
Interpolation as Cut-introduction1

On the Computational Content of Craig-Lyndon Interpolation2

Alexis Saurin #3

IRIF – CNRS, Université Paris Cité & INRIA Picube4

Abstract5

Analyzing Maehara’s method for proving Craig’s interpolation theorem, we extract a “proof relevant”6

interpolation theorem for first-order LL in the sense that if π is a cut-free sequent proof of A ⊢ B,7

we can find a formula C in the common vocabulary of A and B and proofs π1, π2 of A ⊢ C and8

C ⊢ B respectively such that π1 composed with π2 cut-reduces to π. As a direct corollary, we get9

similar proof relevant interpolation results for LJ and LK using linear translations. This refined10

interpolation is then rephrased in terms of a cut-introduction process synthetizing the interpolant.11

Finally, we analyze the computational content of interpolation by proving and interpolation12

result for Curien and Herbelin’s Duality of Computation.13

The present document uses color: a color-blind-friendly and printable version is available at https:14

//www.irif.fr/_media/users/saurin/pub/interpolation_as_cut_introduction-cb.pdf.15

2012 ACM Subject Classification16

Keywords and phrases Classical Logic, Interpolation, Cut Elimination, Linear Logic, Sequent17

calculus, System L18

Digital Object Identifier 10.4230/LIPIcs...19

1 “– Why Not a Proof-Relevant Interpolation Theorem?20

– Introduce Cuts, Of Course!”21

In the words of Solomon Feferman, “though deceptively simple and plausible on the face22

of it, Craig’s interpolation theorem (...) has proved to be a central logical property that23

has been used to reveal the deep harmony between the syntax and semantics of first order24

logic” [17]. Indeed, Craig’s interpolation (which states that in the predicate calculus, if25

A ⊢ B, there exists a formula C built from the relation symbols occurring both in A and B26

such that A ⊢ C and C ⊢ B) and its developments suggest far deeper connections between27

models and proofs than the simple correspondence between provability and validity given by28

Gödel completeness theorem. This could be argued to be in line with and pursue structural29

proof-theoretic proofs of Gödel completeness theorem such as Schütte proof [36] or the more30

recent analysis by Basaldella and Terui of completeness in Ludics [3, 2].31

First of all, one should recall that while the original proof of interpolation by Craig [7, 8]32

was proof-theoretic as well as Maehara’s method [25] its most striking applications were model-33

theoretic results whether we consider standard model-theoretic results that are consequences34

of interpolation, such as Beth definability theorem [4] or Robinson’s consistency theorem [33]35

or if we consider modern uses of interpolation in model-checking [21, 27]. Among the proof-36

theoretical methods for proving interpolation, the success of Maehara’s method is probably37

due to its wide applicability to a range of logics and proof-systems, from intuitionistic38

logic [28, 36] to modal logics [18, 24, 1, 37] or in infinitary logics and abstract model39

theory [17, 15].40

While in most proof theory textbooks [20, 36, 40, 41] Craig’s interpolation theorem is41

presented as an application of cut-elimination, one shall see here that it also has in fact42

much to do with cut-introduction, giving a proof-relevant and computational content to43

Interpolation theorem. This opens the way to an analysis of interpolation in terms of the44

denotational semantics of proofs and programs.45

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexis.saurin@irif.fr
https://www.irif.fr/_media/users/saurin/pub/interpolation_as_cut_introduction-cb.pdf
https://www.irif.fr/_media/users/saurin/pub/interpolation_as_cut_introduction-cb.pdf
https://www.irif.fr/_media/users/saurin/pub/interpolation_as_cut_introduction-cb.pdf
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Interpolation as cut-introduction

Contributions and organization of the paper. More precisely, after providing back-46

ground on linear logic sequent calculus in Section 2, we state in Section 3 the following result47

for first-order linear logic (LL in the following): For any first-order LL formulas A, B, if π48

proves A ⊢ B, there exists a formula C in the common vocabulary (that refers to the subset49

of the first-order language occurring in a formula, in terms of relation symbols, possibly50

taking into account polarity constraints as in Lyndon’s interpolation) of A and B and proofs51

π1, π2 of A ⊢ C and C ⊢ B respectively such that (Cut)(π1, π2), that is π1 composed with π2,52

is equivalent to π (by =cut we refer to the congruence generated by the cut-reduction rules):53

π1
A ⊢ C

π2
C ⊢ B

(Cut)
A ⊢ B

=cut
π

A ⊢ B.

Interpolation can therefore be achieved while preserving the computational / denotational54

content of proofs, while factoring the computation through an interfacing, interpolant type55

made only of the base types used in both the input and output types.56

This result is then extended to classical and intuitionistic logics simply by means of linear57

translations, which sheds an interesting light on the relationship between Lyndon and Craig’s58

interpolation.59

Then, by a further analysis of Maehara’s method, we show in Section 4 that the interpol-60

ation process for a cut-free proof deriving A ⊢ B can be in fact decomposed in two phases:61

(i) an ascending phase which equips each sequent of π with a splitting is followed by (ii)62

a descending phase which solves the interpolation problem. This latter descending phase63

happens to be a cut-introduction phase which provides a proof of the proof-relevant inter-64

polation result of the previous section. In particular, the resulting proof is, by construction,65

denotationally equal to π.66

Finally, in Section 5, we consider the computational content of interpolation and address67

this question using the framework of the Duality of Computation introduced by Curien and68

Herbelin: we consider the linear system L, a term calculus with typing rules very close to69

that of the sequent calculus1, and prove a computational interpolation result.70

Related works. Surprisingly we could not find any occurrence in the literature analyzing71

Maehara’s method in terms of cut-elimination (or rather, cut-introduction) even though all72

ingredients were there since Maehara’s seminal work.73

On the other hand, another early proof-theoretic proof of interpolation theorem was pro-74

posed by Prawitz for natural deduction [31]. Just like for Maehara’s method the strengthened,75

proof-relevant interpolation result was at hand in this work as well and Čubrić actually76

showed this in the setting of the simply typed λ-calculus as well as a corresponding factoriza-77

tion result for bicartesian closed categories in the early 90s [9, 10]. Sadly, Čubrić’s paper78

as well as his PhD thesis supervised by Makkai, received too little attention and very few79

following works refer to his results: we could only find less than 10 references to these works80

among them only three truly consider the interpolation aspect [16, 26, 23]2. We hope that81

the present work can contribute to foster interest in Čubrić results.82

1 System L can be viewed as achieving a Curry-Howard correspondence with sequent calculus proofs –
while the λ-calculus achieves a correspondence with natural deduction proofs

2 Matthes [26] extends Čubrić’ results to a natural deduction with general elimination rules and a
corresponding term calculus while Kanazawa [23] considers interpolation in purely implicational fragments
of intuitionistic logic and finds workarounds for the lack of interpolation in this setting. On the way,
he considers various sequent calculi and proves a result which has some similarities with our result
but is weaker both in terms of the logical language – which is restricted to implicative LJ– and of the
characterization of the equivalence between the interpolating proofs and the original proof.

A. Saurin XX:3

Another related work is that of Carbone [6] where she establishes a strengthened form83

of Maehara’s interpolation paying great attention to the ancestor relation (formulated in84

terms of flow graphs in that work) which allows her to get bounds on the complexity of the85

interpolant but did not lead her to a study of proof-relevant interpolation, invariance by86

cut-elimination nor interpolation as cut-introduction. Only few works consider interpolation87

in (fragments of) linear logic, starting with Roorda [34]. In the framework of the calculus of88

structure, Straßburger proves a decomposition theorem for MELL [38] that is advocated to89

correspond to an interpolation theorem and may have a more fine-grained proof-theoretical90

content. More recently, several papers investigated and formalized interpolation theorems in91

substructural logics, including exponential-free linear logic [5, 14, 32].92

2 Background on LL proof theory93

In the following, we provide the necessary background on first-order LL.94

As usual, we assume a first-order language L (without equality nor function symbols). We95

assume the set of atomic formulas to be equipped with an involution, inducing a partitioning96

between positive atomic formulas, written a, and negative atomic formulas, written97

a⊥. We introduce a language of first-order LL formulas:98

▶ Definition 1. The grammar of first-order LL formulas is defined inductively as:99

100

F ::= a⊥ | ⊥ | ⊤ | FOF | FNF | ∀x.F negative MALL formulas
| a | 1 | 0 | F ⊗F | F ⊕ F | ∃x.F positive MALL formulas
| ? F | ! F exponential formulas

101

Linear negation is defined as usual as an involution on LL formulas (changing a⊥, ⊥,102

⊤, O, N, ∀, ? into a, 1, 0, ⊗, ⊕, ∃, ! respectively). A one-sided LL sequent is an ordered list103

of LL formulas usually written ⊢ Γ to emphasize the sequent judgments.104

▶ Definition 2 (LL sequent calculus). The inference rules of LL sequent calculus are given105

in Figure 1. The inferences of Figure 1 show a relation between conclusion and premises106

formulas, the ancestor relation (or sub-occurrence relation) that is extended by transitivity to107

formulas of non consecutive sequents of a derivation. An LL proof of a sequent ⊢ Γ is a108

finite tree rooted in ⊢ Γ generated by the rules of Figure 1.109

▶ Remark 3. The ancestor relation defined above is (implicitly) used in designing a cut-110

reduction system and plays a crucial role in expressing the validity condition for non-111

wellfounded and circular proofs as well as in the extension of Maehara’s method we will show112

next, in order to propagate sequent splittings from conclusions to premises.113

To state Craig-Lyndon interpolation, we need to make clear the required notion to express114

the interpolation condition on the vocabulary:115

▶ Definition 4 ((polarized) vocabulary of a formula). Given an LL formula F , Voc(F) is the116

set of all predicate symbols occurring in F together with their linear negations, while117

Voc+(F) (resp. Voc−(F)) is the set of positive (resp. negative) predicate symbols occurring118

in F . This is naturally lifted to lists of formulas.119

In the present paper, we shall heavily rely on LL cut-reduction rules (and their symmetric,120

cut-introduction rules). Even though those rules are standard, we recall them in Appendix A121

for completeness.122

XX:4 Interpolation as cut-introduction

(a) (Ax)
⊢ F, F ⊥

⊢ Γ, F ⊢ F ⊥, ∆
(Cut)

⊢ Γ, ∆
⊢ Γ, G, F, ∆

(X)
⊢ Γ, F , G, ∆

⊢ F, G, Γ
(O)

⊢ FOG, Γ
⊢ F , Γ ⊢ G, ∆

(⊗)
⊢ F ⊗G, Γ, ∆

⊢ Γ
(⊥)

⊢ ⊥, Γ
(1)

⊢ 1

⊢ F , Γ ⊢ G, Γ
(N)

⊢ FNG, Γ
⊢ Fi, Γ

(⊕i)
⊢ F1 ⊕ F2, Γ

(⊤)
⊢ ⊤, Γ (no rule for 0)

(b)
⊢ F , Γ

(?d)
⊢?F , Γ

⊢ F , ?Γ
(!p)

⊢!F , ?Γ
⊢ Γ

(?w)
⊢?F, Γ

⊢?F , ?F, Γ
(?c)

⊢?F , Γ

(c)
⊢ G{t/x}, Γ

(∃)
⊢ ∃xG, Γ

⊢ F , Γ
(∀)

⊢ ∀xF, Γ
(in (∀) , x ̸∈ FV(Γ))

Figure 1 (a) Propositional MALL Inferences; (b) LL Exponential Inferences; (c) First-order
Inferences;

3 Proof-relevant interpolation theorem123

The following proof-relevant interpolation theorem can be established by refining Maehara’s124

proof in order to take seriously into account the relations, not only between the interpolation125

sequents, but also between the interpolating proofs. This is presented in detail in Appendix B.126

▶ Theorem 5. Let Γ, ∆ be lists of LL formulas and π ⊢ Γ, ∆ cut-free. There exists a LL127

formula C such that Voc+(C) ⊆ Voc−(Γ) ∩ Voc+(∆) and Voc−(C) ⊆ Voc+(Γ) ∩ Voc−(∆)128

and two cut-free proofs π1, π2 of ⊢ Γ, C and ⊢ C⊥, ∆ respectively such that129

π1
⊢ Γ, C

π2
⊢ C⊥, ∆

(Cut)
⊢ Γ, ∆

−→⋆
cut π.

In the following sections, we will follow two approaches which we consider to be more130

instructive from the computer science logic viewpoint, as they reveal the computational131

content of proof-relevant interpolation. We will proceed by “introducing cuts” so that we132

preserve the denotational equivalence of the interpolated proof with its interpolation (proofs).133

But first, let us extend the proof-relevant interpolation result to LK and LJ. These results134

could be obtained directly, by refining Maehara’s method as done in Appendix B or by135

following the cut-introduction or computational approach of the following section. On the136

other hand, one can directly deduce this result by using the linear embeddings of LK and137

LJ [19, 13] as a corollary of the above theorem.138

▶ Corollary 6. Let Γ, Γ′, ∆, ∆′ be lists of LK formulas (resp. of LJ formulas, with ∆ being139

empty and ∆′ of length at most 1) and π be a cut-free LK (resp. LJ) proof of Γ, Γ′ ⊢ ∆, ∆′.140

There exists a LK (resp. LJ) formula C such that Voc+(C) ⊆ Voc+(Γ, ∆)∩Voc+(Γ′, ∆′)141

and Voc−(C) ⊆ Voc−(Γ, ∆) ∩ Voc−(Γ′, ∆′) and two cut-free LK (resp. LJ) proofs π1, π2 of142

Γ ⊢ C, ∆ and Γ′, C ⊢ ∆′ respectively such that
π1

Γ ⊢ C, ∆
π2

Γ′, C ⊢ ∆′
(Cut)

Γ, Γ′ ⊢ ∆, ∆′
−→⋆

cut π.143

144

Proof. We sketch this here for LK and provide details in appendices:145

A. Saurin XX:5

First, it is a matter of a simple check that proof-relevant interpolation presented in the146

above theorem also holds for the two-sided LL sequent calculus.147

Second, a cut-free LK proof π (it would be similar for LJ) can be decorated with exponential148

modalities and inferences in order to turn it into a cut-free LL proof π′.149

After interpolating this proof (obtaining I ′, π′
1 and π′

2), one can erase the linear information150

of the interpolants and the two interpolating proofs (that is, taking the classical skeleton of151

the proofs) and get back a pair of LK (resp. LJ) proofs π1, π2 together with a formula I in152

LK (resp. LJ) that lives in the appropriate vocabulary.153

The properties of the linear embeddings ensure that the skeleton of a cut-free proof154

obtained from Cut(π′
1, π′

2) can be obtained by eliminating cuts from Cut(π1, π2). ◀155

4 Interpolation as cut-introduction156

We will now show how the proof-relevant interpolation theorem stated in the previous section157

can be established by exploiting the dynamics of cut-introduction that is, more precisely,158

how the synthesis of the interpolant is in fact a cut-introduction process.159

For this, we need to analyze and refine Maehara’s proof method.160

4.1 Refining Maehara’s method161

The usual statement and proof method for interpolation, made more informative in the162

previous section (and Appendix B), actually obfuscate the fact that the interpolating formula163

and proofs are synthetized using a cut-introduction mechanism: this is due to the structure of164

the inductive reasoning used to establish the interpolation theorem under Maehara’s method.165

Indeed, the inductive structure of the reasoning amounts to inspecting the structure of the166

sequent proofs until one reaches the base cases (the aximo and unit cases), after which the167

call to the induction hypotheses synthetize the interpolant.168

Analyzing what happens in constructing the interpolating formula and proofs is made169

clearer by structuring the process in two phases, a bottom-up phase and a top-down phase3:170

Ascending phase. This first phase consists in traversing the initial proof π bottom-up, from171

root (conclusion) to leaves (axioms), and building, for each visited sequent Γ, a splitting172

(Γ′, Γ′′) inherited from the splitting of the conclusion of the proof by the ancestor relation.173

In this way, each node of the proof is ultimately decorated with some additional information174

on how to split the sequent labelling the node. We will use the red-blue colors throughout175

the paper to represent such splittings, and from now on, enrich sequents with such176

splitting information.177

Ultimately, for each logical axiom rule ⊢ A⊥, A, we are in one of the following situations:178

(i) ({A⊥, A}, ∅); (ii) ({A⊥}, {A}); (iii) ({A}, {A⊥}); (iv) (∅, {A⊥, A}) which are179

summed up with the color code as: ⊢ A⊥, A; ⊢ A⊥, A; ⊢ A⊥, A; ⊢ A⊥, A. (and180

similarly for each axiom corresponding to some unit, ⊤ or 1.) This corresponds to the181

various base cases of the inductive proof of the previous section.182

Once every axiom has been reached, we switch to the descending phase, traversing again183

the proof, top to bottom, in an asynchronous manner.184

3 Note that the "top-down" and "bottom-up" terminologies refer to the usual tree presentation of sequent
proofs, where the root of below, rather than to the usual view of terms: we move upward in the proof
while inspecting subproofs.

