
1/ 20

A linear perspective on cut-elimination for
non-wellfounded sequent calculi with
least and greatest fixed-points

Alexis Saurin
IRIF – CNRS, Université Paris Cité & INRIA

32nd TABLEAUX Conference
21 september 2023, Prague

2/ 20

1 Introduction and Background
Aim
Classical and Linear Logic
µLL∞: Circular and Non-wellfounded Proofs for Linear Logic with
Least and Greatest Fixed-points

2 µLL∞ Cut-elimination
Reviewing µMALL∞ cut-elimination
Encoding µLL∞ in µMALL∞

Simulation of µLL∞ cut-elimination steps
Cut-elimination for µLL∞

3 Applications, Remarks and Conclusion
Cut-elimination for µLK∞, µLJ∞

Remarks on the encoding of the exponentials
Conclusion

3/ 20

1 Introduction and Background
Aim
Classical and Linear Logic
µLL∞: Circular and Non-wellfounded Proofs for Linear Logic with
Least and Greatest Fixed-points

2 µLL∞ Cut-elimination
Reviewing µMALL∞ cut-elimination
Encoding µLL∞ in µMALL∞

Simulation of µLL∞ cut-elimination steps
Cut-elimination for µLL∞

3 Applications, Remarks and Conclusion
Cut-elimination for µLK∞, µLJ∞

Remarks on the encoding of the exponentials
Conclusion

4/ 20

Aim
A linear perspective on cut-elimination for

non-wellfounded sequent calculi with least and greatest fixed-points

Long-term goal: contribute to improve the support for inductive and
coinductive constructs in ATP, FPL and ITP.
Medium-term: Design and study logical frameworks combining good
properties wrt. (i) proof construction and (ii) proof normalization

(that is, open-goal-elimination and cut-elimination)
& admitting support for inductive and coinductive reasoning;
Study circular & non-wellfounded proof systems for the µ-calculus:

pioneering works by Santocanale; Sprenger and Dam; Studer; Brotherston
& Simpson; Dax, Hoffman & Lange;
recently, numerous developments of circular/cyclic proof systems (Afshari
& Leigh, Baelde & Doumane & S., Berardi & Tatsuta, Cohen & Rowe,
Das & Doumane & Pous, ... + a new generation of young researchers)

This paper establishes a cut-elimination theorem for
non-wellfounded proofs for µLL∞, µLK∞ and µLJ∞ by relying on (a
tiny bit of) what we have learnt from linear logic in the past 35
years.

5/ 20

Exponentials:

Relating additive & multiplicative inferences
In LK, additive and multiplicative inferences for ∧ and ∨ are
interderivable thanks to availability of structural rules:

(Ax)
A ` A (Wl)A,B ` A

(Ax)
B ` B (Wl)A,B ` B

(∧ar)A,B ` A∧a B
(∧ml)A∧m B ` A∧a B

(Ax)
A ` A (∧a2l)

A∧a B ` A

(Ax)
B ` B (∧a1l)

A∧a B ` B (∧mr)A∧a B,A∧a B ` A∧m B
(Cl)A∧a B ` A∧m B

A,B are weakened on the left, A∧a B is contracted on the left.

In LL, no free structural rules: need to tag formulas with exponentials
where structural rules are needed, leading to: !A⊗!B a` !(A&B).

(with one-sided sequents: ` ?A⊥`?B⊥, !(A & B) and ` !A⊗!B,?(A⊥⊕B⊥))

π⊗`& =

(Ax)
` A⊥,A

(?d)
` ?A⊥,A

(?w)
` ?A⊥,?B⊥,A

(Ax)
` B⊥,B

(?d)
` ?B⊥,B

(?w)
` ?A⊥,?B⊥,B

(&)
` ?A⊥,?B⊥,A & B

(!p)
` ?A⊥,?B⊥, !(A & B)

(`)
` ?A⊥`?B⊥, !(A & B)

π& ⊗̀=

(Ax)
` A⊥,A

(⊕1)
` A⊥⊕B⊥,A

(?d)
` ?(A⊥⊕B⊥),A

(!p)
` ?(A⊥⊕B⊥), !A

(Ax)
` B⊥,B

(⊕2)
` A⊥⊕B⊥,B

(?d)
` ?(A⊥⊕B⊥),B

(!p)
` ?(A⊥⊕B⊥), !B

(⊗)
` ?(A⊥⊕B⊥),?(A⊥⊕B⊥), !A⊗!B

(?c)
` ?(A⊥⊕B⊥), !A⊗!B

5/ 20

Exponentials:

