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Abstract4

Analyzing Maehara’s method for proving Craig’s interpolation theorem, we extract a “proof relevant”5

interpolation theorem for first-order LL in the sense that if π is a cut-free sequent proof of A ⊢ B,6

we can find a formula C in the common vocabulary of A and B and proofs π1, π2 of A ⊢ C and7

C ⊢ B respectively such that π1 composed with π2 cut-reduces to π. As a direct corollary, we get8

similar proof relevant interpolation results for LJ and LK using linear translations. This refined9

interpolation is then rephrased in terms of a cut-introduction process synthetizing the interpolant.10

Finally, we analyze how to extend our methodology beyond the wellfounded setting, showing as11

a preliminary step, how to proof-relevantly interpolate µLL∞ circular pre-proofs.12
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1 “– Why Not a Proof-Relevant Interpolation Theorem?16

– Introduce Cuts, Of Course!”17

In the words of Solomon Feferman, “though deceptively simple and plausible on the face of it,18

Craig’s interpolation theorem (...) has proved to be a central logical property that has been19

used to reveal the deep harmony between the syntax and semantics of first order logic” [20].20

Indeed, Craig’s interpolation (which states that in the predicate calculus, if A ⊢ B, there21

exists a formula C built from the relation symbols occurring both in A and B such that A ⊢ C22

and C ⊢ B) and its developments suggest far deeper connections between models and proofs23

that the simple correspondence between probability and validity given by Gödel completeness24

theorem. This could be argued to be in line with and pursue structural proof-theoretic proofs25

of Gödel completeness theorem such as Schütte proof [37] or the more recent analysis by26

Basaldella and Terui of completeness in Ludics [5, 4].27

First of all, one should recall that while the original proof of interpolation by Craig [9, 10]28

was proof-theoretic as well as Maehara’s method [27] its most striking applications were29

model-theoretic results from the early results that could be reproved from interpolation, such30

as Beth definability theorem [6] or Robinson’s consistency theorem [33] to modern use of31

interpolation in model-checking [24, 29]. The success of Maehara’s method is probably due to32

its applicability to a wide range of logics and proof-systems, from intuitionistic logic [30, 37]33

to modal logics [21, 26, 1, 38] or in infinitary logics and abstract model theory [20, 17].34

Contributions and organization of the paper. While in most proof theory textbooks [23,35

37, 40, 41] Craig’s interpolation theorem is presented as an application of cut-elimination,36

one shall see here that it also has in fact much to do with cut-introduction, giving a proof-37

relevant content to Interpolation theorem. More precisely, we shall establish in Section 338

the following result for first-order LL: For any first-order LL formulas A, B, if π proves39

A ⊢ B, there exists a formula C in the common vocabulary (that refers to the subset of the40

first-order language occurring in a formula, in terms of relation symbols) of A and B and41

proofs π1, π2 of A ⊢ C and C ⊢ B respectively such that π1 composed with π2 is equivalent42

to π: (Cut)(π1, π2) =cut π. Interpolation can therefore be achieved while preserving the43

computational / denotational content of proofs, while factoring the computation through an44

interfacing, interpolant type made only of the base types used in both the input and output45
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types. This result is (easily) extended to classical and intuitionistic logics (thanks to linear46

translations) and sheds an interesting light on the relationship between Lyndon and Craig’s47

interpolation.48

We then consider two extensions. First, by a further analysis of Maehara’s method, we49

show in Section 4 that the interpolation process for a cut-free proof deriving A ⊢ B can50

be in fact decomposed in two phases: (i) an ascending phase which equips each sequent51

of π with a splitting is followed by (ii) a descending phase which solves the interpolation52

problem. This latter descending phase happens to be a cut-introduction phase providing53

an alternative proof of our proof-relevant interpolation result. The resulting proof is, by54

construction, denotationally equal to π. Finally, we consider in Section 5 the question of55

extending our approach to the µ-calculus and non-wellfounded proofs, which is an interesting56

stress-test for our approach since Maehara’s method strongly relies on wellfoundedness of57

the cut-free proof to interpolate. In that setting, we show that the method extends smoothly58

to circular pre-proofs and that, maybe surprisingly, the construction can even be achieved59

mostly neglecting the validity condition for non-wellfounded proofs.60

Related works. Surprisingly we could not find any occurrence in the literature analyzing61

Maehara’s method in terms of cut-elimination (or rather, cut-introduction) even though all62

ingredients were there since Maehara’s seminal work.63

On the other hand, another early proof-theoretic proof of interpolation theorem was pro-64

posed by Prawitz for natural deduction [31]. Just like for Maehara’s method the strengthened,65

proof-relevant interpolation result was at hand in this work as well and Čubrić actually66

showed this in the setting of the simply typed λ-calculus as well as a corresponding factoriza-67

tion result for bicartesian closed categories in the early 90s [11, 12]. Sadly, Čubrić’s paper68

as well as his PhD thesis supervised by Makkai, received too little attention and very few69

following works refer to his results: we could only find less than 10 references to these works70

among them only three truly consider the interpolation aspect [18, 28, 25]1. We hope that71

the present work can contribute to foster interest in Čubrić results.72

Another related work is that of Carbone [8] where she establishes a strengthened form73

of Maehara’s interpolation paying a great attention to the ancestor relation (formulated in74

terms of flow graphs in that work) which allows her to get bounds on the complexity of75

the interpolant but did not led her to a study of proof-relevant interpolation, invariance by76

cut-elimination nor interpolation as cut-introduction. Only few works consider interpolation77

in (fragments of) linear logic, starting with Roorda [34]. In the framework of the calculus of78

structure, Strassburger proves a decomposition theorem for MELL [39] that is advocated to79

correspond to an interpolation theorem and may have a more fine-grained proof-theoretical80

content. More recently, several papers investigated and formalized interpolation theorems in81

substructural logics, including exponential-free linear logic [7, 16, 32].82

2 Background on LL and µLL∞ proof theory83

In the following, we provide the necessary background on first-order LL as well as for its84

circular and non-wellfounded extensions with least and greatest fixed-points, µLL∞.85

1 Matthes [28] extends Čubrić’ results to a natural deduction with general elimination rules and a
corresponding term calculus while Nakazawa [25] considers interpolation in purely implicational fragments
of intuitionistic logic and fins workarounds for the lack of interpolation in this setting. On the way,
he considers various a sequent calculus a proves a result which as some similarities with our result
but is weaker both in terms of the logical language which is restricted to implicative LJ and of the
characterization of the equivalence between the interpolants and the original proofs.
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As usual, we assume a first-order language L (without equality) as well as a countable86

set of fixed-point variables V (ranged over by X, Y, Z, . . . ). We introduce a language of87

first-order LL formulas with least and greatest fixed points, called µLL pre-formulas:88

▶ Definition 1. The grammar of first-order µLL pre-formulas is defined inductively as:89

90

F ::= a | ⊤ | ⊥ | FOF | FNF | ∀x.F negative MALL formulas
| a⊥ | 0 | 1 | F ⊗F | F ⊕ F | ∃x.F positive MALL formulas
| X | µX.F | νX.F least and greatest fixed points

91

An LL formula is a pre-formula built using only the first two line of the above grammar.92

A µLL formula is a pre-formula containing no free fixed-point variable.93

Negation is defined as usual as an involution on LL (resp. µLL) formulas. Notice that94

negation does not change fixed-points variables which are really just used for the binding95

structure of the fixed-point definition: (µX.F )⊥ = νX.F ⊥ and X⊥ = X.96

▶ Definition 2 (LL & µLL∞ sequent calculi). The inference of LL and µLL∞ sequent calculi97

are given in Figure 1 considering inferences in (a-c) for first-order LL sequent calculus,98

inferences in (a-d) for first-order µLL∞ sequent calculus and inferences in (a-b)+(d) for99

propositional µLL∞ sequent calculus. The inferences of Figure 1 show a relation between100

conclusion and premises formulas, the ancestor relation (or sub-occurrence relation) that is101

extended by transitivity to formulas of non consecutive sequents of a derivation.102

▶ Remark 3. The ancestor relation defined above is (implicitly) used in designing a cut-103

reduction system and plays a crucial role in expressing the validity condition for non-104

wellfounded and circular proofs as well as in the extension of Maehara’s method we will show105

next, in order to propagate sequent splittings from conclusions to premises.106

Note that some µLL∞ sequent calculi [3, 2] adopt a locative approach: instead of ordered107

lists of formulas, sequents are lists of occurrences of formula, which are pairs of a formula108

and an address; the sub-occurrence relation then coincides with the sub-address relation.109

▶ Definition 4 (µLL∞ (circular) pre-proof). A µLL∞ pre-proof is a possibly infinite tree built110

from µLL∞ sequent calculus inferences, that is a finitely branching, possibly non-wellfounded111

derivation tree. A µLL∞ pre-proof having finitely many distinct subtrees is call circular.112

(They are the pre-proof having regular infinite trees.)113

▶ Remark 5. Circular pre-proofs admit finite representations in the form of finite trees with114

back-edges, for more details on such finite representations we refer to [19]. To such a finite115

tree with back-edges, one associates its infinite unfolding, uniquely defined by guardedness116

of the back-edges. They typically have the structure depicted in Figure 2.117

As is well known, such non-wellfounded or circular derivations shall be tamed to ensure118

logical soundness. Indeed, one can trivially derive circularly any formula F as in Figure 3.119