XX:6 Interpolation as cut-introduction

Descending phase. Equipped with the sequents splitting information one shall now apply185

cut-introduction rules to axioms, progressively moving the cuts down and merging them186

in such a way, ultimately, to reach the root sequent of the original proof. We call active a187

sequent such that all its premises are concluded with cut inferences. (Initially, since π is188

cut-free, only the conclusions of logical axioms or 0-ary unit rules are active sequents.)189

We apply cut-introductions to active sequents, maintaining the following two invariants:190

when a sequent is active with splitting (Γ′, Γ′′), the cut formulas of its premises are191

interpolants for the premise sequents wrt. their splitting (Note that this condition192

trivially satisfied initially since the active axioms have no premise).193

when an inference (r) has conclusion S which is active, we apply a (sequence of) cut-194

introduction step(s) on this inference, in such a way that (i) S becomes the conclusion195

of the introduced cut and (ii) the premises of this cut correspond to the splitting196

associated with sequent S.197

The descending phase therefore terminates when the cut reaches the root.198

Sequencing these two phases, π
⊢ Γ, ∆ is to be interpolated as some

πL

⊢ Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ Γ, ∆
.199

Ultimately, one therefore builds a cut formula I and two cut-free proofs π1 and π2 such200

that C is an interpolant of the conclusion sequent with respect to the original splitting and201

such that (Cut)(π1, π2) −→⋆
cut π, a condition which is satisfied by construction.202

To state precisely the properties of the two phases, we introduce the following notions:203

A decorated proof is an LL proof such that each sequent is equipped with a splitting.204

A coherent decorated proof is such that for each node, the splitting of the conclusion205

and of its premises is coherent with respect to the ancestor relation: a formula belonging206

to the left (resp. right) component of the splitting has all its ancestors belonging to the207

left (resp. right) component of the splitting. We shall now consider only such coherent208

proofs. (Of course, the notion of coherent decorations can be refined to two-sided calculi;209

see Appendix D.)210

With the above notions, the following lemma is clear by induction on the proof:211

▶ Lemma 7. For any LL proof and any splitting of its conclusion sequent, the ascending212

phase terminates with a coherent decorated proof.213

4.2 PRIS: Proof-Relevant Interpolation Situation214

We shall now focus on the top-down phase and, in order to make formal the discussion above,215

we shall introduce a useful class of coherent decorated proofs, called PRIS for proof-relevant216

interpolation situation; they are essentially partially solved interpolation problems:217

▶ Definition 8 (Proof-relevant Interpolation Situation). A PRIS for (Γ, ∆) is the data of:218

the goal, that is a cut-free LK proof π of conclusion ⊢ Γ, ∆ and with n ≥ 0 open premises219

(⊢ Γi, ∆i)1≤i≤n such that for each 1 ≤ i ≤ n the formulas in Γi (resp. ∆i) are ancestors220

of formulas in Γ (resp. of ∆);221

the partial interpolants, that is for each 1 ≤ i ≤ n, a formula Ii st. Voc+(Ii) ⊆222

Voc−(Γi) ∩ Voc+(∆i) and Voc−(Ii) ⊆ Voc+(Γi) ∩ Voc−(∆i) and;223

the partial solutions, that is, for each 1 ≤ i ≤ n, derivations πL
i (resp. πR

i) of224

conclusion ⊢ Γi, Ii (resp. ⊢ I⊥
i , ∆i).225

A. Saurin XX:7

πL
1

⊢ Γ1, I1

πR
1

⊢ I⊥
1 , ∆1

(Cut)
⊢ Γ1, ∆1 . . .

πL
n

⊢ Γn, In

πR
n

⊢ I⊥
n , ∆n

(Cut)
⊢ Γn, ∆n

π

⊢ Γ, ∆

Figure 2 A PRIS– Proof-relevant Interpolation Situation

A PRIS as given by the above definition will be graphically represented as in Figure 2.226

In order to make clear our methodology of exploiting PRIS, we define some special cases227

of PRIS which have a specific role in the forthcoming development:228

▶ Definition 9 (Initial, solved, and elementary PRIS). We define the following cases of PRIS:229

An initial PRIS is a PRIS with n = 0. It thus has the following form:230

π

⊢ Γ, ∆

with π being a cut-free coherent decorated proof. This is the initial situation of an231

interpolation problem.232

A solved PRIS is a PRIS with n = 1 and π being reduced to the trivial derivation constituted233

only of an open premise node ⊢ Γ, ∆, of the form:234

π =
πL

1
⊢ Γ, I1

πR
1

⊢ I⊥
1 , ∆

(Cut)
⊢ Γ, ∆

.

A solved PRIS therefore corresponds to the solution of an interpolation problem, with I1235

being the interpolant and πL
1 , πR

1 being the interpolating proofs.236

An elementary PRIS is a PRIS such that its goal is reduced to an instance of a single237

n-ary inference rule (r), together with n open premises: it is a PRIS where there remains238

a single inference rule to solve in order to obtain a solution to an interpolation problem.239

It thus has the form:240

π =

πL
1

⊢ Γ1, I1

πR
1

⊢ I⊥
1 , ∆1

(Cut)
⊢ Γ1, ∆1 . . .

πL
n

⊢ Γn, In

πR
n

⊢ I⊥
n , ∆n

(Cut)
⊢ Γn, ∆n

(r)
⊢ Γ, ∆

4.3 Solving PRIS241

Our proof-relevant interpolation problem can therefore be rephrased as: How to relate initial242

and solved PRIS via cut-introduction? The crucial step lies in the following lemma:243

XX:8 Interpolation as cut-introduction

▶ Lemma 10. For any n-ary inference rule (r) and any elementary PRIS π of the form:

πL
1

⊢ Γ1, I1

πR
1

⊢ I⊥
1 , ∆1

(Cut)
⊢ Γ1, ∆1 . . .

πL
n

⊢ Γn, In

πR
n

⊢ I⊥
n , ∆n

(Cut)
⊢ Γn, ∆n

(r)
⊢ Γ, ∆

there exist I, πL, πR such that π′ =
πL

⊢ Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ Γ, ∆
is a solved PRIS and π ←−⋆

cut π′.244

Since, each application of the above lemma reduces by one inference the size of the goal245

part of an interpolation situation, each sequence of cut-introduction obtained by application246

of Lemma 10 terminates in a solved PRIS, that is an interpolated proof. As a conclusion, we247

obtain the following corollary:248

▶ Corollary 11. Any initial PRIS can be reduced, by cut-expansions, to a solved PRIS.249

As a conclusion, we obtain the expected main theorem (Theorem 5) by working in a250

reversed way, using cut-introduction:251

▶ Theorem 12. Let A, B be LL formulas and π be a cut-free LL proof of A ⊢ B.252

There exists a LL formula C such that Voc+(C) ⊆ Voc+(A) ∩ Voc+(B) and Voc−(C) ⊆253

Voc−(A) ∩Voc−(B) and two cut-free LL proofs π1, π2 of A ⊢ C and C ⊢ B respectively such254

that
π1

A ⊢ C
π2

C ⊢ B
(Cut)

A ⊢ B
−→⋆

cut π.255

256

4.4 Proof of Lemma 10257

We now prove the main lemma (full details are given in Appendix D.1) which proceed by a258

case analysis on the elementary PRIS under consideration.259

4.4.1 Axiom case260

If π = (Ax)
⊢ F , F ⊥ , take I = F ⊥, πl

1 = (Ax)
⊢ F , F ⊥ and πr

1 = (Ax)
⊢ F, F ⊥ .261

The cut between πl
1 and πr

1 reduces to π by one cut-axiom reduction step.262

If π = (Ax)
⊢ F , F ⊥ , one takes I = ⊥, πl

1 =
π

(⊥)
⊢ F , F ⊥,⊥ and πr

1 = (1)
⊢ 1 .263

The cut of πl
1 and πr

1 reduces to π by a key 1/⊥ case.264

The two other cases are treated similarly (see appendix).265

4.4.2 Logical rules266

We analyze the possible cases for a logical rule involved in an elementary PRIS. Note that267

in each case, the principal formula may be part of the left or right part of the splitting; we268

treat only one case each time since the other is symmetrical be taking the dual interpolant269

and exchanging πL and πR.270

If the last rule is (O), ie. if π =

πL
1

⊢ Γ, I
πR

1
⊢ I⊥, ∆, A, B

(Cut)
⊢ Γ, ∆, A, B

(O)
⊢ Γ, ∆, AOB

then taking I ′ = I, πL = πL
1271

A. Saurin XX:9

and πR =
πR

1
⊢ I⊥, ∆, A, B

(O)
⊢ I⊥, ∆, AOB

we obtain a solved PRIS π′ such that π ←−cut π′ by a272

commutative reduction of (Cut).273

If the last rule is (⊗), ie. if π =

πL
1

⊢ Γ1, I1

πR
1

⊢ I⊥
1 , ∆1, A

(Cut)
⊢ Γ1, ∆1, A

πL
2

⊢ Γ2, I2

πR
2

⊢ I⊥
2 , ∆2, B

(Cut)
⊢ Γ2, ∆2, B

(⊗)
⊢ Γ1, Γ2, ∆1, ∆2, A⊗B

,274

then setting I = I1⊗I2, πL =
πL

1
⊢ Γ1, I1

πL
2

⊢ Γ2, I2
(⊗)

⊢ Γ1, Γ2, I1⊗I2

and πR =

πR
1

⊢ I⊥
1 , ∆1, A

πR
2

⊢ I⊥
2 , ∆2, B

(⊗)
⊢ I⊥

1 , I⊥
2 , ∆1, ∆2, A⊗B

(O)
⊢ (I1⊗I2)⊥, ∆1, ∆2, A⊗B

275

one gets a solved PRIS π′ such that π ←−⋆
cut π′ by a commutative reduction of (Cut) and276

a key (⊗)/(O) case.277

If the last rule is (!p), that is π =

πL
1

⊢ F, ? Γ, I1

πR
1

⊢ I1
⊥, ? ∆

(Cut)
⊢ F, ? Γ, ? ∆

(!p)
⊢ ! F, ? Γ, ? ∆

, then by setting I = ? I1,278

πL =

πL
1

⊢ F, ? Γ, I1
(?d)

⊢ F, ? Γ, ? I1
(!p)

⊢ ! F, ? Γ, ? I1

and πR =
πR

1
⊢ I1

⊥, ? ∆
(!p)

⊢ ! I1
⊥, ? ∆

, one gets that π cut-expands to π′:279

π′ =
πL

⊢ ! F, ? Γ, ? I1
πR

⊢ ! I1
⊥, ? ∆

(Cut)
⊢ ! F, ? Γ, ? ∆

−→cut

πL
1

⊢ F, ? Γ, I1
(?d)

⊢ F, ? Γ, I

πR
1

⊢ I1
⊥, ? ∆

(!p)
⊢ I⊥, ? ∆

(Cut)
⊢ F, ? Γ, ? ∆

(!p)
⊢ ! F, ? Γ, ? ∆

−→cut π.280

If the last rule is (?c), ie. π =

πL
1

⊢ ? F, ? F, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ ? F, ? F, Γ, ∆

(?c)
⊢ ? F, Γ, ∆

, by setting I = I1, πR =281

πR
1 and πL =

πL
1

⊢ ? F, ? F, Γ, I1
(?c)

⊢ ? F, Γ, I

one gets that π cut-expands to the solved PRIS π′:282

π′ =
πL

⊢ ? F, Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ ? F, Γ, ∆
−→cut

πL
1

⊢ ? F, ? F, Γ, I1

πL
1

⊢ I1
⊥, ∆

(Cut)
⊢ ? F, ? F, Γ, ∆

(?c)
⊢ ? F, Γ, ∆

= π.283

If the last rule is (∃), ie. π =

πL
1

⊢ F{y/x}, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ F{y/x}, Γ, ∆

(∃)
⊢ ∃xF, Γ, ∆

with Voc(I1) ⊆ Voc(F{y/x}, Γ)∩284

Voc(∆). In this case, note that we treat only the case of a FO language containing no285

function symbols. We reason by case on whether y occurs in Γ, ∆:286

If y occurs in both, then we simply take I = I1 as interpolant, πL =
πL

1
(∃)

⊢ ∃xF, Γ
and287

πR = πR
1 . Since Voc(I) = Voc(I1) ⊆ Voc(F, Γ)∩Voc(∆) = Voc(∃xF, Γ)∩Voc(∆), we288

XX:10 Interpolation as cut-introduction

have that π′ =
πL

⊢ ∃xF, Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ ∃xF, Γ, ∆
is a solved PRIS to which π cut-expands289

via a cut-commutation rule.290

If y occurs in Γ but not in ∆, then we set I = ∃yI1, πL =
πL

1
(∃)

⊢ ∃xF, Γ, I1
(∃)

⊢ ∃xF, Γ,∃yI1

and

πR =
πR

1
⊢ I1

⊥, ∆
(∀)

⊢ ∀yI1
⊥, ∆

we have that π′ =
πL

⊢ ∃xF, Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ ∃xF, Γ, ∆
is a solved

PRIS to which π cut-expands via a cut-commutation rule and a key (∃)/(∀) rule:

π′ −→cut

πL
1

⊢ F{y/x}, Γ, I1
(∃)

⊢ ∃xF, Γ, I1 πR
1

(Cut)
⊢ ∃xF, Γ, ∆

−→cut

πL
1

⊢ F{y/x}, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ F{y/x}, Γ, ∆

(∃)
⊢ ∃xF, Γ, ∆

= π.

If y occurs in ∆ but not in Γ, then we set I = ∀yI1, πL =

πL
1

⊢ F{y/x}, Γ, I1
(∃)

⊢ ∃xF, Γ, I1
(∀)

⊢ ∃xF, Γ,∀yI1

and291

πR =
πR

1
⊢ I1

⊥, ∆
(∃)

⊢ ∃yI1
⊥, ∆

. One gets that π′ =
πL

⊢ ∃xF, Γ,∀yI1
πR

⊢ ∃yI1
⊥, ∆

(Cut)
⊢ ∃xF, Γ, ∆

is a292

solved PRIS to which π cut-expands:293

π′ −→cut

πL
1

⊢ F{y/x}, Γ, I1
(∃)

⊢ ∃xF, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ ∃xF, Γ, ∆

−→cut

πL
1

⊢ F{y/x}, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ F{y/x}, Γ, ∆

(∃)
⊢ ∃xF, Γ, ∆

=294

π.295

Other cases are treated similarly (See details in Appendix D.1).296

4.5 Some consequences and extensions297

In the same way as in the previous section, a similar development of LK-PRIS and LJ-PRIS298

can be done, either from scratch or by means of linear embeddings which relates linear PRIS299

to classicial or intuitionistic ones, this results in the following proposition:300

▶ Proposition 13. Any initial LK-PRIS (resp. LJ-PRIS) can be reduced, by cut-expansions,301

to a solved LK-PRIS (resp. solved LJ-PRIS).302

▶ Remark 14. In fact, the above theorem does not rely on the cut-freeness of π, only the303

notion of interpolant does: the cut-introduction performed in solving PRIS can indeed be304

extended to handle the cut-case, as long as one relaxes the conditions on the language for305

the interpolant. This suggests an immediate generalization of proof-relevant Craig and306

Lyndon’s interpolation for proofs with cuts in which each (pair of) cut-formula is assigned307

to the left/right component of a splitting (in a consistent way for a given cut inference):308

the language of the interpolant is then constructed by taking into account the language of309

the cut-formulas depending on the choice of splitting. In that case, an additional degree of310

freedom appears in the choice of the interpolant when assigning each cut to a component of311

A. Saurin XX:11

the splitting: strategies for optimizing the language of the interpolant could therefore be312

investigated.313

▶ Remark 15. Complementing on the previous remark, analytic cuts (that is cut formulas314

that are subformula of some formula of the conclusion sequent) are of particular interest here.315

