the configuration ⟨q0, 0, 0⟩ such that q0 is visited infinitely often.383

We shall henceforth assume that all µMALL∞ proofs are cut-free, under Theorem 9,384

and focused, under Theorem 29. More specifically we assign atomic polarities as follows:385

a, b, za, zb and q are negative for any state q ∈ Q. We first make a simple observation that386

will aid our proof.387

3 Observe that both the µ and ν rules are invertible. See [6] for an explanation of the choice.
4 The focusing result in [6] is for a logic without atoms but the proof technique can be straightforwardly

extended to account for atoms.
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▷ Claim 31. Inv is not principal in the lowest rule of any focused proof of ψ, p, am, bn, Inv.388

Proof. The sequent ψ, p, am, bn, Inv is positive so if Inv is active, then it is the focus. Without389

loss of generality, assume that the first rule is (⊕1) with principal formula Inv. Then,390

the auxiliary formula is (b⊥)∗ ⊗ za. Since the outermost connective is positive, we must391

immediately apply the (⊗) rule. One of the premisses is of the form ∆, z⊥
a with z⊥

a as focus392

and we cannot apply any inference rule. Because ∆ cannot be za, the identity rule is ruled393

out and no other rules are possible since za is an atom. ◀394

We can now prove the main result of this subsection:395

Proof. The proof has two parts. We first show that one can carve out an infinite run R of396

M from ⟨q0, 0, 0⟩ from a focussed proof of νx.ψ, q0, Inv. Then, we show that q0 is visited397

infinitely often along R.398

Let P be a focussed proof of νx.ψ, q0, Inv. We claim that P can be factored as follows399

where p0 = q0, m0 = 0, and n0 = 0.400

This factorisation yields the required infinite run (⟨pi,mi, ni⟩)i∈ω where for all i,401

⟨pi,mi, ni⟩
insi−−→ ⟨pi+1,mi+1, ni+1⟩.402

Furthermore, if P is a proof, then there are infinitely many occurrences of νx.ψ along this403

branch but, since CP(pi) = νx.ψ only when pi = q0 we obtain that q0 occurs infinitely often404

in the run. Therefore, we are left to prove that P can be factored as described.405

We will give a proof-search argument to show that every pre-proof of CP(p), p, am, bn, Inv406

goes through CP(q), q, am′
, bn

′
, Inv such that ⟨p,m, n⟩ ins−→ ⟨p′,m′, n′⟩ for some instruction407

ins. If p = q0 and CP(p) = νx.ψ then the unique rule that can be applied is (ν) to obtain408

the sequent φ, p, am, bn, Inv (otherwise CP(p) is anyway φ). From Claim 31, we get that409

Inv cannot be the focus. Therefore, φ is the focus and the next rules are necessarily (µ)410

and ⊕ respectively whence we have the sequent [ins], p, am, bn, Inv for some instruction411

ins. If ins is not an instruction that can be fired at p, proof-search immediately fails . If412

ins is an increment, it is trivial to obtain the result. If ins is a decrement of the form413

p⊥ ⊗ (((CP(q)Oq)Nza) ⊕ (a⊥ ⊗ (CP(q′)Oq′))), we need to make sure that the control goes to414

the appropriate state depending on whether r1 is zero or not. We will show that an erroneous415

choice fails proof-search. We have two cases:416

Case 1. Suppose we have a⊥ ⊗ (CP(q′)Oq′), bn, Inv. Here a⊥ ⊗ (CP(q′)Oq′) is the focus417

since in the earlier step ((CP(q)Oq)Nza) ⊕ (a⊥ ⊗ (CP(q′)Oq′)) was the focus. Therefore we418

have sequent of the form ⊢ ∆, a⊥ where a⊥ is the focus and ∆ cannot be {a}.419

Case 2. Suppose we have (CP(q)Oq)Nza, am, bn, Inv. This is a negative sequent, so the420

next rule is necessarily (N) and we have a premiss of the form za, a
m, bn, Inv where Inv is the421

focus. It is easy to check that for choices (⊕1) and (⊕2), proof-search fails. ◀422

Putting Lemmas 28 and 30 together we have:423

▶ Proposition 32 (Reduction). M has an infinite run from q0 visiting q0 infinitely often if424

and only if there is a µMALL∞ proof of νx.ψ, q0, Inv.425

By Theorem 25 we thus have:426

▶ Theorem 33. µMALL∞ is Σ1
1-hard.427
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From here, we can conclude strictness of the inclusion from Theorem 14:428

