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ABSTRACT
This paper investigates the question of denotational invariants of

non-wellfounded and circular proofs of the linear logic with least

and greatest fixed-points. Indeed, while non-wellfounded and circu-

lar proof theory made significant progress in the last twenty years,

the corresponding denotational semantics is still underdeveloped.

A categorical semantics for non-wellfounded proofs is provided,

building on the categorical axiomatization in [25]. Several prop-

erties of the semantics are then studied: its soundness, and the

semantical content of the translations from finitary proofs to circu-

lar proofs and strongly valid circular proofs to finitary proofs. Then

we will capture the syntactic validity criterion by considering a

orthogonality construction [33] on the given categorical model. We

also study two concrete models. The first is based on the category

of sets and relations, and the second one is based on a notion of

totality [25]. Finally, the paper focuses on circular proofs, trying to

benefit from their regularity in order to define inductively the in-

terpretation function. It is argued why the usual validity condition

is too general for that purpose, while a fragment of circular proofs,

strongly valid proofs, constitutes a well-behaved class for such an

inductive interpretation.
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1 INTRODUCTION
In the framework of logics providing induction and potentially coin-

duction (such as the 𝜇-calculus, logics with inductive definitions,

logics for Kleene algebras, etc...), circular and non-wellfounded

proofs have gained growing attention over the past twenty years.

Different proof systems have been considered for various logics:

for classical logic [13–15], for intuitionistic logic [17], for linear

logic [8, 22, 27, 42] as well as for linear-time or branching-time

temporal logics [2, 21, 24, 35, 50, 50].

Beside non-wellfounded proof systems, there are also finitary

proof systems that allow us to do inductive and coinductive rea-

soning. For instance, in the case of linear logic, Baelde and Miller

considered an extension 𝜇MALL of multiplicative additive linear

logic with induction and coinduction principles [3, 9] in the form

of Park’s rules. It is worth mentioning that actually those finitary
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proofs systems predate the circular ones in general. It seems that

it is generally accepted that if we want to have a cut-elimination

theorem for the finitary proof systems with an induction principle,

then the price to pay is to lose the sub-formula property [37]. There

are basically two ways to solve this, by considering either infinitary

logic in the sense of [44, 47], or non-wellfounded proofs as above.

The relationship between finitary and non-wellfounded proof

systems is an important and often difficult question, which remains

open for a number of systems. In particular, in the substructural

versions of the 𝜇-calculus, it is not known whether the regular

fragment of non-wellfounded proofs coincides with the finitary

fragment. Berardi and Tatsuta showed [12] that in general circular

and inductive proofs are not equivalent for the system of inductive

definitions in classical logic for the first-order language [15]. It

is also shown, by Simpson [45] on the one hand and Berardi and

Tatsuta [11] on the other hand, that circular and inductive proofs

are equivalent for classical logic when both systems (inductive and

circular) contain Peano arithmetic. This question is still open for

linear logic, and what we only know till now is that the provability

of 𝜇LL∞ circular proofs is strictly included in the provability of

arbitrary 𝜇LL∞ proofs based on the recent result by Das et al. [19].

However, one inclusion is clear, it proceeds by “unfolding” the

(co)inductive inferences using the ability to build circular reason-

ings. In the case of 𝜇MALL, the finitary version of Park’s rule [51]

(the (𝜈rec) rule) will be transformed to the following circular proof:

𝜋1
⊢ Δ, 𝐴

𝜋2

⊢ 𝐴⊥, 𝐹 [𝐴/𝜁 ]
(𝜈rec)⊢ Δ, 𝜈𝜁 .𝐹

;

⊢𝐴⊥, 𝜈𝜁 .𝐹
(𝔉𝐹 )

⊢ (𝐹 [𝐴/𝜁 ])⊥, 𝐹 [𝜈𝜁 .𝐹/𝜁 ]
𝜋2

⊢ 𝐴⊥, 𝐹 [𝐴/𝜁 ]
(cut)

⊢ 𝐴⊥, 𝐹 [𝜈𝜁 .𝐹/𝜁 ]
(𝜈)

⊢𝐴⊥, 𝜈𝜁 .𝐹
𝜋1

⊢ Δ, 𝐴
(cut)

⊢ Δ, 𝜈𝜁 .𝐹

Such translations are known to preserve provability. The present

paper aims at clarifying the situation on operational properties of

such translations to provide an evidence for the correctness of these

translations from a Curry–Howard correspondence perspective.

Hence we first need to a develop denotational semantics of 𝜇LL∞.

Indeed, while the proof theory of circular proofs made progress

in the last twenty years, their denotational semantics is still under-

developed. Santocanale considered circular proofs in the framework

of purely Additive linear logic, and he provided a categorical inter-

pretation of circular proofs in 𝜇-bicomplete categories [27, 42]. In

this paper we will consider the full linear logic.

A categorical model of 𝜇LL is provided in [25] which is based

on the standard notion of Seely category of classical linear logic

and on strong functors acting on them. Baelde et al. [6] provided a

denotational semantics for 𝜇MALL (finitary) proofs in the setting of

Girard’s ludics [32]: while considering finitary proofs, the interpre-

tation considers an interpretation space made of infinitary objects

(ludics’ designs are sorts of Böhm trees) and the interpretation relies

on both the unfolding of 𝜇MALL proofs and, when they prove a

completeness result, a finitization process for designs.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Contributions. This paper first revisits the syntactical relation-
ship between the finitary and circular proofs in section 3. The trans-

lation from 𝜇MALL to circular proofs is extended to 𝜇LL. In the

other direction, there is a translation from circular proofs to finitary

ones under a condition so-called strongly valid proofs, and we have

obtained a weaker condition to do this finitization. Then we inves-

tigate the question of denotational invariants of non-wellfounded

proofs of linear logic with least and greatest fixed points.

A categorical semantics for non-wellfounded proofs is provided

in section 4, by considering a Cpo structure on the categorical

model of 𝜇LL in [25]. Then we have provided a refinement of our

categorical model in section 5, based on the focused orthogonality

construction given [33], to capture the syntactic validity criterion.

We exhibit two simple instances of our settings. The first one is

based on the category Rel of sets and relations, and the second

one is an enrichment of Rel by considering sets equipped with an

additional structure of totality: a non-uniform totality space (NUTS)

is a pair 𝑋 = ( |𝑋 |,T (𝑋 )) where |𝑋 | is a set and T (𝑋 ) is a set of
subsets such that it coincides with its bidual for a duality expressed

in terms of non-empty intersections.

This semantics is used to investigate the denotational content of

the standard translation from finitary proofs to non-wellfounded

ones: it is shown that the above mentioned translation from finitary

proofs to circular ones is denotationally transparent (preserving

semantics), suggesting that it is the correct translation (section 4.4).

Moreover, the paper studies some properties of this semantics:

• the semantics is indeed sound in the sense that each proof

of an infinite cut-reduction sequence of proofs converging

to a cut-free valid proof has the same interpretation as its

limit (section 4.2);

• it is also shown that valid proofs are interpreted as morphism

in the focused orthogonality category, and hence as total

elements of the semantics in Nuts (section 5.3).

In the case of the concrete model Nuts, although it is not true in

general that the totality of the interpretation of a proof implies its

validity, the notion of totality in NUTS provides a sort of maximal

notion for validity as, intuitively, T (𝑋 ) represents the total, that is,
terminating computations of type 𝑋 .

Even though it is still not clear if all circular proofs can be fini-

tized, there is a proper fragment of circular proofs, called strongly
valid proofs, that can be transformed to finite proofs [7, 22]. We

will show that our semantics is transparent in the sense that the

interpretation of the proofs are preserved via this transformation

(section 6.1). Based on this result, we relax our assumption of having

a Cpo-enriched category, and we provide a parameterized inter-

pretation of strongly valid circular proofs by benefiting from their

finitely presentable structure (section 6.2).

Slogan. This paper widens the ever-present “circular” certifi-

cation between syntax and semantics to non-wellfounded proof

theory in linear logic. Our semantics approves the design of the

syntax by proving that the syntactical finitization does not change

the semantics, and the syntax approves the design of the semantics

by proving that the interpretations can be defined via syntactical

unfolding.

2 BACKGROUND
Linear logic (LL) was introduced by Jean-Yves Girard in his seminal

work [30]. LL is a refinement of both classical and intuitionistic logic

taking its roots in the analysis of the denotational interpretation

of System F in coherence spaces [29]. Contrary to classical logic

LK, LL is a substructural logic: one does not have free access to the

structural rules of weakening and contraction. More precisely, we

can only weaken and contract formulas if they have been marked

with the so-called exponential modalities.

The remainder of this section recalls how one can extend LL
with least and greatest fixed points operators.

2.1 Syntax of formulas of linear logic with
fixpoints of types

We assume to be given an infinite set of propositional variables

V (ranged over by Greek letters 𝜁 , 𝜉 . . . ). We introduce a language

of propositional LL formulas with least and greatest fixed points,

called 𝜇LL pre-formulas:

𝐴, 𝐵, · · · :=1 | ⊥ | 𝐴 ⊗ 𝐵 | 𝐴` 𝐵 | 0 | ⊤ | 𝐴 ⊕ 𝐵 |
𝐴 & 𝐵 | !𝐴 | ?𝐴 | 𝜁 | 𝜇𝜁 𝐴 | 𝜈𝜁 𝐴

The notion of closed types is defined as usual, the two last construc-

tions being the only binders. We refer to closed pre-formulas as

𝜇LL formulas. We can define three basic operations on formulas.

• Substitution: 𝐴 [𝐵/𝜁 ], taking care of avoiding the capture of

free variables (using 𝛼-conversion).

• Negation or dualization: defined by induction on formulas

as usual for LL formulas plus (𝜁 )⊥ = 𝜁 , (𝜇𝜁 𝐴)⊥ = 𝜈𝜁 (𝐴)⊥
and (𝜈𝜁 𝐴)⊥ = 𝜇𝜁 (𝐴)⊥. Clearly 𝐴⊥⊥ = 𝐴 for any formula.

• Sub-formula: We consider two notions of sub-formulas, the

usual one and a notion of sub-formula which is specific to

the 𝜇-calculus, the Fischer-Ladner subformulas. Those are

defined in Appendix A.

In the following sections, we shall consider two proof systems

for deriving judgments concerning 𝜇LL formulas, a finitary proof

system and a non-wellfounded one. Those proof systems derive

sequents ⊢ Γ where Γ is an ordered list of 𝜇LL formulas.

Remark 1. Using sequents as lists allows us to distinguish two
different occurrences of the same formula in a sequent, by referring
to their respective position in the sequent. The ability to distinguish
occurrences is crucial to give a computational content to proofs and,
in the following, it will even be required to define what is a valid

non-wellfounded proof, using the notion of threads.
The inference rule to be introduced in the following subsections will

be equipped with a (pretty standard [16]) notion of formula ancestor,
relating for each inference, occurrences of formulas in the conclusion
to occurrences of formulas in the premisses. The ancestry relation
will be defined graphically in the proof system (as colored links) and
will usually be kept implicit on examples unless useful, such as when
exhibiting a validating thread. When we depict a line linking a list
in the conclusion to the same list in the premise, we mean that each
formula of the list is in relation with the formula in the same position
in the other list.
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The identity and structural fragments:

(Ax)
⊢ 𝐹, 𝐹⊥

⊢ Γ, 𝐹 ⊢ 𝐹⊥,Δ
(Cut)

⊢ Γ,Δ

⊢ Γ,𝐺, 𝐹,Δ
(X)

⊢ Γ, 𝐹 ,𝐺,Δ

The multiplicative fragment:

⊢ 𝐹,𝐺, Γ
(`)

⊢ 𝐹 `𝐺, Γ

⊢ 𝐹, Γ ⊢ 𝐺,Δ
(⊗)

⊢ 𝐹 ⊗ 𝐺, Γ,Δ
⊢ Γ

(⊥)
⊢ ⊥, Γ

(1)
⊢ 1

The additive fragment:

⊢ 𝐹, Γ ⊢ 𝐺, Γ
(&)

⊢ 𝐹 &𝐺, Γ

⊢ 𝐴𝑖 , Γ
(⊕i)⊢ 𝐴1 ⊕ 𝐴2, Γ

(⊤)
⊢ ⊤, Γ

(no rule for 0)

The exponential fragment:

⊢ 𝐹, Γ
(?d)

⊢?𝐹, Γ
⊢ 𝐹, ?Γ

(!p)
⊢!𝐹, ?Γ

⊢ Γ
(?w)

⊢?𝐹, Γ
⊢?𝐹, ?𝐹, Γ

(?c)
⊢?𝐹, Γ

Figure 1: Inference rules of LL

⊢ Γ, 𝐹 [𝜇𝜁 .𝐹/𝜁 ]
(𝜇)

⊢ Γ, 𝜇𝜁 .𝐹

⊢ Δ, 𝐴 ⊢ ?Γ, 𝐴⊥, 𝐹 [𝐴/𝜁 ]
(𝜈rec)⊢ Δ, ?Γ, 𝜈𝜁 .𝐹

Figure 2: Fixed-point inference rules of 𝜇LL

⊢ 𝐹 [𝜇𝜁 .𝐹/𝜁 ], Γ
(𝜇)

⊢ 𝜇𝜁 .𝐹, Γ
⊢ 𝐹 [𝜈𝜁 .𝐹/𝜁 ], Γ

(𝜈)
⊢ 𝜈𝜁 .𝐹, Γ

Figure 3: Fixed-point inference rules of 𝜇LL∞

2.2 Finitary 𝜇LL
In the present section, we will briefly describe the syntax of proofs

of 𝜇LL [3]. The proof system of 𝜇LL, extends the usual one-sided se-
quent calculus of classical propositional LL [30], which are recalled

in Figure 1, with the (𝜇) and (𝜈rec) rules, given in Figure 2.

Example 2.1. As an example, consider the type of natural num-

bers nat = 𝜇𝜁 .(1⊕𝜁 ) and its dual nat⊥ = 𝜈𝜁 .(⊥&𝜁 ). The following
𝜇LL proofs correspond respectively to the encoding of the natural

numbers and of the successor function:

𝜋0 =

(1)
⊢ 1

(⊕1)⊢ 1 ⊕ nat
(𝜇)⊢ nat

𝜋k+1 =
𝜋k

(⊕2)⊢ 1 ⊕ nat
(𝜇)⊢ nat

𝜋succ =

(Ax)
⊢ nat⊥, nat

(⊕2)
⊢ nat⊥, 1 ⊕ nat

(𝜇)
⊢ nat⊥, nat

2.3 Non-well-founded LL with fixed points
(𝜇LL∞)

The syntax of 𝜇LL∞ formulas is exactly the same as the one for

𝜇LL in 2.2. The inference rules of 𝜇LL∞ is the extension of rules

of [8, 22] with exponential rules of LL. In other words, the inference

rules of 𝜇LL∞ are the rules of LL [30] (see Figure 1) plus the two

fixed-point inferences given in Figure 3.

Definition 2.2 (𝜇LL∞ pre-proofs). A 𝜇LL∞ pre-proof is a possibly

infinite tree, generated by the inference rules of 𝜇LL∞. Among all

𝜇LL∞ pre-proofs, the regular (or circular, or cyclic) proofs are the

ones that have finitely many sub-trees.

Those circular proofs can be represented with finite proof-trees

having back-edges or labels (see example below). Such a finite

graph (ie a finite tree with back-edges) 𝑅 can be unfolded to a 𝜇LL∞
pre-proof Unfold(𝑅). This unfolding is of course non-injective and

given a pre-proof 𝜋 , any 𝑅 such that Unfold(𝑅) = 𝜋 is called a

finite representation of 𝜋 . The necessary technical apparatus for

reasoning on those finite representations is detailed in Doumane’s

thesis [22]: we shall follow her definition and only recall the most

important definitions useful for stating our results.

Example 2.3. The following proof corresponds to the function
from nat to nat which returns the double of its input:

𝜋𝑑𝑜𝑢𝑏𝑙𝑒 =

(1)
⊢ 1

(⊕1)⊢ 1 ⊕ nat
(𝜇)⊢ nat
(⊥)⊢ ⊥, nat

⊢ nat⊥, nat
(⊕2)

⊢ nat⊥, 1 ⊕ nat
(𝜇)

⊢ nat⊥, nat
(⊕2)

⊢ nat⊥, 1 ⊕ nat
(𝜇)

⊢ nat⊥, nat
(&)

⊢ ⊥ & nat⊥, nat
(𝜈)

⊢ nat⊥, nat
However, in general the pre-proofs can be unsound. For instance

one can provide a pre-proof for any sequent ⊢ Γ (and in particular

a pre-proof of the empty sequent ⊢) as follows:
... (𝜈)

⊢ 𝜈𝜁 .𝜁
(𝜈)

⊢ 𝜈𝜁 .𝜁

... (𝜇)
⊢ Γ, 𝜇𝜁 .𝜁

(𝜇)
⊢ Γ, 𝜇𝜁 .𝜁

(cut)
⊢ Γ

In [8, 22], a criterion, called validity condition, is provided in

order to distinguish proper proofs from pre-proofs. We only sum

up this criterion here and provide some examples, and we refer

to [8, 22, 39] for more details.

Definition 2.4. An infinite branch of a pre-proof 𝜋 is a sequence

(Γ𝑖 , 𝑗𝑖 )𝑖∈𝜔 of pairs of sequents and indices, for 𝑗𝑖 ∈ {1, 2}, such that

Γ0 is the root of 𝜋 , Γ𝑖+1 is the 𝑗𝑖 th premises of Γ𝑖 in the proof tree

for each 𝑖 ∈ 𝜔 .

Definition 2.5. A thread on an infinite branch 𝛽 = (Γ𝑖 , 𝑗𝑖 )𝑖∈𝜔 is

an infinite sequence of formula occurrences 𝑡 = (𝐹𝑖 )𝑘≤𝑖∈𝜔 such

that for any 𝑖 ≥ 𝑘 , 𝐹𝑖 ∈ Γ𝑖 and 𝐹𝑖+1 is an immediate ancestor of 𝐹𝑖 .

A thread 𝑡 is stationary if only finitely many of the 𝐹𝑖 are princi-

pal
1
in Γ𝑖 . We denote by Inf (𝑡) the set of recurring formulas, that

occur infinitely often in 𝑡 .

With each infinite branch is associated a set of threads. Notice

that there is not a unique thread in general (and there may be none).

For instance, the following proof has two threads:

... (𝜈)
⊢ 𝜇𝜁 .𝜁 , 𝜈𝜉 .𝜉

(𝜈)
⊢ 𝜇𝜁 .𝜁 , 𝜈𝜉 .𝜉

.

The threads are 𝑡1 = 𝜇𝜁 .𝜁 , 𝜇𝜁 .𝜁 , 𝜇𝜁 .𝜁 , · · · and 𝑡2 = 𝜈𝜉 .𝜉, 𝜈𝜉 .𝜉, 𝜈𝜉 .𝜉, · · · .
Since the only rule applied in the proof is the (𝜈) rule, the formulas

𝜇𝜁 .𝜁 are never principal, and the thread corresponding to the 𝜇𝜁 .𝜁

is called stationary.
Now, we have all the required material to define the notion of

valid threads and then valid proofs.