Relating additive & multiplicative inferences
In LK, additive and multiplicative inferences for ∧ and ∨ are
interderivable thanks to availability of structural rules:

(Ax)
A ` A (Wl)A,B ` A

(Ax)
B ` B (Wl)A,B ` B

(∧ar)A,B ` A∧a B
(∧ml)A∧m B ` A∧a B

(Ax)
A ` A (∧a2l)

A∧a B ` A

(Ax)
B ` B (∧a1l)

A∧a B ` B (∧mr)A∧a B,A∧a B ` A∧m B
(Cl)A∧a B ` A∧m B

A,B are weakened on the left, A∧a B is contracted on the left.

In LL, no free structural rules: need to tag formulas with exponentials
where structural rules are needed, leading to: !A⊗!B a` !(A&B).

(with one-sided sequents: ` ?A⊥`?B⊥, !(A & B) and ` !A⊗!B,?(A⊥⊕B⊥))

π⊗`& =

(Ax)
` A⊥,A

(?d)
` ?A⊥,A

(?w)
` ?A⊥,?B⊥,A

(Ax)
` B⊥,B

(?d)
` ?B⊥,B

(?w)
` ?A⊥,?B⊥,B

(&)
` ?A⊥,?B⊥,A & B

(!p)
` ?A⊥,?B⊥, !(A & B)

(`)
` ?A⊥`?B⊥, !(A & B)

π& ⊗̀=

(Ax)
` A⊥,A

(⊕1)
` A⊥⊕B⊥,A

(?d)
` ?(A⊥⊕B⊥),A

(!p)
` ?(A⊥⊕B⊥), !A

(Ax)
` B⊥,B

(⊕2)
` A⊥⊕B⊥,B

(?d)
` ?(A⊥⊕B⊥),B

(!p)
` ?(A⊥⊕B⊥), !B

(⊗)
` ?(A⊥⊕B⊥),?(A⊥⊕B⊥), !A⊗!B

(?c)
` ?(A⊥⊕B⊥), !A⊗!B

5/ 20

Exponentials: Relating additive & multiplicative inferences
In LK, additive and multiplicative inferences for ∧ and ∨ are
interderivable thanks to availability of structural rules:

(Ax)
A ` A (Wl)A,B ` A

(Ax)
B ` B (Wl)A,B ` B

(∧ar)A,B ` A∧a B
(∧ml)A∧m B ` A∧a B

(Ax)
A ` A (∧a2l)

A∧a B ` A

(Ax)
B ` B (∧a1l)

A∧a B ` B (∧mr)A∧a B,A∧a B ` A∧m B
(Cl)A∧a B ` A∧m B

A,B are weakened on the left, A∧a B is contracted on the left.

In LL, no free structural rules: need to tag formulas with exponentials
where structural rules are needed, leading to: !A⊗!B a` !(A&B).

(with one-sided sequents: ` ?A⊥`?B⊥, !(A & B) and ` !A⊗!B,?(A⊥⊕B⊥))

π⊗`& =

(Ax)
` A⊥,A

(?d)
` ?A⊥,A

(?w)
` ?A⊥,?B⊥,A

(Ax)
` B⊥,B

(?d)
` ?B⊥,B

(?w)
` ?A⊥,?B⊥,B

(&)
` ?A⊥,?B⊥,A & B

(!p)
` ?A⊥,?B⊥, !(A & B)

(`)
` ?A⊥`?B⊥, !(A & B)

π& ⊗̀=

(Ax)
` A⊥,A

(⊕1)
` A⊥⊕B⊥,A

(?d)
` ?(A⊥⊕B⊥),A

(!p)
` ?(A⊥⊕B⊥), !A

(Ax)
` B⊥,B

(⊕2)
` A⊥⊕B⊥,B

(?d)
` ?(A⊥⊕B⊥),B

(!p)
` ?(A⊥⊕B⊥), !B

(⊗)
` ?(A⊥⊕B⊥),?(A⊥⊕B⊥), !A⊗!B

(?c)
` ?(A⊥⊕B⊥), !A⊗!B

5/ 20

Exponentials: Relating additive & multiplicative inferences
In LK, additive and multiplicative inferences for ∧ and ∨ are
interderivable thanks to availability of structural rules:

(Ax)
A ` A (Wl)A,B ` A

(Ax)
B ` B (Wl)A,B ` B

(∧ar)A,B ` A∧a B
(∧ml)A∧m B ` A∧a B

(Ax)
A ` A (∧a2l)

A∧a B ` A

(Ax)
B ` B (∧a1l)

A∧a B ` B (∧mr)A∧a B,A∧a B ` A∧m B
(Cl)A∧a B ` A∧m B

A,B are weakened on the left, A∧a B is contracted on the left.

