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A uniform cut-elimination theorem for linear logics
with fixed points and super-exponentials

Esaie BAUER & Alexis SAURIN 20
Université Paris Cité & CNRS & INRIA, Pl. Aurélie Nemours, 75013 Paris, France

—— Abstract

In the realm of light logics deriving from linear logic, a number of variants of exponential rules have

been investigated. The profusion of such proof systems induce the need for cut-elimination theorems
for each logic the proof of which may be redundant. A number of approaches in proof theory have
been adopted to cope with this need. In the present paper, we consider this issue from the point of
view of enhancing linear logic with least and greatest fixed-points and considering such a variety of
exponential connectives.

Our main contribution is to provide a uniform cut-elimination theorem for a parametrized system
with fixed-points by combining two approaches: cut-elimination proofs by reduction (or translation)
to another system and the identification of sufficient conditions for cut-elimination. More precisely,
we examine a broad range of systems, building on Nigam and Miller’s subexponentials and Bauer
and Laurent’s super exponentials. Our work is motivated by our recent work on cut-elimination for
the modal p-calculus as well as by Baillot’s work on light logics with recursive types.
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1 Introduction

On the redundancy of cut-elimination proofs. While cut-elimination is certainly a
cornerstone of structural proof theory since Gentzen’s introduction of the sequent calculus,
an annoying fact is that a slight change in a proof system induces the need to reprove globally
the cut-elimination property. Such re-proofs are usually quite boring and fastidious, often
lacking any new insight: cut-elimination results lack modularity. This results in the need
of reestablishing a theorem which differ only very marginally from a previously proven one,
even though the details are very technical and the failure of cut-elimination may hide in
those small variants. There are mainly two directions to try and make cut-elimination results
more uniform, reduction and axiomatization:

Cut-elimination by reduction The first option consists in proving a new cut-elimination res-
ult by means of translation between proof systems, allowing to reduce the cut-elimination
property of a given system to that of another one for which the property is already known.
Very frequent in term-calculi such as the variants of the A-calculus, this approach is also
applied in proof theory, for instance in translations between classical, intuitionistic and
linear logics [13, 15] where linear translations come with simulation results. A more recent
application of this approach is the second author’s proof of cut-elimination for ulLL*,
the infinitary proof system for linear logic extended with least and greatest fixed-points,
which is proved [22] by a reduction to the cut-elimination property of the exponential-free
fragment of the logic [2].

Axiomatizing systems eliminating cuts The second option consists in abstracting properties
ensuring that cut-elimination holds in a sequent calculus, and to provide sufficient
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Super exponentials with fixed-points

conditions for cut-elimination to hold. For instance, after Miller and Nigam’s work on
subexponentials [20] providing a family of logics extending LL with exponential admitting
various structural rules, Bauer and Laurent provided a systematic and generic setting
that captures most of the light logics to be found in the literature [16, 18], superLL,
for which they provided a uniform proof of cut-elimination based on an axiomatization
stating a set of sufficient conditions for cut-elimination to hold [6]. Another line of work,
more algebraic, establishing sufficient conditions for cut-elimination is that of Terui et
al.[10, 24, 9, 25, 8] which established modular and systematic cut-elimination results by
combining methods from proof theory and algebra.

We will see in the present paper that the two approaches can be mixed in order to provide
a uniform cut-elimination proof for a large family of logics, called pusuperLL®, that extends
both pLL*> and super exponentials: we shall obtain a single proof for a large class of proof
systems and, by relying on a proof translation-method, we shall not need to design a new
termination measure but we will simply rely on simulation results from one logic to another.

Linear modal p-calculus. One of our motivations originated in a recent work, where
we established a cut-elimination theorem for the classical modal p-calculus with infinite
proofs [5]. A key step in this work consisted in proving cut-elimination of uLL7Y, a linear
variant of the classical modal p-calculus, to which we could reduce cut-elimination of the
classical modal p-calculus. Indeed linear logic offers powerful tools for translating systems
like uLK®™ from [22] and pLKg [17] into linear systems making the transfer of properties
of those system to other logic efficient. Proving cut-elimination for uLLZ we were led to
consider a more systematic treatment of exponentials and modalities revisiting a previous
work by the first author with Laurent [6] and introducing psuperLL>.

Light logics with least and greatest fixed points. Taming the deductive power of
linear logic’s exponential connectives allows one to get complexity bounds on the cut-
elimination process [10, 18]. Adding fixed points in such logic enriches the study of complexity
classes [3, 7, 21, 11], as well as the study of light A-calculus enriched with fixpoints as in [4].

In [3], enriching elementary affine logic with fixed points allows one to refine the complexity
results from ELL, and to characterize a hierarchy of the elementary complexity classes.
In [19], it is even shown that the fixed-point-free version of this logic gets a very different
characterization of complexity bounds for similar types.

The systems defined in the present article differ from those discussed in the previous
paragraph: they are based on recursive types rather than extremal fixed-points (ie. inductive
and cionductive types), we base our study on potentally infinite and regular derivation trees,
etc. However, both systems have strong similarities that we shall discuss in a later section,
which makes a stronger link between our systems and light systems from the literature.

Organization and contributions of the paper. The main contribution of this paper
is a syntactic cut-elimination result for a large class of (parametrized) linear systems with
least and greatest fixed-points coming with a notion of non-wellfounded and regular proofs.
In Section 2, we recall some definitions and results about infinitary rewriting theory and
linear logic. Then, we consider in Section 3 a variant of Bauer and Laurent’s system of super
exponentials [6]. We set up in Section 4 a parametrized system, pusuperLL>®, which is superLL
extended with fixed-points and non-wellfounded proofs. Finally, in Section 5, we define the
cut reduction system that we use to prove of our main theorem, the syntactic cut-elimination
theorem of psuperLL®™. Our result gives a new proof of cut-elimination for superLL and a
generalization of the results of [5].
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Figure 1 one-sided MALL rules

FR_ ., F?REL . FET . FET
F?RT Y T RR L FRD Y RIWET P

Figure 2 one-sided exponential fragment of LL

2 Background on LL, fixed-points and non-wellfounded proofs

In this paper, we will study proof theory of different systems of linear logic (LL). It is much
more convenient to work on one-sided sequents systems as proofs as well as the description
of these systems are more compact than the two-sided version. However, The results for
the two-sided systems can be retrieved systematically from the one-sided systems with
translations between them as in [22] for instance.

2.1 Formulas, sequent calculi and non-wellfounded proofs

The (pre-)formulas of linear logic with fixed-points are defined inductively as (a € A, X € V):
F,G = a|at | X|pX.F|vX.F |FBG|FG|L|1|Fe&G|F&G|0|T|?F|!F.

Formulas of pLL> are such closed pre-formulas (¢ and v being binders for variables in V).

By considering the pu, v, X-free formulas of this system, we get LL, the usual formulas of
linear logic [15]. By considering the !, ?-free formulas of it, we get the formulas uMALL™ the
multiplicative and additive linear logic with fized points [2]. By considering the intersection
of these two subset of formulas, we get the formulas of MALL the multiplicative and additive
linear logic. The 7, !-fragment is called the exponential fragment of linear logic.

» Definition 1 (Negation). We define (—)* to be the involution on formulas satisfying:
1t =1 XE =X (A @A)t =AFTAL (A & At = AL @ AL
TL =0 ' =a  (WXF)L =uxFt @Rt =Rt

The sequent calculi that we consider in this paper are built one one-sided sequents:
A sequent is a list of formulas I', that we usually write - I". Usually, in the literature,
derivation rules are defined as a scheme of one conclusion sequent and a (possibly empty)
list of hypotheses sequents. In our system, the derivation rules come equipped with an
ancestor relation linking each formula in the conclusion to zero, one or several formulas
of the hypotheses. When defining our rules, we provide this link by drawing the ancestor
relation with colors. (See Figures 1-3.) As usual, some formulas may be distinguished as
principal formulas: both formulas in the conclusion of an axiom rule are principale, no
formula is principal in the conclusion of an (ex) or (cut) inference while in other rules of
Figures 1-3 the leftmost occurrence of each conclusion sequent is principal.

» Definition 2 (MALL, LL and pLL® inference rules). Figure 1 defines MALL inference rules.
LL inferences are obtained by considering Figures 1 and 2. Finally, inference rules for
uUMALL® and pLL® are obtained by adding rules of Figure 3 to MALL and LL inferences.

In the rest of the article, we will not write the exchange rules explicitly: one can assume
that every rule is preceded and followed by a finite number of instances of (ex). While proofs

E. BAUER & A. SAURIN 23:3
———ax FFT F PN FT,G,F,A ox FFGT FFE, Ay FG, A4
FEF ST A at TR EG A FERG,T FFo A, &
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Super exponentials with fixed-points

FFIX = uX.F| I i F FIX :=vX.F|, I
FuX.F.P FUvX.FP

Figure 3 Rules for the fixed-point fragment

for MALL and LL are the usual trees inductively generated by the inference rules, defining
non-wellfounded proofs for fixed-point logics requires some definitions:

» Definition 3 (Pre-proofs). Given a set of derivation rules, we define pre-proofs to be
the trees co-inductively generated by rules of each of those systems. Regular (or circular)
pre-proofs are those pre-proofs having a finite number of sub-proofs.

We represent regular proofs with back-edges as in the following example:

FuvX.1X, 70
» Example 1 (Regular proof). We give an example of circular proof: Flvxix,70 *
FvX.I1X, 70

From that, we define the proofs as a subset of the pre-proofs:

» Definition 4 (Validity and proofs). Let b = (s;)ic,, be a sequence of sequents defining
an infinite branch in a pre-proof . A thread of b is a sequence (F; € s;)i>n of formula
occurrences such that for each j, F; and Fj11 are satisfying the ancestor relation. We say
that a thread of b is valid if the minimal recurring formula of this sequence, for sub-formula
ordering, exists and is a v-formula and that the formulas of this threads are infinitely often
principal. A branch b is valid if there exists a valid thread of b. A pre-proof is valid and is
a proof if each of its infinite branches is valid.

» Example 2. Given a formula A, let us consider 7*A = uX.(A® (L & (X ® X))) and
PA=vX. (A& (1& (X ® X))). Assuming a context T’ and a valid proof m of = A, T, the
following is a valid proof of H1*A,T:

1° 4.7 14 7
(In every infinite branch along 1 " Fﬁ’AF "Al_?f éfr
the 2 back-edges, 1* A is the 4 ) S 7 A4, ?
. . A F1,7T Fl*A®!1®°A,T
minimal recurring formula.) &,
FA&L(1&(PA®!1°A)),7T
v

F1°A, 7T

2.2 Cut-elimination for linear logic with fixed-point

Cut-elimination holds for uMALL®® and pLL* in the form of the infinitary weak normalization
of a multicut-reduction relation: a new rule, the multicut (mcut), is introduced, that

corresponds to an abstraction of several cuts. This rule has an arbitrary number of premises:

Fh — P mcut(e, 11 ) and it is parameterized by two relations: (i) the ancestor

}_
relation ¢ which relates each formula of the conclusion to exactly one formula among the
hypotheses and (ii) the multicut relation, 1L, which links cut-formulas together. ¢ and Ll are
subject to a number of conditions detailed in Appendix A.1.

» Example 3. Representing ¢ and 1L in red and blue, the (cut/mcut) step is as follows:

B, C FCt,D

+A,B F Bt D
A D

cut FAB Bt C FCt,D
mcut(e, 11) FA,D

mcut(:/, 117)

To define the (mcut) reduction step we need a last definition, that will be also useful
when defining the reduction step of the super exponential system:
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» Definition 5 (Restriction of a multicut context). Let% mcut(e, 1) be a multicut occurrence
with C = s1...8, and s; be = Fy ... Fy,. For 1 < j <k;, Cr, is the restriction of C to the
sequents hereditarily linked to I with the LL-relation.

The previous definition extends to contexts, writing Cr, ... r,. For instance, writing C for
the premises of the rightmost mcut in Example 3, Cz1 = {F A, B; C+, D} while C4 = 0.

Cut-elimination for uMALL® and ulLL> is proved syntactically with a rewriting system
on proof with (mcut), whose steps are given in appendix A.3. As standard in sequent caluli,
those (m)cut-reduction steps are divided in principal cases and (m)cut-commutation cases.

The cut elimination result is then stated as a strong normalization result for a class of
infinitary reduction, initiated with proofs containing exactly one (mcut) at the root of the
proof. Indeed, strong normalization is trivially lost in such infinitary settings as one can
always build infinite sequences that never activate some (mcut), thus converging to a non
cut-free proof. Fuair reductions precisely prevent this situation by asking that no (mcut) that
can be activated remains forever inactive forever along the reduction sequence. The following
definition is borrowed from [, 2], residuals corresponding to the usual notion of TRS [23]:

» Definition 6. A reduction sequence (m;)ic,, s fair, if for each m; such that there is a
reduction R to a proof ', there exist a j > i such that m; does not contain any residual of R.

This fairness condition allowed Baelde et al. [1, 2] to obtain a (multi)cut-elimination
result for uMALL®® which, combined with the following encoding of exponential formulas
using notations from Example 2, (74)°* = 7*A® and (!A)°® = !*A*® (extended to proof and
cut-reduction steps), induces the following uLL* multicut-elimination result [22]:

» Theorem 1. Every fair pLL™ (mcut)-reduction sequence converges to a cut-free proof.