1
By principal formula, we mean the one that the inference rule is applied on.
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(𝑎) (𝑏)

⊢ 𝐹 ⊢ 𝐺 (⊗)
⊢ 𝐹 ⊗ 𝐺 (𝜈)
⊢ 𝐺 (𝜇)
⊢ 𝐹

⊢ 𝐹,𝐺 (⊥)
⊢ 𝐹,⊥,𝐺 (⊕2)⊢ 𝐹,𝐺 ⊕ ⊥,𝐺 (`)

⊢ (𝐹 ` (𝐺 ⊕ ⊥)),𝐺
(⊕2)⊢ 1 ⊕ (𝐹 ` (𝐺 ⊕ ⊥)),𝐺
(𝜇)

⊢ 𝐺,𝐺 (𝜈)
⊢ 𝐹,𝐺

Figure 4: Examples of valid and non valid pre-proofs.

Definition 2.6. A valid thread 𝑡 is a non-stationary thread such

that Inf (𝑡) has as minimum (with respect to the usual sub-formula

ordering) a 𝜈-formula.

Appendix A provides details on 𝜇LL∞ subformulas and the min-

imality invoked above.

Definition 2.7. A valid 𝜇LL∞ proof (or 𝜇LL∞ proof, for short) 𝜋 is

a pre-proof 𝜋 such that any infinite branch contains a valid thread.

Remark 2 (On validity of finite representations). The
above notions of infinite branch, thread and validity on non-wellfounded
proofs directly applies for the regular fragment and can naturally be
adapted to finite representations of circular proofs. In that case, we
shall, as in [22], consider respectively an infinite path in a finite repre-
sentation (corresponding to an infinite branch), a trace (corresponding
to a thread, ie. a sequence of ancestor-related formula occurrences of
a finite representation) for an infinite path and of a valid trace.

Doumane [22] proved the expected correspondence between valid
traces and valid threads in the unfolding as well as validity of a finite
representation 𝑅 and of its unfolding Unfold(𝑅), which holds in the
same way whether one considers locative occurrences as in [5, 8, 22]
or sequents as ordered lists as in [39, 43], see [40] for details.

On the other hand, using finite representations allows us to state
some additional definitions, taking benefit from the circular structure,
such as that of strongly connected component of a finite representation
(which can be seen as corresponding to a class of infinite branches).
While the above notion of validity of finite representation is invariant
by unfolding, we shall see later in this paper a notion of validity, strong
validity, that is sensitive to the choice of a finite representation.

We now examine some valid and non-valid pre-proofs.

Example 2.8. Let us consider Figure 4.(a) presenting a derivation
of formula 𝐹 = 𝜇𝜁 .(𝜈𝜉 .(𝜁 ⊗ 𝜉)) where 𝐺 = 𝜈𝜉 .(𝐹 ⊗ 𝜉). The left-
most branch has a single thread that is 𝑡 = 𝐹,𝐺, (𝐹 ⊗ 𝐺), 𝐹 , · · · , so,
min(Inf (𝑡)) = 𝐹 . Hence this thread is not a valid thread, and there

is no more thread on this branch. Hence this proof is not valid.

Let us consider another example in Figure 4.(b), with 𝐹 = 𝜈𝜁 .𝜇𝜉 .(1⊕
(𝜁 ` (𝜉 ⊕⊥))) and𝐺 = 𝜇𝜉 .(1 ⊕ (𝐹 ` (𝜉 ⊕⊥))). For the thread 𝑡2 =
𝐹,𝐺, (1 ⊕ (𝐹 ` (𝐺 ⊕ ⊥))), (𝐹`(𝐺⊕⊥)), 𝐹 , · · · wehavemin(Inf (𝑡2)) =
𝐹 , since 𝐹 ⩽sub 𝐺 . Hence 𝑡2 is a valid thread and this proof is valid.

The set of primitive (single step) reduction rules of 𝜇LL∞ are the

ones for LL plus the following one together with the corresponding

commutation rules (Figure 3.2 of [22]).

The proof

𝜋

⊢ Γ, 𝐹 [𝜇𝜁 .𝐹/𝜁 ]
(𝜇)

⊢ Γ, 𝜇𝜁 .𝐹

𝜋 ′

⊢ Δ, 𝐹⊥
[
𝜈𝜁 .𝐹⊥/𝜁

]
(𝜈)

⊢ Δ, 𝜈𝜁 .𝐹⊥
(cut)

⊢ Γ,Δ

reduces

to

𝜋

⊢ Γ, 𝐹 [𝜇𝜁 .𝐹/𝜁 ]
𝜋 ′

⊢ Δ, 𝐹⊥
[
𝜈𝜁 .𝐹⊥/𝜁

]
(cut)

⊢ Γ,Δ

.

Various cut-elimination theorems on non-wellfounded proofs

are proved in [4, 8, 22] and especially of 𝜇LL∞ itself [43] but the

rest of the paper does not rely on those normalization results, so

that they can safely be ignored. We end this section by stating the

functoriality of 𝜇LL∞ which we will use in Section 4.4:

Proposition 2.9. Let (𝜁 , 𝜉1, . . . , 𝜉𝑘 ) be a list of pairwise distinct
propositional variables containing all the free variables of a formula
𝐹 and let

−→
𝐶 = (𝐶1, . . . ,𝐶𝑘 ) be a sequence of closed formulas. Then

the following rule is admissible in 𝜇LL∞:

⊢ ?Γ, 𝐴⊥, 𝐵 (𝔉𝐹 )
⊢ ?Γ, (𝐹 [𝐴/𝜁 ,−→𝐶 /−→𝜉 ])⊥, 𝐹 [𝐵/𝜁 ,−→𝐶 /−→𝜉 ]

Proof. The proof is done by induction on the formula 𝐹 , and

we refer to Definition 2.38 of [22] for details. The presence of expo-

nentials does not modify the proof in any non trivial way [34]. □

3 CIRCULAR VS FINITARY PROOFS
Relating finitary proof and regular non-wellfounded proofs is no-

touriously difficult[11–14, 22, 45]. In this section, we will study the

syntactic relation between the circular 𝜇LL∞ proofs and 𝜇LL proofs

by reviewing and extending known results about translations fini-

tary and circular proof in 𝜇LL. Their semantical relation will be

studied in Sections 4.4 and 6.1.

3.1 Unfolding 𝜇LL proofs to circular proofs
As it is discussed in [22] for a wide class of fixed-point sequent

calculi, provability of a sequent in a finitary sequent calculus with

Park’s rule entails its provability in the associated non-wellfounded

sequent calculus. This can be done by translating a proof 𝜋 of the

finitary proof system to a circular proof, Trans (𝜋), in the non-

wellfounded proof system.

Here, we straightforwardly adapt the result from Doumane’s the-

sis to 𝜇LL. (Our version of 𝜇LL differs from the calculus considered

in [22] as we use a more powerful (𝜈rec) rule.)

Definition 3.1 (Trans (𝜋)). For any 𝜇LL proof 𝜋 , we define by

induction on the structure of 𝜋 a 𝜇LL∞ pre-proof Trans (𝜋) deriving
the same sequent as 𝜋 . We just show the case of the (𝜈rec) rule as the
other ones are trivially defined homomorphically (See Appendix D

for details):

Trans ©­«
𝜋1

⊢ Δ, 𝐴
𝜋2

⊢ ?Γ, 𝐴⊥, 𝐹 [𝐴/𝜁 ]
(𝜈rec)⊢ Δ, ?Γ, 𝜈𝜁 .𝐹

ª®¬ is the following circu-
lar pre-proof using the functoriality of formulas given in Section 2.3:
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⊢?Γ, 𝐴⊥, 𝜈𝜁 .𝐹
(𝔉𝐹 )

⊢ ?Γ, (𝐹 [𝐴/𝜁 ])⊥, 𝐹 [𝜈𝜁 .𝐹/𝜁 ]
Trans (𝜋2)

⊢ ?Γ, 𝐴⊥, 𝐹 [𝐴/𝜁 ]
(cut)

⊢ ?Γ, ?Γ, 𝐴⊥, 𝐹 [𝜈𝜁 .𝐹/𝜁 ]
(𝜈)

⊢ ?Γ, ?Γ, 𝐴⊥, 𝜈𝜁 .𝐹
(c)

⊢?Γ, 𝐴⊥, 𝜈𝜁 .𝐹
Trans (𝜋1)
⊢ Δ, 𝐴

(cut)
⊢ Δ, ?Γ, 𝜈𝜁 .𝐹

The following is proved similarly to Proposition 2.14 of [22].

Proposition 3.2. For any 𝜇LL proof 𝜋 , Trans (𝜋) is a valid 𝜇LL∞
proof of the same sequent.

3.2 From circular to finitary proofs
The converse translation, that is going from circular proofs to fini-

tary ones, is much more involved since one must find the appropri-

ate co-inductive invariants for Park’s rule (𝜈rec) by looking at the

circular proofs which does not contain such invariants.

We do not know of any general translation from 𝜇LL∞ circular

proofs into finitary ones (while we know, by [20] that there are

non-wellfounded, non circular proofs of 𝜇LL∞ proofs which cannot

be finintized). However, there are some proper fragments of 𝜇LL∞
for which the structure of validity conditions is simple enough so

as to allow us to extract invariants. The simplest such fragment

corresponds to Santocanale’s original setting for circular proofs,

that is 𝜇ALL∞ in which any circular proof can be finitized to a 𝜇ALL
proof. Such a finitization has been partially extended to the 𝜇LL∞
as well as shown by Doumane [22]. She considers a fragment of

translatable circular proofs characterized by the condition that each

translatable proof has a circular representation such that along

every infinite path (that is any infinite branch of its unfolding),

there exists a strongly valid trace 𝑡 , that is a trace such that exactly

one formula of each recurring sequent of the circular representation
is visited by 𝑡 . Such a finitization was first considered in the study

of an interpretation of 𝜇MALL in Ludics [7], and then used for the

linear-time 𝜇-calculus [23] and finally stated in a general way in

Doumane’s PhD [22] as the translatability condition.

In the following, we shall relax Doumane’s condition and obtain

a weaker but still sufficient condition to finitize 𝜇LL∞ proofs: we

therefore finitize more circular 𝜇LL∞ proofs.

3.2.1 An extended notion of strong validity. In what follows we

define a new notion of strongly valid trace (we keep the same

terminology, referring to the condition of [22] as Doumane’s strong

validity) and a corresponding notion of strongly valid proof for

which we prove a finitization result.

Definition 3.3 (trace-recurring formulas in a sequent). Given a

circular representation 𝑅, a sequent 𝑠 in 𝑅 and a trace 𝑡 on 𝑅, we

define Rec(𝑡, 𝑠) as the set of formula occurrences of 𝑠 which are

visited infinitely often by 𝑡 : a formula occurrence 𝐹 of 𝑠 belongs to

Rec(𝑡, 𝑠) if there are infinitely many 𝑖 such that 𝑡𝑖 = (𝑠, 𝑗), with 𝐹
being the occurrence 𝑠 ( 𝑗).

Definition 3.4 (strong validity). Let 𝑅 be a circular representation

and 𝑝 an infinite path on 𝑅. A trace 𝑡 = (𝑠𝑖 , 𝑗𝑖 )𝑖∈𝜔 is said to be

strongly valid if 𝑡 is valid and if for every sequent 𝑠 of 𝑅 where 𝑡

makes a progress (that is 𝑠 is conclusion of a 𝜈-rule unfolding the

minimal recurring formula of 𝑡 ), Rec(𝑡, 𝑠) is a singleton.

A finite representation 𝑅 is strongly valid, if every infinite path

in 𝑅 admits a strongly valid trace. A circular pre-proof 𝜋 is strongly
valid is it admits a strongly valid finite representation.

Remark 3. Let us stress the difference between the present notion of
strong validity and Doumane’s strong validity, stressing the impact of
the relaxation we allow in terms of the circular proofs that are captures
by our result. Doumane’s definition of strong validity indeed imposes
quite strong restrictions on the geometry of threads. For instance,
it forces that if an 𝐴 ` 𝐵 formula is contributing to validity and
is principal only one of 𝐴 and 𝐵 can contribute to validity (ie can
support the trace), not both at the same time. Similarly, if ?𝐴 is visited
by a trace and contracted, only one of the two copies of ?𝐴 can be
visited by the trace and therefore can contributes to validity. More
fundamentally, the type sort of multiplicative branching that can
induce an interaction between two back-edges (that is they live in the
same connected component) in Doumane’s framework corresponds
to multiplicative branching induced by the validating formula itself:
no multiplicative branching can be caused by another formula of the
sequent, which is a strong restriction on the multiplicative behaviour
captured by the finitization result of [22].

On the contrary, none of those restrictions are imposed by our
notion of strong validity since only the progress require to have a
single validating formula. Of course this is still a restriction compared
to the non restricted validity.

3.2.2 Strong validity is a sufficient condition for finitization.

Proposition 3.5. Let 𝜋 be a circular pre-proof of ⊢ Γ. If 𝜋 is
strongly valid, then there is a finite proof 𝜋 fin of ⊢ Γ in 𝜇LL.

In the following, we will show how 𝜋 fin can be built: we first

recall some results by Doumane that apply independently of the

extension of the criterion and that are used for finitizing 𝜋 and

then explain our finitization process which generalize Doumane

translatability criterion. Note that, while our construction extends

very significantly her previous results [22], our proof follows the

same ideas and does not present much difficulties.

Proposition 3.6 ([22], Proposition 2.1). Let 𝜈𝜁 𝐹 be a 𝜇LL for-
mula. Then, for any context Γ there is a formula 𝐼𝐹Γ , called the invari-
ant formula such that the following rules are derivable in 𝜇LL.

⊢ Δ [𝜈𝜁 .𝐹/𝜁 ]
(subst)

⊢ Δ
[
𝐼𝐹Γ /𝜁

] (close)
⊢ 𝐼𝐹Γ , Γ

⊢ Δ, 𝐹
[
𝐼𝐹Γ /𝜁

]
(unfold)

⊢ Δ, 𝐼𝐹Γ

Moreover, (subst) and (unfold) are derivable circularly in 𝜇LL∞.

The formula 𝐼𝐴Γ in the proposition above is called the invariant
formula and is defined as 𝜈𝜁 .(𝐴 ⊕ (`Γ)⊥). In order to show the

finitization results, we adopt the same measures on finite represen-

tations size(𝑅) as it is done Definition 2.45 of [22]:

Definition 3.7. Let nax(𝜋) and elc(𝜋) be the numbers of the non-

axiom rules in 𝜋 and the numbers of the elementary cycles in 𝜋

respectively. size(𝜋) is defined as the pair (elc(𝜋), nax(𝜋)), ordered
lexicographically.

The finitization process will consists in propagating the invariant

formula in the circular proof in such a way that one can disable

the back-edges, by using the derivable rule (close). The following
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proof pattern, ⇑(𝑅), will help us in that task and will serve later to

interpret circular proofs:

Definition 3.8. Given a strongly valid proof 𝜋 of ⊢ Γ, 𝜈𝜁 𝐹 with a

strongly connected finite representation as follows

𝑅

⊢ Γ, 𝐹 [𝜈𝜁 𝐹/𝜁 ]
(𝜈)

⊢ Γ, 𝜈𝜁 𝐹
(1)

and a strongly valid trace 𝑡 of minimal recurring formula 𝜈𝜁 𝐹 that

visits every sequent of 𝑅 infinitely often, we define ⇑(𝑅), for 𝑅 the

premise of the finite representation of 𝜋 , to be a finite representation

of conclusion ⊢ Γ, 𝐹
[
𝐼𝐹Γ /𝜁

]
defined inductively on the structure of

𝑅 (disregarding the back-edges from the inductive tree structure of

course) and by case on the last rule as follows. The invariant that we

will maintain is that if 𝑆 has conclusion sequent 𝑠 =⊢ Δ, Σ [𝜈𝜁 𝐹/𝜁 ]
where Rec(𝑡, 𝑠) = Σ [𝜈𝜁 𝐹/𝜁 ] (Σ may be empty), then ⇑(𝑆) has
conclusion ⊢ Δ, Σ

[
𝐼𝐹Γ /𝜁

]
.

In the base case, 𝑆 being reduced to a sequent ⊢ Δ, Σ [𝜈𝜁 𝐹/𝜁 ]
which is the root of a back-edge, either the back-edge points to the

root of 𝑅, in which case we know that Δ = Γ and Σ = 𝜁 and we

define ⇑(𝑆) to be (close)
⊢ Γ, 𝐼𝐹Γ

or it points to some other node, in

which case we do nothing but updating the sequent to ⊢ Δ, Σ
[
𝐼𝐹Γ /𝜁

]
.

Otherwise, assume𝑅 =

𝑅′
𝑙

⊢ Δ𝑙 , Σ𝑙 [𝜈𝜁 𝐹/𝜁 ] ,Ξ𝑙 [𝜈𝜁 𝐹/𝜁 ] 𝑙 ∈ 𝐿
(𝑟 )

⊢ Δ, Σ [𝜈𝜁 𝐹/𝜁 ]
where the formulas of Δ𝑙 are related to the formulas of Δ by the

ancestor relation and the formulas of Σ𝑙 [𝜈𝜁 𝐹/𝜁 ] ,Ξ𝑙 [𝜈𝜁 𝐹/𝜁 ] are
related to the formulas of Σ [𝜈𝜁 𝐹/𝜁 ] by the ancestor relation and

if Rec(𝑡, ⊢ Δ, Σ [𝜈𝜁 𝐹/𝜁 ]) = Σ [𝜈𝜁 𝐹/𝜁 ] and if we have that for any

𝑙 ∈ 𝐿, Rec(𝑡, ⊢ Δ𝑙 , Σ𝑙 [𝜈𝜁 𝐹/𝜁 ] ,Ξ𝑙 [𝜈𝜁 𝐹/𝜁 ]) = Σ𝑙 [𝜈𝜁 𝐹/𝜁 ].
• If 𝑟 is the (𝜈) rule on some formula 𝐹 ′ [𝜈𝜁 𝐹/𝜁 ] of Σ [𝜈𝜁 𝐹/𝜁 ],
with 𝐹 ′ = 𝜁 , then Σ = 𝐹 ′, 𝐿 is a singleton and we write 𝑅′

for the premise of 𝑅 and we define ⇑(𝑅) as follows:
⇑(𝑅′)

⊢ Γ, 𝐹
[
𝐼𝐹Γ /𝜁

]
(unfold)

⊢ Γ, 𝐼𝐹Γ

• Otherwise, 𝑟 is some 𝜇LL∞ rule which does not correspond

to a progress of 𝑡 and we define ⇑(𝑅) as
⇑(𝑅′

𝑙
)

⊢ Δ𝑙 , Σ𝑙
[
𝐼𝐹Γ /𝜁

]
,Ξ𝑙 [𝜈𝜁 𝐹/𝜁 ]

(subst)
⊢ Δ𝑙 , Σ𝑙

[
𝐼𝐹Γ /𝜁

]
,Ξ𝑙

[
𝐼𝐹Γ /𝜁

]
𝑙 ∈ 𝐿

(𝑟 )
⊢ Δ, Σ

[
𝐼𝐹Γ /𝜁

]
Thanks to the previous definition, we can now easily prove

Propositon 3.5.

Proof of Proposition 3.5. The proof goes by induction on size(𝜋)
with a base case when elc(𝜋) = 0: in that case, 𝜋 has no back-edge

as the finitization is the identity map. Otherwise, there are two

cases: either the finite representation, 𝑅, associated to 𝜋 is strongly

connected as graph or it is not.