In LL, no free structural rules: need to tag formulas with exponentials
where structural rules are needed, leading to: !A⊗!B a` !(A&B).

(with one-sided sequents: ` ?A⊥`?B⊥, !(A & B) and ` !A⊗!B,?(A⊥⊕B⊥))

π⊗`& =

(Ax)
` A⊥,A

(?d)
` ?A⊥,A

(?w)
` ?A⊥,?B⊥,A

(Ax)
` B⊥,B

(?d)
` ?B⊥,B

(?w)
` ?A⊥,?B⊥,B

(&)
` ?A⊥,?B⊥,A & B

(!p)
` ?A⊥,?B⊥, !(A & B)

(`)
` ?A⊥`?B⊥, !(A & B)

π& ⊗̀=

(Ax)
` A⊥,A

(⊕1)
` A⊥⊕B⊥,A

(?d)
` ?(A⊥⊕B⊥),A

(!p)
` ?(A⊥⊕B⊥), !A

(Ax)
` B⊥,B

(⊕2)
` A⊥⊕B⊥,B

(?d)
` ?(A⊥⊕B⊥),B

(!p)
` ?(A⊥⊕B⊥), !B

(⊗)
` ?(A⊥⊕B⊥),?(A⊥⊕B⊥), !A⊗!B

(?c)
` ?(A⊥⊕B⊥), !A⊗!B

6/ 20

µLL∞

Non-Wellfounded Sequent Calculus
Consider your favourite logic L & add fixed points as in the µ-calculus

µLL∞

Pre-proofs are the trees coinductively generated by:

L inference rules
inference for µ,ν:

Γ,F [µX .F/X] `∆
(µl)Γ,µX .F `∆

Γ,F [νX .F/X] `∆
(νl)Γ,νX .F `∆

Γ ` F [µX .F/X],∆
(µr)Γ ` µX .F ,∆

Γ ` F [νX .F/X],∆
(νr)Γ ` νX .F ,∆

Fischer-Ladner Subformulas: induced by fixed-point unrolling:
F [σX .F/X] ∈ FL(σX .F) with σ ∈ {µ,ν}.

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely
many sub-(pre)proofs.

µLLω

Pre-proofs are unsound!!
Need for a global validity condition

... (µ)
` µX .X

(µ)
` µX .X

... (ν)
` νX .X ,F

(ν)
` νX .X ,F

(Cut)
` F

Involutive negation, ()⊥: operator on formula, not a connective.
One-sided sequents as lists: ` A1, . . . ,An. (Γ `∆ is a short for ` Γ⊥,∆)
µ and ν are dual binders. Ex: (νX .X ⊗X)⊥ = µX .X `X .

6/ 20

µLL∞ Non-Wellfounded Sequent Calculus
Consider your favourite logic LL & add fixed points as in the µ-calculus

µLL∞ Pre-proofs are the trees coinductively generated by:

LL inference rules
inference for µ,ν:

Γ,F [µX .F/X] `∆
(µl)Γ,µX .F `∆

Γ,F [νX .F/X] `∆
(νl)Γ,νX .F `∆

Γ

` F [µX .F/X],∆
(µr)

Γ

` µX .F ,∆

Γ

` F [νX .F/X],∆
(νr)

Γ

` νX .F ,∆

Fischer-Ladner Subformulas: induced by fixed-point unrolling:
F [σX .F/X] ∈ FL(σX .F) with σ ∈ {µ,ν}.

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely
many sub-(pre)proofs. µLLω

Pre-proofs are unsound!!
Need for a global validity condition

... (µ)
` µX .X

(µ)
` µX .X

... (ν)
` νX .X ,F

(ν)
` νX .X ,F

(Cut)
` F

Involutive negation, ()⊥: operator on formula, not a connective.
One-sided sequents as lists: ` A1, . . . ,An. (Γ `∆ is a short for ` Γ⊥,∆)
µ and ν are dual binders. Ex: (νX .X ⊗X)⊥ = µX .X `X .