Indeed, the above described procedure to work with PRIS containing cuts can be readily316

applied to proofs with analytic cuts.317

In a similar way, it would be interesting to consider extending our procedure to proofs318

with cuts which are globally analytic (ie. simply requiring that every cut-formula is a319

subformula of some formula in the conclusion sequent). While the vocabulary constraint320

on interpolant is locally violated when encountering a globally-analytic cut, it is globally321

satisfied when reaching a solved PRIS. Other weakenings on the conditions on cut-formulas322

car be considered, such as the semi-analyticity conditions by Jalali and Tabatakai [39].323

4.6 Extension with cuts324

Even though the approach developed in this paper naturally fits in logical frameworks where325

one has a sequent proof system satisfying a cut-elimination theorem, it may be relevant to326

consider what is the impact of the cut inference on the process of synthesizing interpolants.327

Indeed, the cut inference being the only one that breaks the subformula property, it also328

prevents an immediate extension of Maehara’s proof technique since the interpolants generated329

via the premises may well violate the vocabulary constraints that we require for interpolation.330

This is why interpolation is usually presented as a consequence of the cut-elimination331

theorem.332

On the other hand, it is not strictly necessary to consider cut-free proofs to perform333

Maehara’s interpolation nor our cut-introduction method. There may be sevral reasons to334

consider cut formulas while interpolating. First, performing cut-elimination may be costly,335

in both time and space: one shall first eliminate all the cuts and then work with the cut-free336

proof which may be much larger than the original proofs. That is a good reason not to337

perform more cut-reduction than required. On the other hand, another reason lies in the fact338

from the computational viewpoint, performing interpolation from the cut-free proof consist339

in first reducing a program to its most explicit form, where all intermediate computations340

have been removed, before trying to factor computation. This goes seemingly in the wrong341

direction as performing this computation may end up duplicating some code or data in the342

process of unveiling the value of the computation.343

In contrast, in many computational situations, interpolation can be performed in presence344

of cuts: think for instance of a function that computes a data combining booleans and natural345

numbers while receiving an input made of those data. When intermediate computations346

rely on those base type, one can hope, thanks to the method described below, to factor the347

computation through an interpolant type built from those two base types. This will require348

further investigation to be made precise.349

let us now outline how the results in the previous subsections and specifically Definition 8350

and Lemma 10 can be extended to proofs with cuts. Note that what follows essentially351

amounts to a standard trick consisting in viewing a cut inference on C, C⊥ as a⊗ introducing352

C⊗C⊥ (or the corresponding conjunction when working in classical or intuitionistic logic).353

The only subtelty is to find a workaround to maintain the adequate notion of vocabulary:354

we introduce the notion of cut vocabularies for that purpose. Note that in what follows, we355

adapt, without details, the previous paragraphs method to Craig interpolation as the polarity356

XX:12 Interpolation as cut-introduction

constraints induced by Lyndon interpolation cannot be satisfied as such in our development357

when cut are present.358

Let us first remark that the notion of coherent decorated proofs is straightforwardly359

extended to derivations containing the cut-inference by asking that on a cut inference, the360

coloring is transferred consistently from the conclusion sequent to the ancestors in the361

premises and that the cut-inferences is given the same, arbitrary, color. In the following, for362

simplicity, we assume that all cut inferences are assigned to the left component but this can363

be relaxed (in a consistent way)364

▶ Definition 16 (Proof-relevant Craig Interpolation Situations with Cuts). A CPRIS for (Γ, ∆)365

is the data of:366

the goal, that is an LK decorated proof π of conclusion ⊢ Γ, ∆ and with n ≥ 0 open367

premises (⊢ Γi, ∆i)1≤i≤n such that for each 1 ≤ i ≤ n the formulas in Γi (resp. ∆i) are368

ancestors of formulas in Γ (resp. of ∆) or ancestors of a cut-formula;369

the cut vocabularies, that is for each 1 ≤ i ≤ n, a pair (CL
i ,CR

i) of sets of literals;370

the partial interpolants, that is for each 1 ≤ i ≤ n, a formula Ii st. Voc(Ii) ⊆371

(Voc(Γi) ∪ CL
i) ∩ (Voc(∆i) ∪ CR

i) and;372

the partial solutions, that is, for each 1 ≤ i ≤ n, derivations πL
i (resp. πR

i) of373

conclusion ⊢ Γi, Ii (resp. ⊢ I⊥
i , ∆i) such that if CL (resp. CR) is the set of cut-formulas374

in πL
i (resp. in πR

i), then
⋃

C∈Cϵ Voc(C) = Cϵ
i , ϵ ∈ {L, R}.375

With the above definition, the notions of initial, solved, and elementary CPRIS is adapted376

trivially and one notices that a solved CPRIS when the cut-formulas are all (locally or globally)377

analytic is a solution to the interpolation problem if cut formulas are colored consistently378

with the conclusion formulas they are a subformula of.379

Since all invariants of the proof of Lemma 10 hold for CPRIS, what remains to show is380

that the proof of Lemma 10 can be extended to the case of elementary CPRIS concluded381

with a cut-inference. It can easily be seen that such an extension directly follows for the382

case of the ⊗ rule, the only difference is that instead of being part of the vocabulary of the383

context formulas, the cut-formulas contribute to the cut vocabularies.384

If the last rule is cut, ie. if π =

πL
1

⊢ Γ1, I1

πR
1

⊢ I⊥
1 , ∆1, C

(Cut)
⊢ Γ1, ∆1, C

πL
2

⊢ Γ2, I2

πR
2

⊢ I⊥
2 , ∆2, C⊥

(Cut)
⊢ Γ2, ∆2, C⊥

(Cut)
⊢ Γ1, Γ2, ∆1, ∆2

,385

then setting I = I1⊗I2, πL =
πL

1
⊢ Γ1, I1

πL
2

⊢ Γ2, I2
(⊗)

⊢ Γ1, Γ2, I1⊗I2

and πR =

πR
1

⊢ I⊥
1 , ∆1, C

πR
2

⊢ I⊥
2 , ∆2, C⊥

(Cut)
⊢ I⊥

1 , I⊥
2 , ∆1, ∆2

(O)
⊢ (I1⊗I2)⊥, ∆1, ∆2

386

one gets a solved CPRIS π′ such that π ←−⋆
cut π′ by a commutative reduction of (Cut) and387

a key (⊗)/(O) case.388

The case when the cut formulas are colored left is symmetrical:389

if π =

πL
1

⊢ Γ1, C, I1

πR
1

⊢ I⊥
1 , ∆1

(Cut)
⊢ Γ1, C, ∆1

πL
2

⊢ Γ2, C⊥, I2

πR
2

⊢ I⊥
2 , ∆2

(Cut)
⊢ Γ2, C⊥, ∆2

(Cut)
⊢ Γ1, Γ2, ∆1, ∆2

, then setting I =390

A. Saurin XX:13

I1OI2, πL =

πL
1

⊢ Γ1, C, I1

πL
2

⊢ Γ, C⊥, I2
(Cut)

⊢ Γ1, Γ2, I1, I2
(O)

⊢ ∆1, ∆2, I1OI2

and πR =
πR

1
⊢ I⊥

1 , ∆1

πR
2

⊢ I⊥
2 , ∆2

(⊗)
⊢ (I1OI2)⊥, ∆1, ∆

one391

gets a solved CPRIS π′ such that π ←−⋆
cut π′ by a commutative reduction of (Cut) and a392

key (⊗)/(O) case.393

5 On the computational significance of the result: Interpolating394

System L395

Stated purely in terms of interpolating validity judgements, interpolation is not very mean-396

ingful computationally of course. On the other hand, the refined statement investigated397

in the present paper opens new perspectives: the interpolant formula can be viewed as a398

an interface type I through which a computation can from data type A to data type B be399

factored via type I. Let us focus on intuitionistic statement (say, in ILL or LJ):400

If π proves Γ, ∆ ⊢ C, there exists some formula I such that Voc(I) ⊆ Voc(Γ)∩Voc(∆, C)401

and proofs π1, π2 of Γ ⊢ I and I, ∆ ⊢ C respectively, such that (Cut)(π1, π2) −→⋆
cut π.402

Rephrased in terms of the λ-calculus, that would mean in particular that: for any closed403

term λx.t : A → B there is a type C such that Voc(C) ⊆ Voc(A) ∩ Voc(B) and terms404

u : A→ C and v : C → B such that λx.t =β λx.(v(ux)). This is the content of the analysis405

by Čubrić. Data type C can therefore be viewed as an interface between types A and B406

while processing computation t, involving only pieces of data involved in both A and B.407

Of course, this interface depends in t itself in the above proof, which would be different if408

uniform interpolation is lifted to this proof-relevant framework. Indeed, in that case, the409

data type for the interpolant only depend on A and the common vocabulary with the output410

type. In that way, interpolation would express some generic preprocessing from A to the411

interpolant type UI(A,V) depending only on formula A and type variables V, from which412

any computation to a type B (sharing vocabulary V with A) can be performed. In the same413

spirit, more precise results on interpolation (especially on polarity of occurrences of relational414

symbols, etc.) would provide more information on data usage.415

We shall now outline a rephrasing of our previous results in a term calculus which416

corresponds to sequent calculus as the λ-calculus does to natural deduction. For uniformity,417

this version is essentially inspired from the calculus designed by Munch-Maccagnoni [29, 30],418

presented in a two-sided manner rather than one-sided to emphasize the input/output419

behaviour and term/context duality, that we restrict to the purely linear (ie multiplicative420

and additive setting). Some details are omitted below: see Appendix E for more details.421

▶ Definition 17 (Linear System L). As usual, the grammar and type system of linear system422

L consists of three syntactic categories: commands, terms and contexts, defined by mutual423

recursion:424

c ::= ⟨t | e⟩425

t, u ::= x | µα.c | (s, t) | λx.t | µ[α, β].c | () | µ[].c | ι1(t) | ι2(t) | µ(π1(α) 7→ c | π2(β) 7→426

d) | tp427

e, f ::= α | µ̃x.c | µ̃(x, y).c | t · e | [e, f] | µ̃().c | [] | π1(e) | π2(e) | µ̃(ι1(x) 7→ c | ι2(x) 7→428

d) | stop429

This gives rise to three kinds of typing judgments: c : (Γ ⊢ ∆); Γ ⊢ t : A | ∆; Γ | e : A ⊢ ∆430

and the typing rules given in Figure 3.431

XX:14 Interpolation as cut-introduction

Identity rules
Axt

x : A ⊢ x : A | ∅
c : (Γ ⊢ α : A, ∆)

µ
Γ ⊢ µα.c : A | ∆

Term formation

Axc
∅ | α : A ⊢ α : A

c : (Γ, x : A ⊢ ∆)
µ̃

Γ | µ̃x.c : A ⊢ ∆
Context formation

Γ ⊢ t : A | ∆ Γ | e : A ⊢ ∆′
cut

⟨t | e⟩ : (Γ, Γ′ ⊢ ∆, ∆′)
Command formation

Multiplicative rules
Γ ⊢ s : A | ∆ Γ′ ⊢ t : B | ∆′

⊗r

Γ, Γ′ ⊢ (s, t) : A⊗B | ∆, ∆′

Γ, x : A ⊢ t : B | ∆
⊸r

Γ ⊢ λx.t : A ⊸ B | ∆
Term formation

c : (Γ ⊢ α : A, β : B, ∆)
Or

Γ ⊢ µ[α, β].c : AOB | ∆
1r

∅ ⊢ () : 1 | ∅
c : (Γ ⊢ ∆)

⊥r

Γ ⊢ µ[].c : ⊥ | ∆
c : (Γ, x : A, y : B ⊢ ∆)

⊗l

Γ | µ̃(x, y).c : A⊗B ⊢ ∆
Γ ⊢ t : A | ∆ Γ′ | e : B ⊢ ∆′

⊸l

Γ, Γ′ | t · e : A ⊸ B ⊢ ∆, ∆′ Context formation

Γ | e : A ⊢ ∆ Γ′ | f : B ⊢ ∆′
Ol

Γ, Γ′ | [e, f] : AOB ⊢ ∆, ∆′

c : (Γ ⊢ ∆)
1l

Γ | µ̃().c : 1 ⊢ ∆
⊥l

∅ | [] : ⊥ ⊢ ∅

Additive rules
Γ ⊢ t : A | ∆

⊕r
1Γ ⊢ ι1(t) : A⊕B | ∆

Γ ⊢ t : B | ∆
⊕r

2Γ ⊢ ι2(t) : A⊕B | ∆
Term formation

c : (Γ ⊢ α : A, ∆) d : (Γ ⊢ β : B, ∆)
Nr

Γ ⊢ µ(π1(α) 7→ c | π2(β) 7→ d) : ANB | ∆
⊤r

Γ ⊢ tp : ⊤ | ∆

Γ | e : A ⊢ ∆
Nl

1Γ | π1(e) : ANB ⊢ ∆
Γ | e : B ⊢ ∆

Nl
2Γ | π2(e) : ANB ⊢ ∆

Context formation

c : (Γ, x : A ⊢ ∆) d : (Γ′, x : B ⊢ ∆′)
⊕l

Γ | µ̃(ι1(x) 7→ c | ι2(y) 7→ d) : A⊕B ⊢ ∆
0l

Γ | stop : 0 ⊢ ∆

Figure 3 Type derivation rules for System L

▶ Remark 18. Notice that we use very similar notation for term and context constructs432

(ι/π, (u, v)/[e, f], ()/[], tp/stop), in order to emphasize the deep symmetry of the System L433

framework we work with. This symmetry is exploited in the proof of our main theorem.434

The calculus could actually be presented with one-sided typing judgments, see [29].435

We provide some of the main reduction rules of this calculus, keeping in mind the invariant436

that one reduces commands:437

⟨µα.c | e⟩ −→µ c{e/α}438

⟨t | µ̃x.c⟩ −→µ̃ c{t/x}439

⟨λx.t | u · e⟩ −→λ ⟨µ̃x.⟨t | e⟩ | u⟩440

⟨(t, u) | µ̃(x, y).c⟩ −→⊗ c{t/x, u/y}441

⟨µ[α, β].c | [e, f]⟩ −→O c{e/α, f/β}442

⟨ιj(t) | µ̃(ι1(x1) 7→ c1 | ι2(x2) 7→ c2)⟩ −→⊕ cj{t/xj}443

⟨µ(π1(α1) 7→ c1 | π2(α2) 7→ c2) | πj(e)⟩ −→N cj{e/αj}444

A. Saurin XX:15

⟨() | µ̃().c⟩ −→1 c445

⟨µ[].c | []⟩ −→⊥ c446

Moreover, one shall consider in the development below the η rules for µ and µ̃ (which447

respectively reduce terms and contexts):448

µα.⟨t | α⟩ −→ηµ
t (if α is not free in t)449

µ̃x.⟨x | e⟩ −→ηµ̃
e (if x is not free in e)450

The above rules satisfy the expected subject reduction property. Moreover, we need to451

reflect the splitting of sequents which will lead us to define a system L with a split typing452

system to be detailed now.453

▶ Definition 19 (System L with split typing judgements). We introduce split typing judgements454

where types are enriched with a splitting information in the form of a label l ∈ {L, R} carried455

by each type occurring in the judgment, which are then of one of the following shape:456

c : (x1 : Ak1
1 , . . . , xm : Akm

m ⊢ α1 : Bl1
1 , . . . , αn : Bln

n)457

x1 : Ak1
1 , . . . , xm : Akm

m ⊢ t : Bl | α1 : Bl1
1 , . . . , αn : Bln

n458

x1 : Ak1
1 , . . . , xm : Akm

m | e : Ak ⊢ α1 : Bl1
1 , . . . , αn : Bln

n459

with k, l, k1, . . . , km, l1, . . . , ln ∈ {L, R}.460

By convention, to save space and ease the reading of judgements, we may use colors to461

represent the labels: a labelled type T L (resp. UR) may be written T (resp. U), shorthand462

which will be extended to whole typing contexts sharing the same label: Γ or Γ.463

▶ Theorem 20. In what follows, t (resp. e, resp. c) is a normal L-term (resp. normal464