⊲ Assuming that 𝑅 is strongly connected. Then, there is an infinite

path 𝑝 that visits all the sequents of 𝑅 and an associated strongly

valid trace 𝑡 of minimal formula 𝜈𝜁 𝐴. Wlog, assume that a sequent

where the minimal formula of 𝑡 has been unfolded, ⊢ Γ⊥, 𝜈𝜁 𝐴, is
the conclusion of 𝑅. We are in the situation of Definition 3.8.

We can now consider the strongly valid finite representation

⇑(𝑅) of ⊢ Γ⊥, 𝐴
[
𝐼𝐴Γ /𝜁

]
. The complexity of the proof ⇑(𝜋) is strictly

less than that of 𝜋 , since elc(⇑(𝜋)) < elc(𝜋). So, by induction

hypothesis, there is a 𝜇LL (finite) proof 𝜌 of ⊢ Γ⊥, 𝐴
[
𝐼𝐴Γ /𝜁

]
. In this

case, the 𝜋 fin is defined as follows where the rightmost proof of

⊢ 𝐼𝐴Γ , Γ
⊥
is the derived rule (close).

(ax)
⊢ 𝐴⊥ [

(𝐼𝐴Γ )
⊥/𝜁

]
, 𝐴

[
𝐼𝐴Γ /𝜁

] 𝜌

⊢ Γ⊥, 𝐴
[
𝐼𝐴Γ /𝜁

]
(&)

⊢ 𝐴⊥ [
(𝐼𝐴Γ )

⊥/𝜁
]
& Γ⊥, 𝐴

[
𝐼𝐴Γ /𝜁

]
(𝜇)

⊢ (𝐼𝐴Γ )
⊥, 𝐴

[
𝐼𝐴Γ /𝜁

]
(ax)

⊢ Γ, Γ⊥ (⊕2)
⊢ 𝐴

[
𝐼𝐴Γ /𝜁

]
⊕ Γ, Γ⊥

(𝜈)
⊢ 𝐼𝐴Γ , Γ

⊥
(𝜈rec)

⊢ Γ⊥, 𝜈𝜁 𝐴
(2)

⊲ We now consider the case that 𝑅 is not strongly connected, then

there are two sequents ⊢ Γ and ⊢ Δ such that there is no path

from ⊢ Γ to ⊢ Δ. Let 𝑅1 be the part of 𝑅 which is reachable from

⊢ Γ, and let 𝑅2 be obtained from 𝑅 by adding an auxiliary rule

𝑟 on ⊢ Γ and taking the reachable part from the conclusion of 𝑅.

𝑅1, 𝑅2 respectively correspond to strongly valid circular proofs 𝜋1
and 𝜋2. Since 𝑅1 does not have ⊢ Γ among its non-axiomatic rules,

we have nax(𝑅1) < nax(𝑅), and then by induction hypothesis we

have 𝜋 fin
1

a finitization of 𝜋1. By removing ⊢ Γ from 𝑅2, we have

nax(𝑅2) < nax(𝑅). Hence, by induction hypothesis, we have 𝜋 fin
2

, a

finitization of 𝜋1. As 𝜋
fin

is simply defined by plugging two proofs

𝜋 fin
1

and 𝜋 fin
2

at the assumption leaf introduced above. □

Remark 4. Notice that the finite proof 𝜋 fin is not uniquely defined
for a given strongly valid proof: it depends on a choice of a finite
representation of 𝜋 , of a set of strongly valid traces and, for each
strongly connected component of 𝑅, of one strongly valid trace.

Notice that our class of strongly valid proofs obviously con-

tains all the unfoldings of finitary proofs (since they were already

included in Doumane’s translatable proofs that we extend).

3.2.3 Beyond strong validity. One of the main difficulties to ex-

tend Santocanale’s approach to 𝜇LL∞ can be seen with 𝜋∞ defined

in Figure 5. This is an example of a valid circular proof but hav-

ing a quite involved validity structure, with three types of infinite

branches (see Appendix H and [39] for more details). Santocanale’s

interpretation method relies on the possibility to identify a thread

by a formula, 𝜋∞ falls out of the scope of that method.

4 SEMANTICS OF NON-WELL-FOUNDED
PRE-PROOFS

In this section we will show that by assuming a Cpo structure on

the categorical model of 𝜇LL [25], one can obtain a categorical

axiomatization of models of 𝜇LL∞ pre-proofs. We first recall here

the categorical model of 𝜇LL.
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⊢𝐹,𝐺, 𝐻, 𝐼, 𝐽
(𝜈) (⊕2)⊢ 𝐹,𝐺, 𝐻, 𝐼, 𝐽
(𝜇) (⊕1) (`)

⊢ 𝐹,𝐺, 𝐻, 𝐼
(𝜇) (⊕2) (⊥)⊢ 𝐹,𝐺, 𝐻, 𝐼, 𝐽
(`)

⊢ 𝐹 `𝐺,𝐻, 𝐼, 𝐽
(𝜈) (⊕2) (⊥)⊢ 𝐹 `𝐺,𝐺,𝐻, 𝐼, 𝐽

⊢ 𝐹,𝐺, 𝐻, 𝐼, 𝐽 (𝜈) (⊕1)⊢ 𝐹,𝐺, 𝐻, 𝐼, 𝐽
(𝜈)

⊢ 𝐹,𝐺, 𝐻, 𝐾, 𝐽
(𝜇) (⊕1) (`)

⊢ 𝐹,𝐺, 𝐻, 𝐽
(𝜇) (⊕2) (⊥)⊢ 𝐹,𝐺, 𝐻, 𝐼, 𝐽
(X)

⊢ 𝐹, 𝐻,𝐺, 𝐼, 𝐽
(`)

⊢ 𝐹 ` 𝐻,𝐺, 𝐼, 𝐽
(𝜈) (⊕1) (⊥)⊢ 𝐹 ` 𝐻,𝐺,𝐻, 𝐼, 𝐽
(&)

⊢ (𝐹 `𝐺) & (𝐹 ` 𝐻 ),𝐺, 𝐻, 𝐼, 𝐽
(𝜇)

⊢ 𝐹,𝐺, 𝐻, 𝐼, 𝐽

with

𝐹 = 𝜇𝑋 .((𝑋 `𝐺) & (𝑋 ` 𝐻 )) 𝐼 = 𝜇𝑍 .((𝑍 ` 𝐽 ) ⊕ ⊥)
𝐺 = 𝜈𝑋 .(𝑋 ⊕ ⊥) 𝐽 = 𝜇𝑋 .((𝐾 ` 𝑋 ) ⊕ ⊥)
𝐾 = 𝜈𝑌 .𝜇𝑍 .((𝑍 ` 𝜇𝑋 (𝑌 ` 𝑋 ) ⊕ ⊥) ⊕ ⊥) 𝐻 = 𝜈𝑋 .(⊥ ⊕ 𝑋 )

Figure 5: Proof 𝜋∞.

Definition 4.1 ([25]). A categorical model of 𝜇LL is a pair (L,−→L)
where

• L is a model of linear logic, i.e. a Seely category [38].

• −→L = (L𝑛)𝑛∈N where L𝑛 is a class of strong functors L𝑛 →
L, and L0 = Obj(L)

• if X ∈ L𝑛 and X𝑖 ∈ L𝑘 (for 𝑖 = 1, . . . , 𝑛) then X ◦ −→
X ∈ L𝑘

• the strong functors ⊗ and & belong to L2, the strong functor

!_ belongs to L1 and, if X ∈ L𝑛 , then (X)⊥ ∈ L𝑛

• and last, for all X ∈ L1 the category CoalgL (X) of coal-
gebras of the functor X 2

has a final object. Moreover, for

any X ∈ L𝑘+1, the associated strong functor 𝜈X : L𝑘 → L
belongs to L𝑘 .

Although we refer to [25] for more details, we have brought

some of the definitions in Appendix I.

Definition 4.2. A 𝜇LL∞ model is a 𝜇LL model (L,−→L) where L is

a bi-Cpo enriched category
3
.

4.1 Interpreting formulas and proofs (outline)
The idea is to interpret a formula 𝐴 with repetition-free sequence

−→
𝜁 = (𝜁1, . . . , 𝜁𝑘 ) of type variables containing all the free variables
of𝐴 as an element inL𝑘

, and we denote it by J𝐴K−→
𝜁
. This interpreta-

tion is defined by induction on the formulas in the obvious way, for

instance J𝐴 ⊗ 𝐵K−→
𝜁
= ⊗ ◦ (J𝐴K−→

𝜁
, J𝐵K−→

𝜁
) considering ⊗ ∈ L2, and

J𝜈𝜁 .𝐴K−→
𝜁
= 𝜈 (J𝐴K−→

𝜁 ,𝜁
) 4

. Then one also has J𝐴⊥K−→
𝜁
= (J𝐴K−→

𝜁
)⊥ up

to a natural isomorphism which allows us to define other formula

by De Morgan duality.

Let 𝜋 be a 𝜇LL∞ pre-proof of ⊢ Γ. We want to interpret 𝜋 as

a morphsim in L(1, JΓK). We first assume that in the inference

rules of 𝜇LL∞, we also have this rule:
(Ω)

Γ for any sequence Γ,

2X is the the underlying functor of the strong functor X.
3
A bi-Cpo is a Cpo that has infimum of directed subsets.

4
We assume that the iso between 𝜈𝐹 and 𝐹 (𝜈𝐹 ) is always the identity as this holds

in our concrete models. This assumption is highly debatable from the view point of

category theory where the notion of equality of objects is not really meaningful. It

will be dropped in a longer version of this paper.

and we interpret this rule as the least element of L(1, 1). We also

assume that a finite 𝜇LL∞ pre-proof can have the (Ω) rule. The
interpretation of LL rules for instance in [38], and it is also given

in Appendix B. So, we only need to say how we interpret the (𝜈)
and (𝜇) rules:
u

v
𝜋

⊢ Γ, 𝐹 [𝜇𝜁 .𝐹/𝜁 ]
(𝜇)

⊢ Γ, 𝜇𝜁 .𝐹

}

~ = J𝜋K

u

v
𝜋

⊢ Γ, 𝐹 [𝜈𝜁 .𝐹/𝜁 ]
(𝜈)

⊢ Γ, 𝜈𝜁 .𝐹

}

~ = J𝜋K

Then one can define the interpretation of a finite 𝜇LL∞ pre-proof

by induction on the structure of the proof.

Definition 4.3. Given a 𝜇LL∞ pre-proof 𝜋 of ⊢ Γ, we define J𝜋K
as

⋃
𝜌∈fin(𝜋 )J𝜌K where fin(𝜋) is the set of all finite sub-pre-proof

of 𝜋 (we are allowed to do this, since we added the (Ω) rule), and⋃
is the supremum of the directed subsets in L(1, JΓK).

Remark 5. The Cpo-enrichment gives us the unique fixed points,
so Definition 4.3 is well defined.

4.2 Soundness of the interpretation wrt
cut-elimination

4.2.1 Soundness for one-step cut-elimination. We first prove that

the semantic is preserved via the one-step cut reduction rules of

𝜇LL∞.

Theorem 4.4. Given two finite 𝜇LL∞ proofs 𝜋 and 𝜋 ′ such that 𝜋 ′

is obtained from 𝜋 via an one-step cut-elimination rule, then J𝜋K =
J𝜋 ′K.

See proof in

Appendix F.1.4.2.2 Soundness for Cauchy-sequences of cut-eliminations. One
can define a natural metric 𝑑 on the set of all finite 𝜇LL∞ pre-

proofs saying 𝑑 (𝜋, 𝜋 ′) = 0 if two pre-proofs 𝜋 and 𝜋 ′ are identical,
otherwise 𝑑 (𝜋, 𝜋 ′) = 1

2
𝑘 , where 𝑘 is the length of the shortest

position at which 𝜋 and 𝜋 ′ differ. Then we can see that indeed

set of all infinite 𝜇LL∞ pre-proofs is the metric completion of the

finite proofs (Theorem C.5 of Appendix C). This is quite standard

in the literature [10, 48, 49], however recorded the details of this

development in Appendix C for the sake of self-containdness, and as

it is nevertheless necessary for a precise definition of the semantics

of non-wellfounded proofs.

Lemma 4.5. Let (𝜋𝑖 ) be a Cauchy sequence. Then Jlim𝑛→∞ 𝜋𝑖K =⋃
𝑖

⋂
𝑗>𝑖J𝜋 𝑗 K.

See proof in

Appendix F.2.Theorem 4.6. Let (𝜋𝑖 )𝑖∈𝜔 be a Cauchy sequence such that ∀𝑖, 𝑗 ∈
𝜔 we have J𝜋𝑖K = J𝜋 𝑗 K. Then Jlim𝑛→∞ 𝜋𝑖KRel = J𝜋0K.

See proof in

Appendix F.3.

And, we can now prove the soundness theorem for 𝜇LL∞ as a

direct conclusion of Theorem 4.4 and Theorem 4.6:

Corollary 4.7. If 𝜋 and 𝜋 ′ are proofs of ⊢ Γ and 𝜋 reduces to 𝜋 ′

by the cut-elimination rules of 𝜇LL∞, then J𝜋K = J𝜋 ′K.

4.3 Rel as a concrete model of 𝜇LL∞
Let Rel𝑛 be the class of all n-ary strong functors 𝐹 where 𝐹 is

a locally continuous and strict in the sense that it maps inclu-

sions to inclusions, and for all

−→
𝐸 ,

−→
𝐹 ∈ Rel𝑛 and all directed set

𝐷 ⊆ Rel𝑛 (−→𝐸 ,−→𝐹 ), one has F(⋃𝐷) = ⋃ {
F(−→𝑠 ) | −→𝑠 ∈ 𝐷

}
. We know
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that (Rel, (Rel𝑛)𝑛∈N) is a model of 𝜇LL [25]. Since Rel is a bi-cpo
enriched category, (Rel, (Rel𝑛)𝑛∈N) is also a model of 𝜇LL∞.

Let us look at an example. Consider the following circular proof

𝜋≡3
which correspond to the function on natural numbers which

sends 𝑛 to 𝑛 mod 3:

𝜋nat
0 (⊥)⊢ nat,⊥

𝜋nat
1 (⊥)⊢ nat,⊥

𝜋nat
2 (⊥)⊢ nat,⊥ ⊢ nat, nat⊥ (&)

⊢ nat,⊥ & nat⊥ (𝜈)
⊢ nat, nat⊥ (&)

⊢ nat,⊥ & nat⊥ (𝜈)
⊢ nat, nat⊥ (&)

⊢ nat,⊥ & nat⊥ (𝜈)
⊢ nat, nat⊥

The interpretation of 𝜋nat
𝑘

in Rel is, up to an iso, the natural

number 𝑘 , and we denote it by 𝑘 , i.e J𝜋nat
𝑘

KRel = 𝑘 . To compute

interpretation of 𝜋≡3
, we need to take supremum of the interpreta-

tion of all finite sub pre-proofs. For example, imagine that in the

proof 𝜋≡3
above, we do a Ω rule instead of the back-edge, and called

this proof 𝜎 . Then we have

J𝜎KRel = {(2, (2, (2, (1, ∗))), (1, (2, (1, ∗))), (0, (1, ∗)))}
That is to say, up to an iso, we have J𝜎KRel = {(2, 2), (1, 1), (0, 0)}.
If we do one more step, we will see that (0, 3) ∈ J𝜋≡3

KRel. So, one
can see that J𝜋≡3

KRel = {(𝑛,𝑚) | 𝑛 =𝑚 mod 3}.

4.4 On the relation between the interpretation
of finite proofs and their circular
correspondent

Our main goal in the section is to prove that our semantics is

preserved via the operation Trans () introduced in Section 3. Notice

that if we associate a system of equations on the morphisms of

the category L to a circular proof, then the interpretation given in

Definition 4.3 is actually a solution of the corresponding system of

equations. We will use the following lemma, which is well-known

in the literature on fixed points of functors [1, 41], in the proof of

Theorem 4.9.

Lemma 4.8. Let 𝐴 be an object of a category A and let 𝑓1, 𝑓2 ∈
A(𝐴,𝜈F ). If there exists 𝑙 ∈ A(𝐴, F (𝐴)) such that F (𝑓𝑖 ) 𝑙 = 𝑓𝑖 for
𝑖 = 1, 2, then 𝑓1 = 𝑓2.

See proof

in Appen-

dix E.1.

Theorem 4.9. Let (L,−→L) be a 𝜇LL∞ model, and 𝜋 be a 𝜇LL proof.
Then we have J𝜋K = JTrans (𝜋)K.

See proof in

Appendix E.2.

5 VALID PROOFS AS TOTAL ELEMENTS
In the previous section, we provided the interpretation of pre-proofs,

and we did not consider whether a proof is valid. In this section, we

will provide a refinement of our 𝜇LL∞ model based on orthogonality

construction given in [33], and we show that valid proofs will be

interpreted as morphisms in the orthogonality category where

the orthogonality relation satisfies a property called the focused

orthogonality.

5.1 Preliminaries on orthogonality categories
We first recall some definitions here, and refer to [33] for more

details. Let L be a *-autonomous category with monoidal units 1

and ⊥. An orthogonality relation is a family of subsets

⊥𝑐 ⊆ L(1, 𝑐) × L(𝑐,⊥)
indexed by objects 𝑐 ∈ L and verifying some compatibility con-

ditions with respect to the linear logic structure [33]. For a sub-

set 𝑋 ⊆ L(1, 𝑐), its orthogonal 𝑋⊥
is 𝑋⊥

:= {𝑦 : 𝑐 → ⊥ |
∀𝑥 ∈ 𝑋 (𝑥⊥𝑐𝑦)}. And dually, for a subset 𝑌 ⊆ L(𝑐,⊥), we have
𝑌⊥

:= {𝑥 : 1 → 𝑐 | ∀𝑦 ∈ 𝑌 (𝑥⊥𝑐𝑦)}. Finally we denoted by D(𝑐)
the set {𝑋 ⊆ L(1, 𝑐) | 𝑋 = 𝑋⊥⊥}, and one can see that D(𝑐) is a
complete lattice. In this paper, we will restrict to the special case

where the orthogonality relation arises from a distinguished subset

‚⊂ L(1,⊥), referred to as a pole, as follows:

⊥𝑐 := {(𝑥,𝑦) ∈ L(1, 𝑐) × L(𝑐,⊥) | 𝑦 ◦ 𝑥 ∈‚}
Then we define the focused orthogonality category [33] as follows:

The focused orthogonality category O‚ (L) of a category L with

‚⊂ L(1,⊥) has objects given by pairs (𝑐, 𝑋 ) with 𝑐 ∈ L and

𝑋 ∈ D(𝑐), and morphisms 𝑓 : (𝑐, 𝑋 ) → (𝑑,𝑌 ) given by morphisms

𝑓 : 𝑐 → 𝑑 in L such that ∀𝑥 ∈ 𝑋 . 𝑓 ◦ 𝑥 ∈ 𝑌 .

5.2 Semantics of 𝜇LL∞ in O‚(L)
5.2.1 Interpretation of formulas. Given a closed 𝜇LL∞ formula 𝐴,

we denoted by J𝐴KO‚ (L) the interpretation of 𝐴 in O‚ (L). So,
J𝐴KO‚ (L) is a pair (J𝐴KL ,O(J𝐴KO‚ (L) )) where O(J𝐴KO‚ (L) ) ∈
D(J𝐴KL).