The validity condition is expressed [3, 2, 19, 36] as a condition requiring that every infinite120

branch contains we can choose formulas in consecutive sequents and form a sequence of121

ancestor-related formulas such that, (i) those formulas are infinitely often principal in their122

sequent (ie. their main connective is introduced) and (ii) among the formulas that occur123

infinitely often, there exists a minimal one which is a ν formula (in two-sided sequent calculi,124

we ha the possibility that the minimal formula is a µ-formula on the left of the sequent. Such125

validity conditions can be refined when considering finite representations, such as with the126

strong validity, or invariance, condition [19]. We do not detail more as most of the paper127

will neglect validity when dealing with non-wellfounded and circular derivations.128
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(a) (Ax)
⊢ F, F ⊥

⊢ Γ, F ⊢ F ⊥, ∆
(Cut)

⊢ Γ, ∆
⊢ Γ, G, F, ∆

(X)
⊢ Γ, F , G, ∆

⊢ F, G, Γ
(O)

⊢ FOG, Γ
⊢ F , Γ ⊢ G, ∆

(⊗)
⊢ F ⊗G, Γ, ∆

⊢ Γ
(⊥)

⊢ ⊥, Γ
(1)

⊢ 1

⊢ F , Γ ⊢ G, Γ
(N)

⊢ FNG, Γ
⊢ Ai, Γ

(⊕i)
⊢ A1 ⊕ A2, Γ

(⊤)
⊢ ⊤, Γ (no rule for 0)

(b)
⊢ F , Γ

(?d)
⊢?F , Γ

⊢ F , ?Γ
(!p)

⊢!F , ?Γ
⊢ Γ

(?w)
⊢?F, Γ

⊢?F , ?F, Γ
(?c)

⊢?F , Γ

(c)
⊢ G{t/x}, Γ

(ν)
⊢ ∃xG, Γ

⊢ F , Γ
(∀)

⊢ ∀xF, Γ
(in (∀) , x ̸∈ FV(Γ))

(d)
⊢ G[νX.G/X], Γ

(ν)
⊢ νX.G, Γ

⊢ F [µX.F/X], Γ
(µ)

⊢ µX.F, Γ

Figure 1 (a) Propositional MALL Inferences; (b) LL Exponential Inferences; (c) First-order
Inferences; (d) Fixed-point Inferences – explicitly depicting the ancestor relation.

3 Proof-relevant interpolation theorem129

▶ Theorem 6. Let Γ, ∆ be lists of LL formulas and π ⊢ Γ, ∆. There exists a LL formula130

C such that L(C) ⊆ L(Γ) ∩ L(∆) and two cut-free proofs π1, π2 of ⊢ Γ, C and ⊢ C⊥, ∆131

respectively such that
π1

⊢ Γ, C

π2

⊢ C⊥, ∆
(Cut)

⊢ Γ, ∆
=cut π.132

In fact, we shall prove a refined version for cut-free proofs from which Theorem 6 follows133

directly by LL cut-elimination theorem:134

▶ Theorem 7. Let Γ, ∆ be lists of LL formulas and π ⊢ Γ, ∆ be cut-free. There exists a135

LL formula C such that L(C) ⊆ L(Γ) ∩ L(∆) and two cut-free proofs π1, π2 of ⊢ Γ, C and136

⊢ C⊥, ∆ respectively such that
π1

⊢ Γ, C

π2

⊢ C⊥, ∆
(Cut)

⊢ Γ, ∆
−→⋆

cut π.137

We prove the theorem by induction on the structure of π and by case on the last inference.138

We only detail few significant cases below, the remaining cases can be found in Appendix A.139

The proof can precisely be viewed as Maehara’s method for which we are precise and140

explicit about the proof built and the relation ensured by cut-elimination, so that we preserve141

the denotational equivalence of the interpolated proof with the proof being constructed.142

Proof sketch. Let π be a cut-free proof as in the theorem statement and let us prove the143

theorem by induction on the structure of π and by case on the last inference.144

If π = (Ax)
⊢ F, F ⊥ , Γ = F , one simply takes C = F ⊥, π1 = π2 = (Ax)

⊢ F, F ⊥ . (the145

case when Γ = F ⊥ is symmetrical, taking C = F .) A cut between π1 and π2 simply146

reduces to π by a cut-axiom reduction case.147

If π = (Ax)
⊢ F, F ⊥ , Γ = F, F ⊥, one simply takes C = ⊥, π1 =

π
(⊥)

⊢ Γ, ⊥ and π2 =148

(1)
⊢ 1 . (the case when Γ is empty is symmetrical, taking C = 1.) Again, the cut of π1149

and π2 reduces to π by a key 1/⊥ case.150
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⊢ ∆ ⊢ Γ⊢ ∆⊢ Γ ⊢ ∆

R

⊢ Γ′
(r1)

⊢ Γ

...

⊢ ∆
...

⊢ ∆′

Figure 2 General structure of a finite representation.

⊢ F, νX.X
(ν)

⊢ F, νX.X

⊢ µX.X
(µ)

⊢ µX.X
(Cut)

⊢ F

Figure 3 Example of an unsound pre-proof

If the last rule is (⊗), that is π =
π′

⊢ F, Γ′, ∆′
π′′

⊢ G, Γ′′, ∆′′
(⊗)

⊢ F ⊗G, Γ′, Γ′′, ∆′, ∆′′
, assuming Γ = F ⊗G, Γ′, Γ′′ .151

By induction hypothesis, there are interpolants C ′, C ′′, as well as interpolating proofs152

(i) π′
1 ⊢ F, Γ′, C ′, (ii) π′

2 ⊢ C ′⊥, ∆′, (iii) π′′
1 ⊢ G, Γ′′, C ′′ and (iv) π′′

2 ⊢ C ′′⊥, ∆′′
153

such that
π′

1 π′
2

(Cut)
⊢ F, Γ′, ∆′

−→⋆
cut π′ and

π′′
1 π′′

2
(Cut)

⊢ G, Γ′′, ∆′′
−→⋆

cut π′ . Let C = C ′OC ′′,154

π1 =
π′

1 π′′
1

(⊗)
⊢ F ⊗G, Γ′, Γ′′, C ′, C ′′

(O)
⊢ F ⊗G, Γ′, Γ′′, C ′OC ′′

and π2 =
π′

2 π′′
2

(⊗)
⊢ C ′⊥ ⊗C ′′⊥, ∆′, ∆′′

. We have the reduc-155

tion of the box labelled (⊗) in Figure 4 which cut reduces to π by IH.156

If the last rule is (O), that is π =
π′

⊢ F, G, Γ′, ∆
(O)

⊢ FOG, Γ′, ∆
, assuming Γ = FOG, Γ′. By IH, there157

is an interpolant C ′ such that L(C ′) ⊆ L(F, G, Γ′)∩L(∆) as well as proofs π′
1 ⊢ F, G, Γ′, C ′

158

and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ F, G, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ F, G, Γ′, ∆′

−→⋆
cut π′.159

Setting C = C ′, π1 =
π′

1
(O)

⊢ FOG, Γ′, C
and π2 = π′

2 we get the reduction of the box160

labelled (O) in Figure 4 which cut reduces to π by induction hypothesis.161

If the last rule is (⊕i) (i ∈ {1, 2}), that is π =
π′

⊢ Fi, Γ′, ∆
(⊕i)

⊢ F1 ⊕ F2, Γ′, ∆
, assuming Γ = F1 ⊕162

F2, Γ′. By IH, there is an interpolant C ′ such that L(C ′) ⊆ L(Fi, Γ′) ∩ L(∆) as well as163

proofs π′
1 ⊢ Fi, Γ′, C ′ and π′

2 ⊢ C ′⊥, ∆ such that
π′

1

⊢ Fi, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ Fi, Γ′, ∆′

−→⋆
cut π′.164

Setting C = C ′, π1 =
π′

1
(⊕i)

⊢ F1 ⊕ F2, Γ′, C
and π2 = π′

2 we get the following cut-165
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(⊗)
π1

⊢ F ⊗ G, Γ′, C

π2

⊢ C⊥, ∆′, ∆′′
(Cut)

⊢ F ⊗ G, Γ′, ∆′, ∆′′
−→cut

π′
1 π′′

1
(⊗)

⊢ F ⊗G, Γ′, Γ′′, C ′, C ′′ π′′
2

(Cut)
⊢ F ⊗G, Γ′, Γ′′, C ′, ∆′′ π′

2
(Cut)

⊢ Γ, ∆′, ∆′′

−→⋆
cut

π′
1 π′

2
(Cut)

⊢ F, Γ′, ∆′

π′′
1 π′′

2
(Cut)

⊢ G, Γ′′, ∆′′
(⊗)

⊢ F ⊗G, Γ′, Γ′′, ∆′, ∆′′

(O)
π1

⊢ FOG, Γ′, C

π2

⊢ C⊥, ∆′
(Cut)

⊢ FOG, Γ′, ∆′
−→cut

π′
1

⊢ F, G, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ F, G, Γ′, ∆′
(O)

⊢ FOG, Γ′, ∆′

(⊕i)
π1

⊢ F1 ⊕ F2, Γ′, C

π2

⊢ C⊥, ∆′
(Cut)

⊢ F1 ⊕ F2, Γ′, ∆′
−→cut

π′
1

⊢ Fi, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ F, G, Γ′, ∆′
(⊕i)