3 Super exponentials

In this section, we define a family of parameterized logical systems, adapting the methodology
of [6] and using the sequent formalism from the previous section. Consequently, the section
lies in between background on the work by the first author and Laurent and new material
since we propose an alternative system, with an alternative choice of formalization. We
discuss briefly some of these differences here and shall come back to this comparison in the
discussion of related works. Bauer and Laurent’s super exponentials [6] only include functorial
promotion and rely on the so-called digging rule to recover the usual Girard’s promotion rule.
On the other hand, we propose below another formalization of super exponentials, adapting
the system to capture both functorial and Girard’s promotions primitively while we discard
the digging which is needed nor well-suited for the extension we aim with fixed-points.

This means that the general philosophy of this section follows that of [6] and in particular
we show how their proofs can be adapted to the present setting in B.2. On the other hand,
we will show in Section 5 that our uniform cut-elimination theorem provides an alternative,
copmletely new, proof of cut-elimination for the super exponential of the present section in
the sense that it does not rely on adapting the techniques and proof by the first author and
Laurent. The first parameters of these systems will allow us to define formulas:

» Definition 7 (Superexponential formulas). Let £ be a set. Formulas of superLL(E) are the
formulas of MALL together with exponential connectives subscripted by an element o € £
F.G 2= a€A |at |FRG|FRG|L|1|F®G|F&G|0|T|2,F|!,F.
Elements of £ are called exponential signatures. The orthogonal (—)* is defined as
the involution satisfying extending that of Definition 1 with: (!, A)* = 7, AL for any o € &.

23:5
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Figure 4 Exponential fragment of psuperLL™

21 B Notation 1 (List of exponential signatures). Let A = Ay ... A, be a list of n formulas
w and G = o0y...0, a list of n exponential signatures. The list of formulas 75, A1... 7, A, is
203 written 73A. Moreover, given a binary relation R on exponential signatures and two lists of

24 exponential signatures ¢ = 01,...,0m and 0’ = 01,...,0,, we write & Ro’ for \ o; Ro}.
1<i<m
1<5<n

205 While each element of ¢ € £ induces two exponential modalities, 7,,!,, the inference

206 rules will be describes in two phases: first each o € £ will be equipped with a set of rule
207 names {7y, |4 € N}U{?, | ¢ > 2} which can be used to introduce the connective ?,. Second,
28 some binary relations over £ will govern the available promotion rules, introducing !, .

20 » Definition 8. The set of exponential rule names is N = {7,,, |1 € N}U{?., |i > 2}.
210 To each exponential signature o € £, one associates a subset of N, [o].

n For the sake of clarity, given o € £ we will write (when unambiguous) ¢ instead of [o],
22 omitting [-] throughout the paper. We shall also switch freely from viewing o (more precisely,
a3 [o]) as a subset of A or as its boolean characteristic function, write, for instance, 7y,, € o
au (resp. 7¢, € o) when convenient, or considering o(7y,,) (resp. o(?c,)) as a truth value.

25 » Definition 9. For one set of signatures £, we define many systems, parameterized by three
26 binary relations on £: <4 <¢ and <. Rules for this system are the rules of MALL from
ar Figure 1 in combination with the super-exponential rules of Figure 4: multiplexing (?m, ),
us  contraction (?.;) as well as functorial (\;), Girard (1,) and unary (1,) promotions.

219 Each exponential rule comes with a side-condition written to the right of the premises

20 B Remark 1. Below, the side-condiction for an exponential rule may also be written next to
21 the rule label or simply omitted when it has been checked elsewhere. Those side-conditions
a2 are not part of the proof-object itself: all exponential inferences are unary rules.

23 Note that nullary multiplexing rule corresponds to usual weakening (7,,) and unary
2¢  mnultiplexing corresponds to dereliction (7).

25 » Definition 10 (superLL(E, <g, <¢, <y)). superLL(E, <g4, <y, <,) proofs are the trees induct-
26 fvely generated by those inferences, satisfying the above side-conditions.

27 There are instances of superLL where cut-elimination fails: some conditions are required,
28 so that cut inferences can indeed be eliminated.
220 The following two definitions aim at formulating these conditions in a suitable way:

» Definition 11 (Derivability closure). Given a signature o, we define the derivability closure
o to be the signature inductively defined by:

o(r) () a(%;) 0(%,) 0(m,) 0(%m,) 1,5 #0 o(Tm) o(?c)
6'(7") 6(701'4”'71) 6(7’0’114”) 6-(77'774)
230 Derivability closure comes with the following property, proved by induction on &(r):

2 B Proposition 1. If a(r) holds, then (r) is derivable for connective ?,, using only inference
w2 rules 7., and 7., on this connective.

0
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c<,0 = o(tm,) = o'(?e,) i>0]| (Axg)
0<s0 = o(Tm) = o(m) i>0ands#g| (AxU)
c<s0 = o?,) = o) i>2] (Ax)
0,0 = 0 <0" = o<0" (AXtrans)
0<g0" = 0 <0" = 0<,0" (AX®)
c<to’ = o< 0" = oc<po” (AXE‘)
0<to’ = <0 = 0<,0"N(0<0" = (0 <" N (Tmy))) (Axié)
o<y = <0 = o<,0" (Ax2)

with s € {g, f,u}, all the axioms are universally quantified.

For convenience, we use the notation ?¢, := 7, and set o(7¢,) = true for all o.

0

Table 1 Cut-elimination axioms

» Notation 2. We name 79, (resp. 77, ), fori € N, any derivation using only ?., and ?,,
rules and having the same conclusion and hypothesis as 7., (resp. 7, ). We write (?¢,) for
7 (?my) and set a(?c,) to true for all o and 77, to be the empty derivation.

To define a cut-reduction system, we consider cut-elimination axioms defined in Table 1.
In superLL-systems each axiom corresponds to one step of cut-elimination. However, as our
reduction system with fixed-points is based on the (mcut)-rule, some axioms will be used in
several reduction cases. In Bauer and Laurent’s system [(], properties of aziom expansion
and cut-elimination hold. We defer the former to Appendix B.1 and focus on the latter:

» Theorem 2 (Cut Elimination). As soon as the 8 cut-elimination axioms of Table 1 are
satisfied, cut elimination holds for superLL(E, <4, <f, <,).

This theorem will be proved, in Section 5, as a corollary of usuperLL™ cut-elimination
theorem. Many existing variants of LL are instances of superLL, e.g. let us consider ELL [16,
12]:

» Example 4. Elementary Linear Logic (ELL) is a variant of LL where (74) and (1)

FAT
——— |, This system is captured as the instance
1A Y P

of superLL(E, <,4, <j, <,) system with & = {e}, defined by o(?.,) = o(?,,,) = true (and
(o)(r) = false otherwise), <, =<, =10 and o <;e.
This superLL(E, <g4, <y, <) instance is ELL and satisfies the azioms of cut-elimination.

are replaced by functorial promotion:

As argued in [6], the superLL-systems subsume many other existing variants of LL such as
SLL [18], LLL [16], seLL [20]. The last two are particularly interesting as they require more
than one exponential signature to be formalized. In the following section, we will look at
some examples for the fixed-point version of usuperLL™.

4 Super exponentials with fixed-points
In this section, we define usuperLL™ and give some interesting instances of it.

4.1 Definition of pusuperLL™

Let £ be an exponential name, the pre-formulas of usuperLL™(E) are superLL(E) formulas
extended with fixed-point variables and fixed-points constructs (with a € A, X € V, 0 € £):

23:7
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F,Gi=a |at | X|FBG|FRG|L|1|FOG|F&G|0|T|2F|,F|uX.F|vX.F
Formulas of psuperLL*? (&) are the closed pre-formulas. Negation is defined as the smallest
involution on formulas satisfying the relations of Definition 1 as well as: (7, F)* := !, F+.

Again, for one set of signatures £ we define many systems, each parametrized with <, <¢
and <. The inference rules for this system are the rules of superLL(€, <, <¢, <) together
with the fixed-point fragment of Figure 3. As before, pre-proofs of psuperLL™ (&, <, <¢, <y)
are the trees coinductively generated by the rules of psuperLL™ (€, <,, <, <,) and validity
is defined in the same way as for ulLL*.

4.2 Some instances of psuperLL™

In this subsection, we give some interesting instances of usuperLL™.

4.2.1 A linear modal p-calculus

Another application of super exponentials can be found in modelling the linear modal u-
calculus introduced in [5] to prove a cut-elimination theorem for the modal p-calculus. We
show below how one can view a multi-modal p-calculus as puLLY as an instance of usuperLL™.
Let us consider a set of actions Act. Formulas of plLLZ are those of pulLL®™ with the
addition of a pair modalities, ¢ F and O, F, for each a € Act. Rules of uLL7 are the rules of
1LL®® where the promotion is extended with {-contexts. Rules on modalities are a functorial
promotion (called the modal rule) and a contraction and a weakening on ¢-formulas:

FEM, 00G1s- .o, 00, Gn FFET O FOuF, OaF,T FT

10 -
FIF T, 00, G, 00, Gn P FOaF,0al ° FOuF, T Oc T OLFT Ow
(with o, g, . .., € Act) The system considered in [5] corresponds to the case where Act is a

singleton, that is a calculus with two exponential names, one of these names representing the
p-calculus modality rather than a linear exponential.
pLLE can be modelled as the super-exponential system psuperLL™ (&, <, <¢, <) with:
E :={e} UAct.
?cy(8) = Ty (@) = 7, (o) = true, for any o € Act, 7, () = 7, () = true, and all the
other elements have value false for both signatures.
o <, 0 ;0 <, a; o <fafor any a € Act and all other couples for the three relations
<g, <rand <, are false.
This system is plLLZ when taking: Te =7, log:=1 7, := 0 and !, := O,.
Moreover, the system satisfies cut-elimination axioms of Table 1.

4.2.2 ELL with fixed points

In [3], an affine version of second-order ELL with recursive types, called EAL,, is introduced.
this system allows only finite proofs. Affine means weakening applies to any formulas. Fixed
points are added to a two-sided version with —o and (—)* formulas, without any positivity
condition on the fixed point variables, unlike what is enforced in our one-sided sequent
version. The paper proves EAL,, cut-elimination and refines complexity bounds from ELL.

Considering pELL®®, an instance of Example 4 with fixed points, gives us a typing system
which is close to EAL,,. Namely, consider usuperLL™ (€, <,, <¢, <) with the same &, <, <y,
and <, as in Example 4. Since the axioms in Table 1 only concern £, <,, <¢, and <, they
are also satisfied by this instance of usuperLL®.
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Our systems differs in two ways from that of Baillot: (i) the extremal fixed-points instead
of generic fixed-points and the condition of positivity on fixed-point variables, and (ii) the
infinite nature of our proofs. Thus, our cut-elimination theorem may not apply due to (i), and
even if it did, it might not ensure finite proofs because of (ii). However, Baillot [3] uses only
fixed-point variables in positive positions when proving complexity bounds, which addresses
(i). Additionally, using only p-fixed-points to encode fixed points which ensures that cut-free
proofs remain finite, resolving the incompatibility induced by (ii) by preventing infinite
branches. (Moreover, the impact of weakening can be tamed by designing a translation
making the system affine as well.)

» Remark 2. Note that there is no proof of the conclusion sequent of Fxample 1 in pELL™.

5  Cut-elimination

In this section, we only consider instances of usuperLL™ satisfying the axioms of Table 1.

Let us assume given such an instance, psuperLL™ (&, <, <¢, <), that we simply refer to as
psuperLLg” in the following keeping the relations <,, <; and <,, implicit.

5.1 (mcut)-elimination steps

Here, we define the (mcut)-elimination steps of usuperLLz". To do so, it is suitable to have a
specific notation for the premisses containing only proofs concluded by a promotion. We use
similar notations to those of pLL™ cut-elimination proof [22]:

» Notation 3 ((!)-contexts). C' denotes a list of psuperLLZ’-proofs which are all concluded by
some promotion rule (14,5 orl,). Given s € {g, f,u}, C's denotes a list of usuperLL -proofs
which are all concluded by an (15)-rule. In both cases, C denotes the list of usuperLLZ”-proofs
formed by gathering the immediate subproofs of the last promotion (being either C', or C's ).

We now give a series of lemmas that will be used to justify the (mcut)-reduction steps
defined in Definition 13. We only give a proof sketch of Lemma 3, and give complete proofs of

each lemma in Appendix D.1. We start by the commutation cases of the different promotions.

The case (commy, ) covers all the case where (!;) commutes under the cut:

m
AT , -
» Lemma 1 (Step (commy,)). If 5 ' ! is a psuperLLg’-proof then
AT mcut(c, 11)
™
F A 2:-A ’

C
FAT meut(e, 1L) js also a usuperLL -proof.
Fl, A7, 7
The case (Comm}t_ ) covers the case of commutation of an (!¢)-promotion but where only
(g)-rules with empty contexts appear in the hypotheses of the multi-cut. Note that an (lg)
occurrence with empty context could be seen as an (!f) occurrence (with empty context).

» Lemma 2 (Step (comm )). If each sequent in C' concluded by an (!,) has an empty context

™ s
FAA . . FAA .
and TLana ¢ o is a usuperLLZ® -proof, then T AT meut(s, L) s
F1,A, 7,1 meut(s, AL) 1A, 7,0 !

a psuperLLZ’ -proof.