7/ 20

µLK∞ Inferences

µLL formulas

F ::= a | F & F | F `F | > |⊥ | ?F negative LL formulas
| a⊥ | F⊗F | F ⊕F | 1 | 0 | !F positive LL formulas
| X | µX .F | νX .F lfp & gfp

µLL∞

Inference Rules

(with ancestor relation)

(Ax)
` F ,F⊥

` Γ,F ` F⊥,∆
(Cut)

` Γ,∆
` Γ,G ,F ,∆

(ex)
` Γ,F ,G ,∆

` F ,Γ
(?d)

`?F ,Γ
` F ,?Γ

(!p)
`!F ,?Γ

`

?

F ,

?

F ,Γ
(?c)

`

?

F ,Γ
` Γ

(?w)
`

?

F ,Γ
(>)

` >,Γ
` F ,Γ ` G ,Γ

(∧)
` F ∧G ,Γ

` Ai ,Γ
(∨i)` A1∨A2,Γ

(no rule for 0)

` Γ
(⊥)

` ⊥,Γ
` F ,G ,Γ

(`)
` F `G ,Γ

` F ,Γ ` G ,∆
(⊗)

` F⊗G ,Γ,∆
(1)

` 1

` G [νX .G/X],Γ
(ν)

` νX .G ,Γ
` F [µX .F/X],Γ

(µ)
` µX .F ,Γ

How to distinguish valid nwf proofs from invalid ones?

7/ 20

µLL∞ Inferences
µLL formulas

F ::= a | F & F | F `F | > |⊥ | ?F negative LL formulas
| a⊥ | F⊗F | F ⊕F | 1 | 0 | !F positive LL formulas
| X | µX .F | νX .F lfp & gfp

µLL∞ Inference Rules

(with ancestor relation)

(Ax)
` F ,F⊥

` Γ,F ` F⊥,∆
(Cut)

` Γ,∆
` Γ,G ,F ,∆

(ex)
` Γ,F ,G ,∆

` F ,Γ
(?d)

`?F ,Γ
` F ,?Γ

(!p)
`!F ,?Γ

` ?F ,?F ,Γ
(?c)

` ?F ,Γ
` Γ

(?w)
` ?F ,Γ

(>)
` >,Γ

` F ,Γ ` G ,Γ
(&)

` F & G ,Γ
` Ai ,Γ

(⊕i)` A1⊕A2,Γ
(no rule for 0)

` Γ
(⊥)

` ⊥,Γ
` F ,G ,Γ

(`)
` F `G ,Γ

` F ,Γ ` G ,∆
(⊗)

` F⊗G ,Γ,∆
(1)

` 1
` G [νX .G/X],Γ

(ν)
` νX .G ,Γ

` F [µX .F/X],Γ
(µ)

` µX .F ,Γ

How to distinguish valid nwf proofs from invalid ones?

7/ 20

µLL∞ Inferences
µLL formulas

F ::= a | F & F | F `F | > |⊥ | ?F negative LL formulas
| a⊥ | F⊗F | F ⊕F | 1 | 0 | !F positive LL formulas
| X | µX .F | νX .F lfp & gfp

µLL∞ Inference Rules

(with ancestor relation)

(Ax)
` F ,F⊥

` Γ,F ` F⊥,∆
(Cut)

` Γ,∆
` Γ,G ,F ,∆

(ex)
` Γ,F ,G ,∆

` F ,Γ
(?d)

`?F ,Γ
` F ,?Γ

(!p)
`!F ,?Γ

` ?F ,?F ,Γ
(?c)

` ?F ,Γ
` Γ

(?w)
` ?F ,Γ

(>)
` >,Γ

` F ,Γ ` G ,Γ
(&)

` F & G ,Γ
` Ai ,Γ

(⊕i)` A1⊕A2,Γ
(no rule for 0)

` Γ
(⊥)

` ⊥,Γ
` F ,G ,Γ

(`)
` F `G ,Γ

` F ,Γ ` G ,∆
(⊗)

` F⊗G ,Γ,∆
(1)

` 1
` G [νX .G/X],Γ

(ν)
` νX .G ,Γ

` F [µX .F/X],Γ
(µ)

` µX .F ,Γ

How to distinguish valid nwf proofs from invalid ones?

7/ 20

µLL∞ Inferences
µLL formulas

F ::= a | F & F | F `F | > |⊥ | ?F negative LL formulas
| a