⊢ F1 ⊕ F2, Γ′, ∆′

(?d)
π1

⊢ ? F, Γ′, C

π2

⊢ C⊥, ∆′
(Cut)

⊢ ? F, Γ′, ∆′
−→cut

π′
1

⊢ F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ F, Γ′, ∆′
(?d)

⊢ ? F, Γ′, ∆′

(!p)
π1

⊢ ! F, ? Γ′, C

π2

⊢ C⊥, ? ∆′
(Cut)

⊢ ! F, ? Γ′, ? ∆′
−→cut

π′
1

⊢ F, ? Γ′, C ′
(?d)

⊢ F, ? Γ′, C

π2

⊢ C ′⊥, ? ∆′
(!p)

⊢ C⊥, ? ∆′
(Cut)

⊢ F, ? Γ′, ? ∆′
(!p)

⊢ ! F, ? Γ′, ? ∆′

−→cut

π′
1 π′

2
(Cut)

⊢ F, ? Γ′, ? ∆′
(!p)

⊢ ! F, ? Γ′, ? ∆′

(∀)
π1 π2

(Cut)
⊢ ∀xF, Γ′, ∆′ −→cut

π′
1

(∃)
⊢ F, Γ′, ∃x.C ′

π′
2

(∀)
⊢ ∀xC ′⊥, ∆′

(Cut)
⊢ F, Γ′, ∆′

(∀)
⊢ ∀xF, Γ′, ∆′

−→cut

π′
1 π′

2
(Cut)

⊢ F, Γ′, ∆′
(∀)

⊢ ∀xF, Γ′, ∆′

(σ) ∈ {(µ), (ν)}
π1

⊢ σX.F, Γ′, C

π2

⊢ C⊥, ∆′
(Cut)

⊢ σX.F, Γ′, ∆′
−→cut

π′
1

⊢ F [σX.F/X], Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ F [σX.F/X], Γ′, ∆′
(O)

⊢ σX.F, Γ′, ∆′

Figure 4 Cases of cut-reduction for the proof-relevant interpolation proof (Theorem 7). (The
last line is used in Section 5 only.)
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reduction starting with a cut-commutation case in the box labelled (⊕i) in Figure 4 which166

cut reduces to π by induction hypothesis.167

If the last rule is (?d), that is π =
π′

⊢ F, Γ′, ∆
(?d)

⊢ ? F, Γ′, ∆
assuming Γ = ? F, Γ′. By induction168

hypothesis, there is an interpolant C ′ such that L(C ′) ⊆ L(F, Γ′) ∩ L(∆) as well as proofs169

π′
1 ⊢ F, Γ′, C ′ and π′

2 ⊢ C ′⊥, ∆ such that
π′

1

⊢ F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ F, Γ′, ∆

−→⋆
cut π′.170

By setting C = C ′, π1 =
π′

1
(?d)

⊢ ? F, Γ′, C ′
, one gets the reduction of the box labelled171

(?d) in Figure 4 which cut reduces to π by induction hypothesis.172

If the last rule is (!p), that is π =
π′

⊢ F, ? Γ′, ? ∆′
(!p)

⊢ ! F, ? Γ′, ? ∆′
assuming Γ = ! F, ? Γ′ and ∆ = ? ∆′.173

By IH, there is an interpolant C ′ such that L(C ′) ⊆ L(F, ? Γ′) ∩ L(∆) as well as proofs174

π′
1 ⊢ F, ? Γ′, C ′ and π′

2 ⊢ C ′⊥, ? ∆′ such that
π′

1

⊢ F, ? Γ′, C ′

π′
2

⊢ C ′⊥, ? ∆′
(Cut)

⊢ F, ? Γ′, ? ∆′

−→⋆
cut π′.175

By setting C = ? C ′, π1 =
π′

1
(?d)

⊢ F, ? Γ′, ? C ′
(!p)

⊢ ! F, ? Γ′, ? C ′

and π2 =
π′

2
(!p)

⊢ ! C ′⊥, ? ∆′
, one gets the176

reduction of the box labelled (!p) in Figure 4 which cut reduces to π by IH.177

If the last rule is (?w) or (?c), the interpolation is built as before by adding the structural178

rule at the root of one of the interpolated proofs obtained by the IH.179

If the last rule is (∀), that is π =
π′

⊢ F, Γ′, ∆
(∀) x ̸∈ FV(Γ′, ∆)

⊢ ∀xF, Γ′, ∆
assuming Γ = ∀xF, Γ′.180

By IH, there is an interpolant C ′ such that L(C ′) ⊆ L(F, Γ′) ∩ L(∆) as well as proofs181

π′
1 ⊢ F, Γ′, C ′ and π′

2 ⊢ C ′⊥, ∆ such that
π′

1

⊢ F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ F, Γ′, ∆

−→⋆
cut π′.182

By setting C = ∃x.C ′, π1 =
π′

1
(∃)

⊢ F, Γ′, ∃x.C ′
(∀)

⊢ ∀xF, Γ′, ∃x.C ′

and π2 =
π′

2
(∀)

⊢ ∀xC ′⊥, ∆
one gets the183

reduction of the box labelled (∀) in Figure 4 which cut reduces to π by IH.184

If the last rule is (∃) , that is π =
π′

⊢ F{y/x}, Γ′, ∆
(∃)

⊢ ∃xF, Γ′, ∆
assuming Γ = ∃xF, Γ′. Note that185

we treat only the case of a language containing no function symbols for simplicity. In that186

case, we do a case analysis of the possible occurrences of y in Γ′ and ∆ and depending187

on the case, either reuse the interpolant given by the induction hypothesis of use an188

interpolant obtained by quantifying y universally of existentially in the interpolant.189

◀190

3.1 Proof-relevant interpolation for LK and LJ thanks to linear191

embeddings192

A similar proof-relevant interpolation can be proved for LK and LJ by expliciting Maehara’s193

method as we did. On the other hand, one can directly deduce this result by using linear194
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embeddings of LK and LJ [22, 15] together with the result of the previous section.195

We sketch this here for LK and provide details in appendices:196

First, we notice that proof-relevant interpolation presented in the previous section holds197

also for the two-sided section calculus for LL.198

Second, a cut-free LK proof π (it would be similar for LJ) can be decorated with exponential199

modalities and inferences in order to turn it into a cut-free LL proof π′.200

After interpolating this proof (obtaining I ′, π′
1 and π′

2), one can erase the linear information201

of the interpolants and the two interpolating proofs (that is, taking the classical skeleton202

of the proofs) and get back a pair of LK (resp. LJ) proofs π1, π2 together with a formula203

I in LK (resp. LJ).204

The properties of the linear embeddings ensure that the skeleton of a cut-free proof ob-205

tained from Cut(π′
1, π′

2) can be obtained by eliminating the classical cuts from Cut(π1, π2).206

4 Interpolation as cut-introduction207

Now that we have obtained the proof-relevant interpolation theorem, we will explain, in the208

present section, how the synthesis of the interpolant is in fact a cut-introduction process.209

The usual proof method for interpolation, made more informative in the previous section,210

actually obfuscates the fact that the interpolating formula and proofs are indeed built using211

a cut-introduction mechanism: this is due to the structure of the inductive reasoning used to212

establish the interpolation theorem under Maehara’s method. On the other hand, one can213

analyze what happens in constructing the interpolating formula and proofs by structuring214

the process in two phases, an bottom-up phase and a top-down phase:215

Ascending phase. This first phase consists in traversing the initial proof π bottom-up, from216

root (conclusion) to leaves (axioms), and building, for each visited sequent Γ, a splitting217

(Γ′, Γ′′) inherited from the splitting of the conclusion of the proof by the ancestor relation.218

In this way, each node of the proof is ultimately decorated with some additional information219

on how to splitting the sequent labelling the node.220

Ultimately, for each logical axiom rule ⊢ A⊥, A, we are in one of the following situations:221

(i) ({A⊥, A}, ∅); (ii) ({A⊥}, {A}); (iii) ({A}, {A⊥}); (iv) (∅, {A⊥, A}).222

(and similarly for each axiom corresponding to some unit, ⊤ or 1.) This corresponds to223

the various base cases of the inductive proof of the previous section.224

Once every axiom has been reached, we switch to the descending phase, traversing again225

the proof, top to bottom, in an asynchronous manner.226

Descending phase. Equipped with the sequents splitting information one shall now apply227

cut-introduction rules to axioms, progressively moving the cuts down and merging them228

in such a way, ultimately, to reach the root sequent of the original proof. We call active a229

sequent such that all its premises are concluded with cut inferences. (Initially, since π is230

cut-free, only the conclusions of logical axioms or 0-ary unit rules are active sequents.)231

We apply cut-introductions to active sequents, maintaining the following two invariants:232

when a sequent is active with splitting (Γ′, Γ′′), the cut formulas of its premises are233

interpolants for the premise sequents wrt. their splitting (Note that this condition234

trivially satisfied initially since the active axioms have no premise).235

when an inference (r) has conclusion S which is active, we apply a (sequence of) cut-236

introduction step(s) on this inference, in such a way that (i) S becomes the conclusion237

of the introduced cut and (ii) the premises of this cut correspond to the splitting238

associated with sequent S.239
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It is easy to check that applying cut-introductions as specified in the boxed reductions of240