▶ Corollary 34. µMALL∞ and µMALLω,∞ prove different sets of theorems.429

Proof. Clearly µMALLω,∞ ∈ Π1
1: µMALLω,∞ proves Γ just if:430

“every set of sequents closed under µMALLω,∞ rules contains Γ”431

Note here that closure of a set X of sequents under µMALLω,∞ is indeed arithmetical; in432

particular closure under the (ω)-rule is Π0
2: “for every sequent Γ, νxφ not in X there exists433

n ∈ ω such that Γ, φn(⊤) is not in X.”434

On the other hand, if µMALL∞ = µMALLω,∞ then µMALLω,∞ would be Σ1
1-hard, by435

Theorem 33, contradicting its Π1
1 membership as Σ1

1 ̸⊆ Π1
1. ◀436

Finally Corollary 34 and Theorem 14 together imply Theorem 1, our main result.437

5 A Π1
2 upper bound on µMALL∞

438

Our Σ1
1-hardness result, Theorem 33, places µMALL∞ definitively in the analytical hierarchy.439

Previously the best known lower bound was Π0
1 from [14]. In terms of upper bounds, a naïve440

Σ1
3 upper bound is readily obtained by the description of µMALL∞-provability:441

“there exists a preproof s.t., for all infinite branches, there exists a progressing thread.”442

Note here that checking whether a given thread is progressing is indeed arithmetical: “there443

exists some n ∈ N and a formula νxφ that is infinitely often principal, and such that every444

formula in the thread after position n has νxφ as a subformula”. In fact we can improve this445

upper bound considerably, comprising the main result of this section:446

▶ Theorem 35 (∃0#). µMALL∞ ∈ Π1
2.447

Note that this result, strictly speaking, depends on the existence of 0# (as indicated),448

which is equivalent to lightface analytic determinacy over ZFC [22]. To demonstrate this449

result we employ ideas from proof search, namely game theoretic formulations therein inspired450

by previous work [26, 19].451

▶ Definition 36 (Proof search game, for µMALL∞). The proof search game for µMALL∞ is a452

two-player game played between Prover (P), whose positions are inference steps of µMALL∞,453

and Denier (D), whose positions are sequents of µMALL∞. A play of the game starts from454

a particular sequent: at each turn, P chooses an inference step with the current sequent as455

conclusion, and D chooses a premiss of that step; the process repeats from this sequent and456

the two players continue taking turns as long as possible.457

P wins an infinite play of the game if the branch constructed has a progressing thread.5458

It is not hard to see that winning strategies for P correspond to non-wellfounded proofs:459

▶ Observation 37. P has a winning strategy from Γ iff there is a µMALL∞ proof of Γ.460

When the state space is finite, e.g. for the µ-calculus, the corresponding proof search game is461

finite-memory determined, yielding regular completeness of the proof system [33]. We do462

not have this property here, but the characterisation above nonetheless allows us to view D463

strategies as a form of ‘semantics’ for µMALL∞ under determinacy:464

5 In the case of deadlock, the player with no valid move loses.
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▶ Proposition 38 (∃0#). The proof search game for µMALL∞ is determined.465

This is a consequence of (lightface) analytic determinacy, as the winning condition is indeed466

Σ1
1: “there exists a progressing thread”. From here we readily obtain our upper bound:467

Proof of Theorem 35. There is a µMALL∞ proof of a sequent Γ if and only if P has a468

winning strategy from Γ by Observation 37, if and only if there is no winning strategy for D469

from Γ, by Proposition 38. The latter is clearly a Π1
2 property:470

“for every D-strategy there exists a play for which there exists a progressing thread” ◀471

6 Conclusion472

In this work, we compared the expressivity of the infinitary systems µMALL∞ and µMALLω,∞473

for linear logic with fixed points, and improved bounds on their complexity, cf. Figure 1. We474

conclude this paper with some remarks on potential future directions of research.475

It would be pertinent to extend our comparison to systems with wider branching, indexed476

by some ordinal α, say µMALLα,∞. Similar systems were considered in [17, 16]. Such477

systems become weaker (i.e. have fewer theorems) as α increases, as more cases must478

be proved to derive a ν formula. In this sense it would be particularly interesting if we479

could show that µMALL∞ coincides with some µMALLα,∞, calibrating the strength of480