23:9
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We then have the following case where we commute an (!f)-rule, but where there is at
least one (!g)-promotion with a non-empty context in the premisses of the multicut rule:

» Lemma 3 (Step (commy)). If some (!y)-rule in C's has at least one formula in the context

™
T FAA
FAA , - —_— 7, ,
and 1 1 7.A !, is a psuperLLg” -proof, then +A,7zA " meut(s, 11)
< I’—"TA T mcut(z, 1) F A0 ’
R FleA T

is also a psuperLLg” -proof.

Proof sketch. First notice that, by hypothesis, 0 <¢ 7. The proof is done in two steps:

1. From F !,A,7=A we follow mcut-connected sequents until reaching one - !5/ A",? 5 A’
conclusion of an (!g)-rule with ? 5 A’ non empty, for each signature ¢’ in these sequents,
we prove that o <; o’ using axiom (Axans) or (Ax™). Then we use axiom (Axf<g) to prove
get that 7(?m,) holds and o <, 7. Since 7(?m, ) holds, application of (?,) is allowed.

2. We run through all the sequents and using axiom (Ax%), we prove that o <, ¢” for each
signature o’ we encounter. N

We therefore have o <, 0 as signatures from p are contained on hypotheses of the mcut: the

application of (!g) is therefore legal. <

We then cover the cases where we commute an (!,)-rule with the multi-cut. The first
case is where there are only a list of (!,)-rules in the hypotheses of the multi-cut:

™
: FAC _ .
» Lemma 4 (Step (comm, ). If —— 15 & L is a psuperLLg” -proof, then
L ATB mcut(c, 11)
™
FAC C
W meut(s, L) 4s a psuperLL -proof.
F1L,A,7,B "

The second case of (!, )-commutation is where we have an (!¢)-rule and where the hypotheses
concluded by an (!y)-rule have empty contexts.

» Lemma 5 (Step (comm?)). If C' contains at least one (!y), if each (!,) has empty context

T s
 FAB _ . FAB C
and if g7 " ! is a psuperLLg®-proof, then ————— meut(s, 1)
7 t(e, 1L — !
F1,A4, 7,0 meut(z, L) 1,4, 7,0

is also a usuperLLg’-proof.

The following lemma deals with the case where there are sequents concluded by an
(!g)-rule with non-empty context and where the first rule encountered is an !s-rule.

» Lemma 6 (Step (commy)). Let Cy contain a (!,) with non-empty context, C := {F
wA, 2, B}UCH U { ,.C, ?5A} s cut-connected and C' = {1,,C,? A} UCY as well. If
T2

™1 T2

FAB FC A '

[ R— 7= . oo ! >
FLA B tcr ey FL0roA ) is a usuperLLg”-proof then FA,B €1 C; FC,75A

mcut(e, L) A, ?;0

F1,A, 7T [
FloA 2,0 7

is also a usuperLLZ -proof.

The last lemma of promotion commutation is about the case where we commute an
('y)-promotion but when first meeting an (!g)-promotion.

2

Tmy

mcut(e, A1)
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» Lemma 7 (Step (comm} )). Let C :={+!,A,7,B} uck U{F1,.C, ?5A} be cut-connected

T ™2
, | o | FAB FGTaA .
and C' = {F 15C,7 Ay UCs as well. If ——5 LATB " c ey R0 s a
T AT mcut (e, 1)
- . oy s g
o FAB Ci C) FC?75A ] o
psuperLLg” -proof then AT meut(s, 1) 45 also a psuperLLg” -proof.
FloA 2,0 7

The principal cases start with the contraction:

s
» Lemma 8 (Step (principal, )). If Flod,.. 720 A A is a
Ca - 7,4, K G
o mcut(e, 11)
. g, ;L
—_ —
usuperLLg -proof, then Ca - ?JA,...,?(,,A,A : Cr,a-:-C1,0 meut (s, L) 18 80.
FP - Uy
——F
F T, 75T Z

Before giving the principal case for the multiplexing, we need to define O pyx g (C') contexts.
The intuition is that when a multiplexing rule reduces (i) with a Girard’s promotion, they
simply cancel each other while when it interacts (ii) with a (f) or (!3), not only those two
rules cancel, but also the other promotions hereditarily Ll -connected to the first (!f) or (!y)
rule, until some Girard’s promotion is reached, in which case this propagation stops:

A graphical

> Definition 12 (Ompyq: (C') contexts). Let m be some psuperLL -proof concluded in a
meut(t, 1L) inference, C' a context of the multicut which is a tree with respect to a cut-relation
1 and S* be a sequent of C' that we shall consider as the root of the tree.

We define a psuperLLg®-contest ©pmpeg: (C") altogether with two sets of sequents, SZI""S!

representa-
tion of this
definition is
given in Ap-
and SC?,”’S,, by induction on the tree ordering on c': pendix D.1.9,
Let Ci,...,C}, be the sons of S*, such that C' = (S*,(C,...,C}.)), we have two cases: Definition 16.
= S'= 5", then we define 0ppag (C') == (S, (CL,...,Ch)) ; SC?!T?'S! =0; SC?T)S! =C.
= S'= 8% or §' = S, then let the root of C} be S}, we define Oppag (C') as

| ?m Tm ?e 7
(5. Ompa, (1) -+ Oy (Ch)) 5 Silgr = {SHUUSI g, + Str g = U

We can now state the multiplexing principal case:

——
FA...,AA

» Lemma 9 (Step (principal, )). If e T FLAA T W is a psuperLL
= mcut(e, 1)
F T, 7,7, 7,00

proof with T sent on CAUA by ¢ ; ?p7,I‘/’ sent on sequents of SC?T”S! ; and ?F;,I‘/ sent on Sc?f St
where S' := 1, A, 75 A" is the sequent cut-connected to & 7, A, A on the formula ?,A, then

K3

—N— ] ]
CA F A» LR 7A7 A Om:ows! (C?,,A) s Ompxs! (C?,,A)

’ ’
ET F/ F/ 7*11” 7*11” mCUt(L’l) . o)
IR L R [RRRR R = s also a ,LLSUperLLg -pT’OOf.
2p
FD, 251,725,107 .., 7 5T e
p p p =,
26
FT,7,0,7 1"
y gk T g

CVIT 2016
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Reduction Name
™ T
F A, 7:-A FA?:A :
TLATA lg ¢ ~ FA 7T ' mcut(e, 11) (COmm!g)
F 1A, 7T meut(s, 1) FLA 7D ®
™ s
FAA A A c
TLATA 't ! ~ AT ' mcut(e, 11) (commllf)
F 1A, 7T meut(s, AL) FLA 7T
™
4 FAA
S Tana M ¢ 2
F1,A,7-A ’ ~ T meut(, L) (commy,)
1 AT mcut(c, 11) FA?;T ’
™ ™
A C A C C
7'_ !O—A, 7.0 [ c[“ s T mCth‘.(L7 J.L) (Comm!lu)
F1.A4,7,B meut(z, 1) A, 7,8 "
™ ™
FAB HAB 2
;] g ~ AT meut(s, 11) (comm{ )
F1oA, 7,7 meut(s, 1) FLA 7
oy i p oy i p
2
m T m FCA
FAB Fo,a ==, X
FLALB M FlLCTA - FAB GG FOTA 1w | (commy)
oy i1 1 2 o y mcut(L J_L) EA7T mCth(L7 )
F1,4,7,T ’ LN
F1,4,7,T
T T2 T T2
FAB FCTZA FAB C C FC?75A .
7|_ LA 7 B ‘u Cll., C'2 F1,.C, ?%;,A ‘g N ~ C A,?[;F mcut(L, J_L) (Comm!u)
FIL A 7T meut(s, L) FLA T E
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Figure 5 Commutative cut-reduction steps of the pusuperLL*® promotion rules

» Definition 13. Figures 5-7 (with the applicability conditions stated in the corresponding
lemmas) induce the (mcut)-reduction relation over usuperLLg” proofs.

» Remark 3. No justification lemma is stated for (comms, ) nor (comms,) as applicability
of (71) and (?.) only depends on the connective and not on the context.

Even though some reduction rules presented in Figure 5 may seem to overlap, note that
the applicability conditions of the Lemmas ensure that it is not the case.

5.2 Translating psuperLL™ into pLL™

We now give a translation of usuperLL™ (€, <, <t, <;) into pLL> using directly the results
of [22] to deduce psuperLL™ (€, <, <, <) cut-elimination in a more modular way:

» Definition 14 ((—)°-translation). We define (—)° by induction on formulas (c is any
non-exponential connective): c(Fy,...,F,)° :=c(FY,...,F2); X°:=X; Vo,(7,A)° :=
74°%  a°:=aqa; (I,A)° :=1A°. We define translations for exponential rules of psuperLL™ (€, <,

, <p, <4) in Figure 8. Other rules have their translations equal to themselves. Proof translation
w° of m is the proof coinductively defined on w from rule translations.

Lemma
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s ™
——
FA L AA s FALLAA C cut(t, 1) (commy,_)
FAA ™ Gy | AAT T
F7, AT meutis, Fo,AD M
™
——
F70A,... 7 A A v E A TR AV A c ;| (commsg )
fe, mcut(c’, 1L") ©
F 7,4, A o L F70 A 7GAT
F7, AT meut(s, 1) F7 AT

Figure 6 Commutative cut-reduction steps for usuperLL> contraction and multiplexing rules

k3

i A
7 N 1 1
FioA 70 A, A - CaA F 270 A, ..., 70 AgA Copa-Cra
T e A A ¢ 1 meut(e/, L)
Ca F?7,A, A c,_,a P ?51"' ,,,,, ?51"’ -
meut(e, AL) 2P
w751 F T, 7.1 i
‘ i
o N ! !
CaA A, .., A, A Ompxg(Cy_ a) - Ompxg(Cy_4)
. meut(e/, 1LY
1 i i
o N— P
FA- A8, Fo,v/,....t) 7 .0, . .. 7 5T
‘m; | ~ ’ N ’ v =
Ca F?25A, A c., 4 [ o
?
7 meut (¢, 1L) B ‘m;
Fr,? , 02 T
’ " 1"
k0,707 50" 7 5T _
?p//
FT, 7517 5 T <4
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P
with S being the sequent cut-connected to 7, A, A on the formula 7, A.

Figure 7 Principal cut-reduction steps of the exponential fragment of psuperLL™

Since fixed-points are not affected by the translation, we have the following lemma:
» Lemma 10 ((—)° preserves validity). 7 is a valid proof if and only if 7° is a valid proof.

The goal of this section is to prove that each fair reductions sequence converges to a
cut-free proof. We have to make sure (mcut)-reduction sequences are robust under this
translation. In our proof of the final theorem, we also need one-step reduction-rules to be
simulated by a finite number of reduction steps in the translation, which is the objective of the
following lemma. We only give a proof sketch here, full proof can be found in appendix D.3.

23:13

(principaly )

Lemma 8

(principaly )

Lemma 9

» Lemma 11. Let mg be a psuperLL™ (&, <,4, <y, <,,) proof and let my ~~ 1 be a psuperLL™ (€, <,

., 0, such that
w5 = 0o and 0, = 77 up to a finite number of rule permutations, done only

,<p, <u) step of reduction. There exist a finite number of uLL™> proofs 6y, ..
g — ... — Oy,
on rules that just permuted down the (mcut).

Proof sketch. Non exponential cases and commutations of multiplexing or contraction are
immediate. Promotion commutations translate to commutation rules and promotion key-
cases. We must ensure that there exists a sequence of reductions commuting the translation
of each promotion. Key-cases are trickier as they do not send the rules in the correct order:

we need rule permutations to recover the translation of the target proof of the step. |

Now that we know that a step of (mcut)-reduction in psuperLL™ (&, <4, <¢, <,) translates
to some steps of (mcut)-reduction uLL>°, the following lemma allows us to control the fairness:

CVIT 2016
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i

i i;ﬁO P
FATTATD o(t) A A FT o(Pmg) o, T
T T FeAc, AT 7, AT F7A4°T°
TTeh F?A°.T° 'CX(Z_l)
. : ?
R ; ie[1,n]
— — FA° 7AS,... 7A°
7A° ?7A°. T° ? ? . kid
F7,A,...,7.AT o(7;) - ~ R ?A% L 7AC T I FA AL e An 0 S5 0y L ~ FIA° AT, L 7A°
F7,A,T ¢ F?AO,FO '_!UA1?01A17"'7?0'7LATL
zE[[l,n]] I_AO7 ?7...714% 0 |_AB < "AO7BO
°d 01 Su 02 — = o5 ‘d
FAAL L An o<son o ASTAS, L TAY F’, e ; oo~ FA°?B,
1A 7o AL, Ton Ay F14°, 742, 7A% P e F14°,7B° P

Figure 8 Exponential rule translations from psuperLL™ (€, <, <, <.) into pLL>

417

as  » Lemma 12 (Completeness of the (mcut)-reduction system). If there is a uLL™-redex R
a9 sending ©° to '° then there exists a psuperLL™ (€, <y, <y, <,)-redex R’ sending 7 to a proof
", such that in the translation of R', R is applied.

/
420 T

a1 We define rule permutation with precision in appendix D.2. Here we show that validity
w2 1s preserved if each rule is permuted a finite number of time:

w23 » Proposition 2. If 7w is a uLL™ pre-proof sent to a pre-proof ©', via a permutation for
w4 which the permutation of one particular rule is finite, then w is valid if and only if ©’ is.