L-context, resp. normal L-command). The following interpolating results hold:465

1. If c : (Γ1, Γ2 ⊢ ∆1, ∆2), there exist a type I ∈ Voc(Γ1, ∆1) ∩ Voc(Γ2, ∆2) and t, e such466

that Γ1 ⊢ t : I | ∆1 and Γ2 | e : I ⊢ ∆2, and ⟨t | e⟩ −→⋆ c.467

2. If Γ1, Γ2 ⊢ t : A | ∆1, ∆2, there exist a type I ∈ Voc(Γ1, ∆1, A)∩Voc(Γ2, ∆2) and α, t′, e′
468

such that Γ1 ⊢ t′ : A | α : I, ∆1 and Γ2 | e′ : I ⊢ ∆2, and t′{e′/α} −→⋆ t.469

3. If Γ1, Γ2 | e : A ⊢ ∆1, ∆2, there exist a type I ∈ Voc(Γ1, ∆1, A)∩Voc(Γ2, ∆2) and α, e′, e′′
470

such that Γ1 | e′ : A | α : I, ∆1 and Γ2 | e′′ : I ⊢ ∆2, and e′{e′′/α} −→⋆ e.471

4. If Γ1, Γ2 ⊢ t : A | ∆1, ∆2, there exist a type I ∈ Voc(Γ1, ∆1)∩Voc(Γ2, ∆2, A) and α, t′, t′′
472

such that Γ1 ⊢ t′′ : I | ∆1 and Γ2, x : I ⊢ t′ : A | ∆2, and t′{t′′/x} −→⋆ t.473

5. If Γ1, Γ2 | e : A ⊢ ∆1, ∆2, there exist a type I ∈ Voc(Γ1, ∆1)∩Voc(Γ2, ∆2, A) and x, t′, e′
474

such that Γ1 ⊢ t′ : I | ∆1 and Γ2, x : I | e′ : A ⊢ ∆2, and e′{t′/x} −→⋆ e.475

Proof sketch (Details are provided in Appendix E). The result is proved by mutual induc-476

tion on the structure of terms, contexts and commands. We treat only cases 1–3, cases 4477

and 5 being essentially similar to cases 3 and 2 respectively.478

Case 1. If c is a command in normal form, it is either of the form ⟨z | e⟩ (with z being479

declared in Γ1 or Γ2) or ⟨t | β⟩ (with α being declared in ∆1 or ∆2). Depending on the case480

and whether the variable is declared in the left or right component of the typing contexts,481

we apply induction hypotheses for one of cases 2–4.482

Let us assume for instance that c = ⟨z | e⟩ and ⟨z | e⟩ : (Γ1, Γ2, z : A ⊢ ∆1, ∆2). Then, e483

being structurally smaller than c, the induction hypothesis applied on Γ1, Γ2 | e : A ⊢ ∆1, ∆2,484

ensures the existence of a type I ∈ Voc(Γ1, ∆1) ∩Voc(Γ2, ∆2, A) as well as x, t′, e′ such that485

Γ1 ⊢ t′ : I | ∆1 and Γ2, x : I | e′ : A ⊢ ∆2, and e′{t′/x} −→⋆ e.486

XX:16 Interpolation as cut-introduction

Therefore ⟨t′ | µ̃x.⟨z | e′⟩⟩ −→⋆ c and we indeed have Γ1 ⊢ t′ : I | ∆1 and Γ2, z : A |487

µ̃x.⟨z | e′⟩ : I ⊢ ∆2. The other cases are similar.488

Case 2. In that case, we make a case distinction based on the structure of t.489

If t = µα.c and its typing judgment has shape Γ1, Γ2 ⊢ µα.c : A | ∆1, ∆2; It follows that c490

has typing judgment Γ1, Γ2 ⊢ α : A, ∆1, ∆2 and therefore by induction hypothesis, there491

exist an interpolant type I, a term t and a context e such that Γ1 ⊢ t : I | α : A, ∆1 and492

Γ2 | e : I ⊢ ∆2 such that ⟨t | e⟩ −→⋆ c. Let us then set I ′ = I, t′ = µα.⟨t | β⟩ and e′ = e493

and one straightforwardly gets that t′{e′/β} −→⋆ µα.c.494

If t = λx.u and its typing judgment has shape Γ1, Γ2 ⊢ λx.u : A ⊸ B | ∆1, ∆2.495

By induction hypothesis we find an interpolant type I for u which can be used to496

interpolate t as well: we have α, t′, e′ such that Γ1, x : A ⊢ t′ : B | α : I, ∆1 and497

Γ2 | e′ : I ⊢ ∆2, and t′{e′/α} −→⋆ u. Therefore λx.t′{e′/α} −→⋆ λx.u = t.498

If t = (u, v) and its typing judgment has shape Γ1, Γ′
1, Γ2, Γ′

2 ⊢ (u, v) : A⊗B | ∆1, ∆′
1, ∆2, ∆′

2499

with Γ1, Γ2 ⊢ u : A | ∆1, ∆2 and Γ′
1, Γ′

2 ⊢ v : B | ∆′
1, ∆′

2500

By induction hypothesis we find an interpolant type J for u and K for v that we can501

combine to interpolate t as well: we have α, u′, e′ such that Γ1 ⊢ u′ : A | α : J, ∆1502

and Γ2 | e′ : J ⊢ ∆2, and u′{e′/α} −→⋆ u and we have β, v′, f ′ such that Γ′
1 ⊢503

v′ : B | β : K, ∆′
1 and Γ′

2 | f ′ : K ⊢ ∆′
2, and v′{f ′/α} −→⋆ v . Therefore we set504

t′ = µγ.⟨µ[α, β].⟨(u′, v′) | γ⟩ | δ⟩ and we have t′{[e′, f ′])/δ} = µγ.⟨µ[α, β].⟨(u′, v′) | γ⟩ |505

δ⟩{[e′, f ′])/δ} −→⋆ µγ.⟨(u′{e′/α}, v′{f ′/β}) | γ⟩ −→⋆ µγ.⟨(u, v) | γ⟩ −→ηµ (u, v).506

Other cases are treated in appendix507

Case 3. The context case is symmetrical to the previous one, due to the symmetry of linear508

typing, but for the case of the applicative context which is detailed in appendix. ◀509

▶ Remark 21. The above results could be extended to full LL, even though it would be more510

adequate formally to move to the original calculus by Curien and Herbelin and prove a511

corresponding result to proof-relevant interpolation for LK to avoid complexities in dealing512

with structural rules.513

In Curien-Herbelin’s setting, a particular attention should be paid to the reduction514

rules that are needed in order to investigate to what account one can restrict to specific515

evaluation strategies, such as call-by-name and call-by-value, in interpolating, in order to516

avoid the computational critical-pair. Note that in the above development, this critical517

pair is not problematic due to the linearity discipline that is enforced: the sequent calculus518

non confluence does not induce a trivial equational theory (as is known from proof nets for519

instance which precisely perform this quotient).520

6 Conclusion521

In this paper, we established a refined, proof-relevant, version of Craig-Lyndon interpolation522

theorems for first-order linear logic and then deduced it, using completely standard tools of LL523

proof theory, to LK and LJ. A most striking fact, in our opinion, is that the result was almost524

there for decades, since the early proofs by Maehara (and its broad dissemination in proof525

theory textbooks, not to speak of applications to broader logical frameworks) and Prawitz.526

Borrowing Feferman’s words, “though deceptively simple and plausible on the face of it”, we527

think that this approach to proof-relevant interpolation in sequent calculus emphasizes a deep528

duality between interpolation and cut elimination : more specifically, the process of synthesis529

of the interpolant and the two interpolating proofs is reformulated as a cut-introduction530

A. Saurin XX:17

process. Finally, we considered the computational content of the results by an analysis of the531

results in system L.532

While we think that interpolation as cut-introduction is both a new conceptual and533

technical contribution of this work, a proof-relevant interpolation theorem has already been534

established by Čubrić [9, 10] in the early 90’s for propositional intuitionistic natural deduction535

in the form of an interpolation for the typed λ-calculus and for bicartesian closed categories.536

Our approach is similarly subject to a computational interpretation that we plan to develop537

in a future work about interpolation in system L [11, 12]. In fact we also hope that our538

interpolation-as-cut-introduction can pave the way for a broader analysis of the computational539

content of interpolation as a manner to factor computation through interfacing (that is,540

interpolating) types. Indeed, while the computational interpretation of Čubrić’s result, stated541

in the λ-calculus, is certainly more transparent than the sequent calculus that we presented542

here, it has not been extended in more than 30 years, except once by Matthes [26]. A reason543

for this might be that while both allows for a proof-relevant phrasing, Maehara’s method544

is more modular and easily extensible than Prawitz as it rests on a logical framework, the545

sequent calculus, that is inherently more modular that natural deduction. For instance, we546

conjecture that it is possible to state a computational version of interpolation in classical547

System L, that is in a classical framework featuring continuations, while it is not clear how548

Čubrić’ results can be extended beyond simply typed λ-calculus, eg. to Parigot’s λµ-calculus.549

Among other future works that we plan to tackle, one can list the following directions.550

Extend our treatment of System L to full LL as well as LK (with a focus on evaluation551

strategies).552

Extend proof-relevant interpolation to provide a treatment to circular proofs for LL with553

least and greatest fixed-points.554

In LL, proof nets are a proof system that satisfies canonicity properties akin to natural555

deduction for intuitionistic logic. It seems that interpolation as cut-introduction in556

(multiplicative) proof-nets can be reformulated in terms of the parsing correctness criterion.557

We hope to establish factorization properties for models of LL, similar to Čubrić’s results.558

An intrinsic advantage of sequent calculus over natural deduction, and therefore of our559

approach over Čubrić’s, is that many more logics can be formulated as sequent calculi than560

in natural deduction. Can we extend our results to other logics having cut-elimination?561

An important question and clearly non-trivial question that we would like to explore562

is whether such a proof-relevant approach to interpolation can be extended to uniform563

interpolation. That would mean that all computations that can be performed from564

a piece of data u in a type A to data sharing with A only a fixed set L of primitive565

datatypes can be factored through a program that computes a value v in the uniform566

interpolant datatype build from L such that everything that can be computed from u567

can be computed from v as well.568

Interpolating proofs containing cuts can actually be useful as shown recently by Hetzl569

and Jalali [22]. We plan to follow the directions outlined in Remarks 14 and 15.570

Finally, we plan to reconsider Čubrić’s results from the cut-introduction perspective.571

References572

1 Bahareh Afshari and Graham E. Leigh. Lyndon interpolation for modal µ-calculus. In Aybüke573

Özgün and Yulia Zinova, editors, Language, Logic, and Computation - 13th International574

Tbilisi Symposium, TbiLLC 2019, Batumi, Georgia, September 16-20, 2019, Revised Selected575

XX:18 Interpolation as cut-introduction

Papers, volume 13206 of Lecture Notes in Computer Science, pages 197–213. Springer, 2019.576

doi:10.1007/978-3-030-98479-3_10.577

2 Michele Basaldella and Kazushige Terui. Infinitary completeness in ludics. In Proceedings578

of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14579

July 2010, Edinburgh, United Kingdom, pages 294–303. IEEE Computer Society, 2010. doi:580

10.1109/LICS.2010.47.581

3 Michele Basaldella and Kazushige Terui. On the meaning of logical completeness. Log. Methods582

Comput. Sci., 6(4), 2010. doi:10.2168/LMCS-6(4:11)2010.583

4 Evert W Beth. On padoa’s method in the theory of definition. Indagationes Mathematicae,584

15:330–339, 1953.585

5 James Brotherston and Rajeev Goré. Craig interpolation in displayable logics. In TABLEAUX,586

volume 6793 of Lecture Notes in Computer Science, pages 88–103. Springer, 2011.587

6 Alessandra Carbone. Interpolants, cut elimination and flow graphs for the propositional588

calculus. Ann. Pure Appl. Log., 83(3):249–299, 1997. doi:10.1016/S0168-0072(96)00019-X.589

7 William Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.590

Log., 22(3):250–268, 1957. doi:10.2307/2963593.591

8 William Craig. Three uses of the herbrand-gentzen theorem in relating model theory and592

proof theory. J. Symb. Log., 22(3):269–285, 1957. doi:10.2307/2963594.593

9 Djordje Cubric. Results in categorical proof theory. PhD thesis, McGill University, 1993.594

10 Djordje Cubric. Interpolation property for bicartesian closed categories. Arch. Math. Log.,595

33(4):291–319, 1994. doi:10.1007/BF01270628.596

11 Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Martin Odersky and597

Philip Wadler, editors, Proceedings of the Fifth ACM SIGPLAN International Conference598

on Functional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000, pages599

233–243. ACM, 2000. doi:10.1145/351240.351262.600

12 Pierre-Louis Curien and Guillaume Munch-Maccagnoni. The duality of computation under601

focus. In Cristian S. Calude and Vladimiro Sassone, editors, Theoretical Computer Science602

- 6th IFIP TC 1/WG 2.2 International Conference, TCS 2010, Held as Part of WCC 2010,603

Brisbane, Australia, September 20-23, 2010. Proceedings, volume 323 of IFIP Advances in604

Information and Communication Technology, pages 165–181. Springer, 2010. doi:10.1007/605

978-3-642-15240-5_13.606

13 Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new deconstructive logic: Linear607

logic. J. Symb. Log., 62(3):755–807, 1997.608

14 Jeremy E. Dawson, James Brotherston, and Rajeev Goré. Machine-checked interpolation609

theorems for substructural logics using display calculi. In IJCAR, volume 9706 of Lecture610

Notes in Computer Science, pages 452–468. Springer, 2016.611

15 Adrien Deloro. Cours de logique mathématique. Draft of a book on mathematical logic,612

2023. URL: https://webusers.imj-prg.fr/~adrien.deloro/index.php?topic=teaching&613

page=logique.614

16 Kosta Došen. Logical Consequence: A Turn in Style, pages 289–311. Springer Netherlands,615

Dordrecht, 1997. doi:10.1007/978-94-017-0487-8_15.616

17 Solomon Feferman. Harmonious logic: Craig’s interpolation theorem and its descendants.617

Synthèse, 164(3):341–357, 2008. URL: https://doi.org/10.1007/s11229-008-9354-2, doi:618

10.1007/S11229-008-9354-2.619

18 Melvin Fitting. Linear reasoning in modal logic. J. Symb. Log., 49(4):1363–1378, 1984.620

doi:10.2307/2274285.621

19 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1 – 101, 1987. doi:622

10.1016/0304-3975(87)90045-4.623

20 Jean-Yves Girard. Proof theory and logical complexity. Bibliopolis, 1987.624

21 Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Abstractions625

from proofs. SIGPLAN Not., 39(1):232–244, jan 2004. doi:10.1145/982962.964021.626

https://doi.org/10.1007/978-3-030-98479-3_10
https://doi.org/10.1109/LICS.2010.47
https://doi.org/10.1109/LICS.2010.47
https://doi.org/10.1109/LICS.2010.47
https://doi.org/10.2168/LMCS-6(4:11)2010
https://doi.org/10.1016/S0168-0072(96)00019-X
https://doi.org/10.2307/2963593
https://doi.org/10.2307/2963594
https://doi.org/10.1007/BF01270628
https://doi.org/10.1145/351240.351262
https://doi.org/10.1007/978-3-642-15240-5_13
https://doi.org/10.1007/978-3-642-15240-5_13
https://doi.org/10.1007/978-3-642-15240-5_13
https://webusers.imj-prg.fr/~adrien.deloro/index.php?topic=teaching&page=logique
https://webusers.imj-prg.fr/~adrien.deloro/index.php?topic=teaching&page=logique
https://webusers.imj-prg.fr/~adrien.deloro/index.php?topic=teaching&page=logique
https://doi.org/10.1007/978-94-017-0487-8_15
https://doi.org/10.1007/s11229-008-9354-2
https://doi.org/10.1007/S11229-008-9354-2
https://doi.org/10.1007/S11229-008-9354-2
https://doi.org/10.1007/S11229-008-9354-2
https://doi.org/10.2307/2274285
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/982962.964021

A. Saurin XX:19

22 Stefan Hetzl and Raheleh Jalali. On the completeness of interpolation algorithms. In Pawel627

Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, Proceedings of the 39th Annual628

ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia, July629

8-11, 2024, pages 45:1–45:13. ACM, 2024. doi:10.1145/3661814.3662112.630

23 Makoto Kanazawa. Computing interpolants in implicational logics. Annals of Pure and Applied631

Logic, 142(1):125–201, 2006. URL: https://www.sciencedirect.com/science/article/pii/632

S0168007205001922, doi:10.1016/j.apal.2005.12.014.633

24 Roman Kuznets. Multicomponent proof-theoretic method for proving interpolation properties.634

Ann. Pure Appl. Log., 169(12):1369–1418, 2018. URL: https://doi.org/10.1016/j.apal.635

