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Abstract5

In the realm of light logics deriving from linear logic, a number of variants of exponential rules have6

been investigated. The profusion of such proof systems induce the need for cut-elimination theorems7

for each logic the proof of which may be redundant. A number of approaches in proof theory have8

been adopted to cope with this need. In the present paper, we consider this issue from the point of9

view of enhancing linear logic with least and greatest fixed-points and considering such a variety of10

exponential connectives.11

Our main contribution is to provide a uniform cut-elimination theorem for a parametrized system12

with fixed-points by combining two approaches: cut-elimination proofs by reduction (or translation)13

to another system and the identification of sufficient conditions for cut-elimination. More precisely,14

we examine a broad range of systems, building on Nigam and Miller’s subexponentials and Bauer15

and Laurent’s super exponentials. Our work is motivated by our recent work on cut-elimination for16

the modal µ-calculus as well as by Baillot’s work on light logics with recursive types.17
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1 Introduction23

On the redundancy of cut-elimination proofs. While cut-elimination is certainly a24

cornerstone of structural proof theory since Gentzen’s introduction of the sequent calculus,25

an annoying fact is that a slight change in a proof system induces the need to reprove globally26

the cut-elimination property. Such re-proofs are usually quite boring and fastidious, often27

lacking any new insight: cut-elimination results lack modularity. This results in the need28

of reestablishing a theorem which differ only very marginally from a previously proven one,29

even though the details are very technical and the failure of cut-elimination may hide in30

those small variants. There are mainly two directions to try and make cut-elimination results31

more uniform, reduction and axiomatization:32

Cut-elimination by reduction The first option consists in proving a new cut-elimination res-33

ult by means of translation between proof systems, allowing to reduce the cut-elimination34

property of a given system to that of another one for which the property is already known.35

Very frequent in term-calculi such as the variants of the λ-calculus, this approach is also36

applied in proof theory, for instance in translations between classical, intuitionistic and37

linear logics [13, 15] where linear translations come with simulation results. A more recent38

application of this approach is the second author’s proof of cut-elimination for µLL∞,39

the infinitary proof system for linear logic extended with least and greatest fixed-points,40

which is proved [22] by a reduction to the cut-elimination property of the exponential-free41

fragment of the logic [2].42

Axiomatizing systems eliminating cuts The second option consists in abstracting properties43

ensuring that cut-elimination holds in a sequent calculus, and to provide sufficient44
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23:2 Super exponentials with fixed-points

conditions for cut-elimination to hold. For instance, after Miller and Nigam’s work on45

subexponentials [20] providing a family of logics extending LL with exponential admitting46

various structural rules, Bauer and Laurent provided a systematic and generic setting47

that captures most of the light logics to be found in the literature [16, 18], superLL,48

for which they provided a uniform proof of cut-elimination based on an axiomatization49

stating a set of sufficient conditions for cut-elimination to hold [6]. Another line of work,50

more algebraic, establishing sufficient conditions for cut-elimination is that of Terui et51

al.[10, 24, 9, 25, 8] which established modular and systematic cut-elimination results by52

combining methods from proof theory and algebra.53

We will see in the present paper that the two approaches can be mixed in order to provide54

a uniform cut-elimination proof for a large family of logics, called µsuperLL∞, that extends55

both µLL∞ and super exponentials: we shall obtain a single proof for a large class of proof56

systems and, by relying on a proof translation-method, we shall not need to design a new57

termination measure but we will simply rely on simulation results from one logic to another.58

Linear modal µ-calculus. One of our motivations originated in a recent work, where59

we established a cut-elimination theorem for the classical modal µ-calculus with infinite60

proofs [5]. A key step in this work consisted in proving cut-elimination of µLL∞� , a linear61

variant of the classical modal µ-calculus, to which we could reduce cut-elimination of the62

classical modal µ-calculus. Indeed linear logic offers powerful tools for translating systems63

like µLK∞ from [22] and µLK∞� [17] into linear systems making the transfer of properties64

of those system to other logic efficient. Proving cut-elimination for µLL∞� we were led to65

consider a more systematic treatment of exponentials and modalities revisiting a previous66

work by the first author with Laurent [6] and introducing µsuperLL∞.67

Light logics with least and greatest fixed points. Taming the deductive power of68

linear logic’s exponential connectives allows one to get complexity bounds on the cut-69

elimination process [16, 18]. Adding fixed points in such logic enriches the study of complexity70

classes [3, 7, 21, 11], as well as the study of light λ-calculus enriched with fixpoints as in [4].71

In [3], enriching elementary affine logic with fixed points allows one to refine the complexity72

results from ELL, and to characterize a hierarchy of the elementary complexity classes.73

In [19], it is even shown that the fixed-point-free version of this logic gets a very different74

characterization of complexity bounds for similar types.75

The systems defined in the present article differ from those discussed in the previous76

paragraph: they are based on recursive types rather than extremal fixed-points (ie. inductive77

and cionductive types), we base our study on potentally infinite and regular derivation trees,78

etc. However, both systems have strong similarities that we shall discuss in a later section,79

which makes a stronger link between our systems and light systems from the literature.80

Organization and contributions of the paper. The main contribution of this paper81

is a syntactic cut-elimination result for a large class of (parametrized) linear systems with82

least and greatest fixed-points coming with a notion of non-wellfounded and regular proofs.83

In Section 2, we recall some definitions and results about infinitary rewriting theory and84

linear logic. Then, we consider in Section 3 a variant of Bauer and Laurent’s system of super85

exponentials [6]. We set up in Section 4 a parametrized system, µsuperLL∞, which is superLL86

extended with fixed-points and non-wellfounded proofs. Finally, in Section 5, we define the87

cut reduction system that we use to prove of our main theorem, the syntactic cut-elimination88

theorem of µsuperLL∞. Our result gives a new proof of cut-elimination for superLL and a89

generalization of the results of [5].90
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` F, F⊥

` F,Γ ` F⊥,∆
cut` Γ,∆

` Γ, G, F ,∆ ex
` Γ, F,G,∆

` F,G,Γ `` F `G,Γ
` F,∆1 ` G,∆2 ⊗
` F ⊗G,∆1,∆2

` F1,Γ ⊕1
` F1 ⊕ F2,Γ

` F2,Γ ⊕2
` F1 ⊕ F2,Γ

` F1,Γ ` F2,Γ &` F1 & F2,Γ
1` 1

` Γ ⊥` ⊥,Γ
>` >,Γ

Figure 1 one-sided MALL rules

` Γ ?w` ?F,Γ
` ?F, ?F,Γ ?c` ?F,Γ

` F,Γ ?d` ?F,Γ
` F, ?Γ !p` !F, ?Γ

Figure 2 one-sided exponential fragment of LL

2 Background on LL, fixed-points and non-wellfounded proofs91

In this paper, we will study proof theory of different systems of linear logic (LL). It is much92

more convenient to work on one-sided sequents systems as proofs as well as the description93

of these systems are more compact than the two-sided version. However, The results for94

the two-sided systems can be retrieved systematically from the one-sided systems with95

translations between them as in [22] for instance.96

2.1 Formulas, sequent calculi and non-wellfounded proofs97

The (pre-)formulas of linear logic with fixed-points are defined inductively as (a ∈ A, X ∈ V):98

F,G ::= a | a⊥ | X | µX.F | νX.F | F `G | F ⊗G | ⊥ | 1 | F ⊕G | F &G | 0 | > | ?F | !F.99

Formulas of µLL∞ are such closed pre-formulas (µ and ν being binders for variables in V).100

By considering the µ, ν,X-free formulas of this system, we get LL, the usual formulas of101

linear logic [15]. By considering the !, ?-free formulas of it, we get the formulas µMALL∞ the102

multiplicative and additive linear logic with fixed points [2]. By considering the intersection103

of these two subset of formulas, we get the formulas of MALL the multiplicative and additive104

linear logic. The ?, !-fragment is called the exponential fragment of linear logic.105

I Definition 1 (Negation). We define (−)⊥ to be the involution on formulas satisfying:106

⊥⊥ = 1 X⊥ = X (A1 ⊗A2)⊥ = A⊥1 `A⊥2 (A1 &A2)⊥ = A⊥1 ⊕A⊥2
>⊥ = 0 a⊥

⊥ = a (µX.F )⊥ = νX.F⊥ (?F )⊥ = !F⊥107

The sequent calculi that we consider in this paper are built one one-sided sequents:108

A sequent is a list of formulas Γ, that we usually write ` Γ. Usually, in the literature,109

derivation rules are defined as a scheme of one conclusion sequent and a (possibly empty)110

list of hypotheses sequents. In our system, the derivation rules come equipped with an111

ancestor relation linking each formula in the conclusion to zero, one or several formulas112

of the hypotheses. When defining our rules, we provide this link by drawing the ancestor113

relation with colors. (See Figures 1–3.) As usual, some formulas may be distinguished as114

principal formulas: both formulas in the conclusion of an axiom rule are principale, no115

formula is principal in the conclusion of an (ex) or (cut) inference while in other rules of116

Figures 1–3 the leftmost occurrence of each conclusion sequent is principal.117

I Definition 2 (MALL, LL and µLL∞ inference rules). Figure 1 defines MALL inference rules.118

LL inferences are obtained by considering Figures 1 and 2. Finally, inference rules for119

µMALL∞ and µLL∞ are obtained by adding rules of Figure 3 to MALL and LL inferences.120

In the rest of the article, we will not write the exchange rules explicitly: one can assume121

that every rule is preceded and followed by a finite number of instances of (ex). While proofs122
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` F [X := µX.F ],Γ
µ

` µX.F,Γ
` F [X := νX.F ],Γ

ν
` νX.F,Γ

Figure 3 Rules for the fixed-point fragment

for MALL and LL are the usual trees inductively generated by the inference rules, defining123

non-wellfounded proofs for fixed-point logics requires some definitions:124

I Definition 3 (Pre-proofs). Given a set of derivation rules, we define pre-proofs to be125

the trees co-inductively generated by rules of each of those systems. Regular (or circular)126

pre-proofs are those pre-proofs having a finite number of sub-proofs.127

We represent regular proofs with back-edges as in the following example:128

I Example 1 (Regular proof). We give an example of circular proof:
` νX.!X, ?0 !p` !νX.!X, ?0

ν
` νX.!X, ?0

129

From that, we define the proofs as a subset of the pre-proofs:130

I Definition 4 (Validity and proofs). Let b = (si)i∈ω be a sequence of sequents defining131

an infinite branch in a pre-proof π. A thread of b is a sequence (Fi ∈ si)i>n of formula132

occurrences such that for each j, Fj and Fj+1 are satisfying the ancestor relation. We say133

that a thread of b is valid if the minimal recurring formula of this sequence, for sub-formula134

ordering, exists and is a ν-formula and that the formulas of this threads are infinitely often135

principal. A branch b is valid if there exists a valid thread of b. A pre-proof is valid and is136

a proof if each of its infinite branches is valid.137

I Example 2. Given a formula A, let us consider ?•A = µX.(A ⊕ (⊥ ⊕ (X ` X))) and138

!•A = νX.(A& (1 & (X ⊗X))). Assuming a context Γ and a valid proof π of ` A, ?Γ, the139

following is a valid proof of ` !•A, ?Γ:140

(In every infinite branch along141

the 2 back-edges, !•A is the142

minimal recurring formula.)143

π
` A, ?Γ

1` 1 ??w` 1, ?Γ

` !•A, ?Γ ` !•A, ?Γ ⊗` !•A⊗ !•A, ?Γ, ?Γ ??c` !•A⊗ !•A, ?Γ &,&
` A& (1 & (!•A⊗ !•A)), ?Γ

ν
` !•A, ?Γ

144

2.2 Cut-elimination for linear logic with fixed-point145

Cut-elimination holds for µMALL∞ and µLL∞ in the form of the infinitary weak normalization146

of a multicut-reduction relation: a new rule, the multicut (mcut), is introduced, that147

corresponds to an abstraction of several cuts. This rule has an arbitrary number of premises:Details in ap-

pendix A.1.

148

` Γ1 . . . ` Γn mcut(ι,⊥⊥)` Γ
and it is parameterized by two relations: (i) the ancestor149

relation ι which relates each formula of the conclusion to exactly one formula among the150

hypotheses and (ii) the multicut relation, ⊥⊥, which links cut-formulas together. ι and ⊥⊥ are151

subject to a number of conditions detailed in Appendix A.1.152

I Example 3. Representing ι and ⊥⊥ in red and blue, the (cut/mcut) step is as follows:153

` A,B
` B⊥, C ` C⊥, D

cut
` B⊥, D

mcut(ι,⊥⊥)
` A,D

 
` A,B ` B⊥, C ` C⊥, D

mcut(ι′,⊥⊥′)` A,D
154

To define the (mcut) reduction step we need a last definition, that will be also useful155

when defining the reduction step of the super exponential system:156
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Details in ap-

pendix A.2 I Definition 5 (Restriction of a multicut context). Let C mcut(ι,⊥⊥)s be a multicut occurrence157

with C = s1 . . . sn and si be ` F1 . . . Fki . For 1 ≤ j ≤ ki, CFj is the restriction of C to the158

sequents hereditarily linked to Fj with the ⊥⊥-relation.159

The previous definition extends to contexts, writing CF1...Fn . For instance, writing C for160

the premises of the rightmost mcut in Example 3, CB⊥ = {` A,B;` C⊥, D} while CA = ∅.161

Cut-elimination for µMALL∞ and µLL∞ is proved syntactically with a rewriting system162

on proof with (mcut), whose steps are given in appendix A.3. As standard in sequent caluli,163

those (m)cut-reduction steps are divided in principal cases and (m)cut-commutation cases.164

The cut elimination result is then stated as a strong normalization result for a class of165

infinitary reduction, initiated with proofs containing exactly one (mcut) at the root of the166

proof. Indeed, strong normalization is trivially lost in such infinitary settings as one can167

always build infinite sequences that never activate some (mcut), thus converging to a non168

cut-free proof. Fair reductions precisely prevent this situation by asking that no (mcut) that169

can be activated remains forever inactive forever along the reduction sequence. The following170

definition is borrowed from [1, 2], residuals corresponding to the usual notion of TRS [23]:171

I Definition 6. A reduction sequence (πi)i∈ω is fair, if for each πi such that there is a172

reduction R to a proof π′, there exist a j > i such that πj does not contain any residual of R.173

This fairness condition allowed Baelde et al. [1, 2] to obtain a (multi)cut-elimination174

result for µMALL∞ which, combined with the following encoding of exponential formulas175

using notations from Example 2, (?A)• = ?•A• and (!A)• = !•A• (extended to proof and176

cut-reduction steps), induces the following µLL∞ multicut-elimination result [22]:177

I Theorem 1. Every fair µLL∞ (mcut)-reduction sequence converges to a cut-free proof.178

3 Super exponentials179

In this section, we define a family of parameterized logical systems, adapting the methodology180

of [6] and using the sequent formalism from the previous section. Consequently, the section181

lies in between background on the work by the first author and Laurent and new material182

since we propose an alternative system, with an alternative choice of formalization. We183

discuss briefly some of these differences here and shall come back to this comparison in the184

discussion of related works. Bauer and Laurent’s super exponentials [6] only include functorial185

promotion and rely on the so-called digging rule to recover the usual Girard’s promotion rule.186

On the other hand, we propose below another formalization of super exponentials, adapting187

the system to capture both functorial and Girard’s promotions primitively while we discard188

the digging which is needed nor well-suited for the extension we aim with fixed-points.189

This means that the general philosophy of this section follows that of [6] and in particular190

we show how their proofs can be adapted to the present setting in B.2. On the other hand,191

we will show in Section 5 that our uniform cut-elimination theorem provides an alternative,192

copmletely new, proof of cut-elimination for the super exponential of the present section in193

the sense that it does not rely on adapting the techniques and proof by the first author and194

Laurent. The first parameters of these systems will allow us to define formulas:195

I Definition 7 (Superexponential formulas). Let E be a set. Formulas of superLL(E) are the196

formulas of MALL together with exponential connectives subscripted by an element σ ∈ E:197

F,G ::= a ∈ A | a⊥ | F `G | F ⊗G | ⊥ | 1 | F ⊕G | F &G | 0 | > | ?σF | !σF.198

Elements of E are called exponential signatures. The orthogonal (−)⊥ is defined as199

the involution satisfying extending that of Definition 1 with: (!σA)⊥ = ?σA⊥ for any σ ∈ E.200
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23:6 Super exponentials with fixed-points

`

i︷ ︸︸ ︷
A, . . . , A,Γ (σ(?mi )) ?mi` ?σA,Γ

`

i︷ ︸︸ ︷
?σA, . . . , ?σA,Γ (σ(?ci )) ?ci` ?σA,Γ

` A, ? ~σ′∆ (σ ≤g ~σ′)
!g` !σA, ? ~σ′∆
` A,∆ (σ ≤f ~σ′) !f` !σA, ? ~σ′∆

` A,B (σ1 ≤u σ2)
!u` !σ1A, ?σ2B

Figure 4 Exponential fragment of µsuperLL∞

I Notation 1 (List of exponential signatures). Let ∆ = A1 . . . An be a list of n formulas201

and ~σ = σ1 . . . σn a list of n exponential signatures. The list of formulas ?σ1A1 . . . ?σnAn is202

written ?~σ∆. Moreover, given a binary relation R on exponential signatures and two lists of203

exponential signatures ~σ = σ1, . . . , σm and ~σ′ = σ′1, . . . , σ
′
n, we write ~σ R ~σ′ for