2 » Corollary 1. For every fair pusuperLL™ (£, <,, <5, <) reduction sequences (7;)icw:
s wm there exists a fair pLL™ reduction sequence (0;)icw;

a2 there exists a sequence of strictly increasing (o(i))icw natural numbers;
a2 Jor each i, a finite sequence of rule permutations starting from w7 and ending 0,;);

429 for all i, the permutations sending m§ to 0,0y permutes rules under the (mcut) of 75 ;

430 for all i >4’ the rule permutations sending g to O,(i) starting as the permutation sending

231 7y to O,3iry. Moreover, new permutations only permutes rules that never permuted before.

s Proof sketch. We construct the sequence by induction on the steps of reductions of (7;);eq,
a  starting with 6y = 75, ¢(0) = 0 and kg = 0 and then applying Lemma 11 for each following
s steps. We get fairness of (6;);¢,, from Lemma 12. <

235 Finally, we have our main result, proving cut-elimination of pusuperLL™ (&, <4, <¢, <y):

s » Theorem 3. If the axioms of Table 1 are satisfied, then every fair (mcut)-reduction sequence
ar of psuperLL™ (€, <4, <y, <) converges to a psuperLL™ (€, <4, <y, <) cut-free proof.

18 Proof sketch, see full proof in appendix, Theorem 5. Consider (7;)ic14x, A € w+1, a fair
s psuperLL™ (€, <, <y, <,) cut-reduction sequence. If the sequence is finite, we use Lemma 11
w0 and we are done. If the sequence is infinite, using Corollary 1 we get a fair infinite pLL™
w1 reduction sequence (6;);c,,- By Theorem 1, we know that (6;);c., converges to a cut-free
a2 proof 6 of pulL>. We prove that (m;);e,, converges to a psuperLL™ (&, <,, <¢, <y) pre-proof
w3 using the fact that (6;); is the translation of (7;); and that it is productive.

o Validity of the limit 7 of (7;); follows from the translation of 7 being equal to 6 up to
ws  rule-permutation (each particular rule permutes finitely). From Lemma 10 and Proposition 2,
ws  these two operations preserve validity, therefore 7 is valid which concludes the proof. <
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An important remark is that the above proof does not rely on Theorem 2 in any way. As
a consequence, cut-elimination for superLL is in fact a direct corollary of Theorem 3:

» Corollary 2 (Cut Elimination for superLL, that is, Theorem 2). Cut elimination holds for
superLL(E, <,4, <, <u) as soon as the 8 cut-elimination azioms of definition 1 are satisfied.

» Remark 4. This result not only gives another way of proving cut-elimination for superLL-
systems but the sequences of reduction we build in it are generally different from the ones
that are built in [0]. Indeed, we are eliminating cuts from the bottom of the proof using the
multicut rule whereas in [0] the deepest cuts in the proof are eliminated first.

Since pLLfy and pELL™ are instances of psuperLL™ satisfying the cut-elimination axioms,
we have the following results as immediate corollaries of Theorem 3:

» Corollary 3 (Cut Elimination for uLL). Cut elimination holds for puLLg.

» Corollary 4 (Cut Elimination for uELL®®). Cut elimination holds for uELL®.

6 Conclusion

We introduced a family of logical systems, usuperLL®, and proved a syntactic cut-elimination
theorem for them. Our systems features various exponential modalities with least and
greatest fixed-points in the setting of circular and non-wellfounded proofs. Our aim in doing
so is to develop a methodology to make cut-elimination proofs more uniform and reusable.
A key feature of our development is to combine proof-theoretical methods for establishing
cut-elimination properties using translation and simulation results with axiomatization of
sufficient conditions for cut-elimination.

While our initial motivation was to make more systematic a key step in our recent proof of
cut-elimination for the modal p-calculus [5], this allowed us to generalize our previous result
(capturing directly the multi-modal p-calculus with no need for a proof, see Corollary 3) but
also to capture various extensions of light logics with induction and coinuctions, notably
a calculus close to Baillot EAL,. Our system therefore encompasses various fixed-point
extensions of existing linear logic systems, including well-known light logics extended with
least and greatest fixed-points and a non-well-founded proof system. We provide a relatively
simple and uniform proof of cut-elimination for these extensions. Quite interestingly, the
addition of fixed-points provide a new cut-elimination proof for the fixed-point free setting
(Corollary 2).

The usuperLL™ system, as defined in this paper, does not include the digging rule. We
plan to work on this question in future work, at least for restrictions of the digging. Indeed
digging is a very challenging rule wrt to its possible modelling using fixed-points as it would
contradict the finiteness of the Fisher-Ladner closure, a basic property of fixed-point systems.
On the other hand, incorporating digging would enable us to cover all of the super exponential
version from [6] while our current system in incomparable with that of [6]. It could also be
relevant for modal calculus, as the digging rule for modal formulas is equivalent to Axiom 4
of modal logic. Other modal logic axioms, such as Axiom T and co-dereliction rules from
differential linear logic, can be viewed as rules in linear logic.

Another natural future work would be to explore linear translations of affine linear logic
and/or intuitionistic/classical translations of these systems, facilitating the study of proof
theory closer to [3].

Finally, while we started with non-wellfounded proofs, studying how these results can be
adapted to finitary version of usuperLL™ is another interesting open question.
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A Details on Section 2

A.1 Details on the multicut rule (Section 2.2)

We recall the conditions on the multi-cut rule [2, 14, 22]. The multi-cut rule is a rule with
an arbitrary number of hypotheses:

F A FA
FA

Let C:={(i,7) | 1 € [1,n],j € [1,#A;]}, ¢ is a map from [1, #A] to C and L is binary a
relation on C":

The map ¢ is injective;

The relation 1L is defined for C'\ ¢, and is total for this set;

The relation L is symmetric;

Each index can be related at most once to another one;

If (i,4) 1L (', 4'), then the A;[j] = (A [5'])*;

The relation on premisses sequents defined as: {(i,¢) | 34,4, (4,7) 1L (', 5")} is acyclic

and connected.

" mcut(e, 11)

A.2 Details on the restriction of a multicut context (Definition 5)

» Definition 15 (Restriction of a multicut context). Let % mcut(s, 1L) be a multicut occur-
rence such thatC = sy ... sp andlet s; == Fy,... F, = Gy,...,G,,, we define Cr, (resp.
CG].) with Fj € s; (resp. Gj € s;) to be the least sub-context of C such that:
The sequent s; is in Cp, (resp. Ca;);
If there exists | such that (1,4,5) 1L (2,k,1) or (2,i,5) 1L (1,k,l) then s; € Cr; (resp.
Sk € CGJ);
For any k # i, if there exists | such that (1,k,1) 1L (2,k',I') or (2,k,1) 1L (1,k',I') and
that sy, € Cr,; (resp. s € Cg;) then sy € Cp; (s € Cg, ).
We then extend the notation to contexts, setting Cy := 0 and Crr := Cr UCr.

A.3 One-step multicut-elimination for (MALL®™

Commutative one-step reductions for uMALL® are given in Figure 9 whereas principal
reductions in Figure 10.

A.4 One-step multicut-elimination for yLL™

Commutative one-step reductions for uLL> are steps from puMALL®™ together with the
reduction of the exponential fragment given in Figure 11.

B Details on Section 3

B.1 Proof of Axiom Expansion property

» Lemma 13 (Axiom Expansion). One-step aziom expansion holds for formulas 7,A and
1A in superLL(E, <4, <y, <,) if o satisfies the following expansion axiom:

c0<y0 V <50 V (6<,0N0(Tm)).

The aziom expansion holds in superLL(E, <,4, <p, <,) if all o satisfy the expansion aziom.
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ax

R FL ax
TrrL F’ an mcut(e, 1) ¥ + F FL
FET FG,A
Cr Ca FFR G, A o
T.A mcut(¢, 1)
4 l_ FI ’ }— AI
Cr o FF’ mcut(¢/, 1L7) Ca e AG’ mecut(c”, 1)
FF®G,T,A
FEGT C FFGT L
¢ _TENGI o FEGT @mC“t(“iL)
FE3 G e FFRG.T
- E,LTY . c  FE,T
- K3 -
¢ _TRORT oy~ _TRL meutl )
FR e e FRo BT ©
FED RGT
c FF&G,T G
FF&G,T MEUR,
- FTY -G, T
S mete ) S ma L)
FF&G,T
- FI6X.F/X],T ¢ FF[§X.F/X],T
mcut(e, 1) .
C FOXET wy” Fl6X.F/X],T" with & € {y, v}
FOX.F.T MELts FOXF.T
- ! —1
Ci_# mcut(¢, L)~ FT,T T % mcut(s, L) ~ 1 1
L A C F 1 A
C |‘J_7F/ 1 WTmcut(L,J_L)
—r L Mot ) FLT Tt

Figure 9 Commutative one-step reduction rules for uMALL*>®
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ax

L1 C
c FFF meut(s, 1)~ T~ mecut(¢/, 1L7)

r
- FTY FFLA
. — cut C FFI FFEL A

FIV,A ~
¢ T "— mecut(e, 1L) FT

mcut(¢/, 1L7)

FF G A N A Y G Ty

1 L ~
C FEFBGA FF-®G-,T',Ty meut(s, 1L)

FT
¢ FFEGA FFLT,  FGLT,
FT

- LA FELT R FATY

C FFRaRA R & FLTY ~
198 ! 2 mcut(¢, 11)

mcut(:/, 1L7)

FT
¢ FF,A FF-T
FT
FF[X :=uX.F],A FFX :=vX.F],A

v
FuX.F,A FuvX.EF A ~
¢ paL ra-s mcut(e, 1)

T
C FFX:=upXF,A FF[X:=vXF,A\
T

mcut (s, 1L7)

mcut(e, 11)

F T
1 1 C FI’
F1 FLr L =L
¢ — = meut(e, L) FT

mcut(e/, 1L7)

Figure 10 Principal one-step reduction rules for uMALL®®
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mcut(¢/, 1L7)

™ ™
FA?A FATA C!
= ’
N ~ Far o, Mt dh)
F1A T meut(z, 1) F1A T *®
iy ™
FA FA C P
m?w c o WT?mCUt(L7J_L)
F7AT meut(s, AL) FoAT Y
™ s
FAA FAA C oy
Fraa Y ¢ N A Mot L)
AT meut(z, 1) B WA
™ s
F2APAAN F7A2A,AC oy
TFIAA ° ¢ T oagar  meut )
FTAT meut(s, L) roar e
FA 2 CA FA / /
CA 7|_ ?A’ A ‘w C:)A - T{) mCUt(L ,J_I_ )
o~ mcut(e, 1) o W
kd, 2T - T,7T
FAL 2A/
%.d — FAA F AL 2A
F74. A F1AL ?2A! C 2
: =T - mcut(¢, 1) FT
FPAPAA Ca  F PAPAAN  CL, Oy
Ck F?AK C o Chy s For, 7T, T
Y mcut(e, 11) 7}_ —r 2,

Figure 11 Multicut-elimination steps of the exponential fragment of usuperLL*

mcut(s/, 1L7)
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oo Proof. We start by proving the first part of the theorem. We distinguish three cases
e1 depending on which branch of the disjunction holds for o:
If 0 <, o is true, then we have:

FAL A oc<,0
Fl,AL 2, A

‘u

If 0 <¢ o is true, it is similar to the previous case:

FAL A oc<so
Fl1,A+ 7, A

't

And if 0 <, 0 and (0)(?m, ):

AL A (0)(?m;)

FAL 2, A o 0<g0
Fl, AL 7,4 *
ez The second part of the theorem is proved by induction on the size of the formula, using the
603 first part of the theorem. <

« B.2 Proof of cut-elimination of superLL (Theorem 2)
eos We first need three lemmas called the substitution lemmas:

ws B Lemma 14 (Girard Substitution Lemma). Let o1 be a signature and ¢35 a list of signatures
o7 such that o1 <4 02. Let A be a formula, and let A be a context, such that for all T', if

ws A, is provable without using any cut then = 77 A, T" is provable without using any cut.
n

——
oo Then we have that for all T, if -7, A, ..., 75, A, is provable without using any cut then
n
—N—
610 I ?UEA, ey ?UEA,F.