2018.08.007, doi:10.1016/J.APAL.2018.08.007.636

25 Shoji Maehara. On the interpolation theorem of Craig. Sûgaku, 12(4), 1960.637

26 Ralph Matthes. Interpolation for natural deduction with generalized eliminations. In Reinhard638

Kahle, Peter Schroeder-Heister, and Robert Stärk, editors, Proof Theory in Computer Science,639

pages 153–169, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.640

27 Kenneth L. McMillan. Interpolation and model checking. In Handbook of Model Checking.,641

pages 421–446. 2018. doi:10.1007/978-3-319-10575-8_14.642

28 Grigori Mints. Finite investigations of transfinite derivations. Journal of Soviet Mathematics,643

10:548–596, 1978.644

29 Guillaume Munch-Maccagnoni. Focalisation and Classical Realisability. In Erich Grädel645

and Reinhard Kahle, editors, Computer Science Logic ’09, volume 5771 of Lecture Notes in646

Computer Science, pages 409–423. Springer, Heidelberg, 2009.647

30 Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative Composition of648

Programs and Proofs. PhD thesis, Univ. Paris Diderot, 2013.649

31 Dag Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover Publications, Mineola,650

N.Y., 1965.651

32 João Rasga, Walter Alexandre Carnielli, and Cristina Sernadas. Interpolation via translations.652

Math. Log. Q., 55(5):515–534, 2009.653

33 A. Robinson. A result of consistency and its application to the theory of definition. Indagationes654

Mathematicae, 18, 1956.655

34 Dirk Roorda. Interpolation in fragments of classical linear logic. The Journal of Symbolic656

Logic, 59(2):419–444, 1994. URL: http://www.jstor.org/stable/2275398.657

35 Alexis Saurin. A linear perspective on cut-elimination for non-wellfounded sequent calculi with658

least and greatest fixed-points. In TABLEAUX, volume 14278 of Lecture Notes in Computer659

Science, pages 203–222. Springer, 2023.660

36 Kurt Schütte. Proof theory, volume 85. Springer, 1977.661

37 D. S. Shamkanov. Circular proofs for the Gödel-Löb provability logic. Mathematical Notes,662

96(3), 2014. URL: https://doi.org/10.1134/S0001434614090326.663

38 Lutz Strassburger. Linear Logic and noncommutativity in the Calculus of Structures. PhD664

thesis, TU Dresden, 2003.665

39 Amirhossein Akbar Tabatabai and Raheleh Jalali. Universal proof theory: Semi-analytic666

rules and craig interpolation. Ann. Pure Appl. Log., 176(1):103509, 2025. URL: https:667

//doi.org/10.1016/j.apal.2024.103509, doi:10.1016/J.APAL.2024.103509.668

40 Gaisi Takeuti. Proof theory, volume 81. Courier Corporation, 2013.669

41 A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Tracts in Theoretical670

Computer Science. Cambridge University Press, 2 edition, 2000.671

https://doi.org/10.1145/3661814.3662112
https://www.sciencedirect.com/science/article/pii/S0168007205001922
https://www.sciencedirect.com/science/article/pii/S0168007205001922
https://www.sciencedirect.com/science/article/pii/S0168007205001922
https://doi.org/10.1016/j.apal.2005.12.014
https://doi.org/10.1016/j.apal.2018.08.007
https://doi.org/10.1016/j.apal.2018.08.007
https://doi.org/10.1016/j.apal.2018.08.007
https://doi.org/10.1016/J.APAL.2018.08.007
https://doi.org/10.1007/978-3-319-10575-8_14
http://www.jstor.org/stable/2275398
https://doi.org/10.1134/S0001434614090326
https://doi.org/10.1016/j.apal.2024.103509
https://doi.org/10.1016/j.apal.2024.103509
https://doi.org/10.1016/j.apal.2024.103509
https://doi.org/10.1016/J.APAL.2024.103509

XX:20 Interpolation as cut-introduction

A LL cut-elimination reduction672

▶ Definition 22. Cut commutations or External reductions are defined in Figure 4.673

▶ Definition 23. LL cut-reduction are the reduction rules given in Figure 4, Figure 5674

together with the usual cut-elimination rule for first-order quantifiers and the following two675

reductions (together with their symmatrical cases):676

the (Cut)/(Cut) commutation

⊢ Σ, G

⊢ ∆, F, G⊥ ⊢ Γ, F ⊥
(Cut)

⊢ G, ∆, Γ
(Cut)

⊢ Σ, ∆, Γ

−→
r

⊢ Σ, G ⊢ ∆, F, G⊥
(Cut)

⊢ Σ, ∆, F ⊢ Γ, F ⊥
(Cut)

⊢ Σ, ∆, Γ

the (Cut)/(Ax) reduction

(Ax)
⊢ F, F ⊥

π

⊢ F, Γ
(Cut)

⊢ F, Γ
−→

r

π

⊢ F, Γ

B Full proof of proof-relevant interpolation for LL refining Maehara’s677

method678

We shall prove a refined version for cut-free proofs from which Theorem 5 follows directly by679

LL cut-elimination theorem4:680

▶ Theorem 24. Let Γ, ∆ be lists of LL formulas and π ⊢ Γ, ∆ be cut-free. There exists a681

LL formula C such that Voc(C) ⊆ Voc(Γ) ∩ Voc(∆) and two cut-free proofs π1, π2 of ⊢ Γ, C682

and ⊢ C⊥, ∆ respectively such that
π1

⊢ Γ, C

π2

⊢ C⊥, ∆
(Cut)

⊢ Γ, ∆
−→⋆

cut π.683

Proof. By LL cut-elimination theorem, one can assume that π is cut-free and reason by684

induction on the structure of π and by case on the last inference. We will proceed by685

“introducing cuts” and build new interpolants in such a way as to preserve the denotational686

equivalence of the interpolated proof with the proof being constructed.687

In fact, we shall prove a slightly stronger result, that is the cut of the interpolating688

proofs reduces, by cut-elimination, to the interpolated proof (up to exchange rules which are689

neglected in the following).690

If π = (Ax)
⊢ F, F ⊥ , Γ = F , one simply takes C = F ⊥ π1 = π2 = (Ax)

⊢ F, F ⊥ . (The691

case when Γ = F ⊥ is symmetrical, taking C = F .)692

4 For simplicity, we omit the polarities used for Lyndon’s statement of interpolation below, but this proof
would work with the polarities as well, as in the cut-introduction approach in the body of the paper.

A. Saurin XX:21

⊢ Σ, C

⊢ C⊥, ∆, F
(?d)

⊢ C⊥, ∆, ?F
(Cut)

⊢ Σ, ∆, ?F

−→
r

⊢ Σ, C ⊢ C⊥, ∆, F
(Cut)

⊢ Σ, ∆, F
(?d)

⊢ Σ, ∆, ?F

⊢ Σ, C

⊢ C⊥, ∆, ?F, ?F
(?c)

⊢ C⊥, ∆, ?F
(Cut)

⊢ Σ, ∆, ?F

−→
r

⊢ Σ, C ⊢ C⊥, ∆, ?F, ?F
(Cut)

⊢ Σ, ∆, ?F, ?F
(?c)

⊢ Σ, ∆, ?F

⊢ Σ, C

⊢ C⊥, ∆
(?w)

⊢ C⊥, ∆, ?F
(Cut)

⊢ Σ, ∆, ?F

−→
r

⊢ Σ, C ⊢ C⊥, ∆
(Cut)

⊢ Σ, ∆
(?w)

⊢ Σ, ?F
⊢ F, ?Γ, ? C

(!p)
⊢!F, ?Γ, ? C ⊢ ! C⊥, ? Σ

(Cut)
⊢!F, ? Γ, ?Σ

−→
r

⊢ F, ?Γ ⊢ ! C⊥, ? Σ
(Cut)

⊢ F, ? Γ, ?Σ
(!p)

⊢!F, ? Γ, ?Σ

⊢ Σ, C⊥
⊢ C, ∆, F ⊢ Γ, G

(⊗)
⊢ C, ∆, Γ, F ⊗G

(Cut)
⊢ Σ, ∆, Γ, F ⊗G

−→
r

⊢ Σ, C⊥ ⊢ C, ∆, F
(Cut)

⊢ Σ, ∆, F ⊢ Γ, G
(⊗)

⊢ Σ, ∆, Γ, F ⊗G

⊢ Σ, C⊥
⊢ C, ∆, F, G

(O)
⊢ C, ∆, FOG

(Cut)
⊢ Σ, ∆, FOG

−→
r

⊢ Σ, C⊥ ⊢ C, ∆, F, G
(Cut)

⊢ Σ, ∆, F, G
(O)

⊢ Σ, ∆, FOG

⊢ Σ, C⊥
⊢ C, ∆, F ⊢ C, ∆, G

(N)
⊢ C, ∆, FNG

(Cut)
⊢ Σ, ∆, FNG

−→
r

⊢ Σ, C⊥ ⊢ C, ∆, F
(Cut)

⊢ Σ, ∆, F

⊢ Σ, C⊥ ⊢ C, ∆, G
(Cut)

⊢ Σ, ∆, G
(N)

⊢ Σ, ∆, FNG

⊢ Σ, C⊥
⊢ C, ∆, Fi

(⊕i)
⊢ C, ∆, F1 ⊕ F2

(Cut)
⊢ Σ, ∆, F1 ⊕ F2

−→
r

⊢ Σ, C⊥ ⊢ C, ∆, Fi
(Cut)

⊢ Σ, ∆, Fi
(⊕i)

⊢ Σ, ∆, F1 ⊕ F2

⊢ Σ, C⊥ (⊤)
⊢ C, ∆,⊤

(Cut)
⊢ Σ, ∆,⊤

−→
r

(⊤)
⊢ Σ, ∆,⊤

⊢ Σ, C⊥
⊢ C, ∆

(⊥)
⊢ C, ∆,⊥

(Cut)
⊢ Σ, ∆,⊥

−→
r

⊢ Σ, C⊥ ⊢ C, ∆
(Cut)

⊢ Σ, ∆
(⊥)

⊢ Σ, ∆,⊥

In the promotion commutation case, the premisse in ⊢ ! C⊥, ? Σ is assumed to end with a
promotion rule.

Figure 4 Cut-commutations rules, or External reduction rules, where r = (ext, F) and F is the
principal occurrence.

XX:22 Interpolation as cut-introduction

⊢ F, Γ
(?d)

⊢?F, Γ
⊢ F ⊥, ?∆

(!p)
⊢!F ⊥, ?∆

(Cut)
⊢ Γ, ? ∆

−→
r

⊢ F, Γ ⊢ F ⊥, ?∆
(Cut)

⊢ Γ, ? ∆

π
(!p)

⊢ ! F ⊥, ? ∆
⊢?F, ?F, Γ

(?c)
⊢?F, Γ

(Cut)
⊢ ? ∆, Γ

−→
r

π
(!p)

⊢ ! F ⊥, ? ∆

π
(!p)

⊢ ! F ⊥, ? ∆ ⊢?F, ?F, Γ
(Cut)

⊢ ? ∆, ?F, Γ
(Cut)

⊢ ? ∆, ? ∆, Γ
(?c) ⋆

⊢ ? ∆Γ

π
(!p)

⊢ ! F ⊥, ? ∆
⊢ Γ

(?w)
⊢?F, Γ

(Cut)
⊢ ? ∆, Γ

−→
r

⊢ Γ
(?w) ⋆

⊢ ? ∆, Γ

⊢ ∆, F ⊢ Γ, G
(⊗)

⊢ ∆, Γ, F ⊗G

⊢ Θ, F ⊥, G⊥
(O)

⊢ Θ, F ⊥OG⊥
(Cut)

⊢ ∆, Γ, Θ

−→
r

⊢ ∆, F

⊢ Γ, G ⊢ Θ, F ⊥, G⊥
(Cut)

⊢ Γ, Θ, F ⊥
(Cut)

⊢ ∆, Γ, Θ

⊢ ∆, F1 ⊢ ∆, F2
(N)

⊢ ∆, F1NF2

⊢ Γ, F ⊥
i

(⊕i)
⊢ Γ, F ⊥

1 ⊕ F ⊥
2

(Cut)
⊢ ∆, Γ

−→
r

⊢ ∆, Fi ⊢ Γ, F ⊥
i

(Cut)
⊢ ∆, Γ

⊢ Γ
(⊥)

⊢ Γ,⊥
(1)

⊢ 1
(Cut)

⊢ Γ
−→

r
⊢ Γ

Figure 5 Key cut-reduction rules, or Principal reductions, where r = (princ, {F, F ′⊥}) with
{F, F ′⊥} the principal occurrences that have been reduced.

A. Saurin XX:23

If π = (Ax)
⊢ F, F ⊥ , Γ = F, F ⊥, one simply takes C = ⊥, π1 =

π
(⊥)

⊢ Γ,⊥ and π2 =693

(1)
⊢ 1 . (The case when Γ is empty is symmetrical, taking C = 1.)694

If the last rule is (⊗) , that is π =
π′

⊢ F, Γ′, ∆′
π′′

⊢ G, Γ′′, ∆′′
(⊗)

⊢ F ⊗G, Γ′, Γ′′, ∆′, ∆′′
, assuming Γ = F ⊗695

G, Γ′, Γ′′.696

By induction hypothesis, there are interpolants C ′, C ′′, as well as interpolating proofs (i)
π′

1 ⊢ F, Γ′, C ′, (ii) π′
2 ⊢ C ′⊥, ∆′, (iii) π′′

1 ⊢ G, Γ′′, C ′′ and (iv) π′′
2 ⊢ C ′′⊥, ∆′′ such that

π′
1 π′

2
(Cut)

⊢ F, Γ′, ∆′
−→⋆

cut π′ π′′
1 π′′

2
(Cut)

⊢ G, Γ′′, ∆′′
−→⋆

cut π′

Let C = C ′OC ′′ and let π1 =
π′

1 π′′
1

(⊗)
⊢ F ⊗G, Γ′, Γ′′, C ′, C ′′

(O)
⊢ F ⊗G, Γ′, Γ′′, C ′OC ′′

and π2 =
π′

2 π′′
2

(⊗)
⊢ C ′⊥⊗C ′′⊥, ∆′, ∆′′

.697

One observes that
π1

⊢ Γ, C

π2

⊢ C⊥, ∆
(Cut)

⊢ Γ, ∆

−→cut

π′
1 π′′

1
(⊗)

⊢ F ⊗G, Γ′, Γ′′, C ′, C ′′ π′′
2

(Cut)
⊢ F ⊗G, Γ′, Γ′′, C ′, ∆′′ π′

2
(Cut)

⊢ Γ, ∆

−→⋆
cut

π′
1 π′

2
(Cut)

⊢ F, Γ′, ∆′

π′′
1 π′′

2
(Cut)

⊢ G, Γ′′, ∆′′
(⊗)

⊢ F ⊗G, Γ′, Γ′′, ∆′, ∆′′

−→⋆
cut π by IH.

If the last rule is (O) , that is π =
π′

⊢ F, G, Γ′, ∆
(O)

⊢ FOG, Γ′, ∆
, assuming Γ = FOG, Γ′. By induc-

tion hypothesis, there is an interpolant C ′ such that Voc(C ′) ⊆ Voc(F, G, Γ′) ∩ Voc(∆)
as well as proofs π′

1 ⊢ F, G, Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ F, G, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ F, G, Γ′, ∆′

−→⋆
cut π′.

Setting C = C ′, π1 =
π′

1
(O)

⊢ FOG, Γ′, C
and π2 = π′

2 we get:

π1

⊢ FOG, Γ′, C

π2

⊢ C⊥, ∆′
(Cut)

⊢ FOG, Γ′, ∆′
−→cut

π′
1

⊢ F, G, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ F, G, Γ′, ∆′
(O)

⊢ FOG, Γ′, ∆′

−→⋆
cut π.