∧
1≤i≤m
1≤j≤n

σiRσ
′
j .204

While each element of σ ∈ E induces two exponential modalities, ?σ, !σ, the inference205

rules will be describes in two phases: first each σ ∈ E will be equipped with a set of rule206

names {?mi | i ∈ N}∪{?ci | i ≥ 2} which can be used to introduce the connective ?σ. Second,207

some binary relations over E will govern the available promotion rules, introducing !σ.208

I Definition 8. The set of exponential rule names is N = {?mi | i ∈ N} ∪ {?ci | i ≥ 2}.209

To each exponential signature σ ∈ E, one associates a subset of N , [σ].210

For the sake of clarity, given σ ∈ E we will write (when unambiguous) σ instead of [σ],211

omitting [·] throughout the paper. We shall also switch freely from viewing σ (more precisely,212

[σ]) as a subset of N or as its boolean characteristic function, write, for instance, ?mi ∈ σ213

(resp. ?ci ∈ σ) when convenient, or considering σ(?mi) (resp. σ(?ci)) as a truth value.214

I Definition 9. For one set of signatures E, we define many systems, parameterized by three215

binary relations on E: ≤g,≤f and ≤u. Rules for this system are the rules of MALL from216

Figure 1 in combination with the super-exponential rules of Figure 4: multiplexing (?mi
),217

contraction (?ci) as well as functorial (!f), Girard (!g) and unary (!u) promotions.218

Each exponential rule comes with a side-condition written to the right of the premises219

I Remark 1. Below, the side-condiction for an exponential rule may also be written next to220

the rule label or simply omitted when it has been checked elsewhere. Those side-conditions221

are not part of the proof-object itself: all exponential inferences are unary rules.222

Note that nullary multiplexing rule corresponds to usual weakening (?w) and unary223

multiplexing corresponds to dereliction (?d).224

I Definition 10 (superLL(E ,≤g,≤f,≤u)). superLL(E ,≤g,≤f,≤u) proofs are the trees induct-225

ively generated by those inferences, satisfying the above side-conditions.226

There are instances of superLL where cut-elimination fails: some conditions are required,227

so that cut inferences can indeed be eliminated.228

The following two definitions aim at formulating these conditions in a suitable way:229

I Definition 11 (Derivability closure). Given a signature σ, we define the derivability closure
σ̄ to be the signature inductively defined by:

σ(r)
σ̄(r)

σ̄(?ci) σ̄(?cj )
σ̄(?ci+j−1)

σ(?c2) σ̄(?mi
) σ̄(?mj

) i, j 6= 0
σ̄(?mi+j )

σ(?m1) σ̄(?ci)
σ̄(?mi)

Derivability closure comes with the following property, proved by induction on σ̄(r):230

I Proposition 1. If σ̄(r) holds, then (r) is derivable for connective ?σ, using only inference231

rules ?mi
and ?ci on this connective.232
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σ ≤g σ
′ ⇒ σ(?mi) ⇒ σ̄′(?ci) i ≥ 0 (Axg

m)
σ ≤s σ′ ⇒ σ(?mi) ⇒ σ̄′(?mi) i ≥ 0 and s 6= g (Axfu

m)
σ ≤s σ′ ⇒ σ(?ci) ⇒ σ̄′(?ci) i ≥ 2 (Axc)
σ ≤s σ′ ⇒ σ′ ≤s σ′′ ⇒ σ ≤s σ′′ (Axtrans)
σ ≤g σ

′ ⇒ σ′ ≤s σ′′ ⇒ σ ≤g σ
′′ (Axgs

≤)
σ ≤f σ

′ ⇒ σ′ ≤u σ
′′ ⇒ σ ≤f σ

′′ (Axfu
≤)

σ ≤f σ
′ ⇒ σ′ ≤g σ

′′ ⇒ σ ≤g σ
′′ ∧ (σ ≤f σ

′′′ ⇒ (σ ≤g σ
′′′ ∧ σ′′′(?m1))) (Axfg

≤)
σ ≤u σ

′ ⇒ σ′ ≤s σ′′ ⇒ σ ≤s σ′′ (Axus
≤ )

with s ∈ {g, f, u}, all the axioms are universally quantified.
For convenience, we use the notation ?c0 := ?m0 and set σ̄(?c1) = true for all σ.

Table 1 Cut-elimination axioms

I Notation 2. We name ?σ̄ci (resp. ?σ̄mi
), for i ∈ N, any derivation using only ?cj and ?mj

233

rules and having the same conclusion and hypothesis as ?ci (resp. ?mi
). We write σ̄(?c0) for234

σ̄(?m0) and set σ̄(?c1) to true for all σ and ?σ̄c1
to be the empty derivation.235

To define a cut-reduction system, we consider cut-elimination axioms defined in Table 1.236

In superLL-systems each axiom corresponds to one step of cut-elimination. However, as our237

reduction system with fixed-points is based on the (mcut)-rule, some axioms will be used in238

several reduction cases. In Bauer and Laurent’s system [6], properties of axiom expansion239

and cut-elimination hold. We defer the former to Appendix B.1 and focus on the latter:240

See a direct

proof in ap-

pendix B.2

I Theorem 2 (Cut Elimination). As soon as the 8 cut-elimination axioms of Table 1 are241

satisfied, cut elimination holds for superLL(E ,≤g,≤f,≤u).242

This theorem will be proved, in Section 5, as a corollary of µsuperLL∞ cut-elimination243

theorem. Many existing variants of LL are instances of superLL, e.g. let us consider ELL [16,244

12]:245

I Example 4. Elementary Linear Logic (ELL) is a variant of LL where (?d) and (!g)246

are replaced by functorial promotion: ` A,Γ !f` !A, ?Γ
. This system is captured as the instance247

of superLL(E ,≤g,≤f,≤u) system with E = {•}, defined by •(?c2) = •(?m0) = true (and248

(•)(r) = false otherwise), ≤g = ≤u = ∅ and • ≤f •. Details in ap-

pendix B.3

249

This superLL(E ,≤g,≤f,≤u) instance is ELL and satisfies the axioms of cut-elimination.250

As argued in [6], the superLL-systems subsume many other existing variants of LL such as251

SLL [18], LLL [16], seLL [20]. The last two are particularly interesting as they require more252

than one exponential signature to be formalized. In the following section, we will look at253

some examples for the fixed-point version of µsuperLL∞.254

4 Super exponentials with fixed-points255

In this section, we define µsuperLL∞ and give some interesting instances of it.256

4.1 Definition of µsuperLL∞
257

Let E be an exponential name, the pre-formulas of µsuperLL∞(E) are superLL(E) formulas258

extended with fixed-point variables and fixed-points constructs (with a ∈ A, X ∈ V, σ ∈ E):259

CVIT 2016



23:8 Super exponentials with fixed-points

F,G ::= a | a⊥ | X | F `G | F ⊗G | ⊥ | 1 | F ⊕G | F &G | 0 | > | ?σF | !σF | µX.F | νX.F.260

Formulas of µsuperLL∞(E) are the closed pre-formulas. Negation is defined as the smallest261

involution on formulas satisfying the relations of Definition 1 as well as: (?σF )⊥ := !σF⊥.262

Again, for one set of signatures E we define many systems, each parametrized with ≤g,≤f263

and ≤u. The inference rules for this system are the rules of superLL(E ,≤g,≤f,≤u) together264

with the fixed-point fragment of Figure 3. As before, pre-proofs of µsuperLL∞(E ,≤g,≤f,≤u)265

are the trees coinductively generated by the rules of µsuperLL∞(E ,≤g,≤f,≤u) and validity266

is defined in the same way as for µLL∞.267

4.2 Some instances of µsuperLL∞
268

In this subsection, we give some interesting instances of µsuperLL∞.269

4.2.1 A linear modal µ-calculus270

Another application of super exponentials can be found in modelling the linear modal µ-271

calculus introduced in [5] to prove a cut-elimination theorem for the modal µ-calculus. We272

show below how one can view a multi-modal µ-calculus as µLL∞� as an instance of µsuperLL∞.273

Let us consider a set of actions Act. Formulas of µLL∞� are those of µLL∞ with the
addition of a pair modalities, ♦αF and �αF , for each α ∈ Act. Rules of µLL∞� are the rules of
µLL∞ where the promotion is extended with ♦-contexts. Rules on modalities are a functorial
promotion (called the modal rule) and a contraction and a weakening on ♦-formulas:

` F, ?Γ,♦α1G1, . . . ,♦αnGn !♦p` !F, ?Γ,♦α1G1, . . . ,♦αnGn

` F,Γ
�p` �αF,♦αΓ

` ♦αF,♦αF,Γ ♦c` ♦αF,Γ
` Γ ♦w` ♦αF,Γ

(with α, α1, . . . αn ∈ Act) The system considered in [5] corresponds to the case where Act is a274

singleton, that is a calculus with two exponential names, one of these names representing the275

µ-calculus modality rather than a linear exponential.276

µLL∞� can be modelled as the super-exponential system µsuperLL∞(E ,≤g,≤f,≤u) with:277

E := {•} ∪ Act.278

?c2(•) = ?m0(•) = ?m1(•) = true, for any α ∈ Act, ?c2(α) = ?m0(α) = true, and all the279

other elements have value false for both signatures.280

• ≤g • ; • ≤g α; α ≤f α for any α ∈ Act and all other couples for the three relations281

≤g,≤f and ≤u are false.Details in Ap-

pendix C.1

282

This system is µLL∞� when taking: ?• := ?, !• := !, ?α := ♦α and !α := �α.283

Moreover, the system satisfies cut-elimination axioms of Table 1.284

4.2.2 ELL with fixed points285

In [3], an affine version of second-order ELL with recursive types, called EALµ, is introduced.286

this system allows only finite proofs. Affine means weakening applies to any formulas. Fixed287

points are added to a two-sided version with( and (−)⊥ formulas, without any positivity288

condition on the fixed point variables, unlike what is enforced in our one-sided sequent289

version. The paper proves EALµ cut-elimination and refines complexity bounds from ELL.290

Considering µELL∞, an instance of Example 4 with fixed points, gives us a typing system291

which is close to EALµ. Namely, consider µsuperLL∞(E ,≤g,≤f,≤u) with the same E ,≤g,≤f,292

and ≤u as in Example 4. Since the axioms in Table 1 only concern E ,≤g,≤f, and ≤u, they293

are also satisfied by this instance of µsuperLL∞.294
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Our systems differs in two ways from that of Baillot: (i) the extremal fixed-points instead295

of generic fixed-points and the condition of positivity on fixed-point variables, and (ii) the296

infinite nature of our proofs. Thus, our cut-elimination theorem may not apply due to (i), and297

even if it did, it might not ensure finite proofs because of (ii). However, Baillot [3] uses only298

fixed-point variables in positive positions when proving complexity bounds, which addresses299

(i). Additionally, using only µ-fixed-points to encode fixed points which ensures that cut-free300

proofs remain finite, resolving the incompatibility induced by (ii) by preventing infinite301

branches. (Moreover, the impact of weakening can be tamed by designing a translation302

making the system affine as well.)303

I Remark 2. Note that there is no proof of the conclusion sequent of Example 1 in µELL∞.304

5 Cut-elimination305

In this section, we only consider instances of µsuperLL∞ satisfying the axioms of Table 1.306

Let us assume given such an instance, µsuperLL∞(E ,≤g,≤f,≤u), that we simply refer to as307

µsuperLL∞E in the following keeping the relations ≤g,≤f and ≤u implicit.308

5.1 (mcut)-elimination steps309

Here, we define the (mcut)-elimination steps of µsuperLL∞E . To do so, it is suitable to have a310

specific notation for the premisses containing only proofs concluded by a promotion. We use311

similar notations to those of µLL∞ cut-elimination proof [22]:312

I Notation 3 ((!)-contexts). C! denotes a list of µsuperLL∞E -proofs which are all concluded by313

some promotion rule (!g, !f or !u). Given s ∈ {g, f, u}, C!s denotes a list of µsuperLL∞E -proofs314

which are all concluded by an (!s)-rule. In both cases, C denotes the list of µsuperLL∞E -proofs315

formed by gathering the immediate subproofs of the last promotion (being either C!, or C!s).316

We now give a series of lemmas that will be used to justify the (mcut)-reduction steps317

defined in Definition 13. We only give a proof sketch of Lemma 3, and give complete proofs of318

each lemma in Appendix D.1. We start by the commutation cases of the different promotions.319

The case (comm!g) covers all the case where (!g) commutes under the cut:320

I Lemma 1 (Step (comm!g)). If

π

` A, ?~τ∆ !g` !σA, ?~τ∆ C!
mcut(ι,⊥⊥)

` !σA, ?~ρΓ

is a µsuperLL∞E -proof then Details in Ap-

pendix D.1.1

321

π

` A, ?~τ∆ C!
mcut(ι,⊥⊥)

` A, ?~ρΓ
!g` !σA, ?~ρΓ

is also a µsuperLL∞E -proof.322

The case (comm1
!f) covers the case of commutation of an (!f)-promotion but where only323

(!g)-rules with empty contexts appear in the hypotheses of the multi-cut. Note that an (!g)324

occurrence with empty context could be seen as an (!f) occurrence (with empty context).325

I Lemma 2 (Step (comm1
!f)). If each sequent in C! concluded by an (!g) has an empty context326

and

π

` A,∆ !f` !σA, ?~τ∆ C!
mcut(ι,⊥⊥)

` !σA, ?~ρΓ

is a µsuperLL∞E -proof, then

π

` A,∆ C
mcut(ι,⊥⊥)

` A,Γ !f` !σA, ?~ρΓ

is Details in Ap-

pendix D.1.2

327

a µsuperLL∞E -proof.328
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We then have the following case where we commute an (!f)-rule, but where there is at329

least one (!g)-promotion with a non-empty context in the premisses of the multicut rule:330

I Lemma 3 (Step (comm2
!f)). If some (!g)-rule in C!g has at least one formula in the context331

and

π

` A,∆ !f` !σA, ?~τ∆ C!g

mcut(ι,⊥⊥)
` !σA, ?~ρΓ

is a µsuperLL∞E -proof, then

π

` A,∆
?m1` A, ?~τ∆ C!g

mcut(ι,⊥⊥)
` A, ?~ρΓ

!g` !σA, ?~ρΓ

332

is also a µsuperLL∞E -proof.333

Details in Ap-

pendix D.1.3. Proof sketch. First notice that, by hypothesis, σ ≤f ~τ . The proof is done in two steps:334

1. From ` !σA, ?~τ∆ we follow mcut-connected sequents until reaching one ` !σ′A′, ?~τ ′∆
′

335

conclusion of an (!g)-rule with ?~τ ′∆
′ non empty, for each signature σ′ in these sequents,336

we prove that σ ≤f σ
′ using axiom (Axtrans) or (Axfu

≤). Then we use axiom (Axfg
≤) to prove337

get that ~τ(?m1) holds and σ ≤g ~τ . Since ~τ(?m1) holds, application of (?m1) is allowed.338

2. We run through all the sequents and using axiom (Axgs
≤), we prove that σ ≤g σ

′′ for each339

signature σ′′ we encounter.340

We therefore have σ ≤g ~ρ as signatures from ~ρ are contained on hypotheses of the mcut: the341

application of (!g) is therefore legal. J342

We then cover the cases where we commute an (!u)-rule with the multi-cut. The first343

case is where there are only a list of (!u)-rules in the hypotheses of the multi-cut:344

I Lemma 4 (Step (comm1
!u)). If

π

` A,C
!u` !σA, ?τC C!u

mcut(ι,⊥⊥)
` !σA, ?ρB

is a µsuperLL∞E -proof, thenDetails in Ap-

pendix D.1.4

345

π

` A,C C
mcut(ι,⊥⊥)

` A,B
!u` !σA, ?ρB

is a µsuperLL∞E -proof.346

The second case of (!u)-commutation is where we have an (!f)-rule and where the hypotheses347

concluded by an (!g)-rule have empty contexts.348

I Lemma 5 (Step (comm2
!u)). If C! contains at least one (!f), if each (!g) has empty context349

and if

π

` A,B
!u` !σA, ?τB C!

mcut(ι,⊥⊥)
` !σA, ?~ρΓ

is a µsuperLL∞E -proof, then

π

` A,B C
mcut(ι,⊥⊥)

` A,Γ !f` !σA, ?~ρΓ
Details in Ap-

pendix D.1.5

350

is also a µsuperLL∞E -proof.351

The following lemma deals with the case where there are sequents concluded by an352

(!g)-rule with non-empty context and where the first rule encountered is an !f-rule.353

Details in Ap-

pendix D.1.6
I Lemma 6 (Step (comm3

!u)). Let C!
2 contain a (!g) with non-empty context, C := {`354

!σA, ?τB} ∪ C!u
1 ∪ {` !σ′C, ?~τ ′∆} is cut-connected and C′ := {` !σ′C, ?~τ ′∆} ∪ C

!
2 as well. If355

π1

` A,B
!u` !σA, ?τB C!u

1 C!
2

π2

` C,∆
!f` !σ′C, ? ~τ′∆ mcut(ι,⊥⊥)

` !σA, ?~ρΓ

is a µsuperLL∞E -proof then
π1

` A,B C1 C!
2

π2

` C,∆
?m1` C, ? ~τ′∆ mcut(ι,⊥⊥)

` A, ?~ρΓ
!g` !σA, ?~ρΓ

356

is also a µsuperLL∞E -proof.357

The last lemma of promotion commutation is about the case where we commute an358

(!u)-promotion but when first meeting an (!g)-promotion.359
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I Lemma 7 (Step (comm4
!u)). Let C := {` !σA, ?τB} ∪ C!u

1 ∪ {` !σ′C, ?~τ ′∆} be cut-connected360

and C′ := {` !σ′C, ?~τ ′∆} ∪ C
!
2 as well. If

π1

` A,B
!u` !σA, ?τB C!u

1 C!
2

π2

` C, ? ~τ′∆ !g` !σ′C, ? ~τ′∆ mcut(ι,⊥⊥)
` !σA, ?~ρΓ

is a Details in Ap-

pendix D.1.7

361

µsuperLL∞E -proof then

π1

` A,B C1 C!
2

π2

` C, ? ~τ′∆ mcut(ι,⊥⊥)
` A, ?~ρΓ

!g` !σA, ?~ρΓ

is also a µsuperLL∞E -proof.362

The principal cases start with the contraction:363

I Lemma 8 (Step (principal?c )). If
C∆

π

`

i︷ ︸︸ ︷
?σA, . . . , ?σA,∆ ?ci` ?σA,∆ C!