Figure 4 (in reverse order) preserves the above invariants. The descending phase therefore241

terminates when the cut reaches the root. Ultimately, one builds a cut formula C and242

two cut-free proofs π1 and π2 such that C is an interpolant of the conclusion sequent243

with respect to the original splitting and such that (Cut)(π1, π2) −→⋆
cut π, a condition244

which is satisfied by construction. To state precisely the properties of the two phases, we245

introduce the following notions:246

A decorated proof is an LL proof st. each sequent is equipped with a splitting.247

A coherent decorated proof is a decorated proof such that for each node, the splitting248

of the conclusion and of its premises is coherent wrt. the ancestor relation: a formula249

belonging to the left (resp. right) component of the splitting has all its ancestors belonging250

to the left (resp. right) component of the splitting.251

▶ Remark 8. The notion of coherent decorations can be refined to two-sided calculi (see252

Appendix C): checking that the ascending phase builds such a refined notion of coherent253

decorated proof directly entails Lyndon’s interpolation, in addition to Craig’s.254

With the above notions, the following lemma is clear by induction on the proof:255

▶ Lemma 9. For any LL proof and any splitting of its conclusion sequent, the ascending256

phase terminates with a coherent decorated proof.257

Coherent decorated proofs satisfy a progress condition wrt. the descending phase, which258

follows from a simple inspection of the cut-reduction sequences in Figure 4:259

▶ Lemma 10. The descending phase applied to a coherent decorated proof is never blocked,260

unless the active sequent is a roof of the proof itself.261

Combining the ascending and descending phases, the two previous lemmas provide us262

with the following theorem stating interpolation as cut-introduction:263

▶ Theorem 11. Given a cut-free proof π ⊢ Γ, ∆ and a coherent decorated proof π′ with264

respect to splitting (Γ; ∆), the descending phase determines a cut-introduction sequence from265

π ending in a proof (Cut)(π1, π2), the cut formula C of which is an interpolant of Γ and ∆.266

▶ Remark 12. The above result does not rely on the cut-freeness of π, only the notion of267

interpolant does. This suggests an immediate generalization of proof-relevant Craig and268

Lyndon’s interpolation for proofs with cuts in which each (pair of) cut-formula is assigned269

to the left/right component of a splitting (in a consistent way for a given cut inference):270

the language of the interpolant is then constructed by taking into account the language of271

the cut-formulas depending on the choice of splitting. In that case, an additional degree of272

freedom appears in the choice of the interpolant when assigning each cut to a component of273

the splitting: strategies for optimizing the language of the interpolant could therefore been274

investigated. Of course analytic cuts are of particular interest here.275

5 Towards proof-relevant interpolation for µLL∞ circular proofs276

In this section, we demonstrate the applicability of our method by considering the question277

of extending the proof-relevant interpolation theorem of the previous section to a fragment278

of circular derivations for linear logic with fixed points, ie. µLL∞. We first explain how when279

considering all circular cut-free pre-proofs and not necessarily valid proofs, one can perform280

proof-relevant interpolation. Then, we provide a discussion on how to integrate a validity281

condition in this picture and suggest several directions as well as treating some examples.282
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5.1 Interpolating finite µLL∞ proofs283

The first and most trivial case that we have to address is the case of wellfounded derivations284

of µLL∞. In that case, the proof of Section 3 can be trivially extended: since the fixed-point285

unfolding rule are non-branching, the interpolant does not need to be updated and the286

interpolating proofs are simply obtained by expanding one them with the adequate fixed-287

point rule, as determined by the splitting. The equality by cut-reduction is given in Figure 4.288

The approach from Section 4 thus extends trivially as in the previous section.289

5.2 A non-avoidable restriction for the non-wellfounded case?290

Three ingredients are important to carry the proof of the previous section to circular proofs:291

1. the wellfoundedness of proof objects. Indeed this ensures that one reaches axioms which292

are the base case of the induction; wellfoundedness is implicitly used to initiate the293

descending phase (that is, after having ended the ascending phase!)294

2. the existence of cut-free proofs. Indeed, cut-freeness is important to reason by induction295

on inferences of the cut-free proofs and benefit from analyticity, which is the key for296

controlling the language of the interpolant, and297

3. the preservation of logical correctness during the descending phase (that is, cut-introduction).298

Indeed, correctness of the interpolated proof-objects is of course necessary for the result299

of interpolation to simply make sense...300

In the case of circular proofs, the first two properties are somehow lost and the third one301

shall be treated with great care:302

1. wellfoundedness is lost, even in presence of circular proofs. In particular, even given a303

finite representation of a given circular proofs, we have leaves which are not axioms but304

back-edges: how can we interpolated them?305

2. while it is crucial to rely on cut-freeness in the reasoning, circular proofs are not closed306

by cut-elimination are actually we know of sequents which are circularly provable but not307

cut-free circularly provable.308

3. As we will see below, while cut-free circular pre-proofs can be interpolated easily (that is,309

finding an interpolant formula C and two interpolating cut-free pre-proofs π1, π2 such310

that there cut can be eliminated to produce π), ensuring the preservation of validity311

(ie requiring that a valid cut-free circular µLL∞ proof can be interpolated by two valid312

cut-free circular µLL∞ proofs) is much more complex. This is due to the fact that it is313

difficult to control where threads will end up after the cut-introduction process.314

The above analysis justifies that we first consider the case of cut-free circular pre-proof,315

neglecting the issue of validity in first approximation and only then considering whether this316

can be made compatible with validity requirements.317

▶ Remark 13. In fact, were we trying to interpolated cut-free non-wellfounded proofs, we318

would produce infinite interpolants for which is is unclear (and actually quite doubtful)319

whether one can find a finite structure capturing this interpolant.320

5.3 Interpolating cut-free circular pre-proofs321

In this section, we consider a cut-free pre-proof π ⊢ Γ, together with a finite representation322

R of π. We show that, for any splitting Γl, Γr we can interpolate π with πl ⊢ Γl, I and323
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(i) R =

⊢ G, H
(µ)

⊢ H, H
(X)

⊢ H, H
(ν)

⊢ G, H (ii) R′ =

⊢ G, H
(µ)

⊢ H, H
(X)

⊢ H, H
(ν)

⊢ G, H
(µ)

⊢ H, H
(X)

⊢ H, H
(ν)

⊢ G, H

Figure 5 Examples of splitting-invariance and non-splitting invariance.

πr ⊢ I⊥, Γr with I in the common language of Γl and of Γr and such that Cut(πl, πr)324

(infinitarily) reduces to π.325

The main difficulty to address is the existence of back-edges in the finite representation326

(and the associated non-wellfoundedness in π). Indeed, Maehara’s method as well as our327

approaches rely on the wellfoundedness of the proof objects to initiate the synthesis of the328

interpolant. In the following, we will treat sources of back-edges as generalized axioms (they329

are indeed leaves of the tree with back-edge that in a finite representation) and initiate the330

interpolation from them as well. At some point, we will have to reconstruct back-edges so331

that we will have to satisfy some constraints on the interpolant and use the ability to use332

inductive and coinductive statement for that, that is to build fixed point of formulas.333

But first, we need to address an issue with the splitting of the conclusion sequent. Indeed,334

while the finite representation R has back-edges such that sources and targets of back-edges335

coincide, once a splitting has been selected, nothing ensures that the splitting at the level of336

the sources of back-edges matches the splitting we had at the target of the back-edge.337

▶ Definition 14 (splitting invariance). Given a finite representation R of a µLL∞ pre-proof338

π ⊢ Γ and a splitting sof Γ in two components Γl, Γr, R is called s-invariant if the result of339

applying the splitting-decoration phase to R (ie. the ascending phase of Section 4), initiated340

with s, results into a decorated derivation R′ such that for each back-edge b of R′, the splitting341

of the source of b coincides with the splitting of the target of b.342

After exemplifying the issue discussed above, we show how this condition can be enforced343

by unfolding the finite representation and then how splitting-invariance enables interpolation.344

5.3.1 A mismatch between splittings and back-edges345

The following very simple example should make clear the issue with splittings that prevents346

us to directly interpolate finite representation.347

Let G be νX.µY.X and H be µY.G. We can consider the circular proof π given by the348

finite representation in Figure 5.(i) together with the splitting sof the conclusion sequent349

{G}, {H} and propagate it through upwards to decorate each sequent of R, we end up with350

the target of the back-edge being decorated with the splitting {H}, {G}. This would prevent351

us from pursuing the interpolation construction. On the other hand, by unfolding once the352

back-edge of R, we can consider an alternative finite representation for π, R′, such that the353

decoration process initiated with splitting s(but also initiated with any other splitting of the354

conclusion sequent as the reader can easily check) result in splittings which coincide on the355

source and target of the back-edge: R′ is splitting-invariant.356

This is in fact a general fact that to any finite representation R of a pre-proof π, one can357

find another finite representation of π which is splitting-invariant and is obtained by simply358

unfolding the back-edges of R a certain number of times.359



XX:12 Interpolation as cut-introduction

5.3.2 Enforcing splitting-invariance360

Interpolating circular pre-proofs will rely on the following proposition:361

▶ Proposition 15. Let π be a circular proof of a sequent ⊢ Γ and let sbe a splitting of Γ in362

two components (ΓL, ΓR). To any finite representation R of π, one can associate another363

finite representation R′ of π which is s-invariant.364

To understand the intuitive idea behind the previous result, let us consider the simpler365

case of a finite representation R with several back-edges, all pointing to the root of the366

derivation. Given a splitting s0, one then propagates it upwards in R. When the source of367

a back-edge b is encountered, one check whether the splitting at the source of b coincides368

with that of the target of b. If so, s-invariance is locally satisfied. Otherwise, we have an369

alternative splitting s1: let us unfold R and keep propagating s′. When reaching sources of370

back-edges of R, we check the splitting at the source: if it is s0, we place a back-edge to the371

root of the derivation, if it is s1, we place a back-edge to the root of the unfolding, otherwise,372

we unfold again and propagate the new splitting s2: this process will surely terminates since373

there are only finitely many splittings of Γ. See Figure 5 for an example.374

In fact, one proves a stronger result about splitting-invariance which entails Proposition 15:375