XX:24 Interpolation as cut-introduction

If the last rule is (1) , that is π = (1)
⊢ 1 then the interpolant is trivially ⊥ or 1 depending698

on whether Γ = 1 or not, one interpolating proof being an axiom and the other being π699

itself:700

If Γ = 1, let C = ⊥, π1 = (Ax)
⊢ 1,⊥ and π2 = (1)

⊢ 1 . One easily gets701

π1 π2
(Cut)

⊢ 1
−→cut π.702

If Γ is empty, then let C = 1, π1 = (1)
⊢ 1 and π2 = (Ax)

⊢ 1,⊥ . One easily gets703

π1 π2
(Cut)

⊢ 1
−→cut π.704

If the last rule is (⊥) , that is π =
π′

⊢ Γ′, ∆
(⊥)

⊢ ⊥, Γ′, ∆
and assume Γ = ⊥, Γ′. By induction

hypothesis, there is an interpolant C ′ and proof π′
1 ⊢ Γ′, C ′ and π′

2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ Γ′, ∆′

−→⋆
cut π′

By setting C = C ′, π1 =
π′

1
(⊥)

⊢ ⊥, Γ′, C ′
and π2 = π′

2, one gets

π1

⊢ ⊥, Γ′, C

π2

⊢ C⊥, ∆′
(Cut)

⊢ ⊥, Γ′, ∆′
−→cut

π′
1

⊢ Γ′, C

π2

⊢ C⊥, ∆′
(Cut)

⊢ Γ′, ∆′
(⊥)

⊢ ⊥, Γ′, ∆′

−→⋆
cut π

If the last rule is (⊤) , that is π = (⊤)
⊢ ⊤, Γ′, ∆′ , assuming Γ = ⊤, Γ′. Set C = 0,

π′
1 = (⊤)
⊢ ⊤, Γ′, 0 and π′

2 = (⊤)
⊢ ⊤, ∆′ In such a case

(⊤)
⊢ ⊤, Γ′, 0

(⊤)
⊢ ⊤, ∆′

(Cut)
⊢ ⊤, Γ′, ∆′

−→⋆
cut π

If the last rule is (N) , that is π =
π′

⊢ F, Γ′, ∆′
π′′

⊢ G, Γ′, ∆′
(N)

⊢ FNG, Γ′, ∆′
, assuming Γ = FNG, Γ′.705

By induction hypothesis, there are interpolants C ′, C ′′, as well as interpolating proofs (i)
π′

1 ⊢ F, Γ′, C ′, (ii) π′
2 ⊢ C ′⊥, ∆′, (iii) π′′

1 ⊢ G, Γ′, C ′′ and (iv) π′′
2 ⊢ C ′′⊥, ∆′ such that

π′
1 π′

2
(Cut)

⊢ F, Γ′, ∆′
−→⋆

cut π′ π′′
1 π′′

2
(Cut)

⊢ G, Γ′, ∆′
−→⋆

cut π′

Let C = C ′ ⊕ C ′′ and let π1 =
π′

1
(⊕1)

⊢ F, Γ′, C ′ ⊕ C ′′

π′′
1

(⊕2)
⊢ G, Γ′, C ′ ⊕ C ′′

(N)
⊢ FNG, Γ′, C ′ ⊕ C ′′

and706

π2 =
π′

2 π′′
2

(N)
⊢ C ′⊥NC ′′⊥, ∆′

.707

A. Saurin XX:25

One observes that
π1

⊢ Γ, C

π2

⊢ C⊥, ∆
(Cut)

⊢ Γ, ∆

−→cut

π′
1

(⊕1)
⊢ F, Γ′, C π2

(Cut)
⊢ F, Γ′, ∆′

π′′
1

(⊕2)
⊢ G, Γ′, C π2

(Cut)
⊢ G, Γ′, ∆′

(N)
⊢ FNG, Γ′, ∆′

−→cut
π′

1 π′
2

(Cut)
⊢ F, Γ′, ∆′

π′′
1

(⊕2)
⊢ G, Γ′, C π2

(Cut)
⊢ G, Γ′, ∆′

(N)
⊢ FNG, Γ′, ∆′

−→cut

π′
1 π′

2
(Cut)

⊢ F, Γ′, ∆′

π′′
1 π′′

2
(Cut)

⊢ G, Γ′, ∆′
(N)

⊢ FNG, Γ′, ∆′

−→⋆
cut π by IH.

If the last rule is (⊕i), i ∈ {1, 2} , that is π =
π′

⊢ Fi, Γ′, ∆
(⊕i)

⊢ F1 ⊕ F2, Γ′, ∆
, assuming Γ = F1 ⊕

F2, Γ′. By induction hypothesis, there is an interpolant C ′ such that Voc(C ′) ⊆
Voc(Fi, Γ′) ∩ Voc(∆) as well as proofs π′

1 ⊢ Fi, Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ Fi, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ Fi, Γ′, ∆′

−→⋆
cut π′.

Setting C = C ′, π1 =
π′

1
(⊕i)

⊢ F1 ⊕ F2, Γ′, C
and π2 = π′

2 we get the following cut-

reduction starting with a cut-commutation case:
π1

⊢ F1 ⊕ F2, Γ′, C

π2

⊢ C⊥, ∆′
(Cut)

⊢ F1 ⊕ F2, Γ′, ∆′
−→cut

π′
1

⊢ Fi, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ F, G, Γ′, ∆′
(⊕i)

⊢ F1 ⊕ F2, Γ′, ∆′

−→⋆
cut π.

If the last rule is (?d) , that is π =
π′

⊢ F, Γ′, ∆
(?d)

⊢ ? F, Γ′, ∆
assuming Γ = ? F, Γ′. By induction

hypothesis, there is an interpolant C ′ such that Voc(C ′) ⊆ Voc(F, Γ′) ∩ Voc(∆) as well
as proofs π′

1 ⊢ F, Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ F, Γ′, ∆

−→⋆
cut π′.

XX:26 Interpolation as cut-introduction

By setting C = C ′, π1 =
π′

1
(?d)

⊢ ? F, Γ′, C ′
, one gets:

π1

⊢ ? F, Γ′, C

π2

⊢ C⊥, ∆
(Cut)

⊢ ? F, Γ′, ∆
−→cut

π′
1

⊢ F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ F, Γ′, ∆
(?d)

⊢ ? F, Γ′, ∆

−→⋆
cut π.

If the last rule is (!p) , that is π =
π′

⊢ F, ? Γ′, ? ∆′
(!p)

⊢ ! F, ? Γ′, ? ∆′
assuming Γ = ! F, ? Γ′ and ∆ = ? ∆′.

By induction hypothesis, there is an interpolant C ′ such that Voc(C ′) ⊆ Voc(F, ? Γ′) ∩
Voc(∆) as well as proofs π′

1 ⊢ F, ? Γ′, C ′ and π′
2 ⊢ C ′⊥, ? ∆′ such that

π′
1

⊢ F, ? Γ′, C ′

π′
2

⊢ C ′⊥, ? ∆′
(Cut)

⊢ F, ? Γ′, ? ∆′

−→⋆
cut π′.

By setting C = ? C ′, π1 =
π′

1
(?d)

⊢ F, ? Γ′, ? C ′
(!p)

⊢ ! F, ? Γ′, ? C ′

and π2 =
π′

2
(!p)

⊢ ! C ′⊥, ? ∆′
, one gets:

π1 π2
(Cut)

⊢ ! F, ? Γ′, ? ∆′ −→cut

π′
1

⊢ F, ? Γ′, C ′
(?d)

⊢ F, ? Γ′, C

π2

⊢ C ′⊥, ? ∆′
(!p)

⊢ C⊥, ? ∆′
(Cut)

⊢ F, ? Γ′, ? ∆′
(!p)

⊢ ! F, ? Γ′, ? ∆′

−→cut

π′
1 π′

2
(Cut)

⊢ F, ? Γ′, ? ∆′
(!p)

⊢ ! F, ? Γ′, ? ∆′

−→⋆
cut π.

If the last rule is (?w) , that is π =
π′

⊢ Γ′, ∆
(?w)

⊢ ? F, Γ′, ∆
assuming Γ = ? F, Γ′. By induction

hypothesis, there is an interpolant C ′ such that Voc(C ′) ⊆ Voc(Γ′) ∩ Voc(∆) as well as
proofs π′

1 ⊢ Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ Γ′, ∆

−→⋆
cut π′.

By setting C = C ′, π1 =
π′

1
(?w)

⊢ ? F, Γ′, C
, one gets Voc(C) ⊆ Voc(Γ) ∩ Voc(∆) and:

π1

⊢ ? F, Γ′, C

π2

⊢ C⊥, ∆
(Cut)

⊢ ? F, Γ′, ∆
−→cut

π′
1

⊢ Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ Γ′, ∆
(?w)

⊢ ? F, Γ′, ∆

−→⋆
cut π.

A. Saurin XX:27

If the last rule is (?c) , that is π =
π′

⊢ ? F, ? F, Γ′, ∆
(?c)

⊢ ? F, Γ′, ∆
assuming Γ = ? F, Γ′. By induction

hypothesis, there is an interpolant C ′ such that Voc(C ′) ⊆ Voc(? F, ? F, Γ′) ∩ Voc(∆) as
well as proofs π′

1 ⊢ ? F, ? F, Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ ? F, ? F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ ? F, ? F, Γ′, ∆

−→⋆
cut π′.

By setting C = C ′, π1 =
π′

1
(?c)

⊢ ? F, Γ′, C ′
and π2 = π′

2 one gets:

π1

⊢ ? F, Γ′, C

π2

⊢ C⊥, ∆
(Cut)

⊢ ? F, Γ′, ∆
−→cut

π′
1

⊢ ? F, ? F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ ? F, ? F, Γ′, ∆
(?c)

⊢ ? F, Γ′, ∆

−→⋆
cut π.

If the last rule is (∀) , that is π =
π′

⊢ F, Γ′, ∆
(∀) x ̸∈ FV(Γ′, ∆)

⊢ ∀xF, Γ′, ∆
assuming Γ = ∀xF, Γ′.

By induction hypothesis, there is an interpolant C ′ such that Voc(C ′) ⊆ Voc(F, Γ′) ∩
Voc(∆) as well as proofs π′

1 ⊢ F, Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ F, Γ′, ∆

−→⋆
cut π′.

By setting C = ∃x.C ′, π1 =
π′

1
(∃)

⊢ F, Γ′,∃x.C ′
(∀)

⊢ ∀xF, Γ′,∃x.C ′

and π2 =
π′

2
(∀)

⊢ ∀xC ′⊥, ∆
one gets:

π1 π2
(Cut)

⊢ ∀xF, Γ′, ∆

−→cut

π′
1

(∃)
⊢ F, Γ′,∃x.C ′

π′
2

(∀)
⊢ ∀xC ′⊥, ∆

(Cut)
⊢ F, Γ′, ∆

(∀)
⊢ ∀xF, Γ′, ∆

−→cut

π′
1 π′

2
(Cut)

⊢ F, Γ′, ∆
(∀)

⊢ ∀xF, Γ′, ∆
−→⋆

cut π.

If the last rule is (∃) , that is π =
π′

⊢ F{y/x}, Γ′, ∆
(∃)

⊢ ∃xF, Γ′, ∆
assuming Γ = ∃xF, Γ′.708

XX:28 Interpolation as cut-introduction

In this case, Note that we treat only the case of a FO language containing no function709

symbols.710

By induction hypothesis, there is an interpolant C ′ such that Voc(C ′) ⊆ Voc(F{y/x}, Γ′)∩
Voc(∆) as well as proofs π′

1 ⊢ F{y/x}, Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ F{y/x}, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ F{y/x}, Γ′, ∆

−→⋆
cut π′.

In this case, we reason by case on whether y occurs in Γ′, ∆:711

If y occurs in both, then we simply take C = C ′ as interpolant, π1 =
π′

1
(∃)

⊢ ∃xF, Γ′
712

and π2 = π′
2. and we have Voc(C) = Voc(C ′) ⊆ Voc(F, Γ′)∩Voc(∆) = Voc(∃xF, Γ′)∩713

Voc(∆)714

If y occurs in Γ′ but not in ∆, then we set C = ∃yC ′, π1 =
π′

1
(∃)

∃xF, Γ′, C ′
(∃)

∃xF, Γ′,∃yC ′

and

π2 =
π′

2
(∀)

∀yC ′⊥, ∆
one gets:

π1 π2
(Cut)

⊢ ∃x.F, Γ′, ∆ −→cut

π′
1

(∃)
⊢ ∃xF, Γ′, C ′ π′

2
(Cut)

⊢ ∃xF, Γ′, ∆

−→cut

π′
1 π′

2
(Cut)

⊢ F{y/x}, Γ′, ∆
(∃)

⊢ ∃xF, Γ′, C ′

−→⋆
cut π.

If y occurs in ∆ but not in Γ′, then we set C = ∀yC ′, π1 =
π′

1
(∃)

⊢ ∃xF, Γ′, C ′
(∀)

⊢ ∃xF, Γ′,∀y.C ′

and

π2 =
π′

2
(∃)

⊢ ∃yC ′⊥, ∆
. One gets:

π1 π2
(Cut)

⊢ ∃xF, Γ′, ∆ −→cut

π′
1

(∃)
⊢ ∃xF, Γ′, C ′ π′

2
(Cut)

⊢ ∃xF, Γ′, ∆

−→cut

π′
1 π′

2
(Cut)

⊢ F{y/x}, Γ′, ∆
(∃)

⊢ ∃x.F, Γ′, ∆
−→⋆

cut π.

◀715

C Details on linear embeddings of LJ and LK and proof-relevant716

interpolation for LJ and LK.717

In the present section, we deduce our proof-relevant statement of interpolation for LJ and LK718

as a direct corollary of the properties of the linear embeddings of classical and intuitionistic719

logics into linear logic and the proof-relevant interpolation theorem for LL:720

A. Saurin XX:29

First one needs to extend the results of the previous section on proof-relevant interpolation721

to two-sided LL, which is clear. The only additional care amount to dealing properly722

with the notion of positive/negative subformula in order to obtain the refined Lyndon723

interpolation result, but there is no difficulty in doing so and this simply amounts to the724

usual notion of positive/negative suboccurrences and that linear embeddings (and the725

reverse translation, skelettons, preseve the polarities of subformulas);726

Second, consider some provable sequents Γ ⊢LK ∆ (resp. Γ ⊢LJ A) and their respective727

cut-free proofs under consideration πLK (resp. πLJ) and consider a splitting of the sequents:728

Γ′ ⊢ ∆′ and Γ′′ ⊢ ∆′′ (resp. Γ′ ⊢ and Γ′′ ⊢ A);729

Consider the linear sequents and proofs corresponding to those sequents via linear730

translations which do not introduce additional cuts (see for instance [35] for such cut-free731

translations) and the linear translations of the splittings considered above.732

Apply proof-relevant LL interpolation to obtain a formula Ck (resp. Cj) in the common733

vocabulary and proofs πl
1, πl

2 interpolating wrt. Ck (resp. Cj);734

By erasing all the linear information of Ck (resp. Cj) and π1, π2 (which is called their735

skeletons), this provides us with the expected solution. Indeed, a cut-reduction step in LL736

(resp. its intuitionistic fragment, ILL) can be simulated in LK (resp. LJ) via the skeleton737

translation.738

More details are provided in the following paragraphs. Note that the following elements739

are essentially standard, from original results by Danos, Joinet and Schellinx [13].740

▶ Definition 25 (Skeleton). For A an LL formula, we define Sk(A) inductively:741

Sk(A⊗B) = Sk(A) ∧ Sk(B) Sk(AOB) = Sk(A) ∨ Sk(B) Sk(! A) = Sk(A)
Sk(ANB) = Sk(A) ∧ Sk(B) Sk(A⊕B) = Sk(A) ∨ Sk(B) Sk(? A) = Sk(A)

Sk(1) = Sk(⊤) = ⊤ Sk(⊥) = Sk(0) = F Sk(a) = a

Sk(A ⊸ B) = Sk(A)⇒ Sk(B)

742

Let π be a two-sided LL proof of Γ ⊢ ∆. Sk(π) is the LK proof of Sk(Γ) ⊢ Sk(∆) obtained743

by the following recursive process by case analysis on the last rule r of π: (i) if r ∈ {(!p), (?d)},744

then Sk(π) is the skeleton of the premise of π;(ii) otherwise, apply the corresponding rule745

with, for premises, the skeletons of the premises of π.746

▶ Proposition 26. For any LL proof π of s, Sk(π) is a LK proof of Sk(s).747

A standard result of LL proof theory, developed by Danos, Joinet and Schellinx [13], is748

that there exist linear decorations for LK:749

▶ Proposition 27. For any LK sequent s and any LK proof π, there is a linear decoration of750

π, that is a LL proof πd such that Sk(πd) = π.751

Moreover, the skeleton maps cut-related LL-proofs to cut-related LK proofs (resp. LJ752

proofs): LL cut-reduction sequences can be simulated in LK (resp. LJ).753

Eventually, proof relevant interpolation for LJ and LK is therefore a direct and simple754

corollary and the above theory of linear decorations together with proof-relevant interpolation755

theorem for LL.756

D Details on interpolation as cut-introduction757

We recall and provide further details on the notions of decorated and coherent proof:758