?σA mcut(ι,⊥⊥)
` Γ, ?~ρΓ′

is a Details in Ap-

pendix D.1.8

364

µsuperLL∞E -proof, then C∆

π

`

i︷ ︸︸ ︷
?σA, . . . , ?σA,∆

i︷ ︸︸ ︷
C!

?σA . . . C
!
?σA mcut(ι′,⊥⊥′)

Γ, ?~ρΓ′, . . . , ?~ρΓ′
?~̄ρci` Γ, ?~ρΓ′

is so.365

Before giving the principal case for the multiplexing, we need to define OmpxS!(C!) contexts.366

The intuition is that when a multiplexing rule reduces (i) with a Girard’s promotion, they367

simply cancel each other while when it interacts (ii) with a (!f) or (!u), not only those two368

rules cancel, but also the other promotions hereditarily ⊥⊥-connected to the first (!f) or (!u)369

rule, until some Girard’s promotion is reached, in which case this propagation stops:370

A graphical

representa-

tion of this

definition is

given in Ap-

pendix D.1.9,

Definition 16.

I Definition 12 (OmpxS!(C!) contexts). Let π be some µsuperLL∞E -proof concluded in a371

mcut(ι,⊥⊥) inference, C! a context of the multicut which is a tree with respect to a cut-relation372

⊥⊥ and S! be a sequent of C! that we shall consider as the root of the tree.373

We define a µsuperLL∞E -context OmpxS!(C!) altogether with two sets of sequents, S?m
C!,S!374

and S?c
C!,S! , by induction on the tree ordering on C!:375

Let C!
1, . . . , C!

n be the sons of S!, such that C! = (S!, (C!
1, . . . , C!

n)), we have two cases:376

S! = S!g , then we define OmpxS!(C!) := (S, (C!
1, . . . , C!

n)) ; S?m
C!,S! := ∅ ; S?c

C!,S! := C!.377

S! = S!f or S! = S!u , then let the root of C!
i be S!

i, we define OmpxS!(C!) as378

(S,OmpxS!
1
(C!

1), . . . ,OmpxS!
n
(C!
n)) ; S?m

C!,S! := {S!} ∪
⋃
S?m
C!
i
,S!
i

; S?c
C!,S! :=

⋃
S?c
C!
i
,S!
i

.379

We can now state the multiplexing principal case:380

I Lemma 9 (Step (principal?m )). If
C∆

`

i︷ ︸︸ ︷
A, . . . , A,∆ ?mi` ?σA,∆ C!

?σA mcut(ι,⊥⊥)
` Γ, ?ρ′Γ′, ?ρ′′Γ′′

is a µsuperLL∞E -Details in Ap-

pendix D.1.9

381

proof with Γ sent on C∆ ∪∆ by ι ; ? ~ρ′′Γ
′′ sent on sequents of S?m

C!,S! ; and ?~ρ′Γ
′ sent on S?c

C!,S! ,382

where S! := !σA, ?~τ ′∆
′ is the sequent cut-connected to ` ?σA,∆ on the formula ?σA, then383

C∆ `

i︷ ︸︸ ︷
A, . . . , A,∆

i︷ ︸︸ ︷
OmpxS!(C!

?σA) . . .OmpxS!(C!
?σA)

mcut(ι′,⊥⊥′)
` Γ,Γ′, . . . ,Γ′, ? ~ρ′′Γ

′′, . . . , ? ~ρ′′Γ
′′

?
~̄ρ′

mi` Γ, ?~ρ′Γ
′, ? ~ρ′′Γ

′′, . . . , ? ~ρ′′Γ
′′

?
~̄ρ′′

ci` Γ, ?~ρ′Γ
′, ? ~ρ′′Γ

′′

is also a µsuperLL∞E -proof.384
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Reduction Name Lemma
π

` A, ?~τ∆ !g` !σA, ?~τ∆ C!
mcut(ι,⊥⊥)

` !σA, ?~ρΓ

 

π

` A, ?~τ∆ C!
mcut(ι,⊥⊥)

` A, ?~ρΓ
!g` !σA, ?~ρΓ

(comm!g) 1

π

` A,∆
!f` !σA, ?~τ∆ C!

mcut(ι,⊥⊥)
` !σA, ?~ρΓ

 

π

` A,∆ C
mcut(ι,⊥⊥)

` A,Γ
!f` !σA, ?~ρΓ

(comm1
!f) 2

π

` A,∆
!f` !σA, ?~τ∆ C!

mcut(ι,⊥⊥)
` !σA, ?~ρΓ

 

π

` A,∆
?m1` A, ?~τ∆ C!

mcut(ι,⊥⊥)
` A, ?~ρΓ

!g` !σA, ?~ρΓ

(comm2
!f) 3

π

` A,C
!u` !σA, ?τC C!u

mcut(ι,⊥⊥)
` !σA, ?ρB

 

π

` A,C C
mcut(ι,⊥⊥)

` A,B
!u` !σA, ?ρB

(comm1
!u) 4

π

` A,B
!u` !σA, ?τB C!

mcut(ι,⊥⊥)
` !σA, ?~ρΓ

 

π

` A,B C
mcut(ι,⊥⊥)

` A,Γ
!f` !σA, ?~ρΓ

(comm2
!u) 5

π1

` A,B
!u` !σA, ?τB C!u

1 C!
2

π2

` C,∆
!f` !σ′C, ?~τ ′∆ mcut(ι,⊥⊥)

` !σA, ?~ρΓ

 
π1

` A,B C1 C!
2

π2

` C,∆
?m1` C, ?~τ ′∆ mcut(ι,⊥⊥)

` A, ?~ρΓ
!g` !σA, ?~ρΓ

(comm3
!u) 6

π1

` A,B
!u` !σA, ?τB C!u

1 C!
2

π2

` C, ?~τ ′∆ !g` !σ′C, ?~τ ′∆ mcut(ι,⊥⊥)
` !σA, ?~ρΓ

 

π1

` A,B C1 C!
2

π2

` C, ?~τ ′∆ mcut(ι,⊥⊥)
` A, ?~ρΓ

!g` !σA, ?~ρΓ

(comm4
!u) 7

Figure 5 Commutative cut-reduction steps of the µsuperLL∞ promotion rules

I Definition 13. Figures 5–7 (with the applicability conditions stated in the corresponding385

lemmas) induce the (mcut)-reduction relation over µsuperLL∞E proofs.386

I Remark 3. No justification lemma is stated for (comm?m ) nor (comm?c ) as applicability387

of (?m) and (?c) only depends on the connective and not on the context.388

Even though some reduction rules presented in Figure 5 may seem to overlap, note that389

the applicability conditions of the Lemmas ensure that it is not the case.390

5.2 Translating µsuperLL∞ into µLL∞
391

We now give a translation of µsuperLL∞(E ,≤g,≤f,≤u) into µLL∞ using directly the results392

of [22] to deduce µsuperLL∞(E ,≤g,≤f,≤u) cut-elimination in a more modular way:393

I Definition 14 ((−)◦-translation). We define (−)◦ by induction on formulas (c is any394

non-exponential connective): c(F1, . . . , Fn)◦ := c(F ◦1 , . . . , F ◦n); X◦ := X; ∀σ, (?σA)◦ :=395

?A◦; a◦ := a; (!σA)◦ := !A◦.We define translations for exponential rules of µsuperLL∞(E ,≤g396

,≤f,≤u) in Figure 8. Other rules have their translations equal to themselves. Proof translation397

π◦ of π is the proof coinductively defined on π from rule translations.398
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π

`

i︷ ︸︸ ︷
A, . . . , A,∆ ?mi` ?σA,∆ C

mcut(ι,⊥⊥)
` ?σA,Γ

 

π

`

i︷ ︸︸ ︷
A, . . . , A,∆ C

mcut(ι′,⊥⊥′)` A, . . . , A,Γ ?mi` ?σA,Γ

(comm?m )

π

`

i︷ ︸︸ ︷
?σA, . . . ?σA,∆ ?ci` ?σA,∆ C

mcut(ι,⊥⊥)
` ?σA,Γ

 

π

`

i︷ ︸︸ ︷
?σA, . . . , ?σA,∆ C

mcut(ι′,⊥⊥′)` ?σA, . . . ?σA,Γ ?ci` ?σA,Γ

(comm?c )

Figure 6 Commutative cut-reduction steps for µsuperLL∞ contraction and multiplexing rules

C∆

π

`

i︷ ︸︸ ︷
?σA, . . . , ?σA,∆ ?ci` ?σA,∆ C!?σA mcut(ι,⊥⊥)

` Γ, ?~ρΓ′

 
C∆

π

`

i︷ ︸︸ ︷
?σA, . . . , ?σA,∆

i︷ ︸︸ ︷
C!?σA

. . . C!?σA
mcut(ι′,⊥⊥′)

Γ, ?~ρΓ′, . . . , ?~ρΓ′

?~̄ρci` Γ, ?~ρΓ′

(principal?c )
Lemma 8

C∆

`

i︷ ︸︸ ︷
A, . . . , A,∆

?mi` ?σA,∆ C!?σA mcut(ι,⊥⊥)
` Γ, ?

ρ′Γ
′, ?

ρ′′Γ
′′

 

C∆ `

i︷ ︸︸ ︷
A, . . . , A,∆

i︷ ︸︸ ︷
OmpxS(C!?σA

) . . .OmpxS(C!?σA
)

mcut(ι′,⊥⊥′)

` Γ,

i︷ ︸︸ ︷
Γ′, . . . ,Γ′,

i︷ ︸︸ ︷
? ~ρ′′

Γ′′, . . . , ? ~ρ′′
Γ′′

?
~̄
ρ′
mi

` Γ, ?~ρ′
Γ′,

i︷ ︸︸ ︷
? ~ρ′′

Γ′′, . . . , ? ~ρ′′
Γ′′

?
~̄
ρ′′
ci` Γ, ?~ρ′

Γ′, ? ~ρ′′
Γ′′

(principal?m )
Lemma 9

with S being the sequent cut-connected to ?σA,∆ on the formula ?σA.

Figure 7 Principal cut-reduction steps of the exponential fragment of µsuperLL∞

Since fixed-points are not affected by the translation, we have the following lemma:399

I Lemma 10 ((−)◦ preserves validity). π is a valid proof if and only if π◦ is a valid proof.400

The goal of this section is to prove that each fair reductions sequence converges to a401

cut-free proof. We have to make sure (mcut)-reduction sequences are robust under this402

translation. In our proof of the final theorem, we also need one-step reduction-rules to be403

simulated by a finite number of reduction steps in the translation, which is the objective of the404

following lemma. We only give a proof sketch here, full proof can be found in appendix D.3.405

I Lemma 11. Let π0 be a µsuperLL∞(E ,≤g,≤f,≤u) proof and let π0  π1 be a µsuperLL∞(E ,≤g406

,≤f,≤u) step of reduction. There exist a finite number of µLL∞ proofs θ0, . . . , θn such that407

θ0 → . . .→ θn, π◦0 = θ0 and θn = π◦1 up to a finite number of rule permutations, done only408

on rules that just permuted down the (mcut).409

Details in Ap-

pendix D.3.Proof sketch. Non exponential cases and commutations of multiplexing or contraction are410

immediate. Promotion commutations translate to commutation rules and promotion key-411

cases. We must ensure that there exists a sequence of reductions commuting the translation412

of each promotion. Key-cases are trickier as they do not send the rules in the correct order:413

we need rule permutations to recover the translation of the target proof of the step. J414

Now that we know that a step of (mcut)-reduction in µsuperLL∞(E ,≤g,≤f,≤u) translates415

to some steps of (mcut)-reduction µLL∞, the following lemma allows us to control the fairness:416
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`
i︷ ︸︸ ︷

A, . . . , A,Γ
i 6= 0
σ(?mi) ?mi` ?σA,Γ

 
`

i︷ ︸︸ ︷
A◦, . . . , A◦,Γ◦

?d × i
` ?A◦, . . . , ?A◦,Γ◦ ?c × (i− 1)
` ?A◦,Γ◦

` Γ σ(?m0)
?m0` ?σA,Γ

 ` Γ◦ ?w` ?A◦,Γ◦

`

i︷ ︸︸ ︷
?σA, . . . , ?σA,Γ σ(?ci ) ?ci` ?σA,Γ

 `

i︷ ︸︸ ︷
?A◦, . . . , ?A◦,Γ◦

?c × i
` ?A◦,Γ◦

` A, ?σ1A1, . . . , ?σnAn

i ∈ J1, nK

σ ≤g σi
!g` !σA, ?σ1A1, . . . , ?σnAn

 
` A◦, ?A◦1 , . . . , ?A

◦
n !p

` !A◦, ?A◦1 , . . . , ?A
◦
n

` A,A1, . . . , An

i ∈ J1, nK
σ ≤f σi !f` !σA, ?σ1A1, . . . , ?σnAn

 
` A◦, A◦1, . . . , A◦n ?d
` A◦, ?A◦1, . . . , ?A◦n !p` !A◦, ?A◦1, . . . , ?A◦n

` A,B σ1 ≤u σ2 !u` !σ1A, ?σ2B
 

` A◦, B◦
?d` A◦, ?B◦, !p` !A◦, ?B◦

Figure 8 Exponential rule translations from µsuperLL∞(E ,≤g,≤f,≤u) into µLL∞

417

I Lemma 12 (Completeness of the (mcut)-reduction system). If there is a µLL∞-redex R418

sending π◦ to π′◦ then there exists a µsuperLL∞(E ,≤g,≤f,≤u)-redex R′ sending π to a proof419

π′′, such that in the translation of R′, R is applied.See proof

in appendix,

lemma 29

420

We define rule permutation with precision in appendix D.2. Here we show that validity421

is preserved if each rule is permuted a finite number of time:422

See proof in

Appendix,

Proposition 4

I Proposition 2. If π is a µLL∞ pre-proof sent to a pre-proof π′, via a permutation for423

which the permutation of one particular rule is finite, then π is valid if and only if π′ is.424

I Corollary 1. For every fair µsuperLL∞(E ,≤g,≤f,≤u) reduction sequences (πi)i∈ω:425

there exists a fair µLL∞ reduction sequence (θi)i∈ω;426

there exists a sequence of strictly increasing (ϕ(i))i∈ω natural numbers;427

for each i, a finite sequence of rule permutations starting from π◦i and ending θϕ(i);428

for all i, the permutations sending π◦i to θϕ(i) permutes rules under the (mcut) of π◦i ;429

for all i ≥ i′ the rule permutations sending π◦i to θϕ(i) starting as the permutation sending430

π◦i′ to θϕ(i′). Moreover, new permutations only permutes rules that never permuted before.431See details

on corollary

statement

and proof in

Corollary 5

Proof sketch. We construct the sequence by induction on the steps of reductions of (πi)i∈ω,432

starting with θ0 = π◦0 , ϕ(0) = 0 and k0 = 0 and then applying Lemma 11 for each following433

steps. We get fairness of (θi)i∈ω from Lemma 12. J434

Finally, we have our main result, proving cut-elimination of µsuperLL∞(E ,≤g,≤f,≤u):435

I Theorem 3. If the axioms of Table 1 are satisfied, then every fair (mcut)-reduction sequence436

of µsuperLL∞(E ,≤g,≤f,≤u) converges to a µsuperLL∞(E ,≤g,≤f,≤u) cut-free proof.437