Let (L,−→L) be a 𝜇LL∞ model with a pole‚⊆ L(1,⊥). We know

how to interpret the LL formulas in O‚ (L) using Theorem 54

of [33]. For the fixpoints formulas 𝜇𝜁 𝐴 and 𝜈𝜁 𝐴, we know, by

induction hypothesis, that J𝐴KO‚ (L) exists and it is lifting of the

functor J𝐴KL : L → L in the following sense where 𝑈 is the

forgetfull functor:

O‚ (L) O‚ (L)

L L

J𝐴KO‚ (L)

𝑈 𝑈

J𝐴KL

Now using Corollary 3.4 of [26], we know that the initial algebra

and final colalgebra of the endofucntor J𝐴KO‚ (L) exist, and we

take them respectively as the interpretation of 𝜇𝜁 𝐴 and 𝜈𝜁 𝐴 5
.

As we are going to use the construction of J𝜇𝜁 𝐴KO‚ (L) and
J𝜇𝜁 𝐴KO‚ (L) in section 5.2.2 (namely in the proof of Theorem 5.6),

we summarize it here. Let (𝑐, 𝑋 ) be an object of O‚ (L). We denote

by (J𝐴KL (𝑐),ΦJ𝐴K (𝑋 )) the J𝐴KO‚ (L) ((𝑐, 𝑋 )) where ΦJ𝐴K (𝑋 ) ∈
D(J𝐴KL (𝑐)). We consider a map ΘJ𝐴K : D(𝜈J𝐴KL) → D(𝜈J𝐴KL)
as follows: if𝑋 ∈ D(𝜈J𝐴KL), thenO((𝜈J𝐴KL , 𝑋 )) ∈ D(J𝐴KL (𝜈J𝐴KL)) =
D(𝜈J𝐴KL), and we set ΘJ𝐴K (𝑋 ) = O((𝜈J𝐴KL , 𝑋 )). One can see

that the map ΘJ𝐴K is a monotone operator, and hence by Knaster-

Tarski’s Theorem, it has least and greatest fixpoints. Hence we inter-

pret𝜈𝜁 𝐴 (resp. 𝜇𝜁 𝐴) as (𝜈J𝐴KL , gfp(ΘJ𝐴K)) (resp. (𝜇J𝐴KL , lfp(ΘJ𝐴K))).
More explicitly, one can see the interpretation of 𝜈𝜁 .𝐴 by a

transfinite induction considering the sequence (𝑈𝐴
𝛼 )𝛼 ∈Ord of the

elements of D(J𝜈𝜁 .𝐴K) defined as follows: 𝑈𝐴
0

= ⊤(D(J𝜈𝜁 .𝐴K))
where ⊤(D(J𝜈𝜁 .𝐴K)) is the largest element in the complete lattice

D(J𝜈𝜁 .𝐴K), and𝑈𝐴
𝛼+1 = O(J𝐴KL (J𝜈𝜁 .𝐴KL ,𝑈𝐴

𝛼 )) for the successor
5
To have a more simple notation, we have only provided the interpretation of formulas

with a single free variable. One can do it for any formulas in the obvious way.
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ordinals, and 𝑈𝐴
𝛿

=
⋂

𝛼<𝛿 𝑈
𝐴
𝛼 for the limit ordinals, and finally,

there is an ordinal 𝜆 such that 𝑈𝜆 = 𝑈𝜆+1, and we use 𝜆𝐴 for the

least such ordinal.

To have simpler notation, we use the notation𝑈𝛼 (and𝑈𝜆) freely

without mentioning the formula. One can find what the correspond-

ing formula is from the context.

5.2.2 Interpretation of proofs. In section 4.1, we defined the inter-

pretation of a pre-proof 𝜋 of ⊢ Γ as a morphism J𝜋K in L(1, JΓK).
In this section, we will prove that if the proof 𝜋 is a valid proof,

then J𝜋K is a morphism in the orthogonality category O‚ (L). In
this section, when we write J𝐴K for a 𝜇LL∞ formula 𝐴, we mean

J𝐴KO‚ (L) .
The proof method is similar to the proof of soundness of LKID𝜔

in [13]. However the system of [13] is classical logic with inductive

definitions, and their proof is for a Tarskian semantics. We need

to adapt that proof in two aspects: considering 𝜇LL∞ instead of

LKID𝜔
, and trying to deal with a denotational semantics instead

of a Tarskian semantics. The adaptation for 𝜇LL∞ is somehow

done in [22], since there is soundness theorem for 𝜇MALL∞ with

respect to the truncated truth semantics (a Tarskian semantics).

So, basically, the main point of our proof is turning a Tarskian

soundness theorem into a denotational soundness theorem.

We first borrowed the following definition from [22].

Definition 5.1. The marked formulas of 𝜇LL∞ are defined as

follows where 𝛼 is an ordinal:

𝐴, 𝐵, . . . := 1 | 0 | ⊥ | ⊤ | 𝐴 ⊕ 𝐵 | 𝐴 ⊗ 𝐵 | 𝐴 & 𝐵 | 𝐴` 𝐵 |
?𝐴 | !𝐵 | 𝜁 | 𝜇𝜁 .𝐹 | 𝜈𝛼𝜁 .𝐹 (3)

We denote by𝐴◦
the label-stripped formula𝐴. The interpretation

of 𝜈𝛼𝜁 .𝐹 in O‚ (L) is J𝜈𝛼𝜁 .𝐹K = (J𝜈𝜁 .𝐹KL ,𝑈𝛼 ), and the other

marked formulas are interpreted as usual.

Proposition 5.2. Let 𝐴 be a 𝜇LL∞ formula. Then we have J𝐴K =
J𝐴K where 𝐴 is the marked formula, obtained from 𝐴 by marking
every 𝜈 binder of 𝐴 by the ordinal 𝜆𝐴 .

The proof of this proposition is obvious.

Lemma 5.3. If 𝐴 is a 𝜇LL∞ formula and 𝑡 ∉ O(J𝜈𝛼𝜁 .𝐹K), then
there exists an ordinal 𝛾 < 𝛼 such that 𝑡 ∉ O(J𝐹 [𝜈𝛾𝜁 .𝐹/𝜁 ]K).

See proof in

Appendix F.4. Lemma 5.4. O(J𝐹 [𝜇𝜁 .𝐹/𝜁 ]K) = O(J𝜇𝜁 .𝐹K).
See proof in

Appendix F.5 Lemma 5.5. If 𝜋 is a proof of ⊢ Γ and J𝜋K ∉ O((JΓK)), then
(1) 𝜋 has an infinite branch 𝛾 = (⊢ Γ𝑖 )𝑖∈𝜔 such that J𝜋𝑖K ∉

O((JΓ𝑖K)) where 𝜋𝑖 is the sub-proof of 𝜋 rooted in ⊢ Γ𝑖 ;
(2) and there exists a sequence of functions (𝑓𝑖 )𝑖∈𝜔 where 𝑓𝑖 maps

all formulas 𝐷 of Γ𝑖 to a marked formula 𝑓𝑖 (𝐷) such that
• (𝑓𝑖 (𝐷))◦ = 𝐷 ,
• one can write Γ𝑖 = Γ′

𝑖
,𝐶 ,

• and there exists 𝑥 ∈ O(J(𝑓𝑖 (Γ′𝑖 ))
⊥K) such that J𝜋𝑖K.𝑥 ∉

O(J𝑓𝑖 (𝐶)K) where Γ′
𝑖

= 𝐴𝑖
1
, · · · , 𝐴𝑖𝑛𝑖 and J(𝑓𝑖 (Γ′𝑖 ))

⊥K =

(J𝑓𝑖 (𝐴𝑖
1
)K)⊥ ⊗ · · · ⊗ (J𝑓𝑖 (𝐴𝑖𝑛𝑖 )K)

⊥.
See proof in

Appendix F.6

Proof. The idea is essentially to construct the infinite branch 𝛾

inductively using properties of orthogonality. □

Now, we can state and prove our main result of this section.

Theorem 5.6. If 𝜋 is a valid proof of the sequent ⊢ Γ, then J𝜋K ∈
O(JΓK).

Proof. Let us assume J𝜋K ∉ O(JΓK).We can then apply Lemma 5.5

to obtain an infinite branch (⊢ Γ𝑖 )𝑖∈𝜔 and a sequence (𝑓𝑖 )𝑖∈𝜔 satis-

fying properties 1 and 2 of Lemma 5.5. By the definition of valid

proof (Definition 2.7), there exists a valid thread 𝑡 = (𝐹𝑖 )𝑖∈𝜔 for the

infinite branch (⊢ Γ𝑖 )𝑖∈𝜔 . Let 𝜈𝜁 𝐹 be the minimal formula formula

of 𝑡 . So, there are infinitely many times in 𝑡 that we use a 𝜈 rule

to unfold 𝜈𝜁 𝐹 . Let (𝑖𝑘 )𝑘∈𝜔 be the sequence of indices where 𝜈𝜁 𝐹

gets unfolded. Then 𝜈𝜁 𝐹 in the sequent Γ𝑖𝑘 is sub-occurrence of

𝜈𝜁 𝐹 in the sequent Γ𝑖𝑘′ for 𝑘 ⩾ 𝑘
′
. By the property 2 of Lemma 5.5,

𝑓𝑖𝑘 (𝜈𝜁 𝐹 ) = 𝜈𝛼𝑘 𝜁 .𝑓𝑖𝑘 (𝐹 ). Therefore, by the property 2 of Lemma 5.5

and by the construction of the 𝑓𝑖 in the proof of Lemma 5.5, the

sequence (𝛼𝑘 )𝑘∈𝜔 is strictly decreasing. As this contradicts the

well-foundedness property of the ordinals we obtain the required

contradiction and conclude that J𝜋K ∈ O(JΓK). □

We denote by 1O‚ (L) the unit (1,O(1)) of the tensor in the

category O‚ (L).

Corollary 5.7. If 𝜋 is a valid proof of the sequent ⊢ Γ, then
J𝜋K ∈ O‚ (L)(1O‚ (L) , JΓK).

See proof in

Appendix JRemark 6. The fact that we have considered focused orthogonality
is important in our work, as we use it a lot in the proof of Lemma 5.5.
This assumption is also essential in the construction of fixpoints in [26].

Remark 7. The category O‚ (L) is not necessarily a 𝜇LL∞ model
in the sense of Definition 4.2, as it can be a non cpo-enriched cate-
gory. We will see an example of this in Section 5.3. Nonetheless, the
interpretation of 𝜇LL∞ proofs are the same in both categories, i.e.
J𝜋KO‚ (L) = J𝜋KL .

5.3 Nuts as a concrete model of 𝜇LL∞
If we consider the category Rel and the pole ‚Rel= {{id}}, the
category O‚Rel (Rel) is the category of non-uniform totality spaces

(Nuts) studied in [25]. Explicitly, for a set 𝐴 and a subset 𝑋 ⊆
Rel(1, 𝐴) = P(𝐴), one has:

𝑋⊥ = {𝑢 ′ ⊆ 𝐴 | ∀𝑢 ∈ T 𝑢 ∩ 𝑢 ′ ≠ ∅}

An object of Nuts is a a pair 𝑋 = ( |𝑋 |,T (𝑋 )) where |𝑋 | is a set,
and T (𝑋 ) is a totality candidate on |𝑋 |, that is, a ↑-closed subset of
P(|𝑋 |) [25]. And we have 𝑡 ∈ Nuts(𝑋,𝑌 ) if 𝑡 ∈ Rel( |𝑋 |, |𝑌 |) and
∀𝑢 ∈ T (𝑋 ) (·𝑡𝑢 ∈ T (𝑌 )). As a direct conclusion of Theorem 5.6,

we have the following corollary which says that the valid proofs

will be interpreted as total elements.

Corollary 5.8. If 𝜋 is a valid proof of the sequent ⊢ Γ, then
J𝜋K ∈ T (JΓK).

One might think of the following statement as the converse of

Corollary 5.8. If 𝜋 is a pre-proof of the sequent ⊢ Γ such that J𝜋K ∈
T (JΓK), then 𝜋 is a valid proof. This statement is not necessarily

true, and there are many counterexamples indeed. For instance,

take 𝐹 = 𝜇𝜁 .(⊥ & (𝜁 ` 𝜁 )) and 𝐺 = 𝜈𝜉 .(1 ⊕ (𝜉 ` 𝜉)) and the pre-

proofs 𝜋 defined in Figure 6, where 𝜋Γ;𝐺 is defined (corecursively)

on the right of the figure.
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(1)
⊢ 1 (⊕1)⊢ 1 ⊕ (𝐺 `𝐺)

(𝜈)
⊢ 𝐺 (⊥)

⊢ ⊥,𝐺

𝜋⊥,𝐹 ;𝐺
⊢ ⊥, 𝐹 ,𝐺

𝜋⊥,𝐹 ,𝐹 ;𝐺
⊢ ⊥, 𝐹 , 𝐹 ,𝐺 ...

(&)
⊢ ⊥ & (𝐹 ` 𝐹 ), 𝐹 , 𝐹 ,𝐺

(𝜇)
⊢ 𝐹, 𝐹, 𝐹,𝐺 (`)
⊢ 𝐹 ` 𝐹, 𝐹,𝐺 (&)

⊢ ⊥ & (𝐹 ` 𝐹 ), 𝐹 ,𝐺
(𝜇)

⊢ 𝐹, 𝐹,𝐺 (`)
⊢ 𝐹 ` 𝐹,𝐺 (&)

⊢ ⊥ & (𝐹 ` 𝐹 ),𝐺
(𝜇)

⊢ 𝐹,𝐺
𝜋Γ,𝐺 ;𝐺

𝜎
⊢ Γ,𝐺,𝐺 (`)
⊢ Γ,𝐺 `𝐺 (⊕2)⊢ Γ, 1 ⊕ (𝐺 `𝐺)

(𝜈)
⊢ Γ,𝐺

Figure 6: Proofs 𝜋 and 𝜋Γ;𝐺

(𝑎)

(1)
⊢ 1 (⊕1)⊢ 1 ⊕ (𝐺 `𝐺)

(𝜈)
⊢ 𝐺 (⊥)

⊢ ⊥,𝐺
𝜋𝐹`𝐹 ;𝐺

⊢ 𝐹 ` 𝐹,𝐺 (&)
⊢ ⊥ & (𝐹 ` 𝐹 ),𝐺

(𝜇)
⊢ 𝐹,𝐺

(𝑏)

⊢𝜈𝜁 .𝜁
(𝜈)

⊢ 𝜈𝜁 .𝜁
(𝜈)

⊢ 𝜈𝜁 .𝜁

(ax)
⊢ 𝜈𝜁 .𝜁 , 𝜇𝜁 .𝜁

(𝜇)
⊢ 𝜈𝜁 .𝜁 , 𝜇𝜁 .𝜁

(cut)
⊢ 𝜈𝜁 .𝜁

Figure 7: Non-valid proofs with total interpretations.

This pre-proof is not valid, since there is no valid thread in

the rightmost branch. The interpretation of 𝜋 in Rel is J𝜋KRel =
{((1, ∗), (1, ∗))}. However, J𝜋KRel ∈ T (J𝐹 `𝐺K).

Notice that there are two ways to see that J𝜋KRel ∈ T (J𝐹 `𝐺K).
One can compute the interpretation of the formula 𝐹 `𝐺 in Nuts.
And one can also provide a valid proof 𝜋 ′ of ⊢ 𝐹,𝐺 such that

J𝜋KRel = J𝜋 ′KRel. Consider indeed the pre-proof 𝜋 ′ of Figure 7

(a). This proof 𝜋 ′ is a valid proof, since the thread 𝑡 = 1 ⊕ (𝐺 `
𝐺),𝐺 `𝐺,𝐺, · · · is a valid thread (min(Inf (𝑡)) = 𝐺). We also have

J𝜋 ′KRel = {((1, ∗), (1, ∗))}, and hence using Theorem 5.6, we know

that J𝜋K = J𝜋 ′K ∈ T (J𝐹 `𝐺K). The proof given in Figure 7 (b) is

another example of non-valid proof whose interpretation is total.

This examples differs however from 𝜋 ′ (the proof given in Figure 7

(a)). It is true that this pre-proof does not respect the validity crite-

rion with respect to the criterion of [8, 22]. However this proof is

considered as a valid proof in a more recent work [5].

6 ON THE SEMANTICS OF CIRCULAR
PROOFS

The semantics of the previous section allows us to interpret both

general non-wellfounded and circular proofs, but it presents a draw-

back: in the case of circular proofs, the approximation semantics

completely disregards the circularity of the proof objects.

In the present section, we will discuss what are the challenges

and how to proceed to achieve those goals. We will also see that for

a fragment of circular proofs, we can use the circularity of the proof

tree to define the interpretation, following Santocanale’s approach.

One of the main difficulties to extend Santocanale’s approach

to 𝜇LL∞ can be seen in the example of 𝜋∞ presented in Figure 5,

page 7. Indeed, Santocanale’s interpretation method strongly relies

on the possibility to identify a thread by a formula, therefore 𝜋∞
falls out of the scope of that method.

Two natural options are either (i) to disregard validity in inter-

preting circular proofs, as we did for non-well-founded proofs in

previous sections, or (ii) to constrain the validity condition to make

Santocanale’s method usable. We discuss the second option below

by considering strongly valid proofs introduced in Section 3.

6.1 Relating the interpretation of strongly
valid proofs and their finitizations

We first want to show that the interpretation of the strongly valid

circular proofs (section 3) are the same as the interpretation of their

finitizations in any 𝜇LL∞ model.

Lemma 6.1. Let ⊢ Γ⊥, 𝜈𝜁 𝐴 be a 𝜇LL provable sequent. Then there
is a unique morphism 𝜙𝐴 ∈ L(J𝜈𝜁 𝐴K, J𝐼𝐴Γ K) such that it satisfies the
following square:

J𝜈𝜁 𝐴K J𝐴K(J𝜈𝜁 𝐴K)

J𝐴K(J𝐼𝐴Γ K)

J𝐼𝐴Γ K J𝐴K(J𝐼𝐴Γ K) ⊕ JΓK

𝜙𝐴

=

J𝐴K(𝜙𝐴)

in1

=

where 𝐼𝐴Γ is the invariant formula (see Proposition 3.6), and in1 is the
first injection.

See proof in

Appendix K.
Lemma 6.2. Let 𝜋 be a strongly connected and strongly valid proof

of ⊢ Γ⊥, 𝜈𝜁 𝐴 where the last inference rule is the (𝜈) rule. Then J⇑(𝜋)K
is the following morphism:

JΓK J𝜈𝜁 𝐴K ≃ J𝐴K(J𝜈𝜁 𝐴K) J𝐴K(J𝐼𝐴Γ K)J𝜋K J𝐴K(𝜙𝐴)

See proof in

Appendix L.Theorem 6.3. Let 𝜋 be a strongly valid proof of ⊢ Γ⊥, 𝜈𝜁 𝐴. In any
𝜇LL∞ model we have: J𝜋 finK = J𝜋K.

Proof. The proof is by induction on size(𝜋). We only provide

here the case that 𝜋 is strongly connected, and the full proof is

provided in Appendix M.

⊲ We first assume that 𝜋 is strongly connected. Then, there is an

infinite path 𝑝 that visits all the sequents of 𝜋 . Let 𝑡 be a trace of

𝑝 , and, without loss of generality, let ⊢ Γ⊥, 𝜈𝜁 𝐴 be the sequent

where the minimal formula of 𝑡 has been unfolded. Graphically, 𝜋

is shown in Equation (1), page 6.