XX:30 Interpolation as cut-introduction

▶ Definition 28. A decorated proof is an LL proof st. each sequent is equipped with a759

splitting.760

A coherent decorated proof is a decorated proof such that for each node, the splitting of the761

conclusion and of its premises is coherent wrt the ancestor relation: a formula belonging762

to the left (resp. right) component of the splitting has all its ancestors belonging to the763

left (resp. right) component of the splitting. More precisely:764

that each ancestor of an auxiliary formula belonging to the left (resp. right) component765

of the splitting belongs to the left (resp. right) component of the splitting of the766

corresponding premise;767

that each immediate subformula of a principal formula which belongs to the left (resp.768

right) component of the paritition, itself belongs to the left (resp. right) component of769

the splitting of its premises.770

In a two-sided calculus, the coherence condition can be refined as follows:771

1. each ancestor of an auxiliary formula belonging to the antecedent (resp. succedent) of772

left component of the splitting belongs to the antecedent (resp. succedent) of the left773

component of the splitting of the corresponding premise;774

2. that each ancestor of an auxiliary formula belonging to the antecedent (resp. succedent)775

of right component of the splitting belongs to the antecedent (resp. succedent) of the776

right component of the splitting of the corresponding premise;777

3. that each positive immediate subformula of a principal formula which belongs to the778

antecedent (resp. succedent) of the left component of the splitting, itself belongs to the779

antecedent (resp. succedent) of the left component of the splitting of its premises;780

4. that each positive immediate subformula of a principal formula which belongs to the781

antecedent (resp. succedent) of the right component of the splitting, itself belongs to the782

antecedent (resp. succedent) of the right component of the splitting of its premises;783

5. that each negative immediate subformula of a principal formula which belongs to the784

antecedent (resp. succedent) of the left component of the splitting, itself belongs to the785

succedent (resp. antecedent) of the left component of the splitting of its premisses;786

6. that each negative immediate subformula of a principal formula which belongs to the787

antecedent (resp. succedent) of the right component of the splitting, itself belongs to the788

succedent (resp. antecedent) of the right component of the splitting of its premisses.789

D.1 Details on the Proof of the Main Lemma790

We now provide full details on the proof of Lemma 10 given in Section 4.4.791

D.1.1 Axiom case792

If π = (Ax)
⊢ F , F ⊥ , one simply takes I = F ⊥, πl

1 = (Ax)
⊢ F , F ⊥ and πr

1 =793

(Ax)
⊢ F, F ⊥ .794

The cut between πl
1 and πr

1 reduces to π by one cut-axiom reduction step.795

796

If π = (Ax)
⊢ F , F ⊥ , the case is symmetrical taking I = F .797

798

A. Saurin XX:31

If π = (Ax)
⊢ F , F ⊥ , one takes I = ⊥, πl

1 =
π

(⊥)
⊢ F , F ⊥,⊥ and πr

1 = (1)
⊢ 1 .799

The cut of πl
1 and πr

1 reduces to π by a key 1/⊥ case.800

801

If π = (Ax)
⊢ F , F ⊥ , the case is symmetrical to the previous one, taking I = 1:802

πl
1 = (1)
⊢ 1 and πr

1 =
π

(⊥)
⊢ F , F ⊥,⊥ .803

D.1.2 Logical rules804

We analyze the possible cases for a logical rule involved in an elementary PRIS. Note that805

in each case, the principal formula may be part of the left or right part of the splitting; we806

treat only one case each time since the other is symmetrical be taking the dual interpolant807

and exchanging πL and πR.808

If the last rule is (O) , that is if π =

πL
1

⊢ Γ, I
πR

1
⊢ I⊥, ∆, A, B

(Cut)
⊢ Γ, ∆, A, B

(O)
⊢ Γ, ∆, AOB

then taking I ′ = I,809

πL = πL
1 and πR =

πR
1

⊢ I⊥, ∆, A, B
(O)

⊢ I⊥, ∆, AOB

we obtain a solved PRIS π′ such that π ←−cut π′
810

by a commutative reduction of (Cut).811

If the last rule is (⊗) , that is if π =

πL
1

⊢ Γ1, I1

πR
1

⊢ I⊥
1 , ∆1, A

(Cut)
⊢ Γ1, ∆1, A

πL
2

⊢ Γ2, I2

πR
2

⊢ I⊥
2 , ∆2, B

(Cut)
⊢ Γ2, ∆2, B

(⊗)
⊢ Γ1, Γ2, ∆1, ∆2, A⊗B

,812

then setting I = I1⊗I2, πL =
πL

1
⊢ Γ1, I1

πL
2

⊢ Γ2, I2
(⊗)

⊢ Γ1, Γ2, I1⊗I2

and πR =

πR
1

⊢ I⊥
1 , ∆1, A

πR
2

⊢ I⊥
2 , ∆2, B

(⊗)
⊢ I⊥

1 , I⊥
2 , ∆1, ∆2, A⊗B

(O)
⊢ (I1⊗I2)⊥, ∆1, ∆2, A⊗B

813

one gets a solved PRIS π′ such that π ←−⋆
cut π′ by a commutative reduction of (Cut) and814

a key (⊗)/(O) case.815

If the last rule is (⊥) , that is if π =

πL
1

⊢ Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ Γ, ∆

(⊥)
⊢ ⊥, Γ, ∆

. By setting I = I1, πL =816

πL
1

⊢ Γ, I1
(⊥)

⊢ ⊥, Γ, I1

and πR = πR
1 , one gets a solved PRIS π′ =

πL

⊢ ⊥, Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ ⊥, Γ, ∆
817

such that π′ −→cut π by a cut-commutation case.818

If the last rule is (1) , that is if π = (1)
⊢ 1 (which is indeed both an initial PRIS and an819

elementary PRIS), let I = 1 and πL
1 = (1)
⊢ 1 and πR

1 = (Ax)
⊢ ⊥, 1 . One gets a solved820

PRIS π′ such that π ←−⋆
cut π′ by a key 1/⊥ case.821

If the last rule is (⊕i), i ∈ {1, 2} , that is if π =

πL
1

⊢ Fi, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ Fi, Γ, ∆

(⊕i)
⊢ F1 ⊕ F2, Γ, ∆

, then setting822

XX:32 Interpolation as cut-introduction

I = I1, πL =
πL

1
⊢ Fi, Γ, I1

(⊕i)
⊢ F1 ⊕ F2, Γ, I1

and πR = πR
1 , one gets a solved PRIS π′ such that823

π ←−⋆
cut π′ by a commutative reduction of (Cut).824

If the last rule is (N) , that is if π =

πL
1

⊢ F, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ F, Γ, ∆

πL
2

⊢ G, Γ, I2

πR
2

⊢ I2
⊥, ∆

(Cut)
⊢ G, Γ, ∆

(N)
⊢ FNG, Γ, ∆

,

then setting I = I1 ⊕ I2, πL =

πL
1

⊢ F, Γ, I1
(⊕1)

⊢ F, Γ, I1 ⊕ I2

πL
2

⊢ G, Γ, I2
(⊕2)

⊢ G, Γ, I1 ⊕ I2
(N)

⊢ FNG, Γ, I

and πR =

πR
1

⊢ I1
⊥, ∆

πR
2

⊢ I2
⊥, ∆

(N)
⊢ I⊥

1 NI2
⊥, ∆

. One observes that

πL

⊢ Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ Γ, ∆
−→cut

πL
1

⊢ F, Γ, I1
(⊕1)

⊢ F, Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ F, Γ, ∆

πL
2

⊢ G, Γ, I2
(⊕2)

⊢ G, Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ G, Γ, ∆
(N)

⊢ FNG, Γ, ∆

−→cut

πL
1

⊢ F, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ F, Γ, ∆

πL
2

⊢ G, Γ, I2
(⊕2)

⊢ G, Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ G, Γ, ∆
(N)

⊢ FNG, Γ, ∆

−→cut

πL
1

⊢ F, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ F, Γ, ∆

πL
2

⊢ G, Γ, I2

πR
2

⊢ I2
⊥, ∆

(Cut)
⊢ G, Γ, ∆

(N)
⊢ FNG, Γ, ∆

= π

so that π indeed cut-expands to π′.825

If the last rule is (⊤) , that is if π = (⊤)
⊢ ⊤, Γ, ∆ , by setting I = 0, πL = (⊤)

⊢ ⊤, Γ, 0826

and πR = (⊤)
⊢ ⊤, ∆ . Then π′ = πL πR

(Cut)
⊢ ⊤, Γ, ∆

is a solved PRIS to which π cut-827

expands by a (⊤) commutation case.828

If the last rule is (?d) , that is π =

πL
1

⊢ F, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ F, Γ, ∆

(?d)
⊢ ? F, Γ, ∆

, then setting I = I1, πL =

πL
1

⊢ F, Γ, I1
(?d)

⊢ ? F, Γ, I1

and πR = πR
1 one gets:

πL

⊢ ? F, Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ ? F, Γ, ∆
−→cut

πL
1

⊢ F, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ F, Γ, ∆

(?d)
⊢ ? F, Γ, ∆

= π

so that π indeed cut-expands to π′.829

A. Saurin XX:33

If the last rule is (!p) , that is π =

πL
1

⊢ F, ? Γ, I1

πR
1

⊢ I1
⊥, ? ∆

(Cut)
⊢ F, ? Γ, ? ∆

(!p)
⊢ ! F, ? Γ, ? ∆

, then by setting I = ? I1,

πL =

πL
1

⊢ F, ? Γ, I1
(?d)

⊢ F, ? Γ, ? I1
(!p)

⊢ ! F, ? Γ, ? I1

and πR =
πR

1
⊢ I1

⊥, ? ∆
(!p)

⊢ ! I1
⊥, ? ∆

, one gets:

πL

⊢ ! F, ? Γ, ? I1
πR

⊢ ! I1
⊥, ? ∆

(Cut)
⊢ ! F, ? Γ, ? ∆

−→cut

πL
1

⊢ F, ? Γ, I1
(?d)

⊢ F, ? Γ, I

πR
1

⊢ I1
⊥, ? ∆

(!p)
⊢ I⊥, ? ∆

(Cut)
⊢ F, ? Γ, ? ∆

(!p)
⊢ ! F, ? Γ, ? ∆

−→cut

πL
1

⊢ F, ? Γ, I1

πR
1

⊢ I1
⊥, ? ∆

(Cut)
⊢ F, ? Γ, ? ∆

(!p)
⊢ ! F, ? Γ, ? ∆

= π

so that π indeed cut-expands to π′.830

If the last rule is (?w) , that is π =

πL
1

⊢ Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ Γ, ∆

(?w)
⊢ ? F, Γ, ∆

, then by setting I = I1,

πL =
πL

1
⊢ Γ, I1

(?w)
⊢ ? F, Γ, I1

and πR = πR
1 , we ensure that, since Voc(I) ⊆ Voc(Γ) ∩ Voc(∆),

π′ =
πL

⊢ ? F, Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ ? F, Γ, ∆
is indeed a solved PRIS and that

π′ −→cut

πL
1

⊢ Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ Γ, ∆

(?w)
⊢ ? F, Γ, ∆

= π.

by a cut commutation rule so that π indeed cut-expands to π′ as expected.831

If the last rule is (?c) , that is π =

πL
1

⊢ ? F, ? F, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ ? F, ? F, Γ, ∆

(?c)
⊢ ? F, Γ, ∆

by setting I = I1,

πL =
πL

1
⊢ ? F, ? F, Γ, I1

(?c)
⊢ ? F, Γ, I

and πR = πR
1 one gets:

π′ =
πL

⊢ ? F, Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ ? F, Γ, ∆
−→cut

πL
1

⊢ ? F, ? F, Γ, I1

πL
1

⊢ I1
⊥, ∆

(Cut)
⊢ ? F, ? F, Γ, ∆

(?c)
⊢ ? F, Γ, ∆

= π

so that π′ is indeed a solved PRIS to which π cut-expands.832

XX:34 Interpolation as cut-introduction

If the last rule is (∀) , that is π =

πL
1

⊢ F, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ F, Γ, ∆

(∀) x ̸∈ FV(Γ, ∆)
⊢ ∀xF, Γ, ∆

with Voc(I1) ⊆833

Voc(F, Γ)∩Voc(∆), by setting I = ∃xI1, πL =

πL
1

⊢ F, Γ, I1
(∃)

⊢ F, Γ,∃xI1
(∀)

⊢ ∀xF, Γ,∃x.I1

and πR =
πR

1
⊢ I1

⊥, ∆
(∀)

⊢ ∀xI1
⊥, ∆

834

one gets that: π′ =
πL

⊢ ∀xF, Γ,∃x.I1
πR

⊢ ∀xI1
⊥, ∆

(Cut)
⊢ ∀xF, Γ, ∆

is a solved PRIS to which π cut-835

expands: π′ −→cut

πL
1

⊢ F, Γ, I1
(∃)

⊢ F, Γ,∃x.I1

πR
1

⊢ I1
⊥, ∆

(∀)
⊢ ∀xI1

⊥, ∆
(Cut)

⊢ F, Γ, ∆
(∀)

⊢ ∀xF, Γ, ∆

−→cut π.836

If the last rule is (∃) , that is π =

πL
1

⊢ F{y/x}, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ F{y/x}, Γ, ∆

(∃)
⊢ ∃xF, Γ, ∆

with Voc(I1) ⊆ Voc(F{y/x}, Γ)∩837

Voc(∆).838

In this case, note that we treat only the case of a FO language containing no function839

symbols.840

In this case, we reason by case on whether y occurs in Γ, ∆:841

If y occurs in both, then we simply take I = I1 as interpolant, πL =
πL

1
(∃)

⊢ ∃xF, Γ
and842

πR = πR
1 . Since Voc(I) = Voc(I1) ⊆ Voc(F, Γ)∩Voc(∆) = Voc(∃xF, Γ)∩Voc(∆), we843

have that π′ =
πL

⊢ ∃xF, Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ ∃xF, Γ, ∆
is a solved PRIS to which π cut-expands844

via a cut-commutation rule.845

If y occurs in Γ but not in ∆, then we set I = ∃yI1, πL =
πL

1
(∃)

⊢ ∃xF, Γ, I1
(∃)

⊢ ∃xF, Γ,∃yI1

and

πR =
πR

1
⊢ I1

⊥, ∆
(∀)

⊢ ∀yI1
⊥, ∆

we have that π′ =
πL

⊢ ∃xF, Γ, I
πR

⊢ I⊥, ∆
(Cut)

⊢ ∃xF, Γ, ∆
is a solved

PRIS to which π cut-expands via a cut-commutation rule and a key (∃)/(∀) rule:

π′ −→cut

πL
1

⊢ F{y/x}, Γ, I1
(∃)

⊢ ∃xF, Γ, I1 πR
1

(Cut)
⊢ ∃xF, Γ, ∆

−→cut

πL
1

⊢ F{y/x}, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ F{y/x}, Γ, ∆

(∃)
⊢ ∃xF, Γ, ∆

= π.

If y occurs in ∆ but not in Γ, then we set I = ∀yI1, πL =

πL
1

⊢ F{y/x}, Γ, I1
(∃)

⊢ ∃xF, Γ, I1
(∀)

⊢ ∃xF, Γ,∀yI1

and846

A. Saurin XX:35

πR =
πR

1
⊢ I1

⊥, ∆
(∃)

⊢ ∃yI1
⊥, ∆

. One gets that π′ =
πL

⊢ ∃xF, Γ,∀yI1
πR

⊢ ∃yI1
⊥, ∆

(Cut)
⊢ ∃xF, Γ, ∆

is a847

solved PRIS to which π cut-expands:848

π′ −→cut

πL
1

⊢ F{y/x}, Γ, I1
(∃)

⊢ ∃xF, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ ∃xF, Γ, ∆

−→cut

πL
1

⊢ F{y/x}, Γ, I1

πR
1

⊢ I1
⊥, ∆

(Cut)
⊢ F{y/x}, Γ, ∆

(∃)
⊢ ∃xF, Γ, ∆

= π.