Proof sketch, see full proof in appendix, Theorem 5. Consider (πi)i∈1+λ, λ ∈ ω+1, a fair438

µsuperLL∞(E ,≤g,≤f,≤u) cut-reduction sequence. If the sequence is finite, we use Lemma 11439

and we are done. If the sequence is infinite, using Corollary 1 we get a fair infinite µLL∞440

reduction sequence (θi)i∈ω. By Theorem 1, we know that (θi)i∈ω converges to a cut-free441

proof θ of µLL∞. We prove that (πi)i∈ω converges to a µsuperLL∞(E ,≤g,≤f,≤u) pre-proof442

using the fact that (θi)i is the translation of (πi)i and that it is productive.443

Validity of the limit π of (πi)i follows from the translation of π being equal to θ up to444

rule-permutation (each particular rule permutes finitely). From Lemma 10 and Proposition 2,445

these two operations preserve validity, therefore π is valid which concludes the proof. J446
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An important remark is that the above proof does not rely on Theorem 2 in any way. As447

a consequence, cut-elimination for superLL is in fact a direct corollary of Theorem 3:See proof in

appendix, Co-

rollary 6

448

I Corollary 2 (Cut Elimination for superLL, that is, Theorem 2). Cut elimination holds for449

superLL(E ,≤g,≤f,≤u) as soon as the 8 cut-elimination axioms of definition 1 are satisfied.450

I Remark 4. This result not only gives another way of proving cut-elimination for superLL-451

systems but the sequences of reduction we build in it are generally different from the ones452

that are built in [6]. Indeed, we are eliminating cuts from the bottom of the proof using the453

multicut rule whereas in [6] the deepest cuts in the proof are eliminated first.454

Since µLL∞� and µELL∞ are instances of µsuperLL∞ satisfying the cut-elimination axioms,455

we have the following results as immediate corollaries of Theorem 3:456

I Corollary 3 (Cut Elimination for µLL∞� ). Cut elimination holds for µLL∞� .457

I Corollary 4 (Cut Elimination for µELL∞). Cut elimination holds for µELL∞.458

6 Conclusion459

We introduced a family of logical systems, µsuperLL∞, and proved a syntactic cut-elimination460

theorem for them. Our systems features various exponential modalities with least and461

greatest fixed-points in the setting of circular and non-wellfounded proofs. Our aim in doing462

so is to develop a methodology to make cut-elimination proofs more uniform and reusable.463

A key feature of our development is to combine proof-theoretical methods for establishing464

cut-elimination properties using translation and simulation results with axiomatization of465

sufficient conditions for cut-elimination.466

While our initial motivation was to make more systematic a key step in our recent proof of467

cut-elimination for the modal µ-calculus [5], this allowed us to generalize our previous result468

(capturing directly the multi-modal µ-calculus with no need for a proof, see Corollary 3) but469

also to capture various extensions of light logics with induction and coinuctions, notably470

a calculus close to Baillot EALµ. Our system therefore encompasses various fixed-point471

extensions of existing linear logic systems, including well-known light logics extended with472

least and greatest fixed-points and a non-well-founded proof system. We provide a relatively473

simple and uniform proof of cut-elimination for these extensions. Quite interestingly, the474

addition of fixed-points provide a new cut-elimination proof for the fixed-point free setting475

(Corollary 2).476

The µsuperLL∞ system, as defined in this paper, does not include the digging rule. We477

plan to work on this question in future work, at least for restrictions of the digging. Indeed478

digging is a very challenging rule wrt to its possible modelling using fixed-points as it would479

contradict the finiteness of the Fisher-Ladner closure, a basic property of fixed-point systems.480

On the other hand, incorporating digging would enable us to cover all of the super exponential481

version from [6] while our current system in incomparable with that of [6]. It could also be482

relevant for modal calculus, as the digging rule for modal formulas is equivalent to Axiom 4483

of modal logic. Other modal logic axioms, such as Axiom T and co-dereliction rules from484

differential linear logic, can be viewed as rules in linear logic.485

Another natural future work would be to explore linear translations of affine linear logic486

and/or intuitionistic/classical translations of these systems, facilitating the study of proof487

theory closer to [3].488

Finally, while we started with non-wellfounded proofs, studying how these results can be489

adapted to finitary version of µsuperLL∞ is another interesting open question.490

CVIT 2016
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A Details on Section 2570

A.1 Details on the multicut rule (Section 2.2)571

We recall the conditions on the multi-cut rule [2, 14, 22]. The multi-cut rule is a rule with
an arbitrary number of hypotheses:

` ∆1 . . . ` ∆n mcut(ι,⊥⊥)
` ∆

Let C := {(i, j) | i ∈ J1, nK, j ∈ J1,#∆iK}, ι is a map from J1,#∆K to C and ⊥⊥ is binary a572

relation on C:573

The map ι is injective;574

The relation ⊥⊥ is defined for C \ ι, and is total for this set;575

The relation ⊥⊥ is symmetric;576

Each index can be related at most once to another one;577

If (i, j) ⊥⊥ (i′, j′), then the ∆i[j] = (∆i′ [j′])⊥;578

The relation on premisses sequents defined as: {(i, i′) | ∃j, j′, (i, j) ⊥⊥ (i′, j′)} is acyclic579

and connected.580

A.2 Details on the restriction of a multicut context (Definition 5)581

I Definition 15 (Restriction of a multicut context). Let C mcut(ι,⊥⊥)s be a multicut occur-582

rence such that C = s1 . . . sn and let si := F1, . . . , Fki ` G1, . . . , Gri , we define CFj (resp.583

CGj ) with Fj ∈ si (resp. Gj ∈ si) to be the least sub-context of C such that:584

The sequent si is in CFj (resp. CGj );585

If there exists l such that (1, i, j) ⊥⊥ (2, k, l) or (2, i, j) ⊥⊥ (1, k, l) then sk ∈ CFj (resp.586

sk ∈ CGj );587

For any k 6= i, if there exists l such that (1, k, l) ⊥⊥ (2, k′, l′) or (2, k, l) ⊥⊥ (1, k′, l′) and588

that sk ∈ CFj (resp. sk ∈ CGj ) then sk′ ∈ CFj (sk′ ∈ CGj ).589

We then extend the notation to contexts, setting C∅ := ∅ and CF,Γ := CF ∪ CΓ.590

A.3 One-step multicut-elimination for µMALL∞
591

Commutative one-step reductions for µMALL∞ are given in Figure 9 whereas principal592

reductions in Figure 10.593

A.4 One-step multicut-elimination for µLL∞
594

Commutative one-step reductions for µLL∞ are steps from µMALL∞ together with the595

reduction of the exponential fragment given in Figure 11.596

B Details on Section 3597

B.1 Proof of Axiom Expansion property598

I Lemma 13 (Axiom Expansion). One-step axiom expansion holds for formulas ?σA and
!σA in superLL(E ,≤g,≤f,≤u) if σ satisfies the following expansion axiom:

σ ≤u σ ∨ σ ≤f σ ∨ (σ ≤g σ ∧ σ(?m1)).

The axiom expansion holds in superLL(E ,≤g,≤f,≤u) if all σ satisfy the expansion axiom.599
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ax
` F, F⊥ mcut(ι,⊥⊥)
` F, F⊥

 ax
` F, F⊥

CΓ′ C∆′
` F,Γ′ ` G,∆′ ⊗
` F ⊗G,Γ′,∆′ mcut(ι,⊥⊥)

` Γ,∆
 

CΓ′ ` F,Γ′ mcut(ι′,⊥⊥′)` F,Γ
C∆′ ` G,∆′ mcut(ι′′,⊥⊥′′)

` G,∆ ⊗
` F ⊗G,Γ,∆

C
` F,G,Γ′ `` F `G,Γ′ mcut(ι,⊥⊥)` F `G,Γ

 
C ` F,G,Γ′ mcut(ι′,⊥⊥′)` F,G,Γ `` F `G,Γ

C
` Fi,Γ′ ⊕i` F1 ⊕ F2,Γ′ mcut(ι,⊥⊥)` F1 ⊕ F2,Γ

 
C ` Fi,Γ′ mcut(ι,⊥⊥)` Fi,Γ ⊕i` F1 ⊕ F2,Γ

C
` F,Γ′ ` G,Γ′

&` F &G,Γ′ mcut(ι,⊥⊥)` F &G,Γ
 

C ` F,Γ′ mcut(ι,⊥⊥)` F,Γ
C ` G,Γ′ mcut(ι,⊥⊥)` G,Γ

&` F &G,Γ

C
` F [δX.F/X],Γ′

δ` δX.F,Γ′ mcut(ι,⊥⊥)` δX.F,Γ
 
C ` F [δX.F/X],Γ′

mcut(ι,⊥⊥)
` F [δX.F/X],Γ′

δ` δX.F,Γ
with δ ∈ {µ, ν}

C
>

` >,Γ′ mcut(ι,⊥⊥)
` >,Γ

 >` >,Γ
1` 1 mcut(ι,⊥⊥)

` 1
 1` 1

C
` Γ′ ⊥
` ⊥,Γ′ mcut(ι,⊥⊥)

` ⊥,Γ
 
C ` Γ′ mcut(ι′,⊥⊥′)` Γ ⊥` ⊥,Γ

Figure 9 Commutative one-step reduction rules for µMALL∞
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C
ax

` F, F⊥ mcut(ι,⊥⊥)Γ
 C mcut(ι′,⊥⊥′)Γ

C
` F,Γ′ ` F⊥,∆

cut` Γ′,∆ mcut(ι,⊥⊥)` Γ
 C ` F,Γ′ ` F⊥,∆ mcut(ι′,⊥⊥′)` Γ

C
` F,G,∆ `` F `G,∆

` F⊥,Γ1 ` G⊥,Γ2 ⊗
` F⊥ ⊗G⊥,Γ1,Γ2 mcut(ι,⊥⊥)` Γ

 

C ` F,G,∆ ` F⊥,Γ1 ` G⊥,Γ2 mcut(ι′,⊥⊥′)` Γ

C
` Fi,∆ ⊕i` F1 ⊕ F2,∆

` F⊥1 ,Γ′ ` F⊥2 ,Γ′ &
` F1 & F⊥2 ,Γ′ mcut(ι,⊥⊥)` Γ

 

C ` Fi,∆ ` F⊥i ,Γ′ mcut(ι′,⊥⊥′)` Γ

C
` F [X := µX.F ],∆

µ
` µX.F,∆

` F [X := νX.F ],∆′
ν

` νX.F,∆′ mcut(ι,⊥⊥)` Γ
 

C ` F [X := µX.F ],∆ ` F [X := νX.F ],∆′
mcut(ι,⊥⊥)` Γ

C 1` 1
` Γ′ ⊥` ⊥,Γ′ mcut(ι,⊥⊥)` Γ

 C ` Γ′ mcut(ι′,⊥⊥′)` Γ

Figure 10 Principal one-step reduction rules for µMALL∞
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π
` A, ?∆ !p` !A, ?∆ C!

mcut(ι,⊥⊥)` !A, ?Γ

 

π
` A, ?∆ C!

mcut(ι,⊥⊥)` A, ?Γ !p` !A, ?Γ
π

` ∆ ?w` ?A,∆ C
mcut(ι,⊥⊥)

` ?A,Γ

 

π

` ∆ C mcut(ι′,⊥⊥′)` Γ ?w` ?A,Γ

π

` A,∆
?d` ?A,∆ C

mcut(ι,⊥⊥)
` ?A,Γ

 

π

` A,∆ C
mcut(ι′,⊥⊥′)` A,Γ

?d` ?A,Γ

π

` ?A, ?A,∆
?c` ?A,∆ C

mcut(ι,⊥⊥)
` ?A,Γ

 

π

` ?A, ?A,∆ C
mcut(ι′,⊥⊥′)` ?A, ?A,Γ

?c` ?A,Γ

C∆
` ∆ ?w` ?A,∆ C!

?A mcut(ι,⊥⊥)
` Γ, ?Γ′

 
C∆ ` ∆ mcut(ι′,⊥⊥′)` Γ ?w` Γ, ?Γ′

` A,∆ ?d` ?A,∆
` A⊥, ?∆′ !p
` !A⊥, ?∆′ C mcut(ι,⊥⊥)` Γ

 ` A,∆ ` A⊥, ?∆′ C mcut(ι′,⊥⊥′)` Γ

C∆
` ?A, ?A,∆ ?c` ?A,∆ C!

?A mcut(ι,⊥⊥)
` Γ, ?Γ′

 

C∆ ` ?A, ?A,∆ C!
?A C!

?A mcut(ι′,⊥⊥′)
` ?Γ′, ?Γ′,Γ

?c` Γ, ?Γ′

Figure 11 Multicut-elimination steps of the exponential fragment of µsuperLL∞
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Proof. We start by proving the first part of the theorem. We distinguish three cases600

depending on which branch of the disjunction holds for σ:601

If σ ≤u σ is true, then we have:

` A⊥, A σ ≤u σ !u` !σA⊥, ?σA
If σ ≤f σ is true, it is similar to the previous case:

` A⊥, A σ ≤f σ !f` !σA⊥, ?σA

And if σ ≤g σ and (σ)(?m1):

` A⊥, A (σ)(?m1)
?m1` A⊥, ?σA σ ≤g σ !g

` !σA⊥, ?σA
The second part of the theorem is proved by induction on the size of the formula, using the602

first part of the theorem. J603

B.2 Proof of cut-elimination of superLL (Theorem 2)604

We first need three lemmas called the substitution lemmas:605

I Lemma 14 (Girard Substitution Lemma). Let σ1 be a signature and ~σ2 a list of signatures606

such that σ1 ≤g ~σ2. Let A be a formula, and let ∆ be a context, such that for all Γ, if607

` A,Γ is provable without using any cut then ` ? ~σ2∆,Γ is provable without using any cut.608

Then we have that for all Γ, if `
n︷ ︸︸ ︷

?σ1A, . . . , ?σ1A,Γ is provable without using any cut then609

`
n︷ ︸︸ ︷

? ~σ2∆, . . . , ? ~σ2∆,Γ.610

Proof. First we can notice that for any Γ the following rule:
` A, . . . , A,Γ

Sg` ? ~σ2∆, . . . , ? ~σ2∆,Γ

is admissible in the system without cuts (by an easy induction on the number of A).611

Now we show the lemma by induction on the proof of612

` ?σ1A, . . . , ?σ1A,Γ. We distinguish cases according to the last rule:613

If it is a rule on a formula of Γ which is not a promotion:614

π

` ?σ1A, . . . , ?σ1A,Γ′ r
` ?σ1A, . . . , ?σ1A,Γ

 

IH(π)
` ? ~σ2∆, . . . , ? ~σ2∆,Γ′

r
` ? ~σ2∆, . . . , ? ~σ2∆,Γ

615

If it is a Girard’s style promotion, thanks to the axiom (Axtrans), we have:
π

` B, ? ~σ3Γ′, ?σ1A, . . . , ?σ1A σ0 ≤g ~σ3 σ0 ≤g σ1 !g` !σ0B, ? ~σ3Γ′, ?σ1A, . . . , ?σ1A

 

IH(π)
` B, ? ~σ3Γ′, ? ~σ2∆, . . . , ? ~σ2∆ σ0 ≤g ~σ3

σ0 ≤g σ1 σ1 ≤g ~σ2 (Axtrans)
σ0 ≤g ~σ2 !g

` !σ0B, ? ~σ3Γ′, ? ~σ2∆, . . . , ? ~σ2∆
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If it is a unary promotion, we use axiom (Axus
≤ ):

π
` B,A σ0 ≤u σ1 !u` !σ0B, ?σ1A

 

π
` B,A

Sg` B, ? ~σ2∆
σ0 ≤u σ1 σ1 ≤g ~σ2 (Axus

≤ )
σ0 ≤g ~σ2 !g` !σ0B, ? ~σ2∆

If it is a functorial promotion:
π

` B,Γ′,
n︷ ︸︸ ︷

A, . . . , A σ0 ≤f σ1 σ0 ≤f ~σ3 !f` !σ0B, ? ~σ3Γ′, ?σ1A, . . . , ?σ1A

 

IH(π)

` B,Γ′,

n︷ ︸︸ ︷
A, . . . , A

Sg
` B,Γ′, ? ~σ2∆, . . . , ? ~σ2∆

σ0 ≤f σ1 σ1 ≤g ~σ2 e0 ≤f ~e3 (Axfg
≤)

( ~σ3)(?m1 )
?m1` B, ? ~σ3Γ′, ? ~σ2∆, . . . , ? ~σ2∆

σ0 ≤f σ1 σ1 ≤g ~σ2 σ0 ≤f ~e3 (Axfg
≤)

σ0 ≤g ~σ3

σ0 ≤f σ1 σ1 ≤g ~σ2 (Axfg
≤)

σ0 ≤g ~σ2
!g

` !σ0B, ? ~σ3Γ′, ? ~σ2∆, . . . , ? ~σ2∆

If it is a contraction (?ci) on a ?σ1A, we use axiom (Axc):