We now consider the 𝜇LL∞ proof ⇑(𝜋) of ⊢ Γ⊥, 𝐴
[
𝐼𝐴Γ /𝜁

]
. The

complexity of the proof ⇑(𝜋) is strictly less than that of 𝜋 , since

elc(⇑(𝜋)) < elc(𝜋). So, by induction hypothesis, there is a 𝜇LL
(finite) proof 𝜌 of ⊢ Γ⊥, 𝐴

[
𝐼𝐴Γ /𝜁

]
such that J𝜌K = J⇑(𝜋)K. In this

case, 𝜋 fin is defined as in Equation (2), page 6.
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Let 𝑓 be the interpretation of the proof of ⊢ (𝐼𝐴Γ )
⊥, 𝜈𝜁 𝐴. The

morphism 𝑓 satisfies the following universal property:

J𝐼𝐴Γ K = J𝐴
[
𝐼𝐴Γ /𝜁

]
K ⊕ Γ J𝐴K(J𝐼𝐴Γ K)

J𝜈𝜁 𝐴K = J𝐴K(J𝜈𝜁 𝐴K)

⟨Id,J𝜌K⟩

𝑓
J𝐴K(𝑓 )

By Lemma 6.2, we have J𝜌K = J𝐴K(𝜙𝐴) ◦ J𝜋K, and hence

J𝐼𝐴Γ K J𝜈𝜁 𝐴K

J𝐴K(J𝐼𝐴Γ K) ⊕ JΓK

J𝐴K(J𝐼𝐴Γ K) J𝐴K(J𝜈𝜁 𝐴K)

=

𝑓

=

⟨Id,J𝐴K(𝜙𝐴)◦J𝜋K⟩
J𝐴K(𝑓 )

Moreover, we have the following diagram by Lemma 6.1:

J𝜈𝜁 𝐴K J𝐼𝐴Γ K

J𝐴K(J𝐼𝐴Γ K) ⊕ JΓK

J𝐴K(J𝜈𝜁 𝐴K) J𝐴K(J𝐼𝐴Γ K)

𝜙𝐴

=

=

⟨Id,J𝐴K(𝜙𝐴)◦J𝜋K⟩
J𝐴K(𝜙𝐴)

Hence, we have:

J𝜈𝜁 𝐴K J𝐼𝐴Γ K J𝜈𝜁 𝐴K

J𝐴K(J𝜈𝜁 𝐴K) J𝐴K(J𝐼𝐴Γ K) J𝐴K(J𝜈𝜁 𝐴K)

𝜙𝐴

=

𝑓

=

J𝐴K(𝜙𝐴) J𝐴K(𝑓 )

So, we have J𝐴K(𝑓 ◦ 𝜙𝐴) = 𝑓 ◦ 𝜙𝐴 . By the universal property of

J𝜈𝜁 𝐴K, we conclude that 𝑓 ◦ 𝜙𝐴 = Id.
Since J𝜋 finK = 𝑓 ◦ in2, we have the following using Lemma 6.2:

JΓK J𝜈𝜁 𝐴K

J𝐴K(J𝐼𝐴Γ K) ⊕ JΓK = J𝐼𝐴Γ K

J𝐴K(J𝐼𝐴Γ K) J𝐴K(J𝜈𝜁 𝐴K)

in2

J𝜋 finK

=

⟨Id,J𝐴K(𝜙𝐴)◦J𝜋K⟩
J𝐴K(𝑓 )

As (⟨Id, J𝐴K(𝜙𝐴) ◦ J𝜋K⟩)◦in2 = J𝐴K(𝜙𝐴)◦J𝜋K. Hence the following
square commutes:

JΓK J𝜈𝜁 𝐴K

J𝜈𝜁 𝐴K

J𝐴K(J𝐼𝐴Γ K) J𝐴K(J𝜈𝜁 𝐴K)

J𝜋 finK

J𝜋K

=

J𝐴K(𝜙𝐴)
J𝐴K(𝑓 )

We have J𝐴K(𝑓 ) ◦ J𝐴K(𝜙𝐴) = J𝐴K(𝑓 ◦ 𝜙𝐴) = Id, since 𝑓 ◦ 𝜙𝐴 = Id.
Therefore, we conclude that J𝜋K = J𝜋 finK.

□

Corollary 6.4. Let 𝜋 be a strongly valid 𝜇LL∞ proof. Then J𝜋K =
J𝜋 finK where the interpretations of proofs are in any 𝜇LL∞ model.

Proof. We can always suppose wlog. that the conclusion of 𝜋

is ⊢ Γ⊥, 𝜈𝜁 𝐴. So, by Theorem 6.3, we have J𝜋K = J𝜋 finK. □

6.2 Interpreting strongly valid circular proofs
Let 𝜋 be a strongly valid proof. Till now, we have two following

ways to interpret 𝜋 :

(1) In a 𝜇LL∞ model: as we did in section 4.1.

(2) In a 𝜇LL model: By Proposition 3.5, one can first finitize 𝜋 ,

and then will interpret the finitized proof 𝜋 fin.

By Corollary 6.4, we have seen that these two interpretations are

the same. In this section, we will provide a direct way to interpret

𝜋 in a 𝜇LL model.

Let (L,−→L) be a 𝜇LLmodel. We want to interpret a strongly valid

proof 𝜋 by induction on size(𝜋) in L. The general idea to interpret

any valid circular proof 𝜋 is first to consider two cases. If 𝜋 is not

strongly connected, we can always interpret it by induction on

size(𝜋). If 𝜋 is strongly connected, we first choose a trace 𝑡 for

the infinite path 𝑝 that visits all the sequents of 𝜋 . Let 𝜈𝜁 𝐴 be the

minimal formula of 𝑡 . We then choose a sequent ⊢ Γ⊥, 𝜈𝜁 𝐴 such

that the formula 𝜈𝜁 𝐴 has been unfolded. We suppose without loss

of generality that the conclusion of 𝜋 is ⊢ Γ⊥, 𝜈𝜁 𝐴. Graphically, 𝜋 is

what is described in Figure 1. We first discard all the backedges from

the leaves of 𝜋 to its root, and close them by a same assumption 𝐹 .

The resulting proof, denoted as 𝜋𝐹 , can be shown as follows:

⊢ Γ⊥, 𝜈𝜁 𝐴

𝐹𝐹

If we take a morphism 𝑓 ∈ L(JΓK, J𝜈𝜁 𝐴K) as the interpretation of

𝐹 , we have, by induction hypothesis, the interpretation of 𝜋𝐹 as a

morphism in L(JΓK, J𝜈𝜁 𝐴K). So, considering 𝐹 as a parameter, one

can obtain from 𝜋 a morphism 𝑓𝜋 inL(𝐶⊗ !(JΓK ⊸ J𝜈𝜁 𝐴K), JΓK ⊸
J𝜈𝜁 𝐴K)wherewe take𝐶 as the parameters coming from the assump-

tions of 𝜋 . By analysing the proof of Theorem 6.3, we now want to

show that the equation 𝑓𝜋 (𝐶 ⊗ 𝑥) = 𝑥 has a solution in L, that is

to say a morphism in L(JΓK, J𝜈𝜁 𝐴K), denoted by fix(𝑓𝜋 ), such that

𝑓𝜋 (𝐶 ⊗ fix(𝑓𝜋 )) = fix(𝑓𝜋 ). To define fix(𝑓𝜋 ), we first consider the
𝜇LL∞ proof ⇑(𝜋) of ⊢ Γ⊥, 𝐴

[
𝐼𝐴Γ /𝜁

]
, and by induction hypothesis,

we have J⇑(𝜋)K. So, we have ⟨Id, J⇑(𝜋)K⟩ ∈ L(J𝐼𝐴Γ K, J𝐴K(J𝐼𝐴Γ K)).
By the universal property of the final co-algebra J𝜈𝜁 𝐴K, there is a
unique morphim 𝑓 ∈ L(J𝐼𝐴Γ K, J𝜈𝜁 𝐴K). Finally, we take fix(𝑓𝜋 ) as
𝑓 ◦ in2 where in2 ∈ L(JΓK, J𝐼𝐴Γ K).

As we saw, the interpretation of 𝜋 , described above, depends on

some choices such as choosing the validating trace 𝑡 and choosing

the sequent ⊢ Γ⊥, 𝜈𝜁 𝐴. We do not know whether changing those

parameters, we obtain the same interpretation. Nevertheless, we

can prove that if those 𝜇LLmodels are built on top of a 𝜇LL∞ model,

then the semantics does not depend on our choice of parameters:
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Theorem 6.5. Let (L,−→L) be a 𝜇LL∞ model, and 𝜋 be a strongly
valid 𝜇LL proof. Then J𝜋 finK = J𝜋K where the interpretations of proofs
are in O‚ (L).

See proof in

Appendix N.
Remark 8. Notice that, as it is mentioned in Remark 7, there are

focused orthogonality categories that are not a 𝜇LL model.

7 CONCLUSION
In this paper, we studied the non-wellfounded proof system 𝜇LL∞
from a Curry-Howard perspective, by providing a denotational

semantics of 𝜇LL∞. We also studied both syntactical and semantical

relationships between finitary and circular proofs.

𝜇LL∞ models as a semantics of 𝜇LL∞ pre-proofs. We first showed

that any 𝜇LLmodel (L,−→L) such thatL is a bi-cpo enriched category

is a sound model of 𝜇LL∞; Rel the category of sets and relations is

such an example. More precisely, we interpret closed formulas and

pre-proofs of 𝜇LL∞ in L, and prove that the semantics is preserved

via a possibly infinite reduction sequence of cut-elimination rules.

Focused orthogonality categories as semantics of 𝜇LL∞ valid proofs.
We studied the focused orthogonality construction to capture the

syntactic validity criterion and provided another concrete model of

𝜇LL∞ based on the category Nuts of non-uniform totality spaces

and relations preserving totality, which is not the case, in general,

for pre-proofs. Although the interpretation of proofs in both models

of Rel and Nuts are the same, one can obtain more information by

looking at the interpretation in Nuts as we showed that any valid

proof will be interpreted as a total element.

Semantics of strongly valid circular proofs. Benefiting from a

finite representation of the circular proofs, we have provided a

parameterized interpretation of strongly valid proofs in any 𝜇LL
model (not only 𝜇LL∞ models), and shown that the semantics is

independent of the parameters for focused orthogonality categories.

Syntactical account of the relationship between finitary and cir-
cular proofs. We have extended the syntactical relation between

finitary and circular proofs in the following sense. To go from fini-

tary to circular proofs, we have considered the extension of full

linear logic with fixed points from [25]. To go from circular to

finitary proofs, we have relaxed Doumane’s translatability condi-

tion [22], obtaining a weaker but still sufficient condition to finitize

a proper fragment of circular proofs.

Semantical account of the relationship between finitary and circu-
lar proofs. We looked at the syntactical relationship between fini-

tary and circular proofs through the magnifying glasses of Curry-

Howard-Lambek correspondence. It is shown that the translation

from finitary proofs to circular ones is sound (i.e. it preserves the se-
mantics), bringing evidence of the computational soundness of this

translation. Moreover, it is shown that the semantics is preserved

via the finitization procedure.

Related works. Santocanale and Fortier considered circular proofs
in the framework of purely Additive linear logic, and they provided

a categorical interpretation of circular proofs in 𝜇-bicomplete cate-

gories [27, 27, 42]. On the one hand, we have provided categorical

axiomatizations to treat non-wellfounded proofs in full linear logic,

but on the down side, we only benefit from the finitely presentable

structure of strongly valid circular proofs and not all valid circular

proofs, this is for future work.

Clairambault investigated in [17, 18] the game with totality se-

mantics of an extension of intuitionistic logic with least and greatest

fixed points in a finitary setting (independently of [36] and [28]).

Although there is no infinitary logic in his paper, the interpretation

of the fixed-point rules are very close to the interpretation of their

unfolding in a infinitary system. First, one can ask how we can

extend his semantics to deal with circular proofs, and then to see if

the semantics is also preserved via both translation of from finitary

to circular proofs and in the other direction. Another interesting

question is to see if there is a Kleisli-like connection between our

semantics and his work.

Along game-semantical models, Baelde et al. [6] provided a de-

notational semantics for 𝜇MALL (finitary) proofs in the setting of

Girard’s ludics [32]. One can as well see that their interpretations

of fixed-point rules is built based on ludics designs which are infini-

tary objects. Moreover, the completeness result relies on finitization

of infinitary objects. Although there is no infinitary logic in his

paper, the finitization given by Doumane [22] is indeed generalizing

finitization of designs. An essential limitation there is the difficulty

to handle exponentials in ludics.

We conclude by mentioning some directions for future work.

One question could be seeking for a complete denotational model

of 𝜇LL∞ in the sense of Girard and Streicher [31, 46]. This could be

useful to tackle the Brotherston-Simpson’s conjecture for 𝜇LL (this

conjecture says that inductive proofs and circular proofs have the

same provability) as well as a proof-relevant/denotational version of

the conjecture which would read as follows (the converse of this

conjecture is Theorem 4.9):

Conjecture 7.1 (Semantical Brotherston-Simpson’s conjec-

ture). Let ⊢ Γ be a 𝜇LL sequent and 𝜋 be a circular 𝜇LL∞ proof of
⊢ Γ. There exists a 𝜇LL (finite) proof 𝜋 ′ of ⊢ Γ such that J𝜋K = J𝜋 ′K.

As we saw in section 6.2, the semantics of strongly valid proofs

are defined with respect to some parameters. We would like to

investigate if our semantics depends on those parameters. So, the

first question is how to define in a unique way the interpretation

of strongly valid proofs in a 𝜇LL model. And secondly, we are

wondering if we can strengthen Theorem 6.3 by considering 𝜇LL
models instead of 𝜇LL∞ models, namely the following conjecture:

Conjecture 7.2. Let𝜋 be a strongly valid 𝜇LL proof. Then J𝜋 finK =
J𝜋K where the interpretations of proofs are in any 𝜇LL model.

Some non-valid 𝜇LL∞ have a total interpretation. A natural ques-

tion is to understand what sort of information can be obtained from

a total interpretation, if not syntactic validity. We saw in the paper

that, for functions from nat to nat, the totality of nat ⊸ nat is
all total relations on natural numbers; as a consequence it is not

possible for a non-terminating program of type nat ⊸ nat to have

a total interpretation in Nuts. A natural (but difficult) question is

whether this can be lifted to all 𝜇LL∞ types. The same was asked

by Girard for 2nd-order types [29] and it is still an open problem.
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There is a bigger notion of validity on proofs in [5], called bounc-
ing validity. So, a natural question is whether the focused orthog-

onality categories captures this notion of validity, i.e extending

Theorem 5.6 to bouncing validity.
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A ON THE TWO NOTIONS OF SUBFORMULAS
In the following, we shall consider two notions of sub-formulas,

the usual one and a notion of sub-formula which is specific to the

𝜇-calculus, the Fischer-Ladner subformulas.

Definition A.1. The sub-formula relation on 𝜇LL∞ is defined as

follows:

• 𝐴 ∗ 𝐵 →sub 𝐴 and 𝐴 ∗ 𝐵 →sub 𝐵 where ∗ is a binary LL
connective.

• @𝐴 →sub 𝐴 where @ is either ! or ?.

• 𝜎𝜁 𝐹 →sub 𝐹 where 𝜎 is either 𝜈 or 𝜇.

𝐺 is a subformula of 𝐹 when 𝐹 →★
sub 𝐺 .

Notice that the usual sub-formula relation is an ordering, so, we

write 𝐴 ⩽sub 𝐵 if 𝐴 is sub-formula of 𝐵, i.e, we have 𝐵 →★
sub 𝐴.

Definition A.2. We define the relation →FL on formulas as fol-

lows:

• 𝐴 ∗ 𝐵 →FL 𝐴 and 𝐴 ∗ 𝐵 →FL 𝐵 where ∗ is a binary LL
connective.

• @𝐴 →FL 𝐴 where @ is either ! or ?.

• 𝜎𝜁 𝐹 →FL 𝐹 [𝜎𝜁 𝐹/𝜁 ] where 𝜎 is either 𝜈 or 𝜇.

A formula𝐺 is a Fischer-Ladner sub-formula of 𝐹 when 𝐹 →★
FL 𝐺 .

It is a well-known fact that the Fischer-Ladner closure of any

formula (ie. the set of its Fischer-Ladner sub-formulas) is finite, see

for instance Corollary 2.1 of [22].

Proposition A.3 (Proposition 2.7 of [22]). If a thread 𝑡 is com-
ing from a branch of an 𝜇LL∞ pre-proof, then Inf (𝑡) admits a mini-
mum with respect to the usual sub-formula ordering ⩽sub (see Defini-
tion A.1), denoted min(Inf (𝑡)).

Proof. Proposition 2.7 of [22]. The idea of the proof is based

on the observation that Inf (𝑡) forms a cycle, and roughly speaking,

the minimum of Inf (𝑡) is the nearest to the root in that cycle. □

B INTERPRETATION OF LL RULES
In this section, we have recall the interpretationof LL rules in a

categorical model of LL. The idea is to interpret a sequent ⊢ Γ as

a morphsim in L(1, JΓK). If the shape of our sequent is ⊢ Δ, Γ, we
interpreted it as a morphism in L(JΔ⊥K, JΓK).u

w
v

.

.

.

.
𝜋1

⊢ Γ, 𝐴

.

.

.

.
𝜋2

⊢ 𝐴⊥,Δ (cut)
⊢ Γ,Δ

}

�
~ = (JΓK)⊥ J𝐴K JΔK

J𝜋1K J𝜋2K

r (ax)
⊢ 𝐴,𝐴⊥

z
= Id𝐴

q (1)
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= Id1
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w
v

.

.

.

.
𝜋1

⊢ Γ, 𝐴

.

.

.

.
𝜋2

⊢ Δ, 𝐵 (⊗)
⊢ Γ,Δ, 𝐴 ⊗ 𝐵

}

�
~ = (JΓK)⊥ ⊗ (JΔK)⊥ J𝐴K ⊗ J𝐵K

J𝜋1K⊗J𝜋2K
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w
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⊢ Γ,⊥

}

�
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�
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⊗
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C METRIC COMPLETION OF FINITE PROOFS
The purpose of this section is to develop a precise characteriza-

tion of non-wellfounded proofs as the completion of a space of

finite proof with a notion of approximant, much in the same way a

Böhm trees for the 𝜆-calculus. As such, the material in this section

should not surprise the reader in its technical development but it is

nevertheless necessary for a precise definition of the semantics of

non-wellfounded proofs that we consider in the latter sections.

We consider the proof system of 𝜇LL∞ extended with the follow-

ing rule:
(Ω)

⊢ Γ for any sequent Γ. The reason why we consider

this assumption will be clear later, for instance in Definition C.3.

Here, we can say that we are using this auxiliary rule in order to

cut the infinite proofs at different levels and consider all its finite

approximation.

Definition C.1. Given a 𝜇LL∞ pre-proof 𝜋 , we associate a set

Pos(𝜋) of positions corresponding to each sequent of 𝜋 as follows:



On the denotation of circular and non-wellfounded proofs Conference’17, July 2017, Washington, DC, USA

• ⟨0⟩ ∈ Pos(𝜋)
• Let 𝑟 be an occurrence of an inference rule in 𝜋 and that ⟨𝑥⟩,
which belongs to Pos(𝜋), is the location of this occurrence

in 𝜋

– If 𝑟 ∈ {(⊗), (&), (cut)}, then both ⟨𝑥0⟩ and ⟨𝑥1⟩ are in

Pos(𝜋);
– Otherwise ⟨𝑥0⟩ ∈ Pos(𝜋).