▶ Lemma 16. Let π be a circular proof of a sequent ⊢ Γ and R be a finite representation of376

π. One can unfold R into another finite representation R′ of π which is splitting-invariant.377

Proof. The proof follows the same idea as before but, instead of propagating upwards a378

single splitting, we propagate a list containing all possible splittings of the root sequent of R.379

The finiteness condition that ensured termination of the unfolding is preserved2 and when we380

encounter another target of back-edges of R, one can safely follow the same unfolding process381

since, when a back-edge is introduce, invariance is globally ensured on all possible splittings.382

The resulting finite representation R′ is therefore splitting-invariant as expected. ◀383

▶ Remark 17. Choosing between Proposition 15 and Lemma 16 is a matter of trade-off384

between uniformity and size-efficiency. By applying the reasoning on a single splitting, we385

obtain in general smaller invariant representations but a distinct representation has to be386

chosen for distinct splittings, contrarily to the global invariance ensured by Lemma 16.387

▶ Remark 18. The above lemmas can be viewed as a strengthening of a result by Shamkanov [38]388

for Gödel-Löb circular proofs where he shows the existence of a s-invariant circular proof389

without control on the finite representation. In their work on Lyndon interpolation for the390

modal µ-calculus, Afshari and Leigh [1] do not show such a result as they benefit from the391

annotation system to directly prove there exists a proof that is invariant. The disadvantage392

is that at that step their approach is inherently not proof-relevant.393

5.3.3 Interpolation-as-cut-introduction for invariant finite394

representations of circular pre-proofs395

We shall now explain how to adapt our cut-introduction process of Section 4 to circular396

pre-proof. For this, we shall temporarily consider pre-formulas (ie. µ formulas which397

may have free fixed-point variable) and shall recall that the linear negation of a fixed-point398

variable X is X itself. As a consequence, the following is a correct instance of a cut-inference:399

2 Even though the condition for termination is far from optimal...
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⊢ Γ, X ⊢ X, ∆
(Cut)

⊢ Γ, ∆
400

▶ Theorem 19. Let π be a cut-free circular µLL∞ pre-proof of ⊢ Γ, sa splitting of Γ (into Γl401

and Γr) and R be a s-invariant finite representation of π. There exists a µLL∞ formula I built402

on the common language of Γl and Γr (that is L(I) ⊆ L(Γl)∩L(Γr)) and two cut-free circular403

µLL∞ pre-proofs π1 ⊢ Γl, I and π2 ⊢ I⊥, Γr such that
π1

⊢ Γl, I

π2

⊢ I⊥, Γr
(Cut)

⊢ Γ
−→ω

cut π.404

Proof. The ascending phase does not need to be adapted. As for the descending phase, we405

shall simply consider two additional cases, in order to treat sources and targets of back-edges.406

First, let us assign to each (occurrence of a) sequent s which is the target of a back-edge407

in R, a fixed-point variable Xs. We can now express how to adapt the descending phase408

Sources of back-edges are a novel way to initiate the descending phase. For this, to each409

source ⊢ Γ, ∆ of a back-edge b with target s, for which the splitting is (Γ; ∆), we associate410

the cut ⊢ Γ, Xs ⊢ Xs, ∆
(Cut)

⊢ Γ, ∆
411

Targets of back-edges are reached during the descending phase and induce a specific con-412

struction, in order to reconstruct the back-edges (to each back-edge of R, one will introduce413

a back-edge in each of the interpolating derivations). Assume that when reaching the414

target s of some back-edges, we have:
Rl

⊢ Γ, I

Rr

⊢ I⊥, ∆
(Cut)

⊢ Γ, ∆
415

Remember that we are currently working with pre-formulas, which may have free fixed-416

point variables and that Rl (resp. Rr) has some leaves ⊢ Γ, Xs (resp. ⊢ Xs, ∆) and that I417

(resp. I⊥) has Xs as free fixed-point variable (as well as all the variables corresponding to418

sources of back-edges, but no more fixed-point variables that those coming from back-edges.419

In such a situation, we first apply to Rl substitution [µXs.I(Xs, . . . , Xs)/Xs] and to Rr420

substitution [νXs.I⊥(Xs, . . . , Xs)/Xs] reaching:
Rl[µXs.I/Xs]

⊢ Γ, I[µXs.I/Xs]

Rr[νXs.I⊥/Xs]

⊢ I⊥[νXs.I⊥/Xs], ∆
(Cut)

⊢ Γ, ∆

421

and apply a µ/ν-introduction reaching:

Rl[µXs.I/Xs]
⊢ Γ, I[µXs.I/Xs]

(µ)
⊢ Γ, µXs.I

Rr[νXs.I⊥/Xs]

⊢ I⊥[νXs.I⊥/Xs], ∆
(ν)

⊢ νXs.I⊥, ∆
(Cut)

⊢ Γ, ∆

422

The previous two steps updated the leaves ⊢ Γ, Xs (resp. ⊢ Xs, ∆) of Rl (resp. Rr) to423

⊢ Γ, µXs.I (resp. ⊢ νXs.I⊥, ∆) and one can thus place a back-edge from each of those424

leaves to the corresponding premise of the cut inference. The process is summed up in425

Appendix D. (Here, the choice of introducing a (µ) in Rl and a (ν) in Rr is arbitrary as426

we only consider pre-proof. This choice is analyzed in the next section about validity.)427

As in Section 4, when the cut reached the root of R, we get a triple (I, Rl, Rr) such that:428

I is a µLL∞ formula: it contains no free fixed-point variable since we crossed all back-edges.429

Rl and Rr are circular representations of respective conclusions ⊢ Γ, I and ⊢ I⊥, ∆430

I is in the common language of Γ and ∆: indeed, this is ensured by the result of Sections 3431

and 4 for LL inferences, encountering (µ) / (µ) does not modify the interpolating formula432

and both the initialization of a interpolant at a source of a back-edge or closure or433

introduction of fixed-points in the interpolant when crossing the target of a back-edge434

does not modify the language of the interpolant.435
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Cutting Rl and Rr results in a finite representation of a proof of which the cuts can be436

eliminated reaching π as a limit: indeed, the interpolant is synthesized by cut-introduction,437

their cut-elimination progressively reconstructs the infinite unfolding of R. ◀438

▶ Remark 20. Notice that for this reasoning to hold, it is useful (needed) to have the form of439

reasoning that separate the ascending and descending phase as we did in Section 4.440

Note also that in the locative sequent calculi for µLL∞ [3, 2], the ascending phase can be441

skipped since if F is sub-occurrence of G, the address of F is a sub-address of that of G.442

5.4 Towards a proof-relevant interpolation for valid circular proofs443

Proof-relevant circular interpolation presented in the previous section totally neglected the444

validity condition: this is of course unsatisfactory. While falling beyond the scope of this445

paper, we discuss in the present section the make questions that have to be addressed and446

outline a solution that will be the subject of a future work.447

First, let us make a general remark on the impact of the interpolation process of Sec-448

tion 5.3.3: assuming the circular pre-proof is indeed valid, that means it is equipped with449

a set of valid threads covering every infinite branch. While building the two interpolating450

pre-proofs πl, πr, this set of threads will be split into two sets, one set of threads being sent451

to πl while the other goes to πr. In particular, we can notice that in the (very restricted)452

case that π contains a single infinite branch, we have a solution to ensure validity of both453

interpolating proofs by setting the interpolating formula to contain a µ is the branch that goes454

with the valid thread and its dual to contain a ν. For instance with the finite representation455

of Figure 5 which is splitting-invariant and with the splitting ({G, H}, ∅), one can pick the456

interpolant to be µX.X. But in more complex cases where there are multiple back-edges457

which are interleaved, the method of the previous section cannot be expected to work and458

produce valid interpolating proofs as it treats all back-edges pointing to a given sequent459

uniformly while there is no reason that validity should be justified in the same way for all460

infinite branches generated by iterating those back-edges.461

There is a natural adaptation for this: instead of choosing one fresh fixed-point formula462

for each target of a back-edge as we did above, we can choose a fresh fixed-point variable463

for each source of a back-edge, say X1, . . . Xn. When reaching the target of back-edges the464

interpolant under synthesis will now depend on all those fixed-point variables, I(X1, . . . Xn)465

and we have the freedom: (i) to choose a distinct fixed-point, τi ∈ {µ, ν} for Xi and (ii)466

to choose any sequentialization in the formation of the fixed-point formula to be used as467

interpolator, that is choosing some permutation σ ∈ Sn and set the interpolating formula be468

τσ(1)Xσ(1) . . . τσ(n)Xσ(n).I(X1, . . . Xn) based on the validating mode of the back-edges. For469

proving the existence of such a permutation τ ensuring validity of the interpolating proofs470