Proof. First we can notice that for any I" the following rule:

su is admissible in the system without cuts (by an easy induction on the number of A).
612 Now we show the lemma by induction on the proof  of
o3 F 7, A4,...,7,, A . We distinguish cases according to the last rule:

614 If it is a rule on a formula of I" which is not a promotion:
™ ITH(m)
615 '_?01A7"')?01A7F, r ~ F?@A,...,?@A,F/
F 20 A 20, AT LA, TR AT

If it is a Girard’s style promotion, thanks to the axiom (Axians), we have:
m
FB, 72717, A, ..., 7, A 00 <g 03 00 <g 01 | ~
FlooB, 2?5, T 76 A, 25, A £

TH(7) 00 <g 01 o1 <g 02
'_B7?073F,7?072A7"'7?0?2A o0 <g 03 o0 <g o5
FlooB, 2T 20 A, o0, 7 A

(Axtrans)

‘g
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If it is a unary promotion, we use axiom (Ax%):
™
FB,A oy <u 01 |
‘u
FloB, 75, A
71- e —
FB,A oo <y 0 01 <g 07
_-b5,A ; 0 >u?1 ﬂl_g’2(AXL%S)
I—B,?UEA (1) Sg g9 | -
F oo B, 7 A &
If it is a functorial promotion:
™
n
, o N— . ~
l_Bal—‘?Aa"'7A 0o <t 01 0o <t 03 '
f
FlooB, 2a T, 20 Ay 75, A
ITH(m)
< <e O <¢ €3
77!—7%;’,:4:.;,%477 s, o0 <t 01 401;g o2 eog <re€3 (Axfé)
F B, T, 73 A, T A (73)(Prmy) 5 oo <fo1 o1 <g02 o9 <r€3 (Axfg oo <f o1 o1 <g 02 (Axfg
F B 2T 2 A, o Ty A ! oo <g O < o0 <g o2 <
Flog By 2oy T 2y A ooy 7oy A ®
If it is a contraction (7¢,) on a ?7,, A, we use axiom (Ax.):
™
1+n—1
—N—
F2o Ay 76, AT (01)(?¢,) 0
F?2e Ay 76, AT i
IH(w)
n—1+1i (0'1)(?(37) o1 Sg g9 (AX )
C
Flan,.. taal (92)(%e.) 5
77777777777777777777777 .C’L
F?aA 27 AT
If it is a multiplexing (?,,) on a ?,, A, we use axiom (Axg):
™
i
— ~
2o Ay 20 AVA AT AT AT (01)(Pm,)
! m;
F?2e A7, AT
ITH(m)
i
o
}_?U_’A7 a70_éAaA7 7Aa U_éAa' 'a?U_éA7F (U]‘)( ml) 91 <g €2 (AXg
7777777777777777777777777 g —
ot oladl ... (02) ()
———————————————————————————————— Te;
F2aA 205 A T
If it is an (ax) rule on ?,, A. Then I' = !, A+ and we have:
ax
AL A
"AJ',?U*Z g1 <g €9 |
1 &
Flo, A- 25 A
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<

» Lemma 15 (Functorial Substitution Lemma). Let o1 be a signature and o5 a list of signatures

such that o1 <y 3. Let A be a formula, and let A be a contexst, such that for all I', if

F AT is provable without using any cut then = A,T" is provable without using any cut.
n

——N—
Then we have that for all T', if -7, A, ..., 7, A, T is provable without using any cut then
—N—
F?2aA . 78 A T as well.

Proof. First we can notice that for any I" the following rule:

is admissible in the system without cuts (by an easy induction on the number of A). Now
we show the lemma by induction on the proof of -7, A, ..., 7, A, T'. We distinguish cases
according to the last applied rule :

If it is a rule on a formula of I' which is not a promotion:

T ITH(m)
l_?mA""’?UlA’FI r ~ "7(?2A7...,?€2A71—‘/
70 A, 70 AT F2m A, 2 AT

If it is a Girard’s style promotion. Thanks to the axiom (Ax%), we have:

m
FBa?a?gl_va?01147'''770114 oo Sg O—_é oo Sg g1 | ~
! ‘8
F 1L BTl 7, A, 1 A

IH(m) 00 <go1 01 <p0%
’ - =
FB,?UEF,?U*ZA,...,?UEA (o)) Sg g3 (o)) Sg (o) :
/ ‘8
Floo B, 7T 2 A, 2 A

(AXE)

If it is a unary promotion, we use axiom (Ax“;):

T
FB,A oo <y 01
FlooB, 76, A u

s
< <¢ 0%
l_,BLAA, Sf 00 Su 01 S'l >f 02 (AXUSS)
FB,A 00 <02

-f
FlooB, 77 A

If it is a functorial promotion, thanks to the axiom (Axians) we have:

™
FBI A ...,A oo <t €3 oo < 01
FlooB, 2, 70, A, . 75, A

It

IH(w)

,,,,L,’,L';'lé,,gf o0 <t 01 01 <f 02 (Axrans)
BT 25 A, L e A oo <t €3 oo <1 0% rene

2

/
F oo B, 26l 25 A, 2s A

-f
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If it is a contraction (?.,) on ?,, A, we use axiom (Ax):

T
n+i—1
—N—
F20 A L2 AT (o)), ~
F7 A 7 AT
IH(7)
n+i—1 (01)(?01)_’ o1 <t € (Ax)
gl teaA L (72)(%e,) 7
F?aA, . 73 AT
If it is a multiplexing (?,) on ?4, A, we use axiom (Ax):
™
/_/,LA VNS
Flo A 20 AVA AT AT AT (01)(Tmi)
F 7 A, T AT Tmi
IH(m)
Flab o lab A A e 8, T AT @)n) 01505 (Axfy)
F 2B T A A, LA T A L 2 AT (@)(m) — "
77777777777777 F?aA, . teAT T
If it is an (ax) rule on ?,, A. Then ' =, A+ and we have:
ax
Fan4
T
F1, AL 75 A !
627 <

«s » Lemma 16 (Unary Functorial Substitution Lemma). Let o1 and o2 be two exponential

o0 signatures such that oy <, oy. Let A and B be formulas, such that for all T, if = A, T is

60 provable without using any cut then = B, T is provable without using any cut. Then we have
n n

——N— ———
s that for allT, if = 75, A, ..., 75, A, T is provable without using any cut thent 7,,B,...,7,,B,T
62 as well, with k; positive integers.

633 Proof. This lemma is proven the same way as Lemma 15. |
634 Finally we prove cut-elimination theorem 2:
o5 P Theorem 4 (Cut Elimination).  Cut elimination holds  for

s superLL(E, <4, <5, <u) as soon as the 8 cut-elimination axioms of Table 1 are satisfied.

sv  Proof. We prove the result by induction on the couple (¢, s) with lexicographic order, where
st is the size of the cut formula and s is the sum of the sizes of the premises of the cut. We
639 distinguish cases depending on the last rules of the premises of the cut:

640 If one of the premises does not end with a rule acting on the cut formula, we apply the
61 induction hypothesis with the premise(s) of this rule.
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If both last rules act on the cut formula which does not start with an exponential
connective, we apply the standard reduction steps for non-exponential cuts leading to
cuts involving strictly smaller cut formulas. We conclude by applying the induction
hypothesis.

If we have an exponential cut for which the cut formula !,, A+ is not the conclusion of a
promotion rule introducing !, , the rule above !(,IAL cannot be a promotion rule, and we
apply the induction hypothesis to its premise(s).

If we have an exponential cut for which the cut formula !,, A+ is the conclusion of an
(lg)-rule. We can apply:

I—AL,?O—-*QA 01 Sg O'E

Flo AT, 75 A
LA T

! F7,, AT o1 <y 09
& 2 OO & i e ,,
F?,AT eut F7 AT Lem. 14

We have that A and A are such that for every I such that - A, T" is provable without
cuts, F 25 A, T too. Indeed, A and A are such that = A+, ?5 A is provable without cuts
and we can apply the induction hypothesis (#(A) < #(?, A4)). Therefore, we can apply
Lemma 14 on - ?,, A,I" and obtain that - 77 A, I is provable without cut.

If we have an exponential cut for which the cut formula !,, A+ is the conclusion of an
(¢)-rule. We can apply:

J_ —
FALA  aiside F2 AT o <
F 1, AL 75A 2, AT R Lem. 15

= ?@A,F cut F ?UEA,F

We have that A and A are such that for every I' such that - A, T" is provable without
cuts, - A, T too. Indeed, A and A are such that - AL, A is provable without cuts and
we can apply the induction hypothesis. Therefore, we can apply Lemma 15 on 7, A, T
and obtain that - 77 A, T' is provable without cut.
If we have an exponential cut for which the cut formula !,, A+ is the conclusion of an
(1y)-rule, this case is treated in the exact same way as (l¢), using Lemma 16.

<

B.3 Details on ELL as instance of superlLL
B.3.0.1 Elementary Linear Logic.

Elementary Linear Logic (ELL) [16, 12] is a variant of LL where we remove (?4) and (!g) and
add the functorial promotion:

- AT
FiA ot

It is the superLL(E, <g, <, <) system with & = {e}, defined by e(?,) = e(?,,) = true (and
(o)(r) = false otherwise), <, = <, = 0 and e <¢e. This superLL(&,, <,, <¢, <,) instance is
ELL and satisfies the cut-elimination axioms and the expansion axiom:
The rule (7y,,) is the weakening rule (?y), (?¢,) is the contraction rule (?.), and we can
always apply promotion (!f) as <f is the plain relation on &:

FAT  e<pe " FAT y
F 1A, 7,7 * F1A,7A

We have that (!) is a restriction of (l¢) in ELL and (!,) is non-existent.
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Moreover, the cut-elimination axioms are satisfied. As £ is a singleton, axioms (Axg ),
(A1), (Axc), (Axirans), (Axg;)7 (Ax‘;“)7 (Ax£) hold. Axiom (Axff) is vacuously satisfied.
The expansion axiom is satisfied since <; is reflexive.

C Details on Section 4

C.1 Details on pLLZ as an instance of psuperLL™

We show here in details how the system plL{Y is an instance of super-exponentials.
pLLE coincides with the system psuperLL™ (&, <4, <t, <) such that:
The set of signatures contains two elements & := {e, x}.
7e, (8) = ?c, (%) = true
?m, (®) = true,
Tmo (@) = Ty (x) = true,
all the other elements have value false for both signatures.
o <, 0 ;0 <, x x<sx, and all other couples for the three relations <, <f and <, being
false.

This system is uLL7} when taking:

7e: =7, lg:=1 7,:=0 and !, :=0.

We can indeed check that the system satisfies the cut-elimination axioms of Table 1:
Hypotheses of axiom (Ax.) are ony true for i = 2 in two cases: for ¢ = ¢/ = e, in that
case (7, is true because o(?.,) is; or for ¢ = e and ¢’ = %, in that case the axiom is
satisfied as o'(7,) is true.

Hypotheses of axiom (Axg) are true for i =0 when ¢ = ¢’ = e, or for 0 = @ and ¢’ = *,
in both cases we have that ¢/(?,) is true because o’(?p,,) is true.

Axiom (Axg) is always true for i = 1

Hypotheses of axiom (Axg) are not satisfied for ¢ > 1.

Hypotheses of axiom (Ax[) are satisfied only for ¢ = ¢/ = % and so easily satisfied.
Axiom (Axgrans) is satisfied as <, and <y are transitive.

Hypotheses of axiom (Ax% )are only satisfied for ¢ = @ and ¢/ = ¢” = %, and in this case
the conclusion is one of the hypothesis.

Hypotheses of the other axioms are never fully satisfied.

D Details on Section 5

D.1 Details on the justification of (mcut)-steps

In the following, we shall prove the lemmas justifying the mcut-reduction steps. The following
statement are identical to those found in the body of the paper but for the fact that we make
explicit the side conditions on the exponential rules: in the hypotheses of the lemmas, such
side-conditions are assumptions we can use in our proof while in the conclusion derivation
these side-conditions are goals to be proved in order to establish that the derivation is indeed
a proof in the considered psuperLL™ (€, <4, <t, <,;) system.
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D.1.1 Justification for step (comm,,): proof of Lemma 1

The case (commy,) covers all the case where (!g) commute under the cut:

» Lemma 17 (Justification for step (comm,,)). If

v
FA7-A o<, T,
F1.A, 7:A g
z T mcut (s, 1)
1,475
is a psuperLL™ (&, <, <y, <,)-proof then
T
FAZ:A C
1T mcut(e, 1L .
FA 7D ( ) oc<4p |
F1,A,750 9

is also a psuperLL™ (&, <, <y, <,,)-proof.

Proof. Weﬂprove that for each sequent k15, A’,? 5 A’ of €' := C' U { 1,4, 77A}, we have
that o <g 7'.

The l1l-relation extended to sequent defines a tree on C’. Taking !, A, 7=A as the root,
the ancestor relation of this tree is a well-founded relation. We can therefore do a proof by
induction:

The base case is given by the condition of application of (!5) in the proof.

For heredity, we have that there is a sequent = 1,» A", ? 5 A" 7, (A’L) of C’, connected

on !,v A’ to our sequent. By induction hypothesis, we have that ¢ <, ¢’. The rule on top

of F15A", 7 5 A’ is a promotion. We have two cases:
If it’s a (!5)-promotion, we can use axiom (Axans) With the application condition of
the promotion, to get o <, .
If it’s an (!f)-promotion or an (!,)-promotion, we can use axiom (Ax%) with the
application condition of the promotion, to get o <, .
We conclude by induction and use the inequalities to prove that o <, p. |

D.1.2 Justification for step (comm)): proof of Lemma 2

The case (comm, ) covers the case of commutation of an (!f)-promotion but where only
(!g)-rules with empty contexts appears in the hypotheses of the multi-cut. Note that an (!g)
occurrence with empty context could be seen as an (!f) occurrence (with empty context).

» Lemma 18 (Justification for step (comm))). If

Vs

AN o7

F1A 7-A e
F1,4,7,T

mcut(c, 11)

is a psuperLL™ (&, <, <y, <.)-proof with C' such that each sequents concluded by an (!,) have
an empty context, then

T

FAA
AT mcut(¢, 11) o< 7 |
F1,A,7,T ’

is a psuperLL™ (&, <y, <y, <,,)-proof.
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Proof. We prove that for each sequent - !5/ A",? 5 A" of C' := Cle U{F1,A,7:A}, 0 <; .
The Il -relation extended to sequent defines a tree on C’. Taking !, A, 7=A as the root,
the ancestor relation of this tree is a well-founded relation. We can therefore do an induction
proof:
The base case is given by the condition of application of (!¢) in the proof.
For heredity, we have that there is a sequent -1, A", 7 5 A", ?Uf(A’l) of C’, connected
on !,s A’ to our sequent. By induction hypothesis, we have that o <¢ ¢’. The rule on top
of F15/A", 75 A" is a promotion. We have three cases:
If it’s an (!5)-promotion, then the context is empty and the proof is easily satisfied.
If it’s an (!f)-promotion, we can use axiom (Axans) with the application condition of
the promotion to get o < .
If it’s an (!,)-promotion, we can use axiom (Ax™) with the application condition of
the promotion to get o < .
We conclude by induction and use the inequalities to prove that o <¢ p. <

D.1.3 Justification for step (comm?): proof of Lemma 3

We then have the following case where we commute an (!¢)-rule, but where there is one (at
least) (!5)-promotion with a non-empty context in the premisses of the multicut rule:

» Lemma 19 (Justification for step (comm¢)). If

™
FAA 0T
F1UA 7-A oo
F1,A, 7,7

mcut(c, 11)

is a psuperLL™ (&, <,, <y, <,)-proof with C's containing a sequent conclusion of an (!,)-rule
with at least one formula in the context, then

v
FAA (i)
A 7-A e
FA, 7T <0,
F1,A, 7,0 v

is also a psuperLL™ (€, <4, <g, <,,)-proof.