µMALL∞ according to some ordinal measure. Let us point out that such an ordinal must481

be sufficiently large to evade a Π1
1 upper bound, as for µMALLω,∞, due to Σ1

1-hardness of482

µMALL∞; at the same time the systems µMALLα,∞ must reach a limit by α = ω1, for483

cardinality reasons, giving a naïve upper bound.484

It would also be interesting to prove bona fide metalogical properties, such as cut-485

elimination and focusing, for µMALLω,∞ (and friends), just like for µMALL∞ in [6] and486

for several other infinitely branching systems in related areas [30, 25, 34]. Let us point487

out that the embedding of µMALL∞ in µMALLω,∞ of Section 3 does not introduce cuts,488

arguably evidence that µMALLω,∞ might enjoy a well-behaved proof theory. We expect489

such a result to be easier to establish than the analogous results for µMALL∞, thanks to490

the underlying wellfoundedness of µMALLω,∞.491

What is the exact complexity of µMALL∞? This question remains open after this work,492

but we have significantly narrowed the gap to the range between Σ1
1 and Π1

2. It would also493

be pertinent to investigate the complexity of the infinitary wellfounded system µMALLω,∞494

(and µMALLω,ω and friends). Let us point out also that the (weaker) Π0
1 lower bound495

for µMALL∞ from [14] applied already to the alternation-free fragment of µMALL∞.6496

Our Σ1
1 lower bound crucially uses a single alternation to mimic the Büchi condition on497

Minsky machines. It would be interesting to further investigate the effect of alternation498

on the complexity of systems we have investigated.499
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A Appendix for Section 2629

Here we give a ‘colour-free’ definition of the system µMALL∞. Let us first recall some630

standard terminology relating to inference rules [10].631

The sequent(s) in a rule displayed above the line are premisse(s) and the unique sequent632

below the line is the conclusion. In a logical or fixed point rule, the principal formula is633

the distinguished formula occurrence in its conclusion in Equation (2) or Figure 2. Auxiliary634

formulas are the formula occurrences distinguished in the premisse(s). Other formula635

occurrences in logical or fixed point rules are side formulas.636

▶ Definition 39. For an inference step r, define the immediate ancestor relation IA(r)637

on formula occurrences of r by: (φ,ψ) ∈ IA(r) if φ is principal and ψ is auxiliary, or φ is a638

side formula occurrence in the conclusion and ψ is the corresponding side formula occurrence639

in a premisse; or r is structural and φ is a formula occurrence in the conclusion and ψ is640

the corresponding formula occurrence in a premisse.641

▶ Definition 40 ([6]). Let β = (Γi)i<ω be an infinite branch of a µMALL∞ pre-proof π and642

let ri be the rule with conclusion Γi. A thread of β is given by k ∈ N and a sequence of643

formula occurrences {φi}k<i<ω such that, for k < i < ω, we have (φi, φi+1) ∈ IA(ri). A644

thread τ is progressing if it is infinitely often principal and the smallest formula occurring645

infinitely often in τ is a ν-formula.646
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B Appendix for Section 3647

Proof of Lemma 23. Let (φi)i<ω be a progressing thread along B and let φj be its first648

progress point. We shall show that Bn⃗ is finite by induction on j, the height of the first649

progress point, by consideration of the definition of Bn⃗.650

When j > 0, have two inductive steps:651

If P ends with a step ρ ̸= ν as in Item 1 then Bn⃗ is as in Equation (4) and so we may652

apply the inductive hypothesis to Bn⃗i with respect to the progressing thread (φi)i≥1 (the653

first progress point has lowered).654

Otherwise, if P ends with a ν-step as in Item 2, note that the principal formula νxφ655

must be disjoint from the progressing thread (φi)i<ω by assumption that j > 0. Now Bn⃗656

is as in Equation (5) so we proceed by a case analysis on the head of n⃗:657

Bε = Γ, νxφ is finite as required;658

B0n⃗ =
(⊤)

Γ,⊤
(ω)

Γ, νxφ
is finite as required;659

B(n+1)n⃗ =
B′(n)n⃗

Γ, φn+1(⊤)
(ω)

Γ, νxφ
so, if B′(n)n⃗ is not already finite (and so also B′(n) by660

Observation 22), we may apply the inductive hypothesis to B′(n)n⃗ with respect to661

the progressing thread (φ′
i)i≥1 along B′(n) obtained by Lemma 17 (again, the first662

progress point is lower).663

For the base case, when j = 0, P must end with a ν-step as in Item 2 for which φ0 = νxφ664

is indeed principal. We proceed by case analysis on the head of n⃗:665

Bε = Γ, νxφ is finite as required;666

B0n⃗ =
(⊤)

Γ,⊤
(ω)

Γ, νxφ
is finite as required;667

B(n+1)n⃗ =
B′(n)n⃗

Γ, φn+1(⊤)
(ω)