(and actually constructing it), one can take inspiration of the work by Afshari & Leigh on471

Lyndon interpolation for the modal µ-calculus [1] but at the moment we only know how to472

handle the fragment of strongly valid µLL∞-proofs as considered by Doumane [19]. Doing473

this precisely will be the focus of a future paper.474

6 Conclusion475

In this paper, we established a refined, proof-relevant, version of Craig-Lyndon interpolation476

theorems for first-order linear logic and then deduced it, using completely standard tools of LL477

proof theory, to LK and LJ. A most striking fact, in our opinion, is that the result was almost478

there for decades, since the early proofs by Maehara (and its broad dissemination in proof479
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theory textbooks, not to speak of applications to broader logical frameworks) and Prawitz.480

Borrowing Feferman’s words, “though deceptively simple and plausible on the face of it”, we481

think that this approach to proof-relevant interpolation in sequent calculus emphasizes a deep482

duality between interpolation and cut elimination : more specifically, the process of synthesis483

of the interpolant and the two interpolating proofs is reformulated as a cut-introduction484

process. Finally, we showed that our results can be applied even in non-wellfounded settings:485

we proved that it can be extended to µLL∞ circular pre-proofs and discuss some directions486

to be taken to take validity into account, leaving this for a future work.487

While we think that interpolation as cut-introduction is both a new conceptual and488

technical contribution of this work, a proof-relevant interpolation theorem has already489

been established by Čubrić [11, 12] in the early 90’s for propositional intuitionistic natural490

deduction in the form of an interpolation for the typed λ-calculus and for bicartesian closed491

categories. Our approach is similarly subject to a computational interpretation that we492

plan to develop in a future work about interpolation in system L [13, 14]. In fact we also493

hope that our interpolation-as-cut-introduction can pave the way for a broader analysis494

of the computational content of interpolation as a manner to factor computation through495

interfacing (that is, interpolating) types. Indeed, while the computational interpretation496

of Čubrić’s result, stated in the λ-calculus, is certainly more transparent than the sequent497

calculus that we presented here, it has not been extended in more than 30 years, except once498

by Matthes [28]. A reason for this is might be that while both allows for a proof-relevant499

phrasing, Maehara’s method is more modular and easily extensible than Prawitz as it rests500

on a logical framework, the sequent calculus, that is inherently more modular that natural501

deduction. For instance, we conjecture that it is possible to state a computational version of502

interpolation in System L, that is in a classical framework featuring continuations, while it is503

very much unclear how Čubrić’s results can be extended to Parigot’s λµ-calculus.504

Among other future works that we plan to tackle, one can list the following directions.505

We will develop a full treatment of the validity condition along the line of Section 5.4;506

In LL, proof nets are a proof system that satisfies canonicity properties akin to natural507

deduction for intuitionistic logic. It seems that interpolation as cut-introduction in508

(multiplicative) proof-nets can be reformulated in terms of the parsing correctness criterion.509

We hope to establish factorization properties for models of LL, similar to Čubrić’s results.510

An intrinsic advantage of sequent calculus over natural deduction, and therefore of our511

approach over Čubrić’s, is that many more logics can be formulated as sequent calculi than512

in natural deduction. Can we extend our results to other logics having cut-elimination?513

An important question and clearly non-trivial question that we would like to explore514

is whether such a proof-relevant approach to interpolation can be extended to uniform515

interpolation. That would mean that all computations that can be performed from516

a piece of data u in a type A to data sharing with A only a fixed set L of primitive517

datatypes can be factored through a program that computes a value v in the uniform518

interpolant datatype build from L such that everything that can be computed from u519

can be computed from v as well.520

Finally, we plan to reconsider Čubrić’s results from the cut-introduction perspective.521
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A Full proof of proof-relevant interpolation for LL628

Proof. By LL cut-elimination theorem, one can assume that π is cut-free and reason by629

induction on the structure of π and by case on the last inference. We will proceed by630

“introducing cuts” and build new interpolants in such a way as to preserve the denotational631

equivalence of the interpolated proof with the proof being constructed.632

In fact, we shall prove a slightly stronger result, that is the cut of the interpolating633

proofs reduces, by cut-elimination, to the interpolated proof (up to exchange rules which are634

neglected in the following).635

If π = (Ax)
⊢ F, F ⊥ , Γ = F , one simply takes C = F ⊥ π1 = π2 = (Ax)

⊢ F, F ⊥ . (The636

case when Γ = F ⊥ is symmetrical, taking C = F .)637

If π = (Ax)
⊢ F, F ⊥ , Γ = F, F ⊥, one simply takes C = ⊥, π1 =

π
(⊥)

⊢ Γ, ⊥ and π2 =638

(1)
⊢ 1 . (The case when Γ is empty is symmetrical, taking C = 1.)639

If the last rule is (⊗) , that is π =
π′

⊢ F, Γ′, ∆′
π′′

⊢ G, Γ′′, ∆′′
(⊗)

⊢ F ⊗G, Γ′, Γ′′, ∆′, ∆′′
, assuming Γ = F ⊗640

G, Γ′, Γ′′.641

By induction hypothesis, there are interpolants C ′, C ′′, as well as interpolating proofs (i)
π′

1 ⊢ F, Γ′, C ′, (ii) π′
2 ⊢ C ′⊥, ∆′, (iii) π′′

1 ⊢ G, Γ′′, C ′′ and (iv) π′′
2 ⊢ C ′′⊥, ∆′′ such that

π′
1 π′

2
(Cut)

⊢ F, Γ′, ∆′
−→⋆

cut π′ π′′
1 π′′

2
(Cut)

⊢ G, Γ′′, ∆′′
−→⋆

cut π′

Let C = C ′OC ′′ and let π1 =
π′

1 π′′
1

(⊗)
⊢ F ⊗G, Γ′, Γ′′, C ′, C ′′

(O)
⊢ F ⊗G, Γ′, Γ′′, C ′OC ′′

and π2 =
π′

2 π′′
2

(⊗)
⊢ C ′⊥ ⊗C ′′⊥, ∆′, ∆′′

.642

One observes that
π1

⊢ Γ, C

π2

⊢ C⊥, ∆
(Cut)

⊢ Γ, ∆

−→cut

π′
1 π′′

1
(⊗)

⊢ F ⊗G, Γ′, Γ′′, C ′, C ′′ π′′
2

(Cut)
⊢ F ⊗G, Γ′, Γ′′, C ′, ∆′′ π′

2
(Cut)

⊢ Γ, ∆

−→⋆
cut

π′
1 π′

2
(Cut)

⊢ F, Γ′, ∆′

π′′
1 π′′

2
(Cut)

⊢ G, Γ′′, ∆′′
(⊗)

⊢ F ⊗G, Γ′, Γ′′, ∆′, ∆′′

−→⋆
cut π by IH.

If the last rule is (O) , that is π =
π′

⊢ F, G, Γ′, ∆
(O)

⊢ FOG, Γ′, ∆
, assuming Γ = FOG, Γ′. By induc-

tion hypothesis, there is an interpolant C ′ such that L(C ′) ⊆ L(F, G, Γ′) ∩ L(∆) as well
as proofs π′

1 ⊢ F, G, Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ F, G, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ F, G, Γ′, ∆′

−→⋆
cut π′.



A. Saurin XX:19

Setting C = C ′, π1 =
π′

1
(O)

⊢ FOG, Γ′, C
and π2 = π′

2 we get:

π1

⊢ FOG, Γ′, C

π2

⊢ C⊥, ∆′
(Cut)

⊢ FOG, Γ′, ∆′
−→cut

π′
1

⊢ F, G, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ F, G, Γ′, ∆′
(O)

⊢ FOG, Γ′, ∆′

−→⋆
cut π.

If the last rule is (1) , that is π = (1)
⊢ 1 then the interpolant is trivially ⊥ or 1 depending643

on whether Γ = 1 or not, one interpolating proof being an axiom and the other being π644

itself:645

If Γ = 1, let C = ⊥, π1 = (Ax)
⊢ 1, ⊥ and π2 = (1)

⊢ 1 . One easily gets646

π1 π2
(Cut)

⊢ 1
−→cut π.647

If Γ is empty, then let C = 1, π1 = (1)
⊢ 1 and π2 = (Ax)

⊢ 1, ⊥ . One easily gets648

π1 π2
(Cut)

⊢ 1
−→cut π.649

If the last rule is (⊥) , that is π =
π′

⊢ Γ′, ∆
(⊥)

⊢ ⊥, Γ′, ∆
and assume Γ = ⊥, Γ′. By induction

hypothesis, there is an interpolant C ′ and proof π′
1 ⊢ Γ′, C ′ and π′

2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ Γ′, ∆′

−→⋆
cut π′

By setting C = C ′, π1 =
π′

1
(⊥)

⊢ ⊥, Γ′, C ′
and π2 = π′

2, one gets

π1

⊢ ⊥, Γ′, C

π2

⊢ C⊥, ∆′
(Cut)

⊢ ⊥, Γ′, ∆′
−→cut

π′
1

⊢ Γ′, C

π2

⊢ C⊥, ∆′
(Cut)

⊢ Γ′, ∆′
(⊥)

⊢ ⊥, Γ′, ∆′

−→⋆
cut π

If the last rule is (⊤) , that is π = (⊤)
⊢ ⊤, Γ′, ∆′ , assuming Γ = ⊤, Γ′. Set C = 0,