Proof. We prove thfmt for each sequent !5/ A, 7 5 A’ of c' = C!f U C!Qf U Cé“ U{FI1,A4,7-A},

we have that o <, 7/. Moreover, we prove that 7(?,,, ). We prove that in two steps:

1. There is a sequent - !5/ A", 7 5 A’, with A’ being non-empty, which is conclusion of an
(!g)-rule. Let’s suppose without loss of generality, that this sequent is the closest such
sequent to S :=F 1, A,7-A. The ll-relation extended to sequents defines a tree with
the hypotheses of the multi-cut rule, therefore there is a path from the sequent S to the
sequent S" :=k 1, A", ? 5 A’, of sequents F !5+ A", 7 5, A”. We prove by induction on this
path, starting from S and stopping one sequent before S’ that o <¢ 7":

The initialisation comes from the condition of application of !f on S.

For the heredity, we have that the sequent - !5 A”,7 5 A" is cut-connected to a
1oy A®), ?T&)A(?’), 2,0 (A" on 1,n A" therefore o <; o”. We have two cases: either
this sequent is the conclusion of an (!,)-rule and we apply axiom (Ax), either of an

(f)-rule and we apply axiom (Axyans). In each case, we have that o <¢ .
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We conclude by induction and get a sequent S” :=+ 15, A", ? 5, A" cut-connected to S" on
the formula !, A’ with o <; 7”7. From that we get that o <; ¢’. Moreover, we have that
o' <z 7. As A’ is non-empty, there is a signature p’ € 7/ such that ¢’ <, p’. We can
therefore apply axiom (Axf<g). We get that for each signatures ¢(® such that o <; o,
0 <g 0@ and ¢ (?,,), which we can apply to o and 7 to get that o <, 7 and 7(?p, ).
2. Then, we prove by induction on the tree defined with the Ll -relation and rooted by S
that for each sequents -1,/ A", ? 5, A" o <, 7
The initialisation is done with the first step.
For heredity, we have that there is a sequent
ol AB), ?T@)A(i)’), ?gw(A”J‘) cut-connected to  l5nA”,? 5, A" on !5/ A", mean-
ing that ¢ <; ¢”, as the sequent is the conclusion of a promotion, we have that
0" <, 7" for a s € {g, f,u}, we conclude using axiom (AxZ).

We conclude by induction and we use the inequalities from it to prove that o <, p.

D.1.4 Justification for step (comm| ): proof of Lemma 4

We then cover the cases where we commute an (!,)-rule with the multi-cut. The first case is
where there are only a list of (!,)-rules in the hypotheses of the multi-cut:

» Lemma 20 (Justification for step (comm/ )). If

|
‘u

T
FAC oc<,T
F1,A,7.C N e

F1LA7,B mcut(e, 11)
is a psuperLL™ (&, <,, <y, <,)-proof, then
71'
% meut( ) '
F1,A,?,B '“

is a psuperLL™ (&, <4, <y, <,)-proof.

Proof. We prove that for each sequent - !,s A’ 7. B’ of C' := C" U { !, A,?, B}, we have
that o <, 7.

The 1l-relation extended to sequent defines a tree on C’. Taking !, A, 7, B as the root,
the ancestor relation of this tree is a well-founded relation. We can therefore do an induction
proof:

The base case is given by the condition of application of (!,;) in the proof.

For heredity, we have that there is a sequent

Elgn A" 20 B, ?J/(A’J‘) of C’, connected on !,» A’ to our sequent. By induction hypo-

thesis, we have that o <,, ¢’. The rule on top of - !,, A’ ?,» B’ is an (l,)-promotion, we

can use axiom (Axans) and with the application condition of the promotion, we get that

o<y f.

We conclude by induction and get that o <, p. <
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D.1.5 Justification for step (comm;): proof of Lemma 5

The second case of (!,)-commutation is where we have an (!¢)-rule and where the hypotheses
concluded by an (!g)-rule have empty contexts.

» Lemma 21 (Justification for step (comm?)). Let

™
HAB oc<,T
FI1,A,?7.B o
F 1,4, 7,0

mcut(e, 11)

be a psuperLL™ (€, < 4, <p, <)-proof with C containing at least one proof concluded by an
('y)-promotion ; and such that for each sequent conclusion of an (!4)-promotion has empty
context. We have that

T

A B
AT mcut(e, 11) e
1A, 750 '

is also a psuperLL™ (€, <4, <g, <,,)-proof.

Proof. If one (!¢)-rule has empty contexts, there is only one (!¢),?,I" is empty and therefore

o <t p'is easily satisfied. If not, we do our proof in two steps:

1. As always, we notice that the Ll -relation extended to sequent defines a tree on C’, meaning
that there is a path in this tree, from S :=F 1,A4,7. B to a sequent S :=F 5, A", 7 5 A
being the conclusion of an !¢-rule and with A being non-empty. Without loss of generality,
we ask for S” to be the closest such sequent (with respect to the Ll -relation). We prove
by induction on this path, starting from S and stopping one sequent before S’, that for
each sequent + !,» A" 7 »B", that o <, 7"":

The initialization comes from the condition of application of (l,) on S.

The heredity comes from the condition of application of !, on the sequent - !,» A", 7+ B"

and from lemma (Axirans)-
Finally, as S’ is linked by the cut-formula !,» A’ to one of these sequents, we get that
o <4 o'. By the condition of application of () on §’, we get that ¢/ <; 7/, and from
lemma (Ax%), we have that o <; 7/.

2. We prove, for the remaining tree (which is rooted in S’), that for each sequents

lon A", 7 5, A", that o <¢ 7. We prove it by induction.
Initialization was done at last point.
For heredity, if the sequent & !5 A”,? 5 A" is the conclusion of an (!,)-rule, by
induction hypothesis, we get that o <¢ ¢”, and by (!,,) application condition we get
that " <, 77’, we get o <; 77 with axiom (AxfY).
For heredity, if the sequent - !5 A”,? 3, A" is the conclusion of an (!¢)-rule, by inductign
hypothesis, we get that ¢ <¢ ¢”, and by (!¢) application condition we get that o <¢ 7",
we get o <g 77 with axiom (AXtrans)-
For heredity, if the sequent - !, A”,? 5, A" is the conclusion of an (!g)-rule, then A”
is empty and the proposition is easily satisfied.

We conclude by induction and we use the inequalities from it to prove that o <t p. <
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D.1.6 Justification for step (comm; ): proof of Lemma 6

The following lemma deals with the case where there are sequents concluded by an (!g)-rule
with non-empty context and where the first rule encountered is an !¢-rule.

» Lemma 22 (Justification for step (comm{)). Let

™1 ]
FA B o<uT Fc,a o T
F1, A 7,B e F1,,0,75A R
T AT mcut(e, 1)
oy Iy

be a psuperLL™ (€, <,, <j, <,)-proof, such that Ch contains a sequent conclusion of an (!,)
rule with non-empty context ; C :={+1,A,7,B} U C!l'“ U{k!sC,?75A} are a cut-connected
subset of sequents ; and C' := {F /C,7 5 A} U Ch another one. We have that

T2
FC,A T (?iny )

fmq |

A B C1 FC,?75A 5
T mcut(e, 1)
[ A, ?5F o
F1,A,7,T

IA
<
!

is also a psuperLL™ (€, <4, <y, <,,)-proof.

Proof. We do our proof in three steps:
1. There is a sequent S” :=F 1,/ A", ? 5 A" with A” being non-empty, which is conclusion
of an (!g)-rule. The Ll -relation extended to sequents defines a tree on C’, therefore
there is a path from the sequent S' :=F 1,,C,?5A to the sequent S”, of sequents
FloaAB), ?T@)A@). Let’s suppose without loss of generality, that this sequent is the
closest such sequent to S’. We prove by induction on this path, starting from S’ and
stopping one sequent before S that o’ <; 7(3):
The initialisation comes from the condition of application of !t on 5.
For the heredity, we have that the sequent k! A®), ?T@)A(?’) is cut-connected to a
Flow AW, ?T@)A(‘l), ? (3 (A(3)L) on ! A®) | therefore o/ <; 0(3). We have two cases:
either this sequent is the conclusion of an (!,,)-rule and we apply axiom (Ax™), either
of an (!f)-rule and we apply axiom (Axians). In each case, we have that o’ < 73).
We conclude by induction and get a sequent S :=F1_ AG) ?T&)Aw) cut-connected
to S” on the formula !~ A” with ¢’ <¢ 73). From that we get that o’ <; ¢”. Moreover,
we have that ¢” <, 7. As A’ is non-empty, there is a signature p” € 7/ such that
0" <g p’. We can therefore apply axiom (Axfgg). We get that for each signatures o)
such that o/ <z o®, o’ <g o® and ¢®(?,,,), which we can apply to ¢’ and 7' to get
that o’ <, 7/ and 77/(7m, ).
2. Again, we notice that the 1l -relation extended to sequent defines a tree on C, meaning
that there is a path in this tree, from S :=F 1, A,?,B to S’. We prove by induction on
this path, starting from S and stopping one sequent before S’, that for each sequent
= !0(3)14(3)7 ?T(g)B(S), that o <, 73
The initialization comes from the condition of application of (!,;) on S.
The heredity comes from the condition of application of !, on the sequent ! (s AB) 7.3 B®
and from lemma (Axirans)-

Finally, as S’ is linked by the cut-formula !,» A’ to one of these sequents, we get that

o <,0.
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3. Finally, we prove that for each sequents ! A®) 7 5 AB) of €', & <g 7). We prove
it by induction as C’ is a tree with the Ll -relation.
Initialization comes from the face that o <, o', 0’ <, 7/ and axiom (Ax%).
For heredity, we have that there is a sequent F ! 1y A4, ?TQ)A(‘L), 70 (3) (A(?’))J— of ',
connected on !a(e,)A(?’) to our sequent. By induction hypothesis, we have that o <, o®).
The rule on top of F!_ @ A®), ?T&)A(?’) is a promotion. We have two cases:
If it’s a (!)-promotion, we can use axiom (Axrans) and with the application condition
of the promotion, we get that o <, 73,
If it’s an (!f)-promotion or an (!,)-promotion, we can use axiom (Ax%)and with the

application condition of the promotion, we get that o <, 73,
We conclude by induction.

We got two important properties: -

1. For each sequent ! @ A®), ?T@)A(‘B) of C', we have that o <, 7(3).

2. We have 7/(?y,, ).

We conclude using inequalities of the first property to find that o <, g. And we use the
second property for the (7, )-rule. <

D.1.7 Justification for step (comm; ): proof of Lemma 7

The last lemma of promotion commutation is about the case where we commute an (!y)-
promotion but when first meeting an (!z)-promotion.

» Lemma 23 (Justification for step (comm)). Let

!\I
T T2
A, B o<, T FC,75A O'ISQ":?
, SuT o - |
F1,A,7.B '“ clu 1 ,C,?75A g ¢!
A7, oC 75

1
Fl1,A, 7,0

mcut(e, L)

be a psuperLL™ (£, <,, <j, <,)-proof such that C := {F 1, A, 7, B} UC}* U {F !5:C, 75A} are
a cut-connected subset of sequents ; and C' := {1,,C,? 5 A} UC} another one. Then,

1 2
HA B C1 FC75A C,
FATT mcut(e, 11) -
F1,A, 7T 9

is also a psuperLL™ (€, <4, <y, <,)-proof.

Proof. We do our proof in two steps:
1. First, we prove that for each sequents - !5 A, 7. B of C\ {F !/C,7 5 A} that o <, 7.
We prove it by induction on this list starting with the sequent S :=F 1, A, 7=B (it is a list
with the 1l -relation):
Initialization comes from the condition of application of (!,) on S.
Heredity comes from the condition of application of (!,) on the concerned sequent,
from induction hypothesis and from axiom (Axtans)-

We conclude by induction and deduce from the obtained property that o <, o’.

2. We then prove that for each sequents F l,»A,7.#A of ', 0 <, . We prove it by
induction on C’ as the Ll -relation defines a tree on it, for which we take " :=!/C,7 5 A
as the root.
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The initialization comes from o <, ¢’ that we showed for first step, from o’ <, '
which is the condition of application of (!g) on " and from axiom (Ax%).

For heredity, we have that

there

is a sequent

FlaA® 2 - AB) 2, (A”J‘) of C’, connected on !;»A” to our sequent. By in-
o +®
duction hypothesis, we have that o <g ¢”. The rule on top of - 1,»A",? ;A" is a

promotion. We have two cases:

If it’s a (!)-promotion, we can use axiom (Axans) and with the application condition

of the promotion, we get that o <, .