π

`
i+n−1︷ ︸︸ ︷

?σ1A, . . . , ?σ1A,Γ (σ1)(?ci) ?ci` ?σ1A, . . . , ?σ1A,Γ

IH(π)

`
n−1+i︷ ︸︸ ︷

? ~σ2∆, . . . , ? ~σ2∆,Γ
(σ1)(?ci) σ1 ≤g ~σ2 (Axc)

( ~σ2)(?ci) ?ci` ? ~σ2∆, . . . , ? ~σ2∆,Γ
If it is a multiplexing (?mi) on a ?σ1A, we use axiom (Axg

m):

π

` ?σ1A, . . . , ?σ1A,

i︷ ︸︸ ︷
A, . . . , A, ?σ1A, . . . , ?σ1A,Γ (σ1)(?mi) ?mi` ?σ1A, . . . , ?σ1A,Γ

 

IH(π)

` ? ~σ2∆, . . . , ? ~σ2∆,
i︷ ︸︸ ︷

A, . . . , A, ? ~σ2∆, . . . , ? ~σ2∆,Γ
Sg` ? ~σ2∆, . . . , ? ~σ2∆,Γ

(σ1)(?mi) σ1 ≤g ~e2 (Axg
m)

( ~σ2)(?ci) ?ci` ? ~σ2∆, . . . , ? ~σ2∆,Γ

If it is an (ax) rule on ?σ1A. Then Γ = !σ1A
⊥ and we have:

ax
` A⊥, A

Sg
` A⊥, ? ~σ2∆ σ1 ≤g ~e2 !g

` !σ1A
⊥, ? ~σ2∆
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J616

I Lemma 15 (Functorial Substitution Lemma). Let σ1 be a signature and ~σ2 a list of signatures617

such that σ1 ≤f ~σ2. Let A be a formula, and let ∆ be a context, such that for all Γ, if618

` A,Γ is provable without using any cut then ` ∆,Γ is provable without using any cut.619

Then we have that for all Γ, if `
n︷ ︸︸ ︷

?σ1A, . . . , ?σ1A,Γ is provable without using any cut then620

`
n︷ ︸︸ ︷

? ~σ2∆, . . . , ? ~σ2∆,Γ as well.621

Proof. First we can notice that for any Γ the following rule:

` A, . . . , A,Γ
Sf` ∆, . . . ,∆,Γ

is admissible in the system without cuts (by an easy induction on the number of A). Now622

we show the lemma by induction on the proof of ` ?σ1A, . . . , ?σ1A,Γ. We distinguish cases623

according to the last applied rule :624

If it is a rule on a formula of Γ which is not a promotion:625

π

` ?σ1A, . . . , ?σ1A,Γ′ r
` ?σ1A, . . . , ?σ1A,Γ

 

IH(π)
` ? ~σ2∆, . . . , ? ~σ2∆,Γ′

r
` ? ~σ2∆, . . . , ? ~σ2∆,Γ

626

If it is a Girard’s style promotion. Thanks to the axiom (Axgs
≤), we have:

π

` B, ? ~σ3Γ′, ?σ1A, . . . , ?σ1A σ0 ≤g ~σ3 σ0 ≤g σ1 !g` !σ0B, ? ~σ3Γ′, ?σ1A, . . . , ?σ1A

 

IH(π)
` B, ? ~σ3Γ′, ? ~σ2∆, . . . , ? ~σ2∆ σ0 ≤g ~σ3

σ0 ≤g σ1 σ1 ≤f ~σ2 (Axgs
≤)

σ0 ≤g ~σ2 !g` !σ0B, ? ~σ3Γ′, ? ~σ2∆, . . . , ? ~σ2∆
If it is a unary promotion, we use axiom (Axus

≤ ):

π
` B,A σ0 ≤u σ1 !u` !σ0B, ?σ1A

π
` B,A

Sf` B,∆
σ0 ≤u σ1 σ1 ≤f ~σ2 (Axus

≤ )
σ0 ≤f ~σ2 !f` !σ0B, ? ~σ2∆

If it is a functorial promotion, thanks to the axiom (Axtrans) we have:

π

` B,Γ′, A, . . . , A σ0 ≤f ~e3 σ0 ≤f σ1 !f` !σ0B, ? ~e3Γ′, ?σ1A, . . . , ?σ1A
 

IH(π)
` B,Γ′, A, . . . , A

Sf` B,Γ′, ? ~σ2∆, . . . , ? ~σ2∆ σ0 ≤f ~e3

σ0 ≤f σ1 σ1 ≤f ~σ2 (Axtrans)
σ0 ≤f ~σ2 !f` !σ0B, ? ~e3Γ′, ? ~σ2∆, . . . , ? ~σ2∆
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If it is a contraction (?ci) on ?σ1A, we use axiom (Axfu
m):

π

`,
n+i−1︷ ︸︸ ︷

?σ1A, . . . , ?σ1A,Γ (σ1)(?ci) ?ci` ?σ1A, . . . , ?σ1A,Γ

 

IH(π)

`
n+i−1︷ ︸︸ ︷

? ~σ2∆, . . . , ? ~σ2∆,Γ
(σ1)(?ci) σ1 ≤f ~e2 (Axfu

m)
( ~σ2)(?ci) ?ci` ? ~σ2∆, . . . , ? ~σ2∆,Γ

If it is a multiplexing (?mi) on ?σ1A, we use axiom (Axfu
m):

π

` ?σ1A, . . . , ?σ1A,

i︷ ︸︸ ︷
A, . . . , A, ?σ1A, . . . , ?σ1A,Γ (σ1)(?mi) ?mi` ?σ1A, . . . , ?σ1A,Γ

 

IH(π)

` ? ~σ2∆, . . . , ? ~σ2∆,
i︷ ︸︸ ︷

A, . . . , A, ? ~σ2∆, . . . , ? ~σ2∆,Γ
Sf` ? ~σ2∆, . . . , ? ~σ2∆,∆, . . . ,∆, ? ~σ2∆, . . . , ? ~σ2∆,Γ

(σ1)(?mi) σ1 ≤f ~σ2 (Axfu
m)

( ~σ2)(?mi) ?mi` ? ~σ2∆, . . . , ? ~σ2∆,Γ

If it is an (ax) rule on ?σ1A. Then Γ = !σ1A
⊥ and we have:

ax
` A⊥, A

Sf
` A⊥,∆ σ1 ≤f ~e2 !f` !σ1A

⊥, ? ~σ2∆

J627

I Lemma 16 (Unary Functorial Substitution Lemma). Let σ1 and σ2 be two exponential628

signatures such that σ1 ≤u σ2. Let A and B be formulas, such that for all Γ, if ` A,Γ is629

provable without using any cut then ` B,Γ is provable without using any cut. Then we have630

that for all Γ, if `
n︷ ︸︸ ︷

?σ1A, . . . , ?σ1A,Γ is provable without using any cut then `
n︷ ︸︸ ︷

?σ2B, . . . , ?σ2B,Γ631

as well, with ki positive integers.632

Proof. This lemma is proven the same way as Lemma 15. J633

Finally we prove cut-elimination theorem 2:634

I Theorem 4 (Cut Elimination). Cut elimination holds for635

superLL(E ,≤g,≤f,≤u) as soon as the 8 cut-elimination axioms of Table 1 are satisfied.636

Proof. We prove the result by induction on the couple (t, s) with lexicographic order, where637

t is the size of the cut formula and s is the sum of the sizes of the premises of the cut. We638

distinguish cases depending on the last rules of the premises of the cut:639

If one of the premises does not end with a rule acting on the cut formula, we apply the640

induction hypothesis with the premise(s) of this rule.641
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If both last rules act on the cut formula which does not start with an exponential642

connective, we apply the standard reduction steps for non-exponential cuts leading to643

cuts involving strictly smaller cut formulas. We conclude by applying the induction644

hypothesis.645

If we have an exponential cut for which the cut formula !σ1A
⊥ is not the conclusion of a646

promotion rule introducing !σ1 , the rule above !σ1A
⊥ cannot be a promotion rule, and we647

apply the induction hypothesis to its premise(s).648

If we have an exponential cut for which the cut formula !σ1A
⊥ is the conclusion of an

(!g)-rule. We can apply:

` A⊥, ? ~σ2∆ σ1 ≤g ~σ2 !g
` !σ1A

⊥, ? ~σ2∆ ` ?σ1A,Γ cut` ? ~σ2∆,Γ
 

` ?σ1A,Γ σ1 ≤g ~σ2
Lem. 14` ? ~σ2∆,Γ

We have that A and ∆ are such that for every Γ such that ` A,Γ is provable without649

cuts, ` ? ~σ2∆,Γ too. Indeed, A and ∆ are such that ` A⊥, ? ~σ2∆ is provable without cuts650

and we can apply the induction hypothesis (#(A) < #(?σ1A)). Therefore, we can apply651

Lemma 14 on ` ?σ1A,Γ and obtain that ` ? ~σ2∆,Γ is provable without cut.652

If we have an exponential cut for which the cut formula !σ1A
⊥ is the conclusion of an

(!f)-rule. We can apply:

` A⊥,∆ σ1 ≤f ~σ2 !f` !σ1A
⊥, ? ~σ2∆ ` ?σ1A,Γ cut` ? ~σ2∆,Γ

 
` ?σ1A,Γ σ1 ≤f ~σ2 Lem. 15` ? ~σ2∆,Γ

We have that A and ∆ are such that for every Γ such that ` A,Γ is provable without653

cuts, ` ∆,Γ too. Indeed, A and ∆ are such that ` A⊥,∆ is provable without cuts and654

we can apply the induction hypothesis. Therefore, we can apply Lemma 15 on ` ?σ1A,Γ655

and obtain that ` ? ~σ2∆,Γ is provable without cut.656

If we have an exponential cut for which the cut formula !σ1A
⊥ is the conclusion of an657

(!u)-rule, this case is treated in the exact same way as (!f), using Lemma 16.658

J659

B.3 Details on ELL as instance of superLL660

B.3.0.1 Elementary Linear Logic.661

Elementary Linear Logic (ELL) [16, 12] is a variant of LL where we remove (?d) and (!g) and662

add the functorial promotion:663

` A,Γ !f` !A, ?Γ
664

It is the superLL(E ,≤g,≤f,≤u) system with E = {•}, defined by •(?c2) = •(?m0) = true (and665

(•)(r) = false otherwise), ≤g = ≤u = ∅ and • ≤f •. This superLL(E , ,≤g,≤f,≤u) instance is666

ELL and satisfies the cut-elimination axioms and the expansion axiom:667

The rule (?m0) is the weakening rule (?w), (?c2) is the contraction rule (?c), and we can668

always apply promotion (!f) as ≤f is the plain relation on E :669

` A,Γ • ≤f • !f` !•A, ?•Γ
!

` A,Γ !f` !A, ?A
670

We have that (!g) is a restriction of (!f) in ELL and (!u) is non-existent.671
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Moreover, the cut-elimination axioms are satisfied. As E is a singleton, axioms (Axg
m),672

(Axfu
m), (Axc), (Axtrans), (Axgs

≤), (Axfu
≤), (Axus

≤ ) hold. Axiom (Axfg
≤) is vacuously satisfied.673

The expansion axiom is satisfied since ≤f is reflexive.674

C Details on Section 4675

C.1 Details on µLL∞
� as an instance of µsuperLL∞

676

We show here in details how the system µLL∞� is an instance of super-exponentials.677

µLL∞� coincides with the system µsuperLL∞(E ,≤g,≤f,≤u) such that:678

The set of signatures contains two elements E := {•, ?}.679

?c2(•) = ?c2(?) = true680

?m1(•) = true,681

?m0(•) = ?m0(?) = true,682

all the other elements have value false for both signatures.683

• ≤g • ; • ≤g ?, ? ≤f ?, and all other couples for the three relations ≤g,≤f and ≤u being684

false.685

This system is µLL∞� when taking:

?• := ?, !• := !, ?? := ♦ and !? := �.

We can indeed check that the system satisfies the cut-elimination axioms of Table 1:686

Hypotheses of axiom (Axc) are ony true for i = 2 in two cases: for σ = σ′ = •, in that687

case σ̄(?c2 is true because σ(?c2) is; or for σ = • and σ′ = ?, in that case the axiom is688

satisfied as σ′(?c2) is true.689

Hypotheses of axiom (Axg
m) are true for i = 0 when σ = σ′ = •, or for σ = • and σ′ = ?,690

in both cases we have that σ̄′(?c0) is true because σ′(?m0) is true.691

Axiom (Axg
m) is always true for i = 1692

Hypotheses of axiom (Axg
m) are not satisfied for i > 1.693

Hypotheses of axiom (Axfu
m) are satisfied only for σ = σ′ = ? and so easily satisfied.694

Axiom (Axtrans) is satisfied as ≤g and ≤f are transitive.695

Hypotheses of axiom (Axgs
≤)are only satisfied for σ = • and σ′ = σ′′ = ?, and in this case696

the conclusion is one of the hypothesis.697

Hypotheses of the other axioms are never fully satisfied.698

D Details on Section 5699

D.1 Details on the justification of (mcut)-steps700

In the following, we shall prove the lemmas justifying the mcut-reduction steps. The following701

statement are identical to those found in the body of the paper but for the fact that we make702

explicit the side conditions on the exponential rules: in the hypotheses of the lemmas, such703

side-conditions are assumptions we can use in our proof while in the conclusion derivation704

these side-conditions are goals to be proved in order to establish that the derivation is indeed705

a proof in the considered µsuperLL∞(E ,≤g,≤f,≤u) system.706
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D.1.1 Justification for step (comm!g): proof of Lemma 1707

The case (comm!g) covers all the case where (!g) commute under the cut:708

I Lemma 17 (Justification for step (comm!g)). If
π

` A, ?~τ∆ σ ≤g ~τ !g` !σA, ?~τ∆ C!
mcut(ι,⊥⊥)` !σA, ?~ρΓ

is a µsuperLL∞(E ,≤g,≤f,≤u)-proof then
π

` A, ?~τ∆ C!
mcut(ι,⊥⊥)` A, ?~ρΓ σ ≤g ~ρ !g` !σA, ?~ρΓ

is also a µsuperLL∞(E ,≤g,≤f,≤u)-proof.709

Proof. We prove that for each sequent ` !σ′A′, ?~τ ′∆
′ of C′ := C! ∪ {` !σA, ?~τ∆}, we have710

that σ ≤g ~τ ′.711

The ⊥⊥-relation extended to sequent defines a tree on C′. Taking ` !σA, ?~τ∆ as the root,712

the ancestor relation of this tree is a well-founded relation. We can therefore do a proof by713

induction:714

The base case is given by the condition of application of (!g) in the proof.715

For heredity, we have that there is a sequent ` !σ′′A′′, ? ~τ ′′∆
′′, ?σ′(A′⊥) of C′, connected716

on !σ′A′ to our sequent. By induction hypothesis, we have that σ ≤g σ
′. The rule on top717

of ` !σ′A′, ?~τ ′∆
′ is a promotion. We have two cases:718

If it’s a (!g)-promotion, we can use axiom (Axtrans) with the application condition of719

the promotion, to get σ ≤g ~τ ′.720

If it’s an (!f)-promotion or an (!u)-promotion, we can use axiom (Axgs
≤) with the721

application condition of the promotion, to get σ ≤g ~τ ′.722

We conclude by induction and use the inequalities to prove that σ ≤g ~ρ. J723

D.1.2 Justification for step (comm1
!f): proof of Lemma 2724

The case (comm1
!f) covers the case of commutation of an (!f)-promotion but where only725

(!g)-rules with empty contexts appears in the hypotheses of the multi-cut. Note that an (!g)726

occurrence with empty context could be seen as an (!f) occurrence (with empty context).727

I Lemma 18 (Justification for step (comm1
!f)). If

π
` A,∆ σ ≤f ~τ !f` !σA, ?~τ∆ C!

mcut(ι,⊥⊥)` !σA, ?~ρΓ

is a µsuperLL∞(E ,≤g,≤f,≤u)-proof with C! such that each sequents concluded by an (!g) have
an empty context, then

π
` A,∆ C mcut(ι,⊥⊥)` A,Γ σ ≤f ~ρ !f` !σA, ?~ρΓ

is a µsuperLL∞(E ,≤g,≤f,≤u)-proof.728
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Proof. We prove that for each sequent ` !σ′A′, ?~τ ′∆
′ of C′ := C!g ∪ {` !σA, ?~τ∆}, σ ≤f ~τ ′.729

The ⊥⊥-relation extended to sequent defines a tree on C′. Taking ` !σA, ?~τ∆ as the root,730

the ancestor relation of this tree is a well-founded relation. We can therefore do an induction731

proof:732

The base case is given by the condition of application of (!f) in the proof.733

For heredity, we have that there is a sequent ` !σ′′A′′, ? ~τ ′′∆
′′, ?σ′(A′⊥) of C ′, connected734

on !σ′A′ to our sequent. By induction hypothesis, we have that σ ≤f σ
′. The rule on top735

of ` !σ′A′, ?~τ ′∆
′ is a promotion. We have three cases:736

If it’s an (!g)-promotion, then the context is empty and the proof is easily satisfied.737

If it’s an (!f)-promotion, we can use axiom (Axtrans) with the application condition of738

the promotion to get σ ≤f ~τ ′.739

If it’s an (!u)-promotion, we can use axiom (Axfu
≤) with the application condition of740

the promotion to get σ ≤f ~τ ′.741

We conclude by induction and use the inequalities to prove that σ ≤f ~ρ. J742

D.1.3 Justification for step (comm2
!f): proof of Lemma 3743

We then have the following case where we commute an (!f)-rule, but where there is one (at744

least) (!g)-promotion with a non-empty context in the premisses of the multicut rule:745

I Lemma 19 (Justification for step (comm2
!f)). If

π
` A,∆ σ ≤f ~τ !f` !σA, ?~τ∆ C!

mcut(ι,⊥⊥)` !σA, ?~ρΓ

is a µsuperLL∞(E ,≤g,≤f,≤u)-proof with C!g containing a sequent conclusion of an (!g)-rule
with at least one formula in the context, then

π
` A,∆ ~τ(?m1)

?m1` A, ?~τ∆ C!