The elements of Pos(𝜋) are finite sequences of 0 and 1.

Definition C.2. Given a pre-proof 𝜋 and 𝑝 ∈ Pos(𝜋), we denote
by Proof (𝜋, 𝑝) the last sequent of the sub-pre-proof of 𝜋 rooted at

position 𝑝 .

As an example, consider the following proof 𝜋 :

(ax)
⊢ 𝐴⊥, 𝐴 (d)
⊢ ?𝐴⊥, 𝐴 (w)

⊢ ?𝐴⊥, ?𝐵⊥, 𝐴

(ax)
⊢ 𝐵⊥, 𝐵 (d)
⊢ ?𝐵⊥, 𝐵 (w)

⊢ ?𝐴⊥, ?𝐵⊥, 𝐵 (&)
⊢ ?𝐴⊥, ?𝐵⊥, 𝐴 & 𝐵 (p)

⊢ ?𝐴⊥, ?𝐵⊥, !(𝐴 & 𝐵)
Then one can represent it by the Pos(𝜋) as follows which is also

annotated by the sequents. One can also label the edges by the

inference rules.

⊢ ?𝐴⊥, ?𝐵⊥, !(𝐴 & 𝐵) ⟨0⟩

⊢ ?𝐴⊥, ?𝐵⊥, 𝐴 & 𝐵 ⟨00⟩

⊢ ?𝐴⊥, ?𝐵⊥, 𝐴 ⟨000⟩

⊢ ?𝐴⊥, 𝐴 ⟨0000⟩

⊢ 𝐴⊥, 𝐴 ⟨00000⟩

⊢ ?𝐴⊥, ?𝐵⊥, 𝐵 ⟨001⟩

⊢ ?𝐵⊥, 𝐵 ⟨0010⟩

⊢ 𝐵⊥, 𝐵 ⟨00100⟩

Definition C.3. Let 𝜋 be a pre-proof and 𝑃 be a prefix-closed

subset of Pos(𝜋). We denote by 𝜋 (𝑃) the sub-pre-proof of 𝜋 whose

set of positions is 𝑃 , i.e, Pos(𝜋 (𝑃)) = 𝑃 .
Notice that if we do not assume having the (Ω) rule, then 𝜋 (𝑃)

might not exist.

Definition C.4. If 𝜋 is a pre-proof we denote by Pos𝑖 (𝜋) the
subset of Pos(𝜋) that contains only all position of length 𝑖 , i.e,

Pos𝑖 (𝜋) = 𝜋 (Pos(𝜋) ∩ {0, 1}𝑖 ).
Let X be the set of all 𝜇LL∞ finite proofs. One can define a

distance 𝑑 : X × X → [0, 1]: 𝑑 (𝜋, 𝜋 ′) = 0 if two proofs 𝜋 and 𝜋 ′

are identical, otherwise 𝑑 (𝜋, 𝜋 ′) = 1

2
𝑘 , where 𝑘 is the length of the

shortest position at which 𝜋 and 𝜋 ′ differ.
Denote by 𝐶 [X] the collection of all Cauchy sequences in X.

Define a relation ∼ on 𝐶 [X] by
(𝜋𝑛) ∼ (𝜋 ′𝑛) ⇔ lim𝑛→∞ 𝑑 (𝜋𝑛, 𝜋 ′𝑛) = 0

It is easy to see that this is an equivalence relation on𝐶 [X]. This
definition does not depend on the choice of representatives in the

two equivalence classes. Let X∗
be the set of all equivalence classes

for ∼. One can define the metric 𝑑∗ on X∗
as follows where [(𝜋𝑛)]

is an equivalence class:

𝑑∗ ( [(𝜋𝑛)], [(𝜋 ′𝑛)]) = lim𝑛→∞ 𝑑 (𝜋𝑛, 𝜋 ′𝑛)
The metric space (X∗, 𝑑∗) is called metric completion of X, and

there is standard result showing that this is a complete space.

Proposition C.5. Let X∞ be set of all (potentially infinite) 𝜇LL∞
proofs. Then the metric space (X∗, 𝑑∗) is isomorphic to X∞.

Proof. Since the completion of a metric space is unique up to

isometry, it is enough to show that (X∞, 𝑑 ′) is the completion of

X for a metric 𝑑 ′. That is to show X is dense in X∞ for taking 𝑑 ′

same as 𝑑 .

Take𝜋 ∈ X∞. Consider the sequence (𝜋𝑛)where𝜋𝑛 = 𝜋 (⋃𝑖<𝑛 Pos𝑖 (𝜋)).
We have now 𝑑 (𝜋, 𝜋𝑛) = 1

2
𝑛 , so, 𝜋 is the limit of the sequence (𝜋𝑛)

of finite proofs. □

As the direct conclusion of C.5, the metric space (X∞, 𝑑) is com-

plete, that is to say every Cauchy sequence of proofs in X∞ has a

limit inside of X∞.

Remark 9. In the cut-elimination process of 𝜇LL∞, for any natural
number 𝑛, the number of steps of the sequence which reduces a (cut)
rule at depth less that 𝑛 is finite [22]. So, the cut-elimination reduction
has countable length.

We saw that themetric space (X∞, 𝑑) is a complete space, but this

was a result of the proposition C.5. Here we show the completeness

of this metric space directly.

Proposition C.6. The metric space (X∞, 𝑑) is complete.

Proof. Take a Cauchy sequence (𝜋𝑛). First, we define the set 𝑃
as

⋃
𝑖

⋂
𝑗>𝑖 Pos(𝜋𝑖 ). And we also provide a function 𝑓 that sends a

𝑝 ∈ 𝑃 to a sequent as follows: Since 𝑝 ∈ 𝑃 , ∃𝑖∀𝑗 > 𝑖 (𝑝 ∈ Pos(𝜋 𝑗 ) ∧
(Proof (𝜋𝑖 , 𝑝) = Proof (𝜋 𝑗 , 𝑝)). So, we define 𝑓 (𝑝) as Proof (𝜋𝑖 , 𝑝)
(this does not depend on the choice of 𝑖). Now since the sequence

(𝜋𝑛) is a Cauchy sequence, we have ∀𝑘, ∃𝑁∀𝑖, 𝑗 > 𝑁 (𝑑 (𝜋𝑖 , 𝜋 𝑗 ) <
1

2
𝑘 ), and therefore 𝑑 (Π(𝑃, 𝑓 ), 𝜋𝑖 ) < 1

2
𝑘 where Π(𝑃, 𝑓 ) is the pre-

proof tree that has 𝑃 as set of its positions and it is labeled by

element of 𝑓 (𝑃) (one can deduce it by the contradiction). Hence

the proof Π(𝑃, 𝑓 ) is the limit of the (𝜋𝑛). □

We will use this direct proof later in proof of Theorem 4.4.

D DEFINITION OF Trans ()
• We have the following for the rule 𝑟 in the following set:

{(1), (ax), (⊥), (`), (⊤), (⊕1), (⊕2), (w), (c), (d), (p), (𝜇)}:

Trans

(
𝜋
⊢ Δ r
⊢ Γ

)
=

Trans (𝜋)
⊢ Δ r
⊢ Γ

• We have the following for 𝑟 ∈ {(cut), (⊗), (&)}:

Trans

( 𝜋1
⊢ Δ1

𝜋2
⊢ Δ2 r

⊢ Γ

)
=

Trans (𝜋1)
⊢ Δ1

Trans (𝜋2)
⊢ Δ2 r

⊢ Γ

• And finally Trans ©­«
𝜋

⊢ ?Γ, 𝐴⊥, 𝐹 [𝐴/𝜁 ]
(𝜈 ′rec)⊢ ?Γ, 𝐴⊥, 𝜈𝜁 .𝐹

ª®¬ is the following
circular proof using the functoriality of formulas given in
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Section 2.3:

⊢?Γ, 𝐴⊥, 𝜈𝜁 .𝐹
(𝔉𝐹 )

⊢ ?Γ, (𝐹 [𝐴/𝜁 ])⊥, 𝐹 [𝜈𝜁 .𝐹/𝜁 ]
(𝜈)

⊢ ?Γ, (𝐹 [𝐴/𝜁 ])⊥, 𝜈𝜁 .𝐹
𝜋

⊢ 𝐴⊥, 𝐹 [𝐴/𝜁 ]
(cut)

⊢ ?Γ, ?Γ, 𝐴⊥, 𝜈𝜁 .𝐹
(c)

⊢ ?Γ, 𝐴⊥, 𝜈𝜁 .𝐹

E PROOFS OF SECTION 4
E.1 Proof of Lemma 4.8

Lemma E.1. Let 𝐴 be an onject of a category A and let 𝑓1, 𝑓2 ∈
A(𝐴,𝜈F ). If there exists 𝑙 ∈ A(𝐴, F (𝐴)) such that F (𝑓𝑖 ) 𝑙 = 𝑓𝑖 for
𝑖 = 1, 2, then 𝑓1 = 𝑓2.

Proof. SinceF (𝑓𝑖 ) 𝑙 = 𝑓𝑖 for 𝑖 = 1, 2, we have 𝑓𝑖 ∈ CoalgA (F )((𝐴, 𝑙), (𝜈F , Id))
for 𝑖 = 1, 2. (𝜈F , Id) is the final object inCoalgA (F )((𝐴, 𝑙), (𝜈F , Id)),
so there is a unique morphism from (𝐴, 𝑙) to (𝜈F , Id). Hence 𝑓1 =
𝑓2. □

Remark 10. In the proof of Lemma 4.8, we refer to the identity
for the coalgebra morphism of 𝜈F but never use any of its property
and the proof would go through using any iso instead of Id: it is just
a consequence of the universal property of a final coalgebra.

E.2 Proof of Theorem 4.9
The interpretation of a 𝜇LL formulas 𝐹 that contains 𝑛 free variable

is an 𝑛-ary strong functor J𝐹K [25]. We use the notations J𝐹K and
Ĵ𝐹K for the underlying functor and strength of the strong functor

J𝐹K respectively.

Theorem E.2. Let (L,−→L) be a 𝜇LL∞ model, and 𝜋 be a 𝜇LL proof.
Then we have J𝜋K = JTrans (𝜋)K.

Proof. The proof is by induction on 𝜋 . Let us assume that the

last inference rule is a (𝜈) rule so that 𝜋 is the following proof:

𝜋 ′

⊢ ?Γ, 𝐴⊥, 𝐹 [𝐴/𝜁 ]
(𝜈 ′rec)⊢ ?Γ, 𝐴⊥, 𝜈𝜁 𝐹

Let 𝑓 = JTrans (𝜋)K. By definition of Trans (𝜋) given above, 𝑓

should satisfy the following diagram:

!JΓ⊥K ⊗ 𝐴 J𝜈𝜁 𝐹K

J𝐹K(J𝜈𝜁 𝐹K)

!JΓ⊥K ⊗ !JΓ⊥K ⊗ 𝐴

!JΓ⊥K ⊗ J𝐹K(J𝐴K) J𝐹K(!JΓ⊥K ⊗ J𝐴K)

𝑓

C
!JΓ⊥K⊗Id

≃

Id ⊗J𝜋 ′K

Ĵ𝐹K

J𝐹K(𝑓 )

By the construction given in [25] to interpret formulas and proofs

of 𝜇LL, the interpretation of 𝜋 is the unique morphism J𝜋K ∈

L(!JΓ⊥K ⊗ 𝐴, J𝜈𝜁 𝐹K) satisfying the following diagram:

!JΓ⊥K ⊗ 𝐴 J𝜈𝜁 𝐹K

J𝐹K(J𝜈𝜁 𝐹K)

!JΓ⊥K ⊗ !JΓ⊥K ⊗ 𝐴

!JΓ⊥K ⊗ J𝐹K(J𝐴K) J𝐹K(!JΓ⊥K ⊗ J𝐴K)

J𝜋K

C
!JΓ⊥K⊗Id

≃

Id ⊗J𝜋 ′K

Ĵ𝐹K

J𝐹K(J𝜋K)

Hence, by Lemma 4.8, we have J𝜋K = JTrans (𝜋)K. □

F PROOFS OF SECTION 4
F.1 Proof of Theorem 4.4

Theorem F.1. Given two finite 𝜇LL∞ proofs 𝜋 and 𝜋 ′ such that 𝜋 ′

is obtained from 𝜋 via an one-step cut-elimination rule, then J𝜋K =
J𝜋 ′K.

Proof. We only need to check the reduction of (𝜇) − (𝜈) given
in Section 2.3. And this is trivial, as both (𝜇) and (𝜈) rules have no
effect on the interpretation by definition. □

F.2 Proof of Lemma 4.5
Lemma F.2. Let (𝜋𝑖 ) be a Cauchy sequence. Then Jlim𝑛→∞ 𝜋𝑖K =⋃
𝑖

⋂
𝑗>𝑖J𝜋 𝑗 K.

Proof. By Proposition C.6, lim𝑛→∞ 𝜋𝑖 = Π(𝑃, 𝑓 ) (we are using
a notation introduced in the proof of Proposition C.6). By defi-

nition, JΠ(𝑃, 𝑓 )K =
⋃

𝜋 ∈fin(Π (𝑃,𝑓 ))J𝜋K. Take a 𝜋 ′ ∈ fin(Π(𝑃, 𝑓 )).
For each 𝑝 ∈ fin(Π(𝑃, 𝑓 )), we have ∃𝑖𝑝∀𝑗 > 𝑖𝑝 (𝑝 ∈ Pos(𝜋 𝑗 ) ∧
(Proof (𝜋 𝑗 , 𝑝) = Proof (𝜋 ′, 𝑝)), by definition. Let 𝑖 be the maximum

among all 𝑖𝑝 ’s (The set Pos(𝜋 ′) is finite). Then for all 𝑗 > 𝑖 we have

𝜋 ′ ∈ 𝜋 𝑗 . Hence we have the following:

∀𝜋 ′ ∈ fin(Π(𝑃, 𝑓 )) ∀𝑝 ∈ 𝜋 ′ ∃𝑖 ∀𝑗 > 𝑖 (𝑝 ∈ 𝜋 𝑗 ∧ (Proof (𝜋 𝑗 , 𝑝) =
Proof (𝜋 ′, 𝑝)))

And that is to say for each 𝜋 ′ ∈ fin(Π(𝑃, 𝑓 )), there exists an 𝑖
such that for all 𝑗 > 𝑖 , 𝜋 ′ is a finite sub-pre-proof of all 𝜋 𝑗 . Hence
J𝜋 ′K is less than J𝜋 𝑗 K for all 𝑗 > 𝑖 , so, J𝜋 ′K ⊆ ⋂

𝑗>𝑖J𝜋 𝑗 K (we use the
notation ⊆ for the partial order relation on the hom-set). □

F.3 Proof of Theorem 4.6
Theorem F.3. Let (𝜋𝑖 )𝑖∈𝜔 be a Cauchy sequence such that ∀𝑖, 𝑗 ∈

𝜔 we have J𝜋𝑖K = J𝜋 𝑗 K. Then Jlim𝑛→∞ 𝜋𝑖K = J𝜋0K.

Proof.

J lim

𝑛→∞
𝜋𝑖K =

⋃
𝑖

⋂
𝑗>𝑖

J𝜋 𝑗 K By Lemma 4.5

=
⋃⋂

J𝜋0K

= J𝜋0K

□
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F.4 Proof of Lemma 5.3
Lemma F.4. If 𝐴 is a 𝜇LL∞ formula and 𝑡 ∉ O(J𝜈𝛼𝜁 .𝐹K), then

there exists an ordinal 𝛾 < 𝛼 such that 𝑡 ∉ O(J𝐹 [𝜈𝛾𝜁 .𝐹/𝜁 ]K).

Proof. If𝛼 is a successor ordinal𝛿+1 then𝑈𝛼 = O(J𝐹K) (J𝜈𝜁 𝐹KL ,𝑈𝛿 )
by definition, and obviously 𝑡 ∉ O(J𝐹K) ((J𝜈𝜁 𝐹KL ,𝑈𝛿 )). And so

𝑡 ∉ O(J𝐹 [𝜈𝛾𝜁 .𝐹/𝜁 ]K) for 𝛾 = 𝛿 .

If 𝛼 is a limit ordinal, then: 𝑈𝛼 =
⋂
𝛾<𝛼 𝑈𝛾 , and 𝑡 ∉

⋂
𝛾<𝛼 𝑈𝛾 =⋂

𝛿+1<𝛼 𝑈𝛿+1. So, there exists an ordinal 𝛿+1 < 𝛼 such that 𝑡 ∉ 𝑈𝛿+1
and we continue as before.

□

F.5 Poof of Lemma 5.4
Lemma F.5. O(J𝐹 [𝜇𝜁 𝐹/𝜁 ]K) = O(J𝜇𝜁 𝐹K).

Proof. The interpretation of 𝜇𝜁 𝐹 is the least fixed-point of Θ𝐹 .

So, we have:

O(J𝜇𝜁 𝐹K) = Θ𝐹 (O(J𝜇𝜁 𝐹K))
= O(J𝐹K) ((J𝜇𝜁 𝐹KL,O(J𝜇𝜁 𝐹K))) by definition of Θ𝐹

= O(J𝐹 [𝜇𝜁 𝐹/𝜁 ]K)
□

F.6 Proof of Lemma 5.5
Lemma F.6. If 𝜋 is a proof of ⊢ Γ and J𝜋K ∉ O((JΓK)), then
(1) 𝜋 has an infinite branch 𝛾 = (⊢ Γ𝑖 )𝑖∈𝜔 such that J𝜋𝑖K ∉

O((JΓ𝑖K)) where 𝜋𝑖 is the sub-proof of 𝜋 rooted in ⊢ Γ𝑖 ;
(2) and there exists a sequence of functions (𝑓𝑖 )𝑖∈𝜔 where 𝑓𝑖 maps

all formulas 𝐷 of Γ𝑖 to a marked formula 𝑓𝑖 (𝐷) such that
• (𝑓𝑖 (𝐷))◦ = 𝐷 ,
• one can write Γ𝑖 = Γ′

𝑖
,𝐶 ,

• and there exists 𝑥 ∈ O(J(𝑓𝑖 (Γ′𝑖 ))
⊥K) such that J𝜋𝑖K.𝑥 ∉

O(J𝑓𝑖 (𝐶)K) where Γ′
𝑖

= 𝐴𝑖
1
, · · · , 𝐴𝑖𝑛𝑖 and J(𝑓𝑖 (Γ′𝑖 ))

⊥K =

(J𝑓𝑖 (𝐴𝑖
1
)K)⊥ ⊗ · · · ⊗ (J𝑓𝑖 (𝐴𝑖𝑛𝑖 )K)

⊥.

Proof. We set Γ0 = Γ, and 𝑓0 (𝐷) = 𝐷 for all 𝐷 ∈ Γ0:

• Since 𝜋0 = 𝜋 , J𝜋0K ∉ T (JΓ0K).
• Let 𝐶 be the principal formula in Γ0. The sequent ⊢ 𝑓0 (Γ0)
is denotationally the same as ⊢ (𝑓0 (Γ′

0
))⊥ ⊸ 𝑓0 (𝐶). By the

proposition 5.2, J𝑓0 (𝐷)K = J𝐷K for all 𝐷 ∈ Γ0. So, J𝜋0K ∉

O(𝑓0 (Γ0)). That is to say J𝜋0K ∉ O(J(𝑓0 (Γ′
0
))⊥ ⊸ 𝑓0 (𝐶)K).