π′
1 = (⊤)

⊢ ⊤, Γ′, 0 and π′
2 = (⊤)

⊢ ⊤, ∆′ In such a case

(⊤)
⊢ ⊤, Γ′, 0

(⊤)
⊢ ⊤, ∆′

(Cut)
⊢ ⊤, Γ′, ∆′

−→⋆
cut π

If the last rule is (N) , that is π =
π′

⊢ F, Γ′, ∆′
π′′

⊢ G, Γ′, ∆′
(N)

⊢ FNG, Γ′, ∆′
, assuming Γ = FNG, Γ′.650
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By induction hypothesis, there are interpolants C ′, C ′′, as well as interpolating proofs (i)
π′

1 ⊢ F, Γ′, C ′, (ii) π′
2 ⊢ C ′⊥, ∆′, (iii) π′′

1 ⊢ G, Γ′, C ′′ and (iv) π′′
2 ⊢ C ′′⊥, ∆′ such that

π′
1 π′

2
(Cut)

⊢ F, Γ′, ∆′
−→⋆

cut π′ π′′
1 π′′

2
(Cut)

⊢ G, Γ′, ∆′
−→⋆

cut π′

Let C = C ′ ⊕ C ′′ and let π1 =
π′

1
(⊕1)

⊢ F, Γ′, C ′ ⊕ C ′′

π′′
1

(⊕2)
⊢ G, Γ′, C ′ ⊕ C ′′

(N)
⊢ FNG, Γ′, C ′ ⊕ C ′′

and651

π2 =
π′

2 π′′
2

(N)
⊢ C ′⊥NC ′′⊥, ∆′

.652

One observes that
π1

⊢ Γ, C

π2

⊢ C⊥, ∆
(Cut)

⊢ Γ, ∆

−→cut

π′
1

(⊕1)
⊢ F, Γ′, C π2

(Cut)
⊢ F, Γ′, ∆′

π′′
1

(⊕2)
⊢ G, Γ′, C π2

(Cut)
⊢ G, Γ′, ∆′

(N)
⊢ FNG, Γ′, ∆′

−→cut
π′

1 π′
2

(Cut)
⊢ F, Γ′, ∆′

π′′
1

(⊕2)
⊢ G, Γ′, C π2

(Cut)
⊢ G, Γ′, ∆′

(N)
⊢ FNG, Γ′, ∆′

−→cut

π′
1 π′

2
(Cut)

⊢ F, Γ′, ∆′

π′′
1 π′′

2
(Cut)

⊢ G, Γ′, ∆′
(N)

⊢ FNG, Γ′, ∆′

−→⋆
cut π by IH.

If the last rule is (⊕i), i ∈ {1, 2} , that is π =
π′

⊢ Fi, Γ′, ∆
(⊕i)

⊢ F1 ⊕ F2, Γ′, ∆
, assuming Γ = F1 ⊕

F2, Γ′. By induction hypothesis, there is an interpolant C ′ such that L(C ′) ⊆ L(Fi, Γ′) ∩
L(∆) as well as proofs π′

1 ⊢ Fi, Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ Fi, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ Fi, Γ′, ∆′

−→⋆
cut π′.

Setting C = C ′, π1 =
π′

1
(⊕i)

⊢ F1 ⊕ F2, Γ′, C
and π2 = π′

2 we get the following cut-

reduction starting with a cut-commutation case:
π1

⊢ F1 ⊕ F2, Γ′, C

π2

⊢ C⊥, ∆′
(Cut)

⊢ F1 ⊕ F2, Γ′, ∆′
−→cut

π′
1

⊢ Fi, Γ′, C ′

π′
2

⊢ C ′⊥, ∆′
(Cut)

⊢ F, G, Γ′, ∆′
(⊕i)

⊢ F1 ⊕ F2, Γ′, ∆′

−→⋆
cut π.
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If the last rule is (?d) , that is π =
π′

⊢ F, Γ′, ∆
(?d)

⊢ ? F, Γ′, ∆
assuming Γ = ? F, Γ′. By induction

hypothesis, there is an interpolant C ′ such that L(C ′) ⊆ L(F, Γ′) ∩ L(∆) as well as proofs
π′

1 ⊢ F, Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ F, Γ′, ∆

−→⋆
cut π′.

By setting C = C ′, π1 =
π′

1
(?d)

⊢ ? F, Γ′, C ′
, one gets:

π1

⊢ ? F, Γ′, C

π2

⊢ C⊥, ∆
(Cut)

⊢ ? F, Γ′, ∆
−→cut

π′
1

⊢ F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ F, Γ′, ∆
(?d)

⊢ ? F, Γ′, ∆

−→⋆
cut π.

If the last rule is (!p) , that is π =
π′

⊢ F, ? Γ′, ? ∆′
(!p)

⊢ ! F, ? Γ′, ? ∆′
assuming Γ = ! F, ? Γ′ and ∆ = ? ∆′.

By induction hypothesis, there is an interpolant C ′ such that L(C ′) ⊆ L(F, ? Γ′) ∩ L(∆)
as well as proofs π′

1 ⊢ F, ? Γ′, C ′ and π′
2 ⊢ C ′⊥, ? ∆′ such that

π′
1

⊢ F, ? Γ′, C ′

π′
2

⊢ C ′⊥, ? ∆′
(Cut)

⊢ F, ? Γ′, ? ∆′

−→⋆
cut π′.

By setting C = ? C ′, π1 =
π′

1
(?d)

⊢ F, ? Γ′, ? C ′
(!p)

⊢ ! F, ? Γ′, ? C ′

and π2 =
π′

2
(!p)

⊢ ! C ′⊥, ? ∆′
, one gets:

π1 π2
(Cut)

⊢ ? F, ? Γ′, ? ∆′ −→cut

π′
1

⊢ F, ? Γ′, C ′
(?d)

⊢ F, ? Γ′, C

π2

⊢ C ′⊥, ? ∆′
(!p)

⊢ C⊥, ? ∆′
(Cut)

⊢ F, ? Γ′, ? ∆′
(?d)

⊢ ? F, ? Γ′, ? ∆′

−→cut

π′
1 π′

2
(Cut)

⊢ F, ? Γ′, ? ∆′
(?d)

⊢ ? F, ? Γ′, ? ∆′

−→⋆
cut π.

If the last rule is (?w) , that is π =
π′

⊢ Γ′, ∆
(?w)

⊢ ? F, Γ′, ∆
assuming Γ = ? F, Γ′. By induction

hypothesis, there is an interpolant C ′ such that L(C ′) ⊆ L(Γ′) ∩ L(∆) as well as proofs
π′

1 ⊢ Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ Γ′, ∆

−→⋆
cut π′.
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By setting C = C ′, π1 =
π′

1
(?w)

⊢ ? F, Γ′, C
, one gets L(C) ⊆ L(Γ) ∩ L(∆) and:

π1

⊢ ? F, Γ′, C

π2

⊢ C⊥, ∆
(Cut)

⊢ ? F, Γ′, ∆
−→cut

π′
1

⊢ Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ Γ′, ∆
(?w)

⊢ ? F, Γ′, ∆

−→⋆
cut π.

If the last rule is (?c) , that is π =
π′

⊢ ? F, ? F, Γ′, ∆
(?c)

⊢ ? F, Γ′, ∆
assuming Γ = ? F, Γ′. By induc-

tion hypothesis, there is an interpolant C ′ such that L(C ′) ⊆ L(? F, ? F, Γ′) ∩ L(∆) as
well as proofs π′

1 ⊢ ? F, ? F, Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ ? F, ? F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ ? F, ? F, Γ′, ∆

−→⋆
cut π′.

By setting C = C ′, π1 =
π′

1
(?c)

⊢ ? F, Γ′, C ′
and π2 = π′

2 one gets:

π1

⊢ ? F, Γ′, C

π2

⊢ C⊥, ∆
(Cut)

⊢ ? F, Γ′, ∆
−→cut

π′
1

⊢ ? F, ? F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ ? F, ? F, Γ′, ∆
(?c)

⊢ ? F, Γ′, ∆

−→⋆
cut π.

If the last rule is (∀) , that is π =
π′

⊢ F, Γ′, ∆
(∀) x ̸∈ FV(Γ′, ∆)

⊢ ∀xF, Γ′, ∆
assuming Γ = ∀xF, Γ′.

By induction hypothesis, there is an interpolant C ′ such that L(C ′) ⊆ L(F, Γ′) ∩ L(∆) as
well as proofs π′

1 ⊢ F, Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ F, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ F, Γ′, ∆

−→⋆
cut π′.
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By setting C = ∃x.C ′, π1 =
π′

1
(∃)

⊢ F, Γ′, ∃x.C ′
(∀)

⊢ ∀xF, Γ′, ∃x.C ′

and π2 =
π′

2
(∀)

⊢ ∀xC ′⊥, ∆
one gets:

π1 π2
(Cut)

⊢ ∀xF, Γ′, ∆

−→cut

π′
1

(∃)
⊢ F, Γ′, ∃x.C ′

π′
2

(∀)
⊢ ∀xC ′⊥, ∆

(Cut)
⊢ F, Γ′, ∆

(∀)
⊢ ∀xF, Γ′, ∆

−→cut

π′
1 π′

2
(Cut)

⊢ F, Γ′, ∆
(∀)

⊢ ∀xF, Γ′, ∆
−→⋆

cut π.