` A, ?~ρΓ σ ≤g ~ρ !g` !σA, ?~ρΓ

is also a µsuperLL∞(E ,≤g,≤f,≤u)-proof.746

Proof. We prove that for each sequent ` !σ′A′, ?~τ ′∆
′ of C! := C!g

1 ∪ C
!f
2 ∪ C

!u
3 ∪ {` !σA, ?~τ∆},747

we have that σ ≤g ~τ ′. Moreover, we prove that ~τ(?m1). We prove that in two steps:748

1. There is a sequent ` !σ′A′, ?~τ ′∆
′, with ∆′ being non-empty, which is conclusion of an749

(!g)-rule. Let’s suppose without loss of generality, that this sequent is the closest such750

sequent to S :=` !σA, ?~τ∆. The ⊥⊥-relation extended to sequents defines a tree with751

the hypotheses of the multi-cut rule, therefore there is a path from the sequent S to the752

sequent S′ :=` !σ′A′, ?~τ ′∆
′, of sequents ` !σ′′A′′, ? ~τ ′′∆

′′. We prove by induction on this753

path, starting from S and stopping one sequent before S′ that σ ≤f τ
′′:754

The initialisation comes from the condition of application of !f on S.755

For the heredity, we have that the sequent ` !σ′′A′′, ? ~τ ′′∆
′′ is cut-connected to a756

` !σ(3)A(3), ? ~τ(3)∆(3), ?σ′′(A′′⊥) on !σ′′A′′, therefore σ ≤f σ
′′. We have two cases: either757

this sequent is the conclusion of an (!u)-rule and we apply axiom (Axfu
≤), either of an758

(!f)-rule and we apply axiom (Axtrans). In each case, we have that σ ≤f ~τ ′′.759
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We conclude by induction and get a sequent S′′ :=` !σ′′A′′, ? ~τ ′′∆
′′ cut-connected to S′ on760

the formula !σ′A′ with σ ≤f ~τ ′′. From that we get that σ ≤f σ
′. Moreover, we have that761

σ′ ≤g ~τ ′. As ∆′ is non-empty, there is a signature ρ′ ∈ ~τ ′ such that σ′ ≤g ρ
′. We can762

therefore apply axiom (Axfg
≤). We get that for each signatures σ(3) such that σ ≤f σ

(3),763

σ ≤g σ
(3) and σ(3)(?m1), which we can apply to σ and ~τ to get that σ ≤g ~τ and ~τ(?m1).764

2. Then, we prove by induction on the tree defined with the ⊥⊥-relation and rooted by S765

that for each sequents ` !σ′′A′′, ? ~τ ′′∆
′′, σ ≤g ~τ ′′:766

The initialisation is done with the first step.767

For heredity, we have that there is a sequent768

` !σ(3)A(3), ? ~τ(3)∆(3), ?σ′′(A′′⊥) cut-connected to ` !σ′′A′′, ? ~τ ′′∆
′′ on !σ′′A′′, mean-769

ing that σ ≤g σ
′′, as the sequent is the conclusion of a promotion, we have that770

σ′′ ≤s τ ′′ for a s ∈ {g, f, u}, we conclude using axiom (Axgs
≤).771

We conclude by induction and we use the inequalities from it to prove that σ ≤g ~ρ.772

J773

D.1.4 Justification for step (comm1
!u): proof of Lemma 4774

We then cover the cases where we commute an (!u)-rule with the multi-cut. The first case is775

where there are only a list of (!u)-rules in the hypotheses of the multi-cut:776

I Lemma 20 (Justification for step (comm1
!u)). If

π
` A,C σ ≤u τ !u` !σA, ?τC C!u

mcut(ι,⊥⊥)` !σA, ?ρB

is a µsuperLL∞(E ,≤g,≤f,≤u)-proof, then

π
` A,C C mcut(ι,⊥⊥)` A,B σ ≤u ρ !u` !σA, ?ρB

is a µsuperLL∞(E ,≤g,≤f,≤u)-proof.777

Proof. We prove that for each sequent ` !σ′A′, ?τ ′B′ of C′ := C!u ∪ {` !σA, ?τB}, we have778

that σ ≤u τ
′.779

The ⊥⊥-relation extended to sequent defines a tree on C′. Taking ` !σA, ?τB as the root,780

the ancestor relation of this tree is a well-founded relation. We can therefore do an induction781

proof:782

The base case is given by the condition of application of (!u) in the proof.783

For heredity, we have that there is a sequent784

` !σ′′A′′, ?τ ′′B′′, ?σ′(A′⊥) of C ′, connected on !σ′A′ to our sequent. By induction hypo-785

thesis, we have that σ ≤u σ
′. The rule on top of ` !σ′A′, ?τ ′B′ is an (!u)-promotion, we786

can use axiom (Axtrans) and with the application condition of the promotion, we get that787

σ ≤u f
′.788

We conclude by induction and get that σ ≤u ρ. J789
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D.1.5 Justification for step (comm2
!u): proof of Lemma 5790

The second case of (!u)-commutation is where we have an (!f)-rule and where the hypotheses791

concluded by an (!g)-rule have empty contexts.792

I Lemma 21 (Justification for step (comm2
!u)). Let

π
` A,B σ ≤u τ !u` !σA, ?τB C!

mcut(ι,⊥⊥)` !σA, ?~ρΓ

be a µsuperLL∞(E ,≤g,≤f,≤u)-proof with C containing at least one proof concluded by an
(!f)-promotion ; and such that for each sequent conclusion of an (!g)-promotion has empty
context. We have that

π
` A,B C mcut(ι,⊥⊥)` A,Γ σ ≤f ~ρ !f` !σA, ?~ρΓ

is also a µsuperLL∞(E ,≤g,≤f,≤u)-proof.793

Proof. If one (!f)-rule has empty contexts, there is only one (!f),?~ρΓ is empty and therefore794

σ ≤f ~ρ is easily satisfied. If not, we do our proof in two steps:795

1. As always, we notice that the ⊥⊥-relation extended to sequent defines a tree on C′, meaning796

that there is a path in this tree, from S :=` !σA, ?τB to a sequent S′ :=` !σ′A′, ?~τ ′∆797

being the conclusion of an !f-rule and with ∆ being non-empty. Without loss of generality,798

we ask for S′ to be the closest such sequent (with respect to the ⊥⊥-relation). We prove799

by induction on this path, starting from S and stopping one sequent before S′, that for800

each sequent ` !σ′′A′′, ?τ ′′B′′, that σ ≤u τ
′′:801

The initialization comes from the condition of application of (!u) on S.802

The heredity comes from the condition of application of !u on the sequent ` !σ′′A′′, ?τ ′′B′′803

and from lemma (Axtrans).804

Finally, as S′ is linked by the cut-formula !σ′A′ to one of these sequents, we get that805

σ ≤u σ
′. By the condition of application of (!f) on S′, we get that σ′ ≤f ~τ ′, and from806

lemma (Axus
≤ ), we have that σ ≤f ~τ ′.807

2. We prove, for the remaining tree (which is rooted in S′), that for each sequents `808

!σ′′A′′, ? ~τ ′′∆
′′, that σ ≤f τ

′′. We prove it by induction.809

Initialization was done at last point.810

For heredity, if the sequent ` !σ′′A′′, ? ~τ ′′∆
′′ is the conclusion of an (!u)-rule, by811

induction hypothesis, we get that σ ≤f σ
′′, and by (!u) application condition we get812

that σ′′ ≤u ~τ ′′, we get σ ≤f ~τ ′′ with axiom (Axfu
≤).813

For heredity, if the sequent ` !σ′′A′′, ? ~τ ′′∆
′′ is the conclusion of an (!f)-rule, by induction814

hypothesis, we get that σ ≤f σ
′′, and by (!f) application condition we get that σ′′ ≤f ~τ ′′,815

we get σ ≤f ~τ ′′ with axiom (Axtrans).816

For heredity, if the sequent ` !σ′′A′′, ? ~τ ′′∆
′′ is the conclusion of an (!g)-rule, then ∆′′817

is empty and the proposition is easily satisfied.818

We conclude by induction and we use the inequalities from it to prove that σ ≤f ~ρ. J819
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D.1.6 Justification for step (comm3
!u): proof of Lemma 6820

The following lemma deals with the case where there are sequents concluded by an (!g)-rule821

with non-empty context and where the first rule encountered is an !f-rule.822

I Lemma 22 (Justification for step (comm3
!u)). Let

π1

` A,B σ ≤u τ !u` !σA, ?τB C!u
1

π2

` C,∆ σ′ ≤f ~τ ′ !f` !σ′C, ? ~τ′∆ C!
2

mcut(ι,⊥⊥)
` !σA, ?~ρΓ

be a µsuperLL∞(E ,≤g,≤f,≤u)-proof, such that C!
2 contains a sequent conclusion of an (!g)

rule with non-empty context ; C := {` !σA, ?τB} ∪ C!u
1 ∪ {` !σ′C, ?~τ ′∆} are a cut-connected

subset of sequents ; and C′ := {` !σ′C, ?~τ ′∆} ∪ C
!
2 another one. We have that

π1

` A,B C1

π2

` C,∆ ~τ ′(?m1 )
?m1` C, ? ~τ′∆ C!

2
mcut(ι,⊥⊥)

` A, ?~ρΓ σ ≤g ~ρ !g` !σA, ?~ρΓ

is also a µsuperLL∞(E ,≤g,≤f,≤u)-proof.823

Proof. We do our proof in three steps:824

1. There is a sequent S′′ :=` !σ′′A′′, ? ~τ ′′∆
′′, with ∆′′ being non-empty, which is conclusion825

of an (!g)-rule. The ⊥⊥-relation extended to sequents defines a tree on C′, therefore826

there is a path from the sequent S′ :=` !σ′C, ?~τ ′∆ to the sequent S′′, of sequents827

` !σ(3)A(3), ? ~τ(3)∆(3). Let’s suppose without loss of generality, that this sequent is the828

closest such sequent to S′. We prove by induction on this path, starting from S′ and829

stopping one sequent before S′′ that σ′ ≤f τ
(3):830

The initialisation comes from the condition of application of !f on S′.831

For the heredity, we have that the sequent ` !σ(3)A(3), ? ~τ(3)∆(3) is cut-connected to a832

` !σ(4)A(4), ? ~τ(4)∆(4), ?σ(3)(A(3)⊥) on !σ(3)A(3), therefore σ′ ≤f σ
(3). We have two cases:833

either this sequent is the conclusion of an (!u)-rule and we apply axiom (Axfu
≤), either834

of an (!f)-rule and we apply axiom (Axtrans). In each case, we have that σ′ ≤f
~τ (3).835

We conclude by induction and get a sequent S(3) :=` !σ(3)A(3), ? ~τ(3)∆(3) cut-connected836

to S′′ on the formula !σ′′A′′ with σ′ ≤f
~τ (3). From that we get that σ′ ≤f σ

′′. Moreover,837

we have that σ′′ ≤g ~τ ′′. As ∆′′ is non-empty, there is a signature ρ′′ ∈ ~τ ′′ such that838

σ′′ ≤g ρ
′′. We can therefore apply axiom (Axfg

≤). We get that for each signatures σ(4)
839

such that σ′ ≤f σ
(4), σ′ ≤g σ

(4) and σ(4)(?m1), which we can apply to σ′ and ~τ ′ to get840

that σ′ ≤g ~τ ′ and ~τ ′(?m1).841

2. Again, we notice that the ⊥⊥-relation extended to sequent defines a tree on C, meaning842

that there is a path in this tree, from S :=` !σA, ?τB to S′. We prove by induction on843

this path, starting from S and stopping one sequent before S′, that for each sequent844

` !σ(3)A(3), ?τ(3)B(3), that σ ≤u τ
(3):845

The initialization comes from the condition of application of (!u) on S.846

The heredity comes from the condition of application of !u on the sequent ` !σ(3)A(3), ?τ(3)B(3)
847

and from lemma (Axtrans).848

Finally, as S′ is linked by the cut-formula !σ′A′ to one of these sequents, we get that849

σ ≤u σ
′.850
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3. Finally, we prove that for each sequents ` !σ(3)A(3), ?τ(3)∆(3) of C′, σ ≤g τ
(3). We prove851

it by induction as C′ is a tree with the ⊥⊥-relation.852

Initialization comes from the face that σ ≤u σ
′, σ′ ≤g ~τ ′ and axiom (Axus

≤ ).853

For heredity, we have that there is a sequent ` !σ(4)A(4), ? ~τ(4)∆(4), ?σ(3)(A(3))⊥ of C′,854

connected on !σ(3)A(3) to our sequent. By induction hypothesis, we have that σ ≤g σ
(3).855

The rule on top of ` !σ(3)A(3), ? ~τ(3)∆(3) is a promotion. We have two cases:856

If it’s a (!g)-promotion, we can use axiom (Axtrans) and with the application condition857

of the promotion, we get that σ ≤g
~τ (3).858

If it’s an (!f)-promotion or an (!u)-promotion, we can use axiom (Axgs
≤)and with the859

application condition of the promotion, we get that σ ≤g
~τ (3).860

We conclude by induction.861

We got two important properties:862

1. For each sequent ` !σ(3)A(3), ? ~τ(3)∆(3) of C′, we have that σ ≤g
~τ (3).863

2. We have ~τ ′(?m1).864

We conclude using inequalities of the first property to find that σ ≤g ~ρ. And we use the865

second property for the (?m1)-rule. J866

D.1.7 Justification for step (comm4
!u): proof of Lemma 7867

The last lemma of promotion commutation is about the case where we commute an (!u)-868

promotion but when first meeting an (!g)-promotion.869

I Lemma 23 (Justification for step (comm4
!u)). Let

π1

` A,B σ ≤u τ !u` !σA, ?τB C!u
1

π2

` C, ? ~τ′∆ σ′ ≤g ~τ ′

!g` !σ′C, ? ~τ′∆ C!
2

mcut(ι,⊥⊥)
` !σA, ?~ρΓ

be a µsuperLL∞(E ,≤g,≤f,≤u)-proof such that C := {` !σA, ?τB} ∪ C!u
1 ∪ {` !σ′C, ?~τ ′∆} are

a cut-connected subset of sequents ; and C′ := {` !σ′C, ?~τ ′∆} ∪ C
!
2 another one. Then,

π1
` A,B C1

π2

` C, ?~τ ′∆ C!
2 mcut(ι,⊥⊥)` A, ?~ρΓ σ ≤g ~ρ !g` !σA, ?~ρΓ

is also a µsuperLL∞(E ,≤g,≤f,≤u)-proof.870

Proof. We do our proof in two steps:871

1. First, we prove that for each sequents ` !σ′′A, ?τ ′′B of C \ {` !σ′C, ?~τ ′∆} that σ ≤u τ
′′.872

We prove it by induction on this list starting with the sequent S :=` !σA, ?~τB (it is a list873

with the ⊥⊥-relation):874

Initialization comes from the condition of application of (!u) on S.875

Heredity comes from the condition of application of (!u) on the concerned sequent,876

from induction hypothesis and from axiom (Axtrans).877

We conclude by induction and deduce from the obtained property that σ ≤u σ
′.878

2. We then prove that for each sequents ` !σ′′A, ?τ ′′∆ of C′, σ ≤g ~τ ′′. We prove it by879

induction on C′ as the ⊥⊥-relation defines a tree on it, for which we take S′ := !σ′C, ?~τ ′∆880

as the root.881
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The initialization comes from σ ≤u σ
′ that we showed for first step, from σ′ ≤g ~τ ′882

which is the condition of application of (!g) on S′ and from axiom (Axus
≤ ).883

For heredity, we have that there is a sequent884

` !σ(3)A(3), ? ~τ(3)∆(3), ?σ′′(A′′⊥) of C′, connected on !σ′′A′′ to our sequent. By in-885

duction hypothesis, we have that σ ≤g σ
′′. The rule on top of ` !σ′′A′′, ? ~τ ′′∆

′′ is a886

promotion. We have two cases:887

If it’s a (!g)-promotion, we can use axiom (Axtrans) and with the application condition888

of the promotion, we get that σ ≤g ~τ ′′.889

If it’s an (!f)-promotion or an (!u)-promotion, we can use axiom (Axgs
≤) and with890

the application condition of the promotion, we get that σ ≤g ~τ ′′.891

We conclude by induction892

From the inequalities that we get from induction, we can easily prove that σ ≤g ~ρ. J893

D.1.8 Justification for step (principal?c ): proof of Lemma 8894

Then we have the principal cases, starting with the contraction:895

I Lemma 24 (Justification for step (principal?c )). If

C∆

π

`
i︷ ︸︸ ︷

?σA, . . . , ?σA,∆ σ(?ci) ?ci` ?σA,∆ C!
?σA mcut(ι,⊥⊥)

` Γ, ?~ρΓ′

is a µsuperLL∞(E ,≤g,≤f,≤u)-proof, then

C∆

π

`

i︷ ︸︸ ︷
?σA, . . . , ?σA,∆

i︷ ︸︸ ︷
C!