Therefore, by definition, there exists 𝑥 ∈ O(J(𝑓0 (Γ′
0
))⊥K)

such that J𝜋0K.𝑥 ∉ O(J𝑓0 (𝐶)K).
Suppose that we have provided Γ𝑖 and 𝑓𝑖 for 𝑖 ∈ 𝜔 . We then

define Γ𝑖+1 and 𝑓𝑖+1 depending on the rule applied on ⊢ Γ𝑖 in 𝜋 . Let
us assume that the formula 𝐶 is the principal in Γ𝑖 :

• If 𝐶 = 𝐶1 ` 𝐶2, then Γ𝑖+1 is the unique premise of ⊢ Γ𝑖 .
𝑓𝑖 (𝐶) = 𝐵1𝐶`𝐵2

𝐶
where 𝐵1

𝐶
and 𝐵2

𝐶
are two marked formulas,

so, we set 𝑓𝑖+1 (𝐶1) = 𝐵1𝐶 , 𝑓𝑖+1 (𝐶2) = 𝐵
2

𝐶
, and 𝑓𝑖+1 (𝐹 ) = 𝑓𝑖 (𝐹 )

for the other 𝐹 ∈ Γ𝑖+1:
– Since Γ𝑖 is obtained by applying the` rule on Γ𝑖+1, we have

J𝜋𝑖+1K = J𝜋𝑖K, and JΓ𝑖+1K = JΓ𝑖K. By induction hypothesis,

J𝜋𝑖+1K ∉ O(JΓ𝑖+1K).
– By induction hypothesis, there exists 𝑥 ∈ O(J(𝑓𝑖 (Γ′𝑖 ))

⊥K)
such that J𝜋𝑖K.𝑥 ∉ O(J𝑓𝑖 (𝐶)K). So, J𝜋𝑖+1K.𝑥 = J𝜋𝑖K.𝑥 ∉

O(J𝐵1
𝐶
` 𝐵2

𝐶
K) = ((O((J((𝐵1

𝐶
))⊥K ⊗ J((𝐵2

𝐶
))⊥K))))⊥. So,

there is a 𝑦 ∈ O((J((𝐵1
𝐶
))⊥K ⊗ J((𝐵2

𝐶
))⊥K)) such that

J𝜋𝑖+1K.𝑥 ∩ 𝑦 ≠ ∅. Since 𝑦 ∈ O((J(𝐵1
𝐶
)⊥K ⊗ J(𝐵2

𝐶
)⊥K)),

there is 𝑢 ′ ∈ O(J(𝐵1
𝐶
)⊥K) and 𝑣 ′ ∈ O(J(𝐵1

𝐶
)⊥K) such that

𝑢 ′ × 𝑣 ′ ⊆ 𝑦. So, J𝜋𝑖+1K.𝑥 ∩ (𝑢 ′ × 𝑣 ′) = ∅. This statement

is equivalent to (J𝜋𝑖+1K.𝑥).𝑢 ′ ∩ 𝑣 ′ ≠ ∅. J𝜋𝑖+1K.𝑥 ∈, and
this is equivalent to J𝜋𝑖+1K.(𝑥 × 𝑢 ′) ∩ 𝑣 ′ ≠ ∅. We have

shown till now that there exists 𝑣 ′ ∈ O(J(𝐵1
𝐶
)⊥K) such

that J𝜋𝑖+1K.𝑥 ′∩𝑣 ′ ≠ ∅where 𝑥 ′ = 𝑥×𝑢 ′. So, by definition,
J𝜋𝑖+1K.𝑥 ′ ∉ O(J𝐵1

𝐶
K).

• If 𝐶 = 𝐶1 ⊕ 𝐶2, then we proceed as above.

• If𝐶 = 𝐶1 ⊗𝐶2. Let us call Γ1𝑖+1 and Γ2
𝑖+1 for the two premises

of ⊢ Γ𝑖 . 𝑓𝑖 (𝐶) = 𝐵1𝐶 ⊗ 𝐵2
𝐶
where 𝐵1

𝐶
and 𝐵2

𝐶
are two marked

formulas. Since J𝜋𝑖K ∉ O(JΓ𝑖K), we have J𝜋 𝑗

𝑖+1K ∉ O(JΓ 𝑗
𝑖+1K)

for either 𝑗 = 1 or 𝑗 = 2 where 𝜋1
𝑖+1 (respectively 𝜋

2

𝑖+1) is
the left (respectively the right) subproof of 𝜋𝑖 . Let us assume

that it is true for 𝑗 = 1 (the proof of the case 𝑗 = 2 is identical

to the case 𝑗 = 1). So we set Γ𝑖+1 = Γ1
𝑖+1, 𝑓𝑖+1 (𝐶1) = 𝐵

1

𝐶
, and

𝑓𝑖+1 (𝐷) = 𝑓𝑖 (𝐷) for the other 𝐷 ∈ Γ1
𝑖+1.

– By induction hypothesis, there exists

𝑥 ′ ∈ O(J(𝑓𝑖 (Γ1𝑖+1 ` Γ2
𝑖+1))

⊥K) such that J𝜋𝑖K.𝑥 ′ ∉ O(J𝐵1
𝐶
⊗ 𝐵2

𝐶
K).

Hence J𝜋𝑖K ∉ O(J𝑓𝑖 (Γ𝑖 )K) by definition. So, we have J𝜋 𝑗

𝑖+1K ∉
O(J𝑓𝑖+1 (Γ𝑖+1 𝑗 ′) ` 𝐵

𝑗

𝐶
K) for either 𝑗 = 1 or 𝑗 = 2. Let us

assume that is true for 𝑗 = 1 (the proof of the case 𝑗 = 2 is

identical to the case 𝑗 = 1). So, J𝜋1
𝑖+1K ∉ O(J(𝑓𝑖+1 (Γ𝑖+1 𝑗 ′))⊥ ⊸ 𝐵1

𝐶
K).

And therefore, by definition, there is a𝑦 ∈ J(𝑓𝑖+1 (Γ𝑖+1 𝑗 ′))⊥K
such that J𝜋1

𝑖+1K.𝑦 ∉ O(J𝐵1
𝐶
K).

• If 𝐶 = 𝐶1 &𝐶2, then we proceed as above.

• IF 𝐶 = 𝜇𝜁 𝐹 , then Γ𝑖+1 is the unique premise of ⊢ Γ𝑖 . Wlog

let us say Γ𝑖 = 𝐴𝑖
1
, · · · , 𝐴𝑖𝑛𝑖 , 𝜇𝜁 𝐹 . 𝑓𝑖 (𝐶) = 𝜇𝜁 𝐵𝐶 where 𝐵𝐶

is a marked formula. By induction hypothesis, there exists

𝑥 ∈ O(J(𝑓𝑖 (Γ′𝑖 ))
⊥K) such that J𝜋𝑖K.𝑥 ∉ O(J𝜇𝜁 𝐵𝐶K) where

Γ′
𝑖
= 𝐴𝑖

1
, · · · , 𝐴𝑖𝑛𝑖 . So, J𝜋𝑖+1K.𝑥 ∉ O(J𝐵𝐶 [𝜇𝜁 𝐵𝐶/𝜁 ]K), since

J𝜋𝑖+1K = J𝜋𝑖K and lemma 5.4. Then we set 𝑓𝑖+1 (𝐹 [𝐶/𝜁 ]) =
𝐵𝐶 [𝜇𝜁 𝐵𝐶/𝜁 ] and 𝑓𝑖+1 (𝐷) = 𝑓𝑖 (𝐷) for all the other formula

𝐷 ∈ Γ𝑖+1 in order to have the second property of the lemma

5.5.

• If 𝐶 = 𝜈𝜁 𝐹 , then Γ𝑖+1 is the unique premise of ⊢ Γ𝑖 . Wlog,

let us say Γ𝑖 = 𝐴
𝑖
1
, · · · , 𝐴𝑖𝑛𝑖 , 𝜈𝜁 𝐹 . 𝑓𝑖 (𝐶) = 𝜈

𝜃𝜁 .𝐵𝐶 where 𝐵𝐶
is a marked formula. By induction hypothesis, there exists

𝑥 ∈ O(J(𝑓𝑖 (Γ′𝑖 ))
⊥K) such that J𝜋𝑖K.𝑥 ∉ O(J𝜈𝜃𝜁 .𝐵𝐶K) where

Γ′
𝑖
= 𝐴𝑖

1
, · · · , 𝐴𝑖𝑛𝑖 . By Lemma 5.3, there is an ordinal 𝛿 < 𝜃

such that

J𝜋𝑖+1K.𝑥 ∉ O(J𝐵𝐶
[
𝜈𝛿𝜁 .𝐵𝐶/𝜁

]
K), since J𝜋𝑖+1K = J𝜋𝑖K. So, we

set 𝑓𝑖+1 (𝐹 [𝐶/𝜁 ]) = 𝑓𝑖 (𝐹 )
[
𝜈𝛿𝜁 .𝐵𝐶/𝜁

]
and 𝑓𝑖+1 (𝐷) = 𝑓𝑖 (𝐷)

for all the other formula𝐷 ∈ Γ𝑖+1 in order to have the second
property of the lemma.

• If the rule applied to ⊢ Γ𝑖 is a (cut) rule on the 𝐶 . Let us say

Γ𝑖 is Γ
1

𝑖
, Γ2
𝑖
. By induction hypothesis, J𝜋𝑖K ∉ O(JΓ𝑖K). So, we

have either J𝜋𝑖+1K ∉ O(JΓ1
𝑖
`𝐶K) or J𝜋𝑖+1K ∉ O(JΓ2

𝑖
`𝐶⊥K).

Wlog let us say

J𝜋𝑖+1K ∉ O(JΓ1
𝑖
`𝐶K). Then we take Γ𝑖+1 = Γ1

𝑖
,𝐶 . And for

the 𝑓𝑖+1, we define 𝑓𝑖+1 (𝐷) = 𝑓𝑖 (𝐷) for all 𝐷 ∈ Γ1
𝑖
, and

𝑓𝑖 (𝐶) = 𝐶 .
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– By induction hypothesis, J𝜋𝑖K ∉ O(J𝑓𝑖 (Γ𝑖 )K). So, we have
either J𝜋𝑖+1K ∉ O(J𝑓𝑖 (Γ1𝑖 ) `𝐶K) or J𝜋𝑖+1K ∉ O(J𝑓𝑖 (Γ1𝑖 ) `𝐶⊥K).
So, we can use definition of morphisms in the category

O‚ (L) to deduce the second property as we proceed as

the case 𝐶 = 𝐶1 ⊗ 𝐶2.
• If the rule applied to ⊢ Γ𝑖 is a (w) rule, then Γ𝑖+1 is the unique
premise of the (w) rule. And 𝑓𝑖+1 (𝐷) = 𝑓𝑖 (𝐷) for all𝐷 ∈ Γ𝑖+1.
We have J𝜋𝑖+1K ∉ O(J𝑓𝑖 (Γ𝑖+1)K) = O(J𝑓𝑖+1 (Γ𝑖+1)K), since
J𝜋𝑖K ∉ O(J𝑓𝑖 (Γ𝑖 )K) (here we are also using the soundness

theorem of 𝜇LL in [25]).

• If the rule applied to ⊢ Γ𝑖 is (c) rule on the formula ?𝐶 , then

we proceed as above.

• If the rule applied to ⊢ Γ𝑖 is (d) rule on the formula ?𝐶 . Let

us say Γ𝑖 = Γ′
𝑖
, ?𝐶 . Then Γ𝑖+1 = Γ′

𝑖
,𝐶 . 𝑓𝑖+1 (𝐷) = 𝑓𝑖 (𝐷) for all

𝐷 ∈ Γ′
𝑖
. 𝑓𝑖 (?𝐶) = ?𝐵𝐶 where 𝐵𝐶 is a marked formula. Then

we take 𝑓𝑖+1 (𝐶) = 𝐵𝐶 . To show the second property, we can

again use soundness theorem of of 𝜇LL [25].

• If the rule applied to ⊢ Γ𝑖 is (p) rule on the formula !𝐶 , then

we proceed as above.

□

F.7 Proof of Theorem 5.6
Theorem F.7. If 𝜋 is a valid proof of the sequent ⊢ Γ, then J𝜋K ∈

O(JΓK).

Proof. Let us assume J𝜋K ∉ O(JΓK).We can then apply Lemma 5.5

to obtain an infinite branch (⊢ Γ𝑖 )𝑖∈𝜔 and a sequence (𝑓𝑖 )𝑖∈𝜔 satis-

fying properties 1 and 2 of Lemma 5.5. By the definition of valid

proof (Definition 2.7), there exists a valid thread 𝑡 = (𝐹𝑖 )𝑖∈𝜔 for the

infinite branch (⊢ Γ𝑖 )𝑖∈𝜔 . Let 𝜈𝜁 𝐹 be the minimal formula formula

of 𝑡 . So, there are infinitely many times in 𝑡 that we use a 𝜈 rule

to unfold 𝜈𝜁 𝐹 . Let (𝑖𝑘 )𝑘∈𝜔 be the sequence of indices where 𝜈𝜁 𝐹

gets unfolded. Then 𝜈𝜁 𝐹 in the sequent Γ𝑖𝑘 is sub-occurrence of

𝜈𝜁 𝐹 in the sequent Γ𝑖𝑘′ for 𝑘 ⩾ 𝑘
′
. By the property 2 of Lemma 5.5,

𝑓𝑖𝑘 (𝜈𝜁 𝐹 ) = 𝜈𝛼𝑘 𝜁 .𝑓𝑖𝑘 (𝐹 ). Therefore, by the property 2 of Lemma 5.5

and by the construction of the 𝑓𝑖 in the proof of Lemma 5.5, the

sequence (𝛼𝑘 )𝑘∈𝜔 is strictly decreasing. As this contradicts the

well-foundedness property of the ordinals we obtain the required

contradiction and conclude that J𝜋K ∈ O(JΓK). □

G ON STRONG VALIDITY AND FINITIZATION
OF CIRCULAR PROOFS

Definition G.1. Let 𝜋 be a circular pre-proof and 𝛽 an infinite

branch. A thread 𝑡 = (𝐹𝑖 )𝑘≤𝑖∈𝜔 is said to be strongly valid if 𝑡 is

valid and if there is 𝑘 ∈ 𝜔 such that ∀𝑖, 𝑗 > 𝑘 , if 𝛽𝑖 = 𝛽 𝑗 , then

𝐹𝑖 = 𝐹 𝑗 . We say a circular pre-proof 𝜋 is strongly valid, if every

infinite branch of 𝜋 has a strongly valid thread.

Proposition G.2. Let 𝜈𝜁 𝐴 be a 𝜇LL formula. Then, for any con-
text Γ there is a formula 𝐼 such that the following rules are derivable
in 𝜇LL∞.

⊢ Δ [𝜈𝜁 .𝐹/𝜁 ]
⊢ Δ [𝐼/𝜁 ] ⊢ 𝐼 , Γ

The formula 𝐼 in the proposition above is called the invariant

formula and is defined as 𝜈𝜁 .(𝐴 ⊕ (`𝐼 )⊥).

Proposition G.3. Let 𝜋 be a circular pre-proof of ⊢ Γ. If 𝜋 is
strongly valid, then there is a finite proof 𝜋̃ of ⊢ Γ in 𝜇LL.

H ON THE VALIDITY OF 𝜋∞
In this appendix, we provide some additional details on the deriva-

tion 𝜋∞ which is considered in Section 6 (and defined in Figure 5)

and we discuss in details the structure of its validating threads.

We present below an abstracted version of the pre-proof 𝜋∞ to

outline its threading structure and its "validation modes". In what

follows, coinductive formulas (namely𝐺,𝐻, 𝐾 ) are depicted in bold
face. Note that 𝐾 is a 𝜈-subformula of I and J.

On the left, we only show four sequents of the proof, with the

two back-edges. On the right, we show the threading structure of

the pre-proof, showing the recreationg of fixed-point formulas as

well as the progress.

★𝑎⊢𝐹,G,H, 𝐼 , 𝐽
. . .

★𝑏 ⊢ 𝐹,G,H, 𝐼 , 𝐽
...

⊢ 𝐹,G,H,K, 𝐽

. .
.

★ ⊢ 𝐹,G,H, 𝐼 , 𝐽

𝛽

𝛼

★

★𝑎

★𝑏

𝛼

𝛽

𝐹 G H 𝐼 𝐽

𝐹 G H 𝐼 𝐽

K 𝐽

𝐹 G H 𝐼 𝐽

The circular proof has two back-edges which induce, in its infi-

nite unfolding, three types of infinite branches (or three types of

infinite paths in the circular representation, which is equivalent):

(1) those branches which ultimately only visit the red back-

edge, labeled 𝛼 (visiting the blue back-edge only finitely

many times);

(2) those branches which ultimately only visit the blue back-

edge, labeled 𝛽 (visiting the red back-edge only finitely many

times);

(3) those branches which visit the red and blue back-edges, la-

beled 𝛼 and 𝛽 respectively, infinitely many times, that is

such that in the "future", there will always be a change of

direction.

Considering that validaty in non-wellfounded proofs is expressed

in terms of recurring sequents, it is only a matter of its behaviour

at the limit and one can neglect the transitory phase at the start

and considering only the above three cases to classify all infinite

branches.

(1) the infinite branches containing only the red back-edge, 𝛼 ,

validate via a thread on H only: indeed, 𝐾 is never principal
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and formula 𝐺 is erased and recreated at each iteration of

the branch, making no progress.

(2) the infinite branches containing only the blue back-edge, 𝛽 ,

validate via a thread on G only: indeed, 𝐾 is principal on

the branch but unfolds into I which is erased in the follow-

ing iteration, no coinductive progrees is made there, while

formula 𝐻 is erased and recreated at each iteration of the

branch, making no progress either.

(3) the infinite branches containing both infinitely many blue

and red back-edges, 𝛼 and 𝛽 , validate via a thread on K only:

indeed, 𝐺 progresses on the left path but is erased next time

the branches goes to the right while similarly, 𝐻 progresses

along the right path but is erased next time the branches

goes to the left. On the other hand, 𝐾 progresses infinitely:

each time the branch switches from the right path to the

left path, a coinductive progress is made on 𝐾 , which is then

stored in 𝐼 and 𝐽 until the next shift from a right path to a

left path is made.

To sum up, one can then understand in the above example the

complexity of the validation mode of 𝜋∞: in each different class of

branches, there is just one validating thread.

Moreover, 𝜋∞ is not strongly valid since no unfolding of 𝜋∞ to

another circular proof can allow to synthesize the transition from

a right path to a left path that is described above in order to ensure

that one can specifically identify the occurrences of sequence on

which 𝐾 actually contributes to a coinductive progress.