If the last rule is (∃) , that is π =
π′

⊢ F{y/x}, Γ′, ∆
(∃)

⊢ ∃xF, Γ′, ∆
assuming Γ = ∃xF, Γ′.653

In this case, Note that we treat only the case of a FO language containing no function654

symbols.655

By induction hypothesis, there is an interpolant C ′ such that L(C ′) ⊆ L(F{y/x}, Γ′) ∩
L(∆) as well as proofs π′

1 ⊢ F{y/x}, Γ′, C ′ and π′
2 ⊢ C ′⊥, ∆ such that

π′
1

⊢ F{y/x}, Γ′, C ′

π′
2

⊢ C ′⊥, ∆
(Cut)

⊢ F{y/x}, Γ′, ∆

−→⋆
cut π′.

In this case, we reason by case on whether y occurs in Γ′, ∆:656

If y occurs in both, then we simply take C = C ′ as interpolant, π1 =
π′

1
(∃)

⊢ ∃xF, Γ′
657

and π2 = π′
2. and we have L(C) = L(C ′) ⊆ L(F, Γ′) ∩ L(∆) = L(∃xF, Γ′) ∩ L(∆)658

If y occurs in Γ′ but not in ∆, then we set C = ∃yC ′, π1 =
π′

1
(∃)

∃xF, Γ′, C ′
(∃)

∃xF, Γ′, ∃yC ′

and

π2 =
π′

2
(∀)

∀yC ′⊥, ∆
one gets:

π1 π2
(Cut)

⊢ ∃x.F, Γ′, ∆ −→cut

π′
1

(∃)
⊢ ∃xF, Γ′, C ′ π′

2
(Cut)

⊢ ∃xF, Γ′, ∆

−→cut

π′
1 π′

2
(Cut)

⊢ F{y/x}, Γ′, ∆
(∃)

⊢ ∃xF, Γ′, C ′

−→⋆
cut π.

If y occurs in ∆ but not in Γ′, then we set C = ∀yC ′, π1 =
π′

1
(∃)

⊢ ∃xF, Γ′, C ′
(∀)

⊢ ∃xF, Γ′, ∀y.C ′

and
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π2 =
π′

2
(∃)

⊢ ∃yC ′⊥, ∆
. One gets:

π1 π2
(Cut)

⊢ ∃xF, Γ′, ∆ −→cut

π′
1

(∃)
⊢ ∃xF, Γ′, C ′ π′

2
(Cut)

⊢ ∃xF, Γ′, ∆

−→cut

π′
1 π′

2
(Cut)

⊢ F{y/x}, Γ′, ∆
(∃)

⊢ ∃x.F, Γ′, ∆
−→⋆

cut π.

◀659

B Linear embeddings of LJ and LK.660

In the present section, we (sketch how to) deduce our proof-relevant statement of interpolation661

for LJ and LK as a direct corollary of the usual linear embeddings of classical and intuitionistic662

logics in linear logic:663

First one needs to extend the results of the previous section on proof-relevant interpolation664

to two-sided LL, which is clear. The only additional care amount to dealing properly665

with the notion of positive/negative subformula in order to obtain the refined Lyndon666

inteprolation result, but there is no difficulty in doing so;667

Second, consider some provable sequents Γ ⊢LK ∆ (resp. Γ ⊢LJ A) and their respective668

cut-free proofs under consideration πLK (resp. πLJ) and consider a splitting of the sequents:669

Γ′ ⊢ ∆′ and Γ′′ ⊢ ∆′′ (resp. Γ′ ⊢ and Γ′′ ⊢ A);670

Consider the linear sequents and proofs corresponding to those sequents via linear671

translations which do not introduce additional cuts (some are described in our previous672

work [36, 35] and the linear translations of the splittings considered above.673

Apply proof-relevant LL interpolation to obtain a formula Ck (resp. Cj) in the common674

vocabulary and proofs πl
1, πl

2 interpolating wrt. Ck (resp. Cj);675

By erasing all the linear information of Ck (resp. Cj) and π1, π2 (which is called their676

skeletons), this provides us with the expected solution.677

More details are provided in the following paragraphs.678

B.1 Skeletons and decorations679

The following section is standard, from original results by Danos, Joinet and Schellinx [15].680

▶ Definition 21 (Skeleton). For A an LL formula, we define Sk(A) inductively:681

Sk(A⊗B) = Sk(A) ∧ Sk(B) Sk(AOB) = Sk(A) ∨ Sk(B) Sk(! A) = Sk(A)
Sk(ANB) = Sk(A) ∧ Sk(B) Sk(A ⊕ B) = Sk(A) ∨ Sk(B) Sk(? A) = Sk(A)

Sk(1) = Sk(⊤) = ⊤ Sk(⊥) = Sk(0) = F Sk(a) = a

Sk(A ⊸ B) = Sk(A) ⇒ Sk(B)

682

Let π be a two-sided LL proof of Γ ⊢ ∆. Sk(π) is the LK proof of Sk(Γ) ⊢ Sk(∆) obtained683

by the following recursive process by case analysis on the last rule r of π: (i) if r ∈ {(!p), (?d)},684

then Sk(π) is the skeleton of the premise of π;(ii) otherwise, apply the corresponding rule685

with, for premises, the skeletons of the premises of π.686

▶ Proposition 22. For any LL proof π of s, Sk(π) is a LK proof of Sk(s).687
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A standard result of LL proof theory, developed by Danos, Joinet and Schellinx [15], is688

that there exist linear decorations for LK:689

▶ Proposition 23. For any LK sequent s and any LK proof π, there is a linear decoration of690

π, that is a LL proof πd such that Sk(πd) = π.691

B.2 Interpolation for LK and LJ692

Moreover, the skeleton maps cut-related LL-proofs to cut-related LK proofs (resp. LJ proofs).693

Proof relevant interpolation for LJ and LK is therefore a direct and simple corollary and694

the above theory of linear decorations.695

C Details on interpolation as cut-introduction696

We recall and provide further details on the notions of decorated and coherent proof:697

▶ Definition 24. A decorated proof is an LL proof st. each sequent is equipped with a698

splitting.699

A coherent decorated proof is a decorated proof such that for each node, the splitting of the700

conclusion and of its premises is coherent wrt the ancestor relation: a formula belonging701

to the left (resp. right) component of the splitting has all its ancestors belonging to the702

left (resp. right) component of the splitting. More precisely:703

that each ancestor of an auxiliary formula belonging to the left (resp. right) component704

of the splitting belongs to the left (resp. right) component of the splitting of the705

corresponding premise;706

that each immediate subformula of a principal formula which belongs to the left (resp.707

right) component of the paritition, itself belongs to the left (resp. right) component of708

the splitting of its premises.709

In a two-sided calculus, the coherence condition can be refined as follows:710

1. each ancestor of an auxiliary formula belonging to the antecedent (resp. succedent) of711

left component of the splitting belongs to the antecedent (resp. succedent) of the left712

component of the splitting of the corresponding premise;713

2. that each ancestor of an auxiliary formula belonging to the antecedent (resp. succedent)714

of right component of the splitting belongs to the antecedent (resp. succedent) of the715

right component of the splitting of the corresponding premise;716

3. that each positive immediate subformula of a principal formula which belongs to the717

antecedent (resp. succedent) of the left component of the splitting, itself belongs to the718

antecedent (resp. succedent) of the left component of the splitting of its premises;719

4. that each positive immediate subformula of a principal formula which belongs to the720

antecedent (resp. succedent) of the right component of the splitting, itself belongs to the721

antecedent (resp. succedent) of the right component of the splitting of its premises;722

5. that each negative immediate subformula of a principal formula which belongs to the723

antecedent (resp. succedent) of the left component of the splitting, itself belongs to the724

succedent (resp. antecedent) of the left component of the splitting of its premisses;725

6. that each negative immediate subformula of a principal formula which belongs to the726

antecedent (resp. succedent) of the right component of the splitting, itself belongs to the727

succedent (resp. antecedent) of the right component of the splitting of its premisses.728
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D Details on interpolating µLL∞ circular pre-proofs.729

We provide a summary of the transformations applied to a invariant finite representation in730

Figure 6.731
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1

⊢ Γ, ∆⊢ Γ, ∆

R

⊢ Γ, ∆

2

⊢ Γ, ∆⊢ Γ, ∆

R

⊢ Γ, ∆

3

⊢ Γ, X⊢ Γ, X

Rl

⊢ Γ, I[X, . . . , X]

⊢ X, ∆⊢ X, ∆

Rr

⊢ I⊥[X, . . . , X], ∆

4

⊢ Γ, X⊢ Γ, X

Rl

⊢ Γ, I[X, . . . , X]
(µ)

⊢ Γ, µX.I[X, . . . , X]

⊢ X, ∆⊢ X, ∆

Rr

⊢ I⊥[X, . . . , X], ∆
(ν)

⊢ νX.I⊥[X, . . . , X], ∆

5

⊢ Γ, J⊢ Γ, J

Rl[J/X]

⊢ Γ, I[J, . . . , J ]
(µ)

⊢ Γ, µX.I[X, . . . , X]

⊢ J⊥, ∆⊢ J⊥, ∆
Rr[J⊥/X]

⊢ I⊥[J⊥, . . . , J⊥], ∆
(ν)

⊢ νX.I⊥[X, . . . , X], ∆

Figure 6 Description of the interpolation process for pre-proofs (J = µX.I[X, . . . , X]).
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