E Appendix on interpolating system L (Section 5)849

▶ Proposition 29. In what follows, t (resp. e, resp. c) is a normal L-term (resp. normal850

L-context, resp. normal L-command). The following interpolating results hold:851

1. If c : (Γ1, Γ2 ⊢ ∆1, ∆2), there exist a type I ∈ Voc(Γ1, ∆1) ∩ Voc(Γ2, ∆2) and t, e such852

that Γ1 ⊢ t : I | ∆1 and Γ2 | e : I ⊢ ∆2, and ⟨t | e⟩ −→⋆ c.853

2. If Γ1, Γ2 ⊢ t : A | ∆1, ∆2, there exist a type I ∈ Voc(Γ1, ∆1, A)∩Voc(Γ2, ∆2) and α, t′, e′
854

such that Γ1 ⊢ t′ : A | α : I, ∆1 and Γ2 | e′ : I ⊢ ∆2, and t′{e′/α} −→⋆ t.855

3. If Γ1, Γ2 | e : A ⊢ ∆1, ∆2, there exist a type I ∈ Voc(Γ1, ∆1, A)∩Voc(Γ2, ∆2) and α, e′, e′′
856

such that Γ1 | e′ : A | α : I, ∆1 and Γ2 | e′′ : I ⊢ ∆2, and e′{e′′/α} −→⋆ e.857

4. If Γ1, Γ2 ⊢ t : A | ∆1, ∆2, there exist a type I ∈ Voc(Γ1, ∆1)∩Voc(Γ2, ∆2, A) and x, t′, t′′
858

such that Γ1 ⊢ t′′ : I | ∆1 and Γ2, x : I ⊢ t′ : A | ∆2, and t′{t′′/x} −→⋆ t.859

5. If Γ1, Γ2 | e : A ⊢ ∆1, ∆2, there exist a type I ∈ Voc(Γ1, ∆1)∩Voc(Γ2, ∆2, A) and x, t′, e′
860

such that Γ1 ⊢ t′ : I | ∆1 and Γ2, x : I | e′ : A ⊢ ∆2, and e′{t′/x} −→⋆ e.861

Proof sketch. The result is proved by mutual induction on the structure of terms, contexts862

and commands. We treat only cases 1–3, cases 4 and 5 being essentially similar to cases 3863

and 2 respectively.864

1. If c is a command in normal form, it is either of the form ⟨z | e⟩ (with z being declared865

in Γ1 or Γ2) or ⟨t | β⟩ (with α being declared in ∆1 or ∆2). Depending on the case and866

whether the variable is declared in the left or right component of the typing contexts, we867

apply induction hypotheses for one of cases 2–4.868

c = ⟨z | e⟩. Let us assume for instance that c = ⟨z | e⟩ and ⟨z | e⟩ : (Γ1, Γ2, z : A ⊢869

∆1, ∆2).870

Then, e being structurally smaller than c, the induction hypothesis applied on Γ1, Γ2 |871

e : A ⊢ ∆1, ∆2, ensures the existence of a type I ∈ Voc(Γ1, ∆1) ∩ Voc(Γ2, ∆2, A) as872

well as x, t′, e′ such that Γ1 ⊢ t′ : I | ∆1 and Γ2, x : I | e′ : A ⊢ ∆2, and e′{t′/x} −→⋆ e.873

Therefore ⟨t′ | µ̃x.⟨z | e′⟩⟩ −→⋆ c and we indeed have Γ1 ⊢ t′ : I | ∆1 and Γ2, z : A |874

µ̃x.⟨z | e′⟩ : I ⊢ ∆2.875

On the other hand, if ⟨z | e⟩ : (Γ1, Γ2, z : A ⊢ ∆1, ∆2), e being structurally smaller876

than c, the induction hypothesis applied on Γ1, Γ2 | e : A ⊢ ∆1, ∆2, ensures the877

existence of a type I ∈ Voc(Γ1, ∆1) ∩ Voc(Γ2, ∆2, A) as well as α, e′, e′′ such that878

Γ1 | e′ : A ⊢ α : I, ∆1 and Γ2 | e′′ : I ⊢ ∆2, and e′{e′′/α} −→⋆ e.879

Therefore ⟨µα.⟨z | e′⟩ | e′′⟩ −→⋆ c and we indeed have Γ1, z : A ⊢ µα.⟨z | e′⟩ : I | ∆1880

and Γ2, z : A | e′′ : I ⊢ ∆2.881

XX:36 Interpolation as cut-introduction

c = ⟨t | β⟩. The other case is similar:882

Let us assume that c = ⟨t | β⟩ and ⟨t | β⟩ : (Γ1, Γ2 ⊢ ∆1, ∆2, β : A).883

Then, t being structurally smaller than c, the induction hypothesis applied on Γ1, Γ2 ⊢884

t : A | ∆1, ∆2, ensures the existence of a type I ∈ Voc(Γ1, ∆1)∩Voc(Γ2, ∆2, A) as well885

as x, t′, t′′ such that Γ1 ⊢ t′′ : I | ∆1 and Γ2, x : I ⊢ t′ : A | ∆2, and t′{t′′/x} −→⋆ t.886

Therefore ⟨t′′ | µ̃x.⟨t′ | β⟩⟩ −→⋆ c and we indeed have Γ1 ⊢ t′′ : I | ∆1 and Γ2, z : A |887

µ̃x.⟨t′ | β⟩ : I ⊢ ∆2.888

The last case is similar.889

2. In that case, we make a case distinction based on the structure of t. We detail the λ case:890

If t = µα.c and its typing judgment has shape Γ1, Γ2 ⊢ µα.c : A | ∆1, ∆2; It follows that891

c has typing judgment Γ1, Γ2 ⊢ α : A, ∆1, ∆2 and therefore by induction hypothesis,892

there exist an interpolant type I, a term t and a context e such that Γ1 ⊢ t : I | α : A, ∆1893

and Γ2 | e : I ⊢ ∆2 such that ⟨t | e⟩ −→⋆ c.894

Let us then set I ′ = I, t′ = µα.⟨t | β⟩ and e′ = e and one straightforwardly gets that895

t′{e′/β} −→⋆ µα.c.896

If t = λx.u and its typing judgment has shape Γ1, Γ2 ⊢ λx.u : A ⊸ B | ∆1, ∆2.897

By induction hypothesis we find an interpolant type I for u which can be used to898

interpolate t as well: we have α, t′, e′ such that Γ1, x : A ⊢ t′ : B | α : I, ∆1 and899

Γ2 | e′ : I ⊢ ∆2, and t′{e′/α} −→⋆ u.900

Therefore λx.t′{e′/α} −→⋆ λx.u = t.901

If t = (u, v) and its typing judgment has shape Γ1, Γ′
1, Γ2, Γ′

2 ⊢ (u, v) : A⊗B | ∆1, ∆′
1, ∆2, ∆′

2902

with Γ1, Γ2 ⊢ u : A | ∆1, ∆2 and Γ′
1, Γ′

2 ⊢ v : B | ∆′
1, ∆′

2903

By induction hypothesis we find an interpolant type J for u and K for v that we can904

combine to interpolate t as well: we have α, u′, e′ such that Γ1 ⊢ u′ : A | α : J, ∆1 and905

Γ2 | e′ : J ⊢ ∆2, and u′{e′/α} −→⋆ u and we have β, v′, f ′ such that Γ′
1 ⊢ v′ : B | β :906

K, ∆′
1 and Γ′

2 | f ′ : K ⊢ ∆′
2, and v′{f ′/α} −→⋆ v .907

Therefore we set t′ = µγ.⟨µ[α, β].⟨(u′, v′) | γ⟩ | δ⟩ and we have t′{[e′, f ′])/δ} =908

µγ.⟨µ[α, β].⟨(u′, v′) | γ⟩ | δ⟩{[e′, f ′])/δ} −→⋆ µγ.⟨(u′{e′/α}, v′{f ′/β}) | γ⟩ −→⋆
909

µγ.⟨(u, v) | γ⟩ −→ηµ
(u, v).910

If t = µ[α, β].c and its typing judgment has shape Γ1, Γ2 ⊢ µ[α, β].c : AOB | ∆1, ∆2911

with c : (Γ1, Γ2 ⊢ α : A, β : B, ∆1, ∆2). By induction hypothesis, we find an interpolant912

type I ∈ Voc(Γ1, ∆1)∩Voc(Γ2, ∆2) and u, e such that Γ1 ⊢ u : I | α : A, β : B, ∆1 and913

Γ2 | e : I ⊢ ∆2, and ⟨u | e⟩ −→⋆ c.914

Therefore, we set t′ = µ[α, β].⟨u | γ⟩ and have Γ1 ⊢ u′ : AOB | ∆1, γ : I and915

t′{e/γ} = µ[α, β].⟨u | e⟩ −→⋆ t.916

If t = () and its typing judgment has shape ⊢ () : 1 | We set t′ = µβ.⟨µ[].⟨() | β⟩ | α⟩917

such that ⊢ t′ : 1 | α : ⊥ and e = [], which ensures that | e : ⊥ ⊢.918

Therefore, we have: t′{e′/α} −→ µβ.⟨() | β⟩ −→ηµ t.919

If t = µ[].c and its typing judgment has shape Γ1, Γ2 ⊢ µ[].c : ⊥ | ∆1, ∆2. In particular920

c : (Γ1, Γ2 ⊢ ∆1, ∆2) so, by induction hypothesis there exist an interpolant type921

I ∈ Voc(Γ1, ∆1) ∩ Voc(Γ2, ∆2) and u, e such that Γ1 ⊢ u : I | ∆1 and Γ2 | e : I ⊢ ∆2,922

and ⟨u | e⟩ −→⋆ c.923

Setting t′ = µ[].⟨u | α⟩, we have t′{e/α} = µ[].⟨u | e⟩ −→⋆ µ[].c as expected.924

If t = ιj(u) and its typing judgment has shape Γ1, Γ2 ⊢ ιj(u) : A1 ⊕A2 | ∆1, ∆2, we925

have Γ1, Γ2 ⊢ u : Aj | ∆1, ∆2, so that by induction hypothesis, we find an interpolant926

type I, a term u′, a context e and a context variable α such that Γ1 ⊢ u′ : Aj | ∆1, α : I927

and Γ2 | e : I ⊢ ∆2 with u′{e/α} −→⋆ u.928

A. Saurin XX:37

Setting t′ = ιj(u′), we have Γ1 ⊢ t′ : A1 ⊕A2 | ∆1, α : I and t′{e/α} = ιj(u′{e/α}) −→⋆
929

ιj(u′) = t.930

If t = µ(π1(α) 7→ c | π2(β) 7→ d) and its typing judgment has shape Γ1, Γ2 ⊢ µ(π1(α) 7→931

c | π2(β) 7→ d) : ANB | ∆1, ∆2.932

We have c : (Γ1, Γ2 ⊢ α : A, ∆1, ∆2) and d : (Γ1, Γ2 ⊢ β : B, ∆1, ∆2). By applying933

twice the induction hypothesis, we get:934

I, J satisfying the interpolation constraints wrt c and d;935

Γ1 ⊢ u : I | α : A, ∆1;936

Γ1 ⊢ v : J | β : B, ∆1;937

Γ2 | e : I ⊢ ∆2 and938

Γ2 | f : J ⊢ ∆2939

such that ⟨u | e⟩ −→⋆ c and ⟨v | f⟩ −→⋆ d.940

Since ⟨x | e⟩ : (Γ2, x : I ⊢ ∆2) and ⟨y | f⟩ : (Γ2, y : J ⊢ ∆2), then by setting941

e′ = µ̃(ι1(x) 7→ ⟨x | e⟩ | ι2(y) 7→ ⟨y | f⟩) and t′ = µ(π1(α) 7→ ⟨ι1(u) | γ⟩ | π2(β) 7→942

⟨ι1(v) | γ⟩), we have: Γ1 ⊢ t′ : ANB | ∆1, γ : I ⊕ J and Γ2 | e : I ⊕ J ⊢ ∆2 so that943

u′{e′/γ} −→ µ(π1(α) 7→ ⟨ι1(u) | e′⟩ | π2(β) 7→ ⟨ι2(v) | e′⟩) −→ µ(π1(α) 7→ ⟨u | e⟩ |944

π2(β) 7→ ⟨v | f⟩) −→⋆ µ(π1(α) 7→ c | π2(β) 7→ d)945

If t = tp and its typing judgment has shape Γ1, Γ2 ⊢ tp : ⊤ | ∆1, ∆2.946

One also has Γ1, Γ2 ⊢ tp : ⊤ | ∆1, ∆2, α : 0.947

Then for I = 0 and e = stop, we have t{e/α} = t.948

3. The context case is symmetrical to the previous one, due to the symmetry of linear typing.949

The only case to consider is that of the applicative context, all the other case can be950

directly retrieve from the previous item, dualizing terms and contexts.951

If e = u · f and its typing judgment has shape Γ1, Γ′
1, Γ2, Γ′

2 | u·f : A ⊸ B ⊢ ∆1, ∆′
1, ∆2, ∆′

2.952

Then we have Γ1, Γ2 ⊢ u : A | ∆1, ∆2 and Γ′
1, Γ′

2 | f : B ⊢ ∆′
1, ∆′

2.953

By induction hypothesis we find an interpolant type J , together with u′, g, α for u and954

an interpolant type K, together with f ′, f ′′, β for f which satisfy:955

Γ1 ⊢ u′ : A | ∆1, α : J ;956

Γ2 | g : J ⊢ ∆2;957

Γ′
1 | f ′ : B ⊢ ∆′

1, β : K;958

Γ′
2 | f ′′ : K ⊢ ∆′

2;959

u′{g/α} −→⋆ u;960

f ′{f ′′/β} −→⋆ f .961

Therefore, we have Γ1, Γ′
1, | u′ · f ′ : A ⊸ B ⊢ ∆1, ∆′

1, α : J, β : K and Γ2, Γ′
2 | [g, f ′′] :962

JOK ⊢ ∆2, ∆′
2.963

As a consequence, we have Γ1, Γ′
1 | µ̃x.⟨µ[α, β].⟨x | u′ · f ′⟩ | γ⟩ : A ⊸ B ⊢ ∆1, ∆′

1, γ :964

JOK965

We thus set I = JOK, e′ = µ̃x.⟨µ[α, β].⟨x | u′ ·f ′⟩ | γ⟩ and e′′ = [g, f ′′] and we observe966

that967

e′{e′′/γ} −→⋆ µ̃x.⟨x | u′{g/α} · f ′{f ′′/β}⟩ −→⋆ µ̃x.⟨x | u · f⟩ −→ηµ̃ u · f = e.968

The other cases are similar to cases already treated in item 2.969

4. These cases are treated similarly to 2, but for the fact that the interpolant lives in the970

world of terms rather than of contexts but since we did not use connective ⊸ to build an971

interpolant in 2, the symmetry of system L does the job.972

5. These cases are treated similarly to 3, but for the fact that the interpolant lives in the973

world of terms rather than of contexts and the same justification as for the previous case974

applies.975

XX:38 Interpolation as cut-introduction

◀976

A. Saurin XX:39

Contents977

1 “– Why Not a Proof-Relevant Interpolation Theorem?978

– Introduce Cuts, Of Course!” 1979

2 Background on LL proof theory 3980

3 Proof-relevant interpolation theorem 4981

4 Interpolation as cut-introduction 5982

4.1 Refining Maehara’s method . 5983

4.2 PRIS: Proof-Relevant Interpolation Situation 6984

4.3 Solving PRIS . 7985

4.4 Proof of Lemma 10 . 8986

4.5 Some consequences and extensions . 10987

4.6 Extension with cuts . 11988

5 On the computational significance of the result: Interpolating System L 13989

6 Conclusion 16990

A LL cut-elimination reduction 20991

B Full proof of proof-relevant interpolation for LL refining Maehara’s method 20992

C Details on linear embeddings of LJ and LK and proof-relevant interpolation993

for LJ and LK. 28994

D Details on interpolation as cut-introduction 29995

D.1 Details on the Proof of the Main Lemma . 30996

E Appendix on interpolating system L (Section 5) 35997

	1 ``– Why Not a Proof-Relevant Interpolation Theorem? – Introduce Cuts, Of Course!''
	2 Background on LL proof theory
	3 Proof-relevant interpolation theorem
	4 Interpolation as cut-introduction
	4.1 Refining Maehara's method
	4.2 PRIS: Proof-Relevant Interpolation Situation
	4.3 Solving PRIS
	4.4 Proof of Lemma 10
	4.5 Some consequences and extensions
	4.6 Extension with cuts

	5 On the computational significance of the result: Interpolating System L
	6 Conclusion
	A LL cut-elimination reduction
	B Full proof of proof-relevant interpolation for LL refining Maehara's method
	C Details on linear embeddings of LJ and LK and proof-relevant interpolation for LJ and LK.
	D Details on interpolation as cut-introduction
	D.1 Details on the Proof of the Main Lemma

	E Appendix on interpolating system L (systemL)