?σA . . . C!
?σA mcut(ι′,⊥⊥′)

Γ, ?~ρΓ′, . . . , ?~ρΓ′ ~̄ρ(?ci )
?~̄ρci` Γ, ?~ρΓ′

is also a µsuperLL∞(E ,≤g,≤f,≤u)-proof.896

Proof. We prove for each sequent ` !σ′′A′′, ? ~τ ′′∆
′′ ∈ C!

?σA, we have that σ ≤s ~τ ′′ (for897

one s ∈ {g, f, u}. As the relation ⊥⊥ defines a tree on C′ : C!
?σA (rooted on the sequent898

S :=` !σA, ?~τ ′∆
′ which is the sequent connected to ` ?σA,∆ on ?σA), we do a proof by899

induction on this tree:900

Initialization comes from the application condition of the promotion.901

For heredity, we get from induction hypothesis that σ ≤s σ′′ for a s ∈ {g, f, u}, from the902

condition of application of the promotion, we get that σ′′ ≤s′ ~τ ′′ (again for a s′ ∈ {g, f, u}),903

depending on the cases, from axioms (Axtrans), (Axgs
≤), (Axfu

≤), (Axfg
≤), (Axus

≤ ), we get that904

σ ≤s′′ ~τ ′′ for a s′′ ∈ {g, f, u}.905

We conclude by induction, we get using the obtained property, the fact that σ(?ci) and from906

axiom (Axc), that for each sequent ` !σ′′A′′, ? ~τ ′′∆
′′ ∈ C!

?σA,
~̄τ ′′(?ci). We use property 1 to907

get that ~̄ρ(?ci) is true, making the derivation valid in the proof of the statement. J908
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D.1.9 Justification for step (comm?m ): proof of Lemma 9909

Before justifying the case for the multiplexing principal reduction, we recall Definition 12910

together with a graphical representation to make it more understandable:911

I Definition 16 (OmpxS!(C!) contexts). Let π be some µsuperLL∞(E ,≤g,≤f,≤u)-proof con-912

cluded in a mcut(ι,⊥⊥) inference, C! a context of the multicut which is a tree with respect to913

a cut-relation ⊥⊥ and S! be a sequent of C! that we shall consider as the root of the tree.914

We define a µsuperLL∞(E ,≤g,≤f,≤u)-context OmpxS!(C!) altogether with two sets of915

sequents, S?m
C!,S! and S

?c
C!,S! , by induction on the tree ordering on C!:916

Let C!
1, . . . , C!

n be the sons of S!, such that C! = (S!, (C!
1, . . . , C!

n)), we have two cases:917

S! = S!g , then we define OmpxS!(C!) := (S, (C!
1, . . . , C!

n)) ; S?m
C!,S! := ∅ ; S?c

C!,S! := C!.918

S! = S!f or S! = S!u , then let the root of C!
i be S!

i, we define OmpxS!(C!) as919

(S,OmpxS!
1
(C!

1), . . . ,OmpxS!
n
(C!
n)), S?m

C!,S! as {S!} ∪
⋃
S?m
C!
i
,S!
i

and S?c
C!,S! as

⋃
S?c
C!
i
,S!
i

.920

Below is a graphical picture of the above definition in the second case (S! = S!f or921

S! = S!u) when all its sons (for the tree relation induced by ⊥⊥) are of the form S
!g
i (which922

illustrates both cases of the definition in one picture) :923

S!
C!f/!u

S
!g
1

S!g
n

C!
1

C!
n

...
...

S?m
C!,S!

S?c
C!,S!

924

S C

S1

Sn

C!
1

C!
n

...
...

925

Finally, we have the multiplexing principal case:926
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I Lemma 25 (Justification for step (comm?m )). Let

C∆
`

i︷ ︸︸ ︷
A, . . . , A,∆ σ(?mi

)
?mi` ?σA,∆ C!

?σA mcut(ι,⊥⊥)
` Γ, ?ρ′Γ′, ?ρ′′Γ′′

be a µsuperLL∞(E ,≤g,≤f,≤u)-proof with Γ being sent on C∆ ∪ ∆ by ι ; ? ~ρ′′Γ
′′ being sent

on sequent of S?m
C!,S! ; and ?~ρ′Γ

′ being sent on S?c
C!,S! , where S! := !σA, ?~τ ′∆

′ is the sequent
cut-connected to ` ?σA,∆ on the formula ?σA. We have that

C∆ `

i︷ ︸︸ ︷
A, . . . , A,∆

i︷ ︸︸ ︷
OmpxS! (C!

?σA) . . . OmpxS! (C!
?σA)

mcut(ι′,⊥⊥′)

` Γ,

i︷ ︸︸ ︷
Γ′, . . . ,Γ′,

i︷ ︸︸ ︷
? ~ρ′′Γ

′′
, . . . , ? ~ρ′′Γ

′′ ~̄ρ′(?mi )
?
~̄
ρ′
mi

` Γ, ?~ρ′Γ
′,

i︷ ︸︸ ︷
? ~ρ′′Γ

′′
, . . . , ? ~ρ′′Γ

′′ ~̄ρ′′(?ci )
?
~̄
ρ′′
ci` Γ, ?~ρ′Γ

′, ? ~ρ′′Γ
′′

is also a µsuperLL∞(E ,≤g,≤f,≤u)-proof.927

Proof. We prove that for each sequent ` !σ′′A′′, ? ~τ ′′∆
′′ of S?c

C!,S! , σ ≤g ~τ ′′ and that for each928

sequent ` !σ′′A′′, ? ~τ ′′∆
′′ of S?m

C!,S! , σ ≤f ~τ ′′ or σ ≤u ~τ ′′. The ⊥⊥-relation defines a tree rooted929

on §!, we do a proof by induction:930

If ` !σ′′A′′, ? ~τ ′′∆
′′ is in S?m

C!,S! , then its antecedent is also in S?m
C!,S! , by induction, we have931

the σ ≤f σ
′′ or σ ≤u σ

′′. Moreover, the promotion applied on ` !σ′′A′′, ? ~f ′′∆
′′ is an !f or932

an !u promotion. We therefore have either by axiom (Axus
≤ ), either by axiom (Axtrans),933

either by axiom (Axfu
≤), that σ ≤f ~τ ′′ or σ ≤u ~τ ′′.934

If ` !σ′′A′′, ? ~τ ′′∆
′′ is in S?c

C!,S! , and that its antecedent is in S?m
C!,S! , then by induction, we935

have that σ ≤f σ
′′ or σ ≤f σ

′′. Moreover, the promotion applied on ` !σ′′A′′, ? ~f ′′∆
′′ is an936

!g promotion. Therefore, we have by axiom (Axus
≤ ) or (Axfg

≤) that σ ≤g ~τ ′′.937

If ` !σ′′A′′, ? ~τ ′′∆
′′ is in S?c

C!,S! , and that its antecedent is in S?c
C!,S! , then by induction, we938

have that σ ≤g σ
′′. Therefore, by axiom (Axgs

≤), σ ≤g ~τ ′′.939

Finally we get that for all sequents ` !σ′′A, ? ~τ ′′∆
′′ of S?m

C!,S′!
, ~̄τ ′′(?mi) are true, as σ ≤s ~τ ′′,940

?mi(σ) (s ∈ {f, u}) and by lemma (Axfu
m). We also get that for all sequents ` !σ′′A, ? ~τ ′′∆ of941

S?c

C!,S′!
, ~̄τ ′′(?ci) are true as σ ≤g ~τ ′′, ?ci(σ) and by lemma (Axg

m).942

From the condition on the proof of the statement and from property 1, we get that ~̄g′(?mi)943

and ~̄g′′(?ci) are true and so that the right proof is correct. J944

D.2 Rule permutations945

I Definition 17 (Permutation of rules). We define one-step rule permutation on (pre-)proofs946

of µLL∞ with rules of figure 12.947

Given a µLL∞ (pre-)proof π and p ∈ {l, r, i}∗ a path in the proof, we define perm(π, p)948

by induction on p:949

the proof perm(π, ε) is the proof obtained by applying the one-step rule permutation at the950

root of π if it is possible, either it is not defined;951
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π
` ?A, ?A, ?B, ?B,Γ ?c` ?A, ?B, ?B,Γ ?c` ?A, ?B,Γ

 

π
` ?A, ?A, ?B, ?B,Γ ?c` ?A, ?A, ?B,Γ ?c` ?A, ?B,Γ

π
` ?A, ?A,B,Γ ?c` ?A,B,Γ ?d` ?A, ?B,Γ

!

π
` ?A, ?A,B,Γ ?d` ?A, ?A, ?B,Γ ?c` ?A, ?B,Γ

π
` ?A, ?A,Γ ?c` ?A,Γ ?w` ?A, ?B,Γ

!

π
` ?A, ?A,Γ ?w` ?A, ?A, ?B,Γ ?c` ?A, ?B,Γ

π
` Γ ?w` ?A,Γ ?w` ?A, ?B,Γ

 

π
` Γ ?w` ?B,Γ ?w` ?A, ?B,Γ

π
` A,Γ ?w` A, ?B,Γ ?d` ?A, ?B,Γ

!

π
` A,Γ ?d` ?A,Γ ?w` ?A, ?B,Γ

` A,B,Γ ?d` A, ?B,Γ ?d` ?A, ?B,Γ
 

` A,B,Γ ?d` ?A,B,Γ ?d` ?A, ?B,Γ

Figure 12 One-step rule permutation

we define perm(q(π′), i · p′) := r(perm(π′, q′)) if perm(π′, q′) is defined, otherwise it is not952

defined;953

we defineperm(q(πl, πr), l · q′) := q(perm(πl, q′), πr) if perm(πl, q′) is defined, otherwise it954

is not defined;955

we defineperm(q(πl, πr), r · q′) := q(perm(πl, q′), πr) if perm(πl, q′) is defined, otherwise it956

is not defined;957

for each other cases, perm(π, p) is not defined.958

A sequence of rule permutation starting from a µLL∞ pre-proof π is a (possibly empty)959

sequence (pi)i∈λ (λ ∈ ω), where pi ∈ {l, r, i} such that if we set π0 := π, then the sequence960

(πi)i∈1+λ defined by induction by πi+1 := perm(πi, pi) are all defined. We say that the961

sequence (πi)i∈1+λ is the sequence of proofs associated to the sequence of rule permutation.962

We say that the sequence ends on πλ if λ is finite, we also write it perm(π, (pi)i∈λ).963

I Lemma 26 (Robustness of the proof structure to rule permutation). One-step rule permutation964

does not modify the structure of the proof.965

Proof. This lemma is immediate as the substitutions are defined between unary rule. J966

I Definition 18 (Finiteness of permutation of rules). Let π be a µLL∞ (pre-)proof, and let967

(pi)i∈λ be a sequence of rule permutation starting from π and let (πi)i∈1+λ be the sequence968

of proofs associated to it, let q ∈ {l, r, i}∗ be a path to the conclusion sequent of a rule (r) of969

π, we define the sequence of residuals (qi)i∈1+λ of (r) in πi to be a sequence of path defined970

by induction on i:971

if i = 0, q0 = q;972

if pi = qi, then qi+1 := qi · i.973

if qi = pi · i then qi+1 := pi.974

else qi+1 := qi.975

We say that a rule (r) in π is finitely permuted if its sequence of residuals is ultimately976

constant. We say that (pi)i∈λ is a rule permutation sequence with finite permutation of rules977

if each rule of π0 is finitely permuted.978

I Proposition 3 (Convergence of permutation with finite permutation of rules). Let π be a979

µLL∞ pre-proof and let (pi)i∈ω be a permutation sequence with finite permutation of rules980

starting from π, then the sequence is converging.981
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Proof. Let (πi)i∈ω be the sequence of proofs associated to the sequence. Let’s suppose for982

the sake of contradiction that the sequence is not converging. It implies, using lemma 26,983

that there is an infinite sequence of strictly increasing indexes ϕ(i) such that the (rϕ(i)) are984

all at the same position. This implies by finiteness of permutation of one rules, than there985

are an infinite number of rules of π0 which have (rϕ(i)) in their residuals, implying that one986

of the rules below the position of (rϕ(i)) in π0 has infinitely many residuals being equal to987

(ri) or below (ri) contradicting the finitess of permutation of one rule hypothesis. J988

I Proposition 4 (Preservation of validity for permutations with finite permutation of rules). Let989

π be a µLL∞ pre-proof and let (pi)i∈ω be a permutation sequence with finite permutation of990

rules starting from π and converging (thanks to lemma 3 to a pre-proof π′. Then π is valid if991

and only if π′ is.992

Proof. From lemma 26, we have that the structure of the trees of the sequence stays the993

same, therefore the structure of π is the same than the structure of π′, moreover the threads994

of π and π′ are the same if we remove indexes where the thread is not active. Therefore995

validity is easily preserved both ways. J996

D.3 Details on Lemma 11997

I Lemma 27. Let π0 be a µsuperLL∞(E ,≤g,≤f,≤u) proof and let π0  π1 be a µsuperLL∞(E ,≤g998

,≤f,≤u) step of reduction. There exist a finite number of µLL∞ proofs θ0, . . . , θn such that999

θ0 → . . .→ θn, π◦0 = θ0 and θn = π◦1 up to a finite number of rule permutations, done only1000

on rules that just permuted down the (mcut).1001

To prove this lemma, we need the following one. This lemma prove that when starting
from the translation of a proof containing derelictions promotions and functorial promotions,
there exist an order of execution of cut-elimination step that will make them disappear or
commute under the cut. This order depends on how the proof is translated, for instance the
following (opened) proof:

` A,B,C !f` !A, ?B, ?C
` C⊥ !f` C mcut(ι,⊥⊥)` !A, ?B

has two translations:
` A,B,C

?d` A,B, ?C
?d` A, ?B, ?C !p` !A, ?B, ?C

` C⊥ !p` C mcut(ι,⊥⊥)
` !A, ?B

` A,B,C
?d` A, ?B,C
?d` A, ?B, ?C !p` !A, ?B, ?C

` C⊥ !p` C mcut(ι,⊥⊥)
` !A, ?B

To eliminate cuts, we apply in both the same cut-elimination steps but in a different order. We1002

apply in both an (!p) commutative step, then apply in the first one a dereliction commutative1003

step and a (!p)/(?d) principal case; whereas in the second one we first apply the (!p)/(?d)1004

principal case then the dereliction commutative step.1005

I Lemma 28. Let n ∈ N, let d1, . . . , dn ∈ N and let p1, . . . , pn ∈ {0, 1}. Let π be a µLL∞-1006

proof concluded by an (mcut)-rule, on top of which there is a list of n proofs π1, . . . , πn. We1007

ask for each πi to be of one of the following forms depending on pi:1008

If pi = 1, the di + 1 last rules of πi are di derelictions and then a promotion rule. We1009

ask for the principal formula of this promotion to be either a formula of the conclusion,1010

or to be cut with a formula being principal in a proof πj on one of the last dj + pj rules.1011
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If pi = 0, the di last rules of πi are di derelictions.1012

In each of these two cases, we ask for πi that each principal formulas of the di derelictions to1013

be either a formula of the conclusion of the multicut, either a cut-formula being cut with a1014

formula appearing in πj such that pj = 1. We prove that π reduces through a finite number1015

of mcut-reductions to a proof where each of the last di + pi rules either were eliminated by a1016

(!p/?d)-principal case, or were commuted below the cut.1017

Proof. We prove the property by induction on the sum of all the di and of all the pi:1018