I CATEGORICAL MODEL OF 𝜇LL
I.1 Strong functors on L
Given𝑛 ∈ N, an𝑛-ary strong functor onL is a pair F = (F, F̂))where
F : L𝑛 → L is a functor and F̂

𝑋,
−→
𝑌

∈ L(!𝑋 ⊗F(−→𝑌 ), F(!𝑋 ⊗−→
𝑌 )) is a

natural transformation, called the strength of F. We use the notation

𝑍 ⊗ (𝑌1, . . . , 𝑌𝑛) = (𝑍 ⊗𝑌1, . . . , 𝑍 ⊗𝑌𝑛). It is assumed moreover that

the diagrams of Figure 8 commute, expressing the monoidality of

this strength as well as its compatibility with the comultiplication

of !_.

I.1.1 Operations on strong functors. Let F be an 𝑛-ary strong func-

tor and G1, . . . ,G𝑛 be 𝑘-ary strong functors. Then one defines a

𝑘-ary strong functor H = F ◦ (G1, . . . ,G𝑛): the functorial compo-

nent H is defined in the obvious compositional way. The strength

is as follows:

!𝑋 ⊗ H(−→𝑌 ) F( (!𝑋 ⊗ G𝑖 (
−→
𝑌 ))𝑛

𝑖=1
) F( (G𝑖 (!𝑋 ⊗ −→

𝑌 ))𝑛
𝑖=1

)F̂ F( (Ĝ𝑖 )𝑘𝑖=1 )

Given an 𝑛-ary strong functor, we can define its De Morgan dual
(F)⊥ which is also an 𝑛-ary strong functor. On objects, we set

(F)⊥ (−→𝑌 ) = (F((−→𝑌 )⊥))⊥ and similarly for morphisms. The strength

of (F)⊥ is defined as the Curry transpose of the followingmorphism

(remember that !𝑋 ⊸ (−→𝑌 )⊥ = (!𝑋 ⊗ −→
𝑌 )⊥ up to canonical iso):

!𝑋 ⊗ (F( (−→𝑌 )⊥))⊥ ⊗ F(!𝑋 ⊸ (−→𝑌 )⊥) !𝑋 ⊗ F(!𝑋 ⊸ (−→𝑌 )⊥) ⊗ (F( (−→𝑌 )⊥))⊥

F( (−→𝑌 )⊥) ⊗ (F( (−→𝑌 )⊥))⊥ F(!𝑋 ⊗ (!𝑋 ⊸ (−→𝑌 )⊥)) ⊗ (F( (−→𝑌 )⊥))⊥

⊥

==
:

F̂⊗Id

ev 𝛾

F(ev)⊗Id

Fixed Points of strong functors.

Definition I.1. LetA be a category and F : A → A be a functor.

A coalgebra of F is a pair (𝐴, 𝑓 ) where 𝐴 is an object of A and

𝑓 ∈ A(𝐴, F (𝐴)). Given two coalgebras (𝐴, 𝑓 ) and (𝐴′, 𝑓 ′) of F , a

coalgebra morphism from (𝐴, 𝑓 ) to (𝐴′, 𝑓 ′) is anℎ ∈ A(𝐴,𝐴′) such
that 𝑓 ′ℎ = F (ℎ) 𝑓 . The category of coalgebras of the functor F will

be denoted as CoalgA (F ). The notion of algebra of an endofunctor

is defined dually (reverse the directions of the arrows 𝑓 and 𝑓 ′) and
the corresponding category is denoted as AlgA (F ).

J PROOF OF COROLLARY 5.7
Corollary J.1. If 𝜋 is a valid proof of the sequent ⊢ Γ, then

J𝜋K ∈ O‚ (L)(1O‚ (L) , JΓK).

Proof. Let us assume J𝜋K ∉ O‚ (L)(1O‚ (L) , JΓK). So, there is
𝑥 ∈ O(1) such that J𝜋K ◦ 𝑥 ∉ O(JΓK). We know that D(1) = {𝑋 ⊆
L(1, 1) | 𝑋 = 𝑋⊥⊥} = {{Id1}}. So, 𝑥 = Id1, and J𝜋K ◦ 𝑥 = J𝜋K ∉

O(Γ) which contradicts Theorem 5.6. □

K PROOF OF LEMMA 6.1
Lemma K.1. Let ⊢ Γ⊥, 𝜈𝜁 𝐴 be a 𝜇LL provable sequent. Then there

is a unique morphism 𝜙𝐴 ∈ L(J𝜈𝜁 𝐴K, J𝐼𝐴Γ K) such that it satisfies the
following square:

J𝜈𝜁 𝐴K J𝐴K(J𝜈𝜁 𝐴K)

J𝐴K(J𝐼𝐴Γ K)

J𝐼𝐴Γ K J𝐴K(J𝐼𝐴Γ K) ⊕ JΓK

𝜙𝐴

=

J𝐴K(𝜙𝐴)

in1

=

where 𝐼𝐴Γ is the invariant formula (see Proposition 3.6), and in1 is the
first injection.

Proof. Consider the following co-algebra morphism:

J𝜈𝜁 𝐴K J𝐴K(J𝜈𝜁 𝐴K) J𝐴K(J𝜈𝜁 𝐴K) ⊕ JΓK≃ in1

Since J𝜈𝜁 𝐴K is the final co-algebra, there is a unique mrophism 𝜙𝐴
in L(J𝜈𝜁 𝐴K, J𝐼𝐴Γ K) such that it satisfies the following diagram:

J𝜈𝜁 𝐴K J𝐴K(J𝜈𝜁 𝐴K) J𝐴K(J𝜈𝜁 𝐴K) ⊕ JΓK

J𝐼𝐴Γ K J𝐴K(J𝐼𝐴Γ K) ⊕ JΓK

𝜙𝐴

≃ in1

⟨in1◦J𝐴K(𝜙𝐴),in2 ⟩
=

Since the following diagram commutes, we obtain the required

diagram.

J𝐴K(J𝜈𝜁 𝐴K) J𝐴K(J𝜈𝜁 𝐴K) ⊕ JΓK

J𝐴K(J𝐼𝐴Γ K)

J𝐴K(J𝐼𝐴Γ K) ⊕ JΓK

in1

J𝐴K(𝜙𝐴)

⟨in1◦J𝐴K(𝜙𝐴),in2 ⟩
in1

□
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(!𝑋1 ⊗ !𝑋2) ⊗ F(
−→
𝑌 ) !(𝑋1 &𝑋2) ⊗ F(

−→
𝑌 )

!𝑋1 ⊗ F(!𝑋2 ⊗ −→
𝑌 )

F(!𝑋1 ⊗ !𝑋2 ⊗ F(−→𝑌 )) F(!(𝑋1 &𝑋2) ⊗
−→
𝑌 )

m2⊗F(−→𝑌 )

!𝑋
1
⊗F̂

𝑋
2
,
−→
𝑌

F̂
𝑋
1
&𝑋

2
,
−→
𝑌

F̂
𝑋
1
,!𝑋

2
⊗−→𝑌

F(m2⊗−→𝑌 )

1 ⊗ F(−→𝑌 ) !⊤ ⊗ F(−→𝑌 )

F(1 ⊗ −→
𝑌 ) F(!⊤ ⊗ −→

𝑌 )

m0⊗F(−→𝑌 )

=
=: F̂

⊤,−→𝑌
F(m0⊗−→𝑌 )

!𝑋 ⊗ F(−→𝑌 ) ‼𝑋 ⊗ F(−→𝑌 )

F(!𝑋 ⊗ −→
𝑌 ) F(‼𝑋 ⊗ −→

𝑌 )

dig𝑋 ⊗F(−→𝑌 )

F̂
𝑋,

−→
𝑌

F̂
!𝑋,

−→
𝑌

F(dig𝑋 ⊗−→𝑌 )

Figure 8: Monoidality and dig diagrams for strong functors

L PROOF OF LEMMA 6.2
We first introduce a notation to make the proof of Lemma 6.2

simpler. Given a 𝜇LL∞ connective 𝑟 , we denote by 𝑟 ((𝐴𝑙 )𝑙 ∈𝐿) the
formula𝐴 which is obtained by the application of 𝑟 on the formulas

𝐴𝑙 . For example, we denote 𝐴 ⊗ 𝐵 as ⊗(𝐴1, 𝐴2). We also denote

by J𝑟K the functorial application of 𝑟 , namely the functor J𝑟K :

Π𝑙 ∈𝐿L → L such that J𝐴K = J𝑟K((J𝐴𝑙 K)𝑙 ∈𝐿)
Now, let 𝜋 be the following proof such that 𝑟 is a 𝜇LL∞ rule and

𝐴 = 𝑟 ((𝐴𝑙 )𝑙 ∈𝐿):
(𝜌𝑙 )𝑙 ∈𝐿

(⊢ Δ𝑙 , 𝐴𝑙 )𝑙 ∈𝐿 (𝑟 )
⊢ Γ, 𝐴

Then one can easily (by a case analysis on 𝑟 ) see that J𝜋K = J𝑟K((J𝜌𝑙 K)𝑙 ∈𝐿).

Lemma L.1. Let 𝜋 be a strongly connected and strongly valid proof
of ⊢ Γ⊥, 𝜈𝜁 𝐴 where the last inference rule is the (𝜈) rule. Then J⇑(𝜋)K
is the following morphism:

JΓK J𝜈𝜁 𝐴K ≃ J𝐴K(J𝜈𝜁 𝐴K) J𝐴K(J𝐼𝐴Γ K)J𝜋K J𝐴K(𝜙𝐴)

Proof. The proof is by induction on the structure of 𝜋 , and by

case analysis of the inference rule (𝑟 ) in Definition 3.8. We will use

the same notation as Definition 3.8.

⊲ If 𝑟 is some 𝜇LL∞ rule which does not correspond to a progress

of 𝑡 , then we have the following situation:

J⇑(𝑅)K = J𝑟K((JΞ𝑙 K(𝜙𝐴) ◦ J⇑(𝑅′
𝑙
)K)𝑙 ∈𝐿)

= J𝑟K((JΞ𝑙 K(𝜙𝐴) ◦ (JΣ𝑙 K(𝜙𝐴) ◦ J𝑅′
𝑙
K))𝑙 ∈𝐿) by IH

= J𝑟K((JΞ𝑙 K(𝜙𝐴) ◦ JΣ𝑙 K(𝜙𝐴)) ◦ J𝑅′
𝑙
K)𝑙 ∈𝐿

= (J𝑟K(JΞ𝑙 K(𝜙𝐴) ◦ JΣ𝑙 K(𝜙𝐴)))𝑙 ∈𝐿 ◦ (J𝑟K(J𝑅′
𝑙
K))𝑙 ∈𝐿 by functoriality of J𝑟K

= (J𝑟K(JΞ𝑙 K(𝜙𝐴) ◦ JΣ𝑙 K(𝜙𝐴)))𝑙 ∈𝐿 ◦ J𝑅K by definition of J𝑟K

= JΣK(𝜙𝐴) ◦ J𝑅K by functoriality of JΞ𝑙 K and JΣ𝑙 K

⊲ If 𝑟 is the (𝜈) rule on some formula 𝐹 ′ [𝜈𝜁 𝐹/𝜁 ] of Σ [𝜈𝜁 𝐹/𝜁 ].
Then we have

J⇑(𝑅)K = in1 ◦ J⇑(𝑅′)K by interpretation of the (unfold) rule
= in1 ◦ (J𝐹K(𝜙𝐴) ◦ J𝑅′K) by IH

= (in1 ◦ J𝜙𝐴K) ◦ J𝑅′K

= 𝜙𝐴 ◦ J𝑅′K by Lemma 6.1

= 𝜙𝐴 ◦ J𝑅K by interpretation of the (𝜈) rule
= JΣK(𝜙𝐴) ◦ J𝑅K since Σ = 𝜁

□

M PROOF OF THEOREM 6.3
Theorem M.1. Let 𝜋 be a strongly valid proof of ⊢ Γ⊥, 𝜈𝜁 𝐴. Then

J𝜋 finK = J𝜋K where the interpretations of proofs are in any 𝜇LL∞
model.

Proof. The proof is by induction on size(𝜋) providing a base

case if elc(𝜋) = 0. In the base case, we have 𝜋 fin = 𝜋 , since we have

a finite proof (no cycle), so, it is obvious that J𝜋 finK = J𝜋K. Then we

consider two cases. Either 𝜋 is strongly connected as graph or not.

⊲ We first assume that 𝜋 is strongly connected. Then, there is an

infinite path 𝑝 that visits all the sequents of 𝜋 . Let 𝑡 be a trace of

𝑝 , and, without loss of generality, let ⊢ Γ⊥, 𝜈𝜁 𝐴 be the sequent

where the minimal formula of 𝑡 has been unfolded. Graphically, 𝜋

is shown in Figure 1, page 6.

We now consider the 𝜇LL∞ proof ⇑(𝜋) of ⊢ Γ⊥, 𝐴
[
𝐼𝐴Γ /𝜁

]
. The

complexity of the proof ⇑(𝜋) is strictly less than that of 𝜋 , since

elc(⇑(𝜋)) < elc(𝜋). So, by induction hypothesis, there is a 𝜇LL
(finite) proof 𝜌 of ⊢ Γ⊥, 𝐴

[
𝐼𝐴Γ /𝜁

]
such that J𝜌K = J⇑(𝜋)K. In this

case, the 𝜋 fin is defined as follows where the righmost proof of

⊢ 𝐼𝐴Γ , Γ
⊥
is the derived rule (close).

(ax)
⊢ 𝐴⊥ [

(𝐼𝐴Γ )
⊥/𝜁

]
, 𝐴

[
𝐼𝐴Γ /𝜁

] 𝜌

⊢ Γ⊥, 𝐴
[
𝐼𝐴Γ /𝜁

]
(&)

⊢ 𝐴⊥ [
(𝐼𝐴Γ )

⊥/𝜁
]
& Γ⊥, 𝐴

[
𝐼𝐴Γ /𝜁

]
(𝜇)

⊢ (𝐼𝐴Γ )
⊥, 𝐴

[
𝐼𝐴Γ /𝜁

]
(𝜈rec)

⊢ (𝐼𝐴Γ )
⊥, 𝜈𝜁 𝐴

(ax)
⊢ Γ, Γ⊥ (⊕2)

⊢ 𝐴
[
𝐼𝐴Γ /𝜁

]
⊕ Γ, Γ⊥

(𝜈)
⊢ 𝐼𝐴Γ , Γ

⊥
(cut)

⊢ Γ⊥, 𝜈𝜁 𝐴

Let 𝑓 be the interpretation of the proof of ⊢ (𝐼𝐴Γ )
⊥, 𝜈𝜁 𝐴. The mor-

phism 𝑓 satisfies the following universal property:

J𝐼𝐴Γ K = J𝐴
[
𝐼𝐴Γ /𝜁

]
K ⊕ Γ J𝐴K(J𝐼𝐴Γ K)

J𝜈𝜁 𝐴K = J𝐴K(J𝜈𝜁 𝐴K)

⟨Id,J𝜌K⟩

𝑓
J𝐴K(𝑓 )

By Lemma 6.2, we have J𝜌K = J𝐴K(𝜙𝐴) ◦ J𝜋K, and hence

J𝐼𝐴Γ K J𝜈𝜁 𝐴K

J𝐴K(J𝐼𝐴Γ K) ⊕ JΓK

J𝐴K(J𝐼𝐴Γ K) J𝐴K(J𝜈𝜁 𝐴K)

=

𝑓

=

⟨Id,J𝐴K(𝜙𝐴)◦J𝜋K⟩
J𝐴K(𝑓 )
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Moreover, we have the following diagram by Lemma 6.1:

J𝜈𝜁 𝐴K J𝐼𝐴Γ K

J𝐴K(J𝐼𝐴Γ K) ⊕ JΓK

J𝐴K(J𝜈𝜁 𝐴K) J𝐴K(J𝐼𝐴Γ K)

𝜙𝐴

=

=

⟨Id,J𝐴K(𝜙𝐴)◦J𝜋K⟩
J𝐴K(𝜙𝐴)

Hence, we have:

J𝜈𝜁 𝐴K J𝐼𝐴Γ K J𝜈𝜁 𝐴K

J𝐴K(J𝜈𝜁 𝐴K) J𝐴K(J𝐼𝐴Γ K) J𝐴K(J𝜈𝜁 𝐴K)

𝜙𝐴

=

𝑓

J𝐴K(𝜙𝐴) J𝐴K(𝑓 )

So, we have J𝐴K(𝑓 ◦ 𝜙𝐴) = 𝑓 ◦ 𝜙𝐴 . By the universal property of

J𝜈𝜁 𝐴K, we conclude that 𝑓 ◦ 𝜙𝐴 = Id.
Since J𝜋 finK = 𝑓 ◦ in2, we have the following using Lemma 6.2:

JΓK J𝜈𝜁 𝐴K

J𝐴K(J𝐼𝐴Γ K) ⊕ JΓK = J𝐼𝐴Γ K

J𝐴K(J𝐼𝐴Γ K) J𝐴K(J𝜈𝜁 𝐴K)

in2

J𝜋 finK

=

⟨Id,J𝐴K(𝜙𝐴)◦J𝜋K⟩
J𝐴K(𝑓 )

As (⟨Id, J𝐴K(𝜙𝐴) ◦ J𝜋K⟩)◦in2 = J𝐴K(𝜙𝐴)◦J𝜋K. Hence the following
square commutes:

JΓK J𝜈𝜁 𝐴K

J𝜈𝜁 𝐴K

J𝐴K(J𝐼𝐴Γ K) J𝐴K(J𝜈𝜁 𝐴K)

J𝜋 finK

J𝜋K

=

J𝐴K(𝜙𝐴)
J𝐴K(𝑓 )

We have J𝐴K(𝑓 ) ◦ J𝐴K(𝜙𝐴) = J𝐴K(𝑓 ◦ 𝜙𝐴) = Id, since 𝑓 ◦ 𝜙𝐴 = Id.
Therefore, we conclude that J𝜋K = J𝜋 finK.

⊲ We now consider the case that 𝜋 is not strongly connected, then

there are two sequents ⊢ Γ and ⊢ Δ such that there is no path

from ⊢ Γ to ⊢ Δ. Let 𝜋1 be the proof tree which is the reachable

part of 𝜋 from ⊢ Γ, and let 𝜋2 be the proof tree obtained from

𝜋 by adding an auxiliary rule 𝑟 on ⊢ Γ and taking the reachable

part from the conclusion of 𝜋 . Since 𝜋1 does not have ⊢ Γ, we
have nax(𝜋1) < nax(𝜋), and then by induction hypothesis we have

J𝜋1K = J𝜋 fin
1

K. We now take the interpretation of the rule 𝑟 with

the conclusion ⊢ Γ as J𝜋1K. Then by removing ⊢ Γ from 𝜋2, we

have nax(𝜋2) < nax(𝜋). Hence, by induction hypothesis, we have

J𝜋2K = J𝜋 fin
2

K. As 𝜋 fin is plugging two proofs 𝜋 fin
1

and 𝑝𝑖fin
2

, we can

conclude that J𝜋K = J𝜋 finK. □

N PROOF OF THEOREM 6.5
Theorem N.1. Let (L,−→L) be a 𝜇LL∞ model, and 𝜋 be a strongly

valid 𝜇LL proof. Then J𝜋 finK = J𝜋K where the interpretations of proofs
are in O‚ (L).

Proof. We know that J𝜋KO‚ (L) = J𝜋KL and J𝜋 finKO‚ (L) =

J𝜋 finKL . By Corollary 6.4, we have J𝜋KL = J𝜋 finKL . Hence we have
J𝜋 finK = J𝜋KO‚ (L) . □
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