Γ, νxφ
. Now, B′(n) is finite by Lemma 16, and so B′(n)n⃗ is finite668

by Observation 22, and so indeed B(n+1)n⃗ is finite as required. ◀669

C Appendix for Section 4670

Proof of Proposition 26. We will show for the sequent bn, za, Inv (and it will follow similarly671

for an, zb, Inv). We have the following.672

bn, (b⊥)∗ (id)
za, za

⊥
(⊗)

bn, za, (b⊥)∗ ⊗ za
⊥

(⊕1)
bn, za, Inv673

We now proceed by induction on n. We call πm the proof of bm, (b⊥)∗.674
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Base Case: n = 0. We have675

(1)
1

(⊕1)
1 ⊕ (b⊥ ⊗ (b⊥)∗)

(µ)
(b⊥)∗

676

Induction Case: n = m+ 1. We have677

(id)
b, b⊥

IH = πm

bm, (b⊥)∗
(⊗)

bm+1, b⊥ ⊗ (b⊥)∗
(µ),(⊕2)

bm+1, (b⊥)∗
678

◀679

Proof of Lemma 27. If CP(p) = φ apply a (µ) rule on CP(p) otherwise apply a (ν) rule to680

obtain φ and then apply the (µ) rule as before. Now, apply a rule such that the (|I| + 1)-ary681

⊕-formula is principal and project on [ins]. We will now do a case analysis on [ins].682

Suppose ins is an increment. Wlog assume it increments register r1. So, m′ = m+ 1 and683

n′ = n. We have the following.684

(id)
p⊥, p

q,CP(q), am+1, bn, Inv
(O)2

qOaOCP(q), am, bn, Inv
(⊗)

p⊥ ⊗ (qOaOCP(q)), p, am, bn, Inv685

Suppose ins is a decrement of a non-zero register. Again, wlog assume it is r1. So,686

m′ = m− 1 and n′ = n. We have the following.687

(id)
p⊥, p

(id)
a⊥, a

CP(q′), q′, am−1, bn, Inv
(O)

CP(q′)Oq′, am−1, bn, Inv
(⊗)

a⊥ ⊗ (CP(q′)Oq′), am, bn, Inv
(⊕2)

((CP(q)Oq)Nza) ⊕ (a⊥ ⊗ (CP(q′)Oq′)), am, bn, Inv
(⊗)

p⊥ ⊗ (((CP(q)Oq)Nza) ⊕ (a⊥ ⊗ (CP(q′)Oq′))), p, am, bn, Inv688

Suppose ins is a decrement of a register at zero. Again, wlog assume it is r1. So,689

m′ = m = 0 and n′ = n. We have the following.690

(id)
p⊥, p

CP(q), q, bn, Inv
(O)

CP(q)Oq, bn, Inv
Proposition 26

za, b
n, Inv

(N)
(CP(q)Oq)Nza, bn, Inv

(⊕1)
((CP(q)Oq)Nza) ⊕ (a⊥ ⊗ (CP(q′)Oq′)), bn, Inv

(⊗)
p⊥ ⊗ (((CP(q)Oq)Nza) ⊕ (a⊥ ⊗ (CP(q′)Oq′))), p, bn, Inv691
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▶ Example 41 (Focusing). The following proof is unfocused, where principal formulas are692

underlined:693

(1)
1

(id)
A,A⊥

(⊕)
A,A⊥ ⊕D

(⊗)
1 ⊗A,A⊥ ⊕D

(id)
B,B⊥

(⊕)
B,C⊥ ⊕B⊥

(id)
C,C⊥

(⊕)
C,C⊥ ⊕B⊥

(N)
BNC,C⊥ ⊕B⊥

(⊗)
1 ⊗A,BNC, (A⊥ ⊕D) ⊗ (C⊥ ⊕B⊥)

694

Read bottom-up, the proof begins with a rule on a positive formula, despite being a negative695

sequent due to the occurrence of BNC. On the left branch, the first principal formula is696

not auxiliary for the lower step, despite there being a positive auxiliary subformula A⊥ ⊕D.697

Here is a focused version of the ‘same’ proof, where principal formulas are underlined:698

(1)
1

(id)
A,A⊥

(⊗)
1 ⊗A,A⊥

(⊕)
1 ⊗A,A⊥ ⊕D

(id)
B,B⊥

(⊕)
B,C⊥ ⊕B⊥

(⊗)
1 ⊗A,B, (A⊥ ⊕D) ⊗ (C⊥ ⊕B⊥)

(1)
1

(id)
A,A⊥

(⊗)
1 ⊗A,A⊥

(⊕)
1 ⊗A,A⊥ ⊕D

(id)
C,C⊥

(⊕)
C,C⊥ ⊕B⊥

(⊗)
1 ⊗A,B, (A⊥ ⊕D) ⊗ (C⊥ ⊕B⊥)

(N)
1 ⊗A,BNC, (A⊥ ⊕D) ⊗ (C⊥ ⊕B⊥)

699

◀700
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