(Initialization). As the sum of the di and pi is 0, all di and pi are equal to 0, meaning1019

that our statement is vacuously true.1020

(Heredity). We have several cases:1021

If the last rule of a proof πi is a promotion or a dereliction for which the principal1022

formula is in the conclusion of the (mcut), we do a commutation step on this rule1023

obtaining π′. We apply our induction hypothesis on the proof ending with the (mcut);1024

and with parameters d′1, . . . , d′n as well as p′1, . . . , p′n and proofs π′1, . . . , π′n. To describe1025

these parameters we have two cases:1026

∗ If the rule is a promotion. We take for each j ∈ J1, nK, d′j = dj ; p′j = pj if j 6= i,1027

p′i = 0; π′j = πj if j 6= i.1028

∗ If the rule is a dereliction. We take for each j ∈ J1, nK, d′j = dj if j 6= i, d′i = di − 1;1029

p′j = pj .1030

The π′j will be the hypotheses of the (mcut) of π′′. Note that
∑
d′j +

∑
p′j =1031 ∑

dj +
∑
pj − 1 meaning that we can apply our induction hypothesis. Combining our1032

reduction step with the reduction steps of the induction hypothesis, we obtain the1033

desired result.1034

If there are no rules from the conclusion but that one πi ends with di > 0 and pi = 0,1035

meaning that the proof ends by a dereliction on a formula ?F . This means that there is1036

proof πj such that pj = 1 and such that ?F is cut with one of the formula of πj , namely1037

!F⊥. As there are only one !-formula, and as pj = 1, !F⊥ is the principal rule of the last1038

rule applied on πj . We therefore can perform an (!p/?d) principal case on the last rules1039

from πi and πj , leaving us with a proof π′ with an (mcut) as conclusion. We apply the1040

induction hypothesis on this proof with parameters d′1 = d1, . . . d
′
i = d′i−1 . . . , d′n = d′n,1041

p′1 = p1, . . . , p
′
j = p′j − 1, . . . , p′n = pn and with the proofs being the hypotheses of1042

the multicut. Combining our steps with the steps from the induction hypotheses, we1043

obtain the desired result.1044

We will show that the case where there are no rules from the conclusion and that no πi1045

are such that di > 0 and pi = 0, is impossible. Supposing, for the sake of contradiction,1046

that this case is possible. We will construct an infinite sequence of proofs (θi)i∈N all1047

different and all being hypotheses of the multi-cut, which is impossible. We know1048

that there exist a proof θ0 := πj ending with a promotion on a formula !A and that1049

this formula is not a formula from the conclusion. This proof is in relation by the1050

⊥⊥-relation to another proof θ1 := πj′ . We know that this proof cannot be πj because1051

the ⊥⊥-relation extended to sequents is acyclic. This proof also ends with a promotion1052

on a principal formula which is not from the conclusion. By repeating this process, we1053

obtain the desired sequence (θi)i∈N, giving us a contradiction.1054

The statement is therefore true by induction J1055

Proof of lemma 11. Reductions from the non-exponential part of µsuperLL∞(E ,≤g,≤f,≤u)1056

translates easily to one step of reduction in µLL∞. To prove the result on exponential part,1057
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we will describe each translation of the reductions of figure 5 and 7. For the commutative1058

steps no commutation of rules are necessary.1059

Step (comm!g). This step translates to the commutation of one (!)-rule in µLL∞, which1060

is one step of reduction.1061

Step (comm1
!f). We prove that lemma 28 applies to step (comm1

!f). Taking the left proof
from step (comm1

!f) and translating it in µLL∞, we obtain a proof:

π◦1
` A◦1,∆◦1 ?d` A◦1, ?∆◦1 !p` !A◦1, ?∆◦1

. . .

π◦n
` A◦n,∆◦n ?d` A◦n, ?∆◦n !p` !A◦n, ?∆◦n mcut(ι,⊥⊥)` !A◦, ?Γ◦

with ι(1) = (i, 1) for some i and n = 1 + #(C). We apply our result on this proof with1062

all the pi being equal to 1 and with di = #(∆i). Moreover, we notice that there will1063

be only one promotion rule commuting under the cut and that it commutes before any1064

dereliction, giving us the translation of the functorial promotion under the multicut.1065

Step (comm2
!f). As for (comm!g), this step only translates to the commutation of one1066

(!)-rule in µLL∞, which is one step of reduction.1067

Step (comm1
!u). This step translates to the commutation of one (!p)-rule, followed by1068

#(C!u) (!/?d) principal steps and finally one (?d) commutation giving us the translation1069

of a unary promotion under the multicut.1070

Step (comm2
!u). We prove this step using lemma 28 as for step (comm1

!f).1071

Step (comm3
!u) and (comm4

!u). Both of these steps translate to the commutation of one1072

(!p), followed by #(C!u
1 ) + 1 (!/?d) principal steps.1073

Step (comm?m ). We must distinguish three cases based on i:1074

i = 0. This step translate to one (?w)-commutative step.1075

i = 1. This step translate to one (?d)-commutative step.1076

i > 1. This step translates to i− 1 commutation of (?c) and i commutation of (?d).1077

Step (comm?c ). This step translates to i− 1 commutation of (?c).1078

Step (principal?c ). This step translates to i− 1 contraction principal cases. At the end
we obtain the following derivation under the multi-cut:

` Γ◦,

i︷ ︸︸ ︷
?Γ′◦, . . . , ?Γ′◦

?c

` Γ◦,

i−1︷ ︸︸ ︷
?Γ′◦, . . . , ?Γ′◦

...
` Γ◦, ?Γ′◦, ?Γ′◦

?c
` Γ◦, ?Γ′◦

which we can re-arrange to get the translation of #Γ′ ?~̄ρci rules on each formulas of ?Γ′◦.1079

Note that for i = 2 no rule permutation are needed.1080

Step (principal?m ). If i ≥ 1, this step translates in two phases:1081

1. First i− 1 contraction principal cases;1082

2. followed by #(S?m

C!,S′!
) (?d/!)-principal cases, and #(Γ′′) dereliction commutative cases.1083
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To prove the second phase we re-use lemma 28 as for steps (comm2
!u) and (comm1

!f).1084

Finally, the obtained proof under the multi-cut look like this:

` Γ◦,

i︷ ︸︸ ︷
?Γ′′◦, . . . , ?Γ′′◦,

i︷ ︸︸ ︷
Γ′◦, . . . ,Γ′◦

?d

` Γ◦,

i︷ ︸︸ ︷
?Γ′′◦, . . . , ?Γ′′◦,

i−1︷ ︸︸ ︷
Γ′◦, . . . ,Γ′◦, ?Γ′◦

...

` Γ◦,

i︷ ︸︸ ︷
?Γ′′◦, . . . , ?Γ′′◦,Γ′◦,

i−1︷ ︸︸ ︷
?Γ′◦, . . . , ?Γ′◦

?d

` Γ◦,

i︷ ︸︸ ︷
?Γ′′◦, . . . , ?Γ′′◦,

i︷ ︸︸ ︷
?Γ′◦, . . . , ?Γ′◦

?c

` Γ◦,

i−1︷ ︸︸ ︷
?Γ′′◦, . . . , ?Γ′′◦,

i−1︷ ︸︸ ︷
?Γ′◦, . . . , ?Γ′◦

...
` Γ◦, ?Γ′′◦, ?Γ′′◦, ?Γ′◦, ?Γ′◦

?c
` Γ◦, ?Γ′′◦, ?Γ′◦

which we can re-arrange to get the translation of #Γ′ ? ~̄ρ′′mi , followed by the translation of1085

#Γ′′ ? ~̄ρ′ci .1086

If i = 0, this step translates to a weakening principal case, giving us the translation of #Γ′1087

? ~̄ρ′′m0
and #Γ′′ ? ~̄ρ′c0

with no commutation of rules necessary. J1088

D.4 Details on Lemma 121089

I Lemma 29 (Completeness of the (mcut)-reduction system). If there is a µLL∞-redex R1090

sending π◦ to π′◦ then there exists a µsuperLL∞(E ,≤g,≤f,≤u)-redex R′ sending π to a proof1091

π′′, such that in the translation of R′, R is applied.1092

Proof. We only prove the exponential cases, the non-exponential cases being immediate. We1093

have several cases:1094

If the case is the commutative step of a contraction or a dereliction or weakening (r), as1095

it is on top of a (mcut), it necessarily means that (r) comes from the translation of a1096

multiplexing or a contraction rule (r′) which is also on top of an (mcut) in π, we can take1097

R′ as the step commutating (r′) under the cut.1098

If it is a principal case again, we have that there is a contraction or a dereliction1099

or weakening rule (r) on top of a (mcut) on a formula ?A. It also means that each1100

proofs cut-connected to ?A ends with a promotion. As π◦ is the translation of a1101

µsuperLL∞(E ,≤g,≤f,≤u)-proof, it means that (r) is contained in the translation of a1102

multiplexing or contraction rule (r′) on a formula ?σA on top of a (mcut). It also means1103

that all the proofs cut-connected for this (mcut) to ?σA are translations of promotions1104

(no other rules than a promotion in µsuperLL∞(E ,≤g,≤f,≤u) translates to a derivation1105

ending with a promotion). Therefore the principal case on (r′) is possible, we can take1106

R′ as it.1107

If it is the commutative step of a promotion (r), it means that all the proofs of the1108

contexts of the (mcut) are promotions. Meaning that (r) is contained in the translation1109
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of a promotion (r′) on top of (mcut). We also have that the context of this (mcut) are1110

only proof ending with a promotion for the same reasons that last point. We therefore1111

need to make sure that each (mcut) with a context full of promotions are covered by the1112

 -relation. Looking back at figure 5 together with conditions given by each corresponding1113

lemmas, we have that:1114

Each (!g)-commutation is covered by the first case.1115

Each (!f)-commutation is covered by the two cases that follows: the second of the1116

two covers the case where there is an (!g)-promotion in hypotheses of the multicut1117

with non-empty context, whereas the first one covers the case where there are no such1118

(!g)-promotions in the hypotheses.1119

The (!u)-commutation is covered by all the remaining cases:1120

∗ The first one covers (!u)-commutation when the hypotheses are all concluded by an1121

(!u)-rule.1122

∗ (!u)-commutation with (!f)-rules and (possibly) (!g)-rule with empty context are1123

covered by the second case.1124

∗ (!u)-commutation with (!f)-rules and (!g)-rule with non-empty contexts is covered1125

by the third and the fourth cases: the third case covering all the cases where the1126

chain of (!u) encounters a (!f) first, the fourth one when it encounter a (!g) first.1127

∗ (!u)-commutation without (!f) rules but with (!g) with or without empty contexts is1128

covered by last case.1129

J1130

D.5 Details on the translation of fair reduction sequences1131

I Corollary 5. For every fair µsuperLL∞(E ,≤g,≤f,≤u) reduction sequences (πi)i∈ω, there1132

exists:1133

a fair µLL∞ reduction sequence (θi)i∈ω;1134

a sequence of strictly increasing (ϕ(i))i∈ω natural numbers;1135

for each i, an integer ki and a finite sequence of rule permutations (pki )k∈J0,ki−1K starting1136

from π◦i and ending θϕ(i). For convenience in the proof, let’s denote by (πki )k∈J0,kiK be1137

the sequence of proofs associated to the permutation;1138

for all i > i′, pki > pk
′

i if k′ ∈ J0, ki′ − 1 and k ≥ ki′ ;1139

for all i, k, pki are positions lower than the multicuts in π◦i .1140

for each i′ ≥ i and for each k ∈ J0, ki − 1K, pki′ = pki1141

Proof. We construct the sequence by induction on the steps of reductions of (πi)i∈ω.1142

For i = 0: we take θ0 = π◦0 , ϕ(0) = 0 and k0 = 0.1143

For i + 1, suppose we constructed everything up to rank i. We use lemma 11 on the1144

step πi → πi+1 and get a finite sequence of reduction θ′0 → · · · → θ′n, such that there is a1145

permutation of rules (p1, . . . , pm) (m ∈ N) starting on π◦i+1 and ending on θ′n such that1146

p1, . . . , pm are at the depths of rules that just commuted down the multicut during the1147

sequence θ′0 → · · · → θ′n. We have that θ′0 = π◦i , therefore (p0
i , . . . , p

ki−1
i ) is a sequence of1148

reduction starting from θ′0 and ending on θϕ(i). As θ′0 and θ′j are equal under the multicut1149

rules of θ′0 (for each j ∈ J0, nK) and that depths pji , j ∈ J0, ki − 1K are under the multicuts1150

of πi , we have that (p0
i , . . . , p

ki−1
i ) is a sequence of rule permutation starting on proof θ′j .1151

Let’s denote by θ′0j , . . . , θ′
ki
j the sequence of proof associated to it. We have that for the1152

same reason, θ′j is equal to θ′kij on top of the depths of multicuts of θ′j . We therefore have1153

that θ′ki0 , . . . , θ
′ki
n is an (mcut) reduction sequence of µLL∞ starting from θϕ(i). As the1154

two sequences of reductions p1, . . . , pm and p0
i , . . . , p

ki−1
i have disjoint sets of rules with1155
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non-empty traces, we have that p0
i , . . . , p

ki−1
i , p1, . . . , pm is a sequence of rule permutation1156

starting from π′i+1 and ending on the same proof than the proof ending the sequence1157

p1, . . . , pm, p
0
i , . . . , p

ki−1
i , namely θ′kin . By setting ϕ(i+ 1) := ϕ(i) + n, θϕ(i)+j := θ′

ki
j1158

(for j ∈ J0, nK), pji+1 = pji for j ≤ ki − 1 and pki−1+j
i+1 = pj for j ∈ J1,mK, we have1159

our property.1160

Here is a summary of the objects used in the inductive step:1161

πi πi+1

π◦i+1

π◦i = θ′0 . . . θ′j . . . θ′n

θ′
1
0 θ′

1
j θ′

1
n

...
...

...

θ′
ki
0 = θϕ(i) . . . θ′

ki
j . . . θϕ(i+1)

p0
i

p1,...,pm

1162

We get fairness of (θi)i∈ω from lemma 12 and from the fact that after the translation of1163

an (mcut)-step, π◦  π′
◦, each residual of a redex R of π◦, is contained in the translations1164

of residuals of the associated redex R′ of lemma 12. J1165

D.6 Details on the main theorem1166

I Theorem 5. Every fair (mcut)-reduction sequence of µsuperLL∞(E ,≤g,≤f,≤u) converges1167

to a µsuperLL∞(E ,≤g,≤f,≤u) cut-free proof.1168

Proof. Consider a µsuperLL∞(E ,≤g,≤f,≤u) fair reduction sequence (πi)i∈1+λ (λ ∈ ω + 1).1169

If the sequence is finite, we use lemma 11 and we are done. If the sequence is infinite, using1170

corollary 1 we get a fair infinite µLL∞ reduction sequence (θi)i∈ω and a sequence (ϕ(i))i∈ω1171

of natural numbers. By theorem 1, we know that (θi)i∈ω converges to a cut-free proof θ1172

of µLL∞. We now prove that the sequence (πi)i∈ω converges to a µsuperLL∞(E ,≤g,≤f,≤u)1173

pre-proof π such that π◦ = θ up to a permutation of rules (the permutations of one particular1174

rule being finite).1175

First, we prove that for each depth d, there is an i such that there are no (mcut)-rules1176

under depth d in πi. Suppose for the sake of contradiction that there exist a depth d such1177

that there always exist a (mcut) at depth d. There is a rank i′ and an (mcut) rule in πi′1178

such that for each i ≥ i′, πi will always contain this (mcut) and (therefore) the branch b to1179

it never changes. The translations π◦i′ contains the translation of the branch b which also1180

ends with an mcut. Since π◦i′ is equal to θϕ(i′) up to the permutations of rules under the1181

multicut and that these permutations do not change the depths of the (mcut) rules, we have1182

that the θϕ(i) all contains a (mcut) at a depth equal to the depth of the translation of b.1183
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This contradicts the productivity of this sequence of reduction, we therefore have that (πi)1184

converges to a pre-proof π.1185

Second, we prove that π◦ is equal to θ up to a permutation of rules (the permutations of
one particular rule being finite). The condition on the sequence given by corollary 1 defines
a sequence of rule permutation starting from π◦:

p0
0, . . . , p

k0−1
0 , pk0

1 , . . . , p
k1−1
1 , . . . , pkn−1

n , . . . , pknn+1, . . . ,

moreover we have that this is a permutation of rules with finite permutation, therefore this
sequence of rule permutation converges to a µLL∞ pre-proof π′. We have for each i, that the
end of the sequence of rule permutation

p0
0, . . . , p

k0−1
0 , pk0

1 , . . . , p
k1−1
1 , . . . , p

ki−1
i , . . . , pki−1

i

starting from π◦ is equal to πkii under the multicuts. Therefore we have that the sequence1186

(πkii )i∈ω = (θϕ(i))i∈ω converges to π′ and therefore that π′ = θ. As rule permutation with1187

finite permutation and (−)◦ translation are robust to validity (both ways), we have that π is1188

valid. J1189

D.7 Details on corollary 21190

I Corollary 6 (Cut Elimination for superLL). Cut elimination holds for superLL(E ,≤g,≤f,≤u)1191

as soon as the 8 cut-elimination axioms of definition 1 are satisfied.1192

Proof. Any superLL(E ,≤g,≤f,≤u)-proof is also µsuperLL∞(E ,≤g,≤f,≤u)-proof therefore any1193

sequence of (mcut)-reductions converges to a cut-free proof. A cut-free proof of sequents con-1194

taining only superLL(E ,≤g,≤f,≤u)-formulas and valid rules from1195

µsuperLL∞(E ,≤g,≤f,≤u) is necessarily a superLL(E ,≤g,≤f,≤u) (cut-free) proof. J1196
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