If it’s an (!f)-promotion or an (!,)-promotion, we can use axiom (Ax%) and with

the application condition of the promotion, we get that o <, .

We conclude by induction

From the inequalities that we get from induction, we can easily prove that o <, p. |

D.1.8 Justification for step (principal, ): proof of Lemma 8

Then we have the principal cases, starting with the contraction:

» Lemma 24 (Justification for step (principal,_)). If

T
i
F7,A,...,7,A A a(?e;) .
Ca F7,A,A Ci C%
; ~— mcut(e, L)
I, 750
is a psuperLL™ (€, <y, <y, <,,)-proof, then
™
CA F2,A, ..., 72, AA Ch 4 ...Ch L
< z mcut(c’, 1L") _
7 SO 8 o0 p(Te;)
FT, 75T

is also a psuperLL™ (&, <, <y, <,,)-proof.

Proof. We prove for each sequent b !,nA”,? 5, A" € C} ,, we have that o <, 7" (for
one s € {g, f,u}. As the relation 1L defines a tree on C’ : C%UA (rooted on the sequent
S :=F1,A,7 5 A" which is the sequent connected to - 7, A, A on 7,A), we do a proof by

induction on this tree:

Initialization comes from the application condition of the promotion.

For heredity, we get from induction hypothesis that o <; ¢’ for a s € {g, f,u}, from the
condition of application of the promotion, we get that o’/ <, 7”7 (again for a s’ € {g, f, u}),
depending on the cases, from axioms (Axirans), (AxS), (Ax‘;“)7 (Axff), (AxE), we get that

o Ss// T_;/ for a S// S {gaf’u}

We conclude by induction, we get using the obtained property, the fact that o(?¢,) and from

axiom (Axc), that for each sequent !,/ A" 7 5 A" € C%UA, 7'7/(?c,-)- We use property 1 to
get that p(?.,) is true, making the derivation valid in the proof of the statement. <
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w D.1.9 Justification for step (comm;_): proof of Lemma 9

a0 Before justifying the case for the multiplexing principal reduction, we recall Definition 12
o together with a graphical representation to make it more understandable:

a2 » Definition 16 (Ompx i (C') contexts). Let m be some psuperLL™ (€, <y, <, <,)-proof con-
a3 cluded in a mcut(v, 1) inference, C' a context of the multicut which is a tree with respect to
aa  a cut-relation 1 and S* be a sequent of C' that we shall consider as the root of the tree.
o1 We define a psuperLL™ (€, <4, <p, <,)-context Ompms!(C!) altogether with two sets of
o6 Sequents, Sc?!ms! and Sc?f gt» by induction on the tree ordering on c':
o7 Let Ci,...,C!, be the sons of S, such that C' = (S, (C,...,C),
?'V"/ ?C

o1 St = SY, then we define Ompsg (C') := (5, (Ci,...,Ch)) ; Set'g 1= 0; Sel gt 1= C'.
a0 St =S or S' = S, then let the root of C} be S}, we define Ompsgi (C') as

?m Tm ?e 7e
920 (S, Ompg) C), s Ompag! (), Sel'gr as {S"u USc;,S; and Spi g as USCQ,SQ'

)), we have two cases:

o1 Below is a graphical picture of the above definition in the second case (S' = S' or
!
o S' = S") when all its sons (for the tree relation induced by 1L) are of the form S,° (which

w3 illustrates both cases of the definition in one picture) :
\ |
/ Sy

s' C'i/h

s
\ | ~
S \_ %

Sel gt

924

5

925

926 Finally, we have the multiplexing principal case:
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» Lemma 25 (Justification for step (comm-,_)). Let
/—’ZH
FA...,AA o(?m;)

Ca F7 AN ™
2 mecut(e, L)
-1, 7,17, 7,1

be a psuperLL™ (€, <4, <y, <y)-proof with T’ being sent on CA UA byt ; ?p~,,F” being sent

on sequent of S, S 5 and 7p I’ being sent on S g, where S'i=1,A, 75 A" is the sequent
cut-connected to I— 7 +A, A on the formula 7, A. We have that

i

——

1 1
Ca FA...,A A Ompagt (Copa) -+ Ompag(Cya) P
- - mcut(e/, 1L")
T T
’ ! ? 1" 2 17 :/ ?
=T, 1, ,F,‘p7,l_‘,...,.p7,1—‘ P(ml) =
20!
——— B
- 1“,?/;1“’,?/37,1“”,4..,?p7,1“” " (7¢;) -

FT,?,07,? T
p P
is also a psuperLL™ (€, <4, <y, <,,)-proof.

Proof. We prove that for each sequent !5, A", 7 5, A" of SZ? 5 0 <g 7 and that for each

sequent = 5 A", ? 5, A" of S Va0 <g 7 or o <, 7. The 1L-relation defines a tree rooted
on §', we do a proof by mductlon
If =10 A" ? 5, A" is in SC?T‘ then its antecedent is also in S S,
the 0 <¢o” or o <, o”. Moreover, the promotion applied on iy o A, ?f~,, A" is an !; or
an !, promotion. We therefore have either by axiom (AxY), either by axiom (Axirans),

by induction, we have

either by axiom (Axf“) that o <¢ 7 or o <, 7/'.

If =150 A",? 5, A" is in Sc e and that its antecedent is in Sc "o then by induction, we
have that o §f o" or o <;¢ ¢”. Moreover, the promotion apphed on bkl nA", f,,A is an
lg promotion. Therefore, we have by axiom (Ax¥) or (Axg) that o <, T,

If F ln A", 2 5 A" s in 8L g,
have that o <, o”. Therefore, by axiom (AxE), o <, .

and that its antecedent is in SC?T gt» then by induction, we

Finally we get that for all sequents = 5 A,? 5 A" of S U X (7w, ) are true, as o <, 77,
?m, (0) (s € {f,u}) and by lemma (AxY). We also get that for all sequents !,/ A,? 5 A of

Sc

g T 7 7"(?¢,) are true as 0 <, 7, 7, (o) and by lemma (AxE).

5
i

From the condition on the proof of the statement and from property 1, we get that g

(?m;)

and g '(?¢,) are true and so that the right proof is correct. |

D.2 Rule permutations

» Definition 17 (Permutation of rules). We define one-step rule permutation on (pre-)proofs
of pLL® with rules of figure 12.

Given a pLL™ (pre-)proof m and p € {l,r,i}* a path in the proof, we define perm(w,p)
by induction on p:

the proof perm(w, €) is the proof obtained by applying the one-step rule permutation at the

root of m if it is possible, either it is not defined;
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Figure 12 One-step rule permutation

we define perm(q(7’),i-p’) := r(perm(n’,q")) if perm(n’,q’) is defined, otherwise it is not
defined;

we defineperm(q(m, ), - ¢') = q(perm(m, q'), 7) if perm(m;,q’') is defined, otherwise it
is not defined;

we defineperm(q(m, 7.),r - q'") := q(perm(m, ¢'), 7) if perm(m;,q’) is defined, otherwise it
is not defined;

for each other cases, perm(m,p) is not defined.

A sequence of rule permutation starting from a uLL*> pre-proof 7 is a (possibly empty)
sequence (p;)iex (A € w), where p; € {l,r,i} such that if we set my := m, then the sequence
(mi)ic14x defined by induction by w1 = perm(m;,p;) are all defined. We say that the
sequence (7;)ic1+x @S the sequence of proofs associated to the sequence of rule permutation.
We say that the sequence ends on 7y if A is finite, we also write it perm(m, (p;)iex)-

» Lemma 26 (Robustness of the proof structure to rule permutation). One-step rule permutation
does not modify the structure of the proof.

Proof. This lemma is immediate as the substitutions are defined between unary rule. <«

» Definition 18 (Finiteness of permutation of rules). Let m be a uLL™ (pre-)proof, and let
(pi)iex be a sequence of rule permutation starting from m and let (7;);c14x be the sequence
of proofs associated to it, let g € {l,r,i}* be a path to the conclusion sequent of a rule (r) of
m, we define the sequence of residuals (¢;)ic1+x of (1) in m; to be a sequence of path defined
by induction on i:

ifi=0,q =q;

if pi = qi, then git1:=q; - i.

if ¢ = pi - i then qi11 == p;.

else gi+1 := q;-
We say that a rule (r) in 7 is finitely permuted if its sequence of residuals is ultimately
constant. We say that (p;)icx is a rule permutation sequence with finite permutation of rules
if each rule of mqy is finitely permuted.

» Proposition 3 (Convergence of permutation with finite permutation of rules). Let 7 be a
uLL® pre-proof and let (p;)ic., be a permutation sequence with finite permutation of rules
starting from w, then the sequence is converging.
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w2 Proof. Let (m;);c. be the sequence of proofs associated to the sequence. Let’s suppose for
ss the sake of contradiction that the sequence is not converging. It implies, using lemma 26,
o that there is an infinite sequence of strictly increasing indexes (i) such that the (r,;)) are
o5 all at the same position. This implies by finiteness of permutation of one rules, than there
o are an infinite number of rules of 7y which have (ry,;)) in their residuals, implying that one
o of the rules below the position of (r,(;)) in 7y has infinitely many residuals being equal to
ws  (1;) or below (r;) contradicting the finitess of permutation of one rule hypothesis. <

w0 B Proposition 4 (Preservation of validity for permutations with finite permutation of rules). Let
wo 7 be a uLL™ pre-proof and let (p;)ic, be a permutation sequence with finite permutation of
w1 Tules starting from w and converging (thanks to lemma 3 to a pre-proof @'. Then T is valid if
w2 and only if ' is.

o3 Proof. From lemma 26, we have that the structure of the trees of the sequence stays the
o4 same, therefore the structure of 7 is the same than the structure of 7/, moreover the threads
w5 of m and 7’ are the same if we remove indexes where the thread is not active. Therefore
ws validity is easily preserved both ways. |

wr D.3 Details on Lemma 11

ws B Lemma 27. Let mg be a psuperLL™ (&€, <, <;, <,,) proof and let my ~» w1 be a psuperLL™ (€, <,
wo <y, <) step of reduction. There exist a finite number of uLL> proofs 6y, ..., 0, such that
wo G —...—=>0,, w5 =~00and0l, =77 uptoa finite number of rule permutations, done only

wo  on rules that just permuted down the (mcut).

To prove this lemma, we need the following one. This lemma prove that when starting
from the translation of a proof containing derelictions promotions and functorial promotions,
there exist an order of execution of cut-elimination step that will make them disappear or
commute under the cut. This order depends on how the proof is translated, for instance the
following (opened) proof:

FAB,C , SOt
1A ?B,?7C FC
: CTA7E mecut(e, 1)
has two translations:
FAB,C FAB,C
-4,B,7C ! 4760
FA?BC Y pot FA?BIC Y pot
F14,7B,7C ° FC P F1A,7B,7C * FC °®
CTA7B mcut(e, 11) TTA7E mcut(e, 1)

w2 To eliminate cuts, we apply in both the same cut-elimination steps but in a different order. We
wes  apply in both an (!,) commutative step, then apply in the first one a dereliction commutative
we  step and a (1,)/(?q) principal case; whereas in the second one we first apply the (!15)/(74)
wos  principal case then the dereliction commutative step.

ws » Lemma 28. Letn € N, let dy,...,d, € N and let p1,...,p, € {0,1}. Let m be a puLL>-

wor  proof concluded by an (mcut)-rule, on top of which there is a list of n proofs wi,...,m,. We
ws  ask for each m; to be of one of the following forms depending on p;:

1000 If p; = 1, the d; + 1 last rules of m; are d; derelictions and then a promotion rule. We
1010 ask for the principal formula of this promotion to be either a formula of the conclusion,

1011 or to be cut with a formula being principal in a proof m; on one of the last d; + p; rules.
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If p; =0, the d; last rules of w; are d; derelictions.
In each of these two cases, we ask for m; that each principal formulas of the d; derelictions to
be either a formula of the conclusion of the multicut, either a cut-formula being cut with a
formula appearing in 7; such that p; = 1. We prove that m reduces through a finite number
of mcut-reductions to a proof where each of the last d; + p; rules either were eliminated by a
(1p/?4)-principal case, or were commuted below the cut.

Proof. We prove the property by induction on the sum of all the d; and of all the p;:
(Initialization). As the sum of the d; and p; is 0, all d; and p; are equal to 0, meaning
that our statement is vacuously true.

(Heredity). We have several cases:

If the last rule of a proof m; is a promotion or a dereliction for which the principal
formula is in the conclusion of the (mcut), we do a commutation step on this rule
obtaining 7/. We apply our induction hypothesis on the proof ending with the (mcut);
and with parameters d},...,d] as well as p},...,p), and proofs 7}, ..., n,,. To describe
these parameters we have two cases:

If the rule is a promotion. We take for each j € [1,n], dj = dj; p}; = p; if j # i,

p;=0; 7w =m; if j #i.

If the rule is a dereliction. We take for each j € [1,n], d; = d; if j # 4, d} = d; — 1;

P =Dpj-
The 7 will be the hypotheses of the (mcut) of 7. Note that } d; + > p: =
>-dj+ > p; — 1 meaning that we can apply our induction hypothesis. Combining our
reduction step with the reduction steps of the induction hypothesis, we obtain the
desired result.
If there are no rules from the conclusion but that one 7; ends with d; > 0 and p; = 0,
meaning that the proof ends by a dereliction on a formula ?F. This means that there is
proof 7; such that p; = 1 and such that 7F is cut with one of the formula of 7;, namely
IFL-. As there are only one !-formula, and as pj =1, IF+ is the principal rule of the last
rule applied on 7;. We therefore can perform an (!,/?4) principal case on the last rules
from 7; and 7, leaving us with a proof 7’ with an (mcut) as conclusion. We apply the
induction hypothesis on this proof with parameters d} = dy,...d, =d,—1...,d,, =d,,
p1 =Dp1,--.,0; =Py —1,...,p, = pp and with the proofs being the hypotheses of
the multicut. Combining our steps with the steps from the induction hypotheses, we
obtain the desired result.
We will show that the case where there are no rules from the conclusion and that no m;
are such that d; > 0 and p; = 0, is impossible. Supposing, for the sake of contradiction,
that this case is possible. We will construct an infinite sequence of proofs (6;);en all
different and all being hypotheses of the multi-cut, which is impossible. We know
that there exist a proof y := m; ending with a promotion on a formula !4 and that
this formula is not a formula from the conclusion. This proof is in relation by the
Ul -relation to another proof §; := 7. We know that this proof cannot be 7; because
the 1l -relation extended to sequents is acyclic. This proof also ends with a promotion
on a principal formula which is not from the conclusion. By repeating this process, we
obtain the desired sequence (6;);¢en, giving us a contradiction.

The statement is therefore true by induction <

Proof of lemma 11. Reductions from the non-exponential part of usuperLL™ (€, <,, <¢, <y)
translates easily to one step of reduction in uLL®. To prove the result on exponential part,
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we will describe each translation of the reductions of figure 5 and 7. For the commutative
steps no commutation of rules are necessary.

Step (commy, ). This step translates to the commutation of one (!)-rule in pLL>, which
is one step of reduction.

Step (comm}f). We prove that lemma 28 applies to step (comm}f). Taking the left proof
from step (comm}f) and translating it in uLL°°, we obtain a proof:

T T
A9, AS F A A
—_—y —_—r 7
HASPAY E A A
142 ?2A8 P F14e,7A° P
FTA°, 7T mcut(c, 11)

with ¢(1) = (¢,1) for some ¢ and n =1+ #(C). We apply our result on this proof with
all the p; being equal to 1 and with d; = #(A;). Moreover, we notice that there will
be only one promotion rule commuting under the cut and that it commutes before any
dereliction, giving us the translation of the functorial promotion under the multicut.
Step (comm?). As for (commy, ), this step only translates to the commutation of one
(1)-rule in pLL®®, which is one step of reduction.
Step (comm, ). This step translates to the commutation of one (!,)-rule, followed by
#(C') (!/?4) principal steps and finally one (?4) commutation giving us the translation
of a unary promotion under the multicut.
Step (commy ). We prove this step using lemma 28 as for step (comm,).
Step (comm; ) and (comm;' ). Both of these steps translate to the commutation of one
(1), followed by #(C}*) + 1 (!/?4) principal steps.
Step (commey, ). We must distinguish three cases based on i:

i = 0. This step translate to one (7, )-commutative step.

t = 1. This step translate to one (?4)-commutative step.

i > 1. This step translates to ¢ — 1 commutation of (?.) and ¢ commutation of (?4).
Step (commy_). This step translates to i — 1 commutation of (?.).

Step (principal, ). This step translates to i — 1 contraction principal cases. At the end
we obtain the following derivation under the multi-cut:

7
— e
o (o}
S N KA o

?
*C

i—1

—_—N
F e, ?17°, ..., r°

S N KA
- e, 7r°

which we can re-arrange to get the translation of #I" ?i rules on each formulas of ?I"°.
Note that for ¢ = 2 no rule permutation are needed.
Step (principal, ). If @ > 1, this step translates in two phases:

1. First i — 1 contraction principal cases;

2. followed by #(Séf*:s/!) (?74/!)-principal cases, and #(I""") dereliction commutative cases.
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To prove the second phase we re-use lemma 28 as for steps (connnﬁ)) and (comm}r).
Finally, the obtained proof under the multi-cut look like this:

7 7
] [e] o (o]
T, 20", ..., T, T
7 i—1

FTo, 20, ..., e, L T e

7 1—1
0 RS CASRIINYS A RANYJ RANUUIIYS R
i i
110 110 10 10
(S 4 RASUUIIEd RS KA )
1—1 1—1

S R4 R ANUUIINd RS AT M

74

?

*C

Do, 7170 2770 7Y TY°
F e, 700, 7r°

which we can re-arrange to get the translation of #I" ?ﬁ;;, followed by the translation of
417 7%
If 4 = 0, this step translates to a weakening principal case, giving us the translation of #I"

T v . .
76, and #I' 72 with no commutation of rules necessary. <

D.4 Details on Lemma 12

» Lemma 29 (Completeness of the (mcut)-reduction system). If there is a pLL™-redex R
sending w° to 7'° then there exists a usuperLL™ (&, <,, <, <,)-redex R’ sending 7 to a proof
1

7', such that in the translation of R', R is applied.

Proof. We only prove the exponential cases, the non-exponential cases being immediate. We
have several cases:
If the case is the commutative step of a contraction or a dereliction or weakening (r), as
it is on top of a (mcut), it necessarily means that (r) comes from the translation of a
multiplexing or a contraction rule () which is also on top of an (mcut) in 7, we can take
R’ as the step commutating (') under the cut.
If it is a principal case again, we have that there is a contraction or a dereliction
or weakening rule (r) on top of a (mcut) on a formula ?A. It also means that each
proofs cut-connected to ?A ends with a promotion. As 7° is the translation of a
psuperLL™ (€, <g, <¢, <y)-proof, it means that (r) is contained in the translation of a
multiplexing or contraction rule (') on a formula 7, A on top of a (mcut). It also means
that all the proofs cut-connected for this (mcut) to 7, A are translations of promotions
(no other rules than a promotion in psuperLL™ (€, <4, <, <,,) translates to a derivation
ending with a promotion). Therefore the principal case on (r') is possible, we can take
R’ as it.
If it is the commutative step of a promotion (r), it means that all the proofs of the
contexts of the (mcut) are promotions. Meaning that (r) is contained in the translation
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of a promotion (7') on top of (mcut). We also have that the context of this (mcut) are
only proof ending with a promotion for the same reasons that last point. We therefore
need to make sure that each (mcut) with a context full of promotions are covered by the
~-relation. Looking back at figure 5 together with conditions given by each corresponding
lemmas, we have that:
Each (!3)-commutation is covered by the first case.
Each (!f)-commutation is covered by the two cases that follows: the second of the
two covers the case where there is an (!g)-promotion in hypotheses of the multicut
with non-empty context, whereas the first one covers the case where there are no such
(!g)-promotions in the hypotheses.
The (!,)-commutation is covered by all the remaining cases:
The first one covers (!,,)-commutation when the hypotheses are all concluded by an
(Iy)-rule.
('y)-commutation with (!¢)-rules and (possibly) (!g)-rule with empty context are
covered by the second case.
(4)-commutation with (!¢)-rules and (!g)-rule with non-empty contexts is covered
by the third and the fourth cases: the third case covering all the cases where the
chain of (!,) encounters a (!f) first, the fourth one when it encounter a (!) first.
(!y)-commutation without (!f) rules but with (!g) with or without empty contexts is
covered by last case.
<

D.5 Details on the translation of fair reduction sequences

» Corollary 5. For every fair psuperLL™ (€, <,, <f, <,) reduction sequences (m;)icw, there
erists:

a fair uLL™ reduction sequence (6;)icw;

a sequence of strictly increasing (¢())icw natural numbers;

for each i, an integer k; and a finite sequence of rule permutations (P?)ke[[o,k,;—l]] starting
from 7} and ending 0,;). For convenience in the proof, let’s denote by (Ff)ke[[oﬁki]] be
the sequence of proofs associated to the permutation;

for alli > i, p¥ >pf/ if k' €0,k —1 and k > kir;

for all i, k, pf are positions lower than the multicuts in 7.

for each i’ > i and for each k € [0,k; — 1], pk = pk

Proof. We construct the sequence by induction on the steps of reductions of (;);eq,-

For ¢ = 0: we take 0y = 7§, ¢(0) =0 and kg = 0.

For 7 4+ 1, suppose we constructed everything up to rank ¢. We use lemma 11 on the
step m; — m;11 and get a finite sequence of reduction 6, — --- — 6/, such that there is a
permutation of rules (p1,...,pm) (m € N) starting on 77, ; and ending on 6, such that
P1,-..,Pm are at the depths of rules that just commuted down the multicut during the
sequence 0 — - -+ — 0!, We have that 0], = 7, therefore (p?, ... ,pff‘_l) is a sequence of
reduction starting from 6 and ending on 6,,(;). As 6’y and 9‘; are equal under the multicut
rules of 6}y (for each j € [0,n]) and that depths p, j € [0, k; — 1] are under the multicuts
of m; , we have that (p?,... ,pfi_l) is a sequence of rule permutation starting on proof 9;-.
Let’s denote by 6’ ?, L0 f’ the sequence of proof associated to it. We have that for the
same reason, ¢'; is equal to ¢’ ;“ on top of the depths of multicuts of 9;. We therefore have
that 9”5", e 9’5] is an (mcut) reduction sequence of uLL™ starting from 6,¢;). As the
two sequences of reductions py,...,p, and pY, ..., pf“l have disjoint sets of rules with
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non-empty traces, we have that p?, ..., pfi_l, P1,---,Pm is a sequence of rule permutation
starting from 7, ; and ending on the same proof than the proof ending the sequence

kiA*I
pla"'vpnup?W'wpq; , ]
(for j € [0,n]), pl, =p]for j<ki—1 and pﬁzlﬂ = p; for j € [1,m], we have
our property.

, namely G’fj. By setting (i 4+ 1) := (i) + 1, Op@)4; = 0’?"’

Here is a summary of the objects used in the inductive step:

Ur Ti+1
[e]
Tit1
P15--Pm
o _ pr ’ ’
7o =0, 0, 0,
(0]
, I
2t 2t 2t
o % o'

. :
i |

ki ki
06 = 0,0 . 0" " Opit1)

We get fairness of (6;);e,, from lemma 12 and from the fact that after the translation of
an (mcut)-step, 7° ~ 7'°, each residual of a redex R of 7°, is contained in the translations
of residuals of the associated redex R’ of lemma 12. <

D.6 Details on the main theorem

» Theorem 5. Every fair (mcut)-reduction sequence of usuperLL™(E, <4, <4, <) converges
to a psuperLL™ (&, <4, <t <4) cut-free proof.

Proof. Consider a psuperLL™ (€, <, <t, <,)) fair reduction sequence (7;)ic14x (A € w+ 1).

If the sequence is finite, we use lemma 11 and we are done. If the sequence is infinite, using
corollary 1 we get a fair infinite uLL*> reduction sequence (6;);c. and a sequence (¢(%))icw
of natural numbers. By theorem 1, we know that (6;);c,, converges to a cut-free proof 6
of pLL>. We now prove that the sequence (7;);e., converges to a usuperLL™ (€, <., <¢, <)
pre-proof 7 such that 7° = 6 up to a permutation of rules (the permutations of one particular
rule being finite).

First, we prove that for each depth d, there is an i such that there are no (mcut)-rules
under depth d in ;. Suppose for the sake of contradiction that there exist a depth d such
that there always exist a (mcut) at depth d. There is a rank ¢’ and an (mcut) rule in 7
such that for each ¢ > 4/, m; will always contain this (mcut) and (therefore) the branch b to
it never changes. The translations 7, contains the translation of the branch b which also
ends with an mcut. Since 7, is equal to 0,;) up to the permutations of rules under the
multicut and that these permutations do not change the depths of the (mcut) rules, we have

that the 0,;

y all contains a (mcut) at a depth equal to the depth of the translation of b.
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This contradicts the productivity of this sequence of reduction, we therefore have that (m;)
converges to a pre-proof .

Second, we prove that 7° is equal to 6 up to a permutation of rules (the permutations of
one particular rule being finite). The condition on the sequence given by corollary 1 defines
a sequence of rule permutation starting from 7°:

ko—1 _k k-1 e En
pga"'apoo 7p107"'7p11 7""p’:L 13"'apn+17"'7
moreover we have that this is a permutation of rules with finite permutation, therefore this
sequence of rule permutation converges to a uLL® pre-proof 7’. We have for each 4, that the
end of the sequence of rule permutation
ko—1 Kk k-1 ki ki—1
pgv"'vp()o 7p107"‘,p11 a"'api 17"‘7pi
starting from 7° is equal to 7le under the multicuts. Therefore we have that the sequence
(78 )icw = (Bp(i))icw converges to ' and therefore that 7' = . As rule permutation with
finite permutation and (—)° translation are robust to validity (both ways), we have that 7 is
valid. <

D.7 Details on corollary 2

» Corollary 6 (Cut Elimination for superLL). Cut elimination holds for superLL(E, <,4, <p, <)
as soon as the 8 cut-elimination axioms of definition 1 are satisfied.

Proof. Any superLL(&, <, <¢, <y)-proof is also psuperLL™ (&, <4, <¢, <y )-proof therefore any
sequence of (mcut)-reductions converges to a cut-free proof. A cut-free proof of sequents con-
taining only superLL(E, <4, <, <y)-formulas and valid rules from
psuperLL™ (&, <4, <¢, <,) is necessarily a superLL(E, <4, <, <) (cut-free) proof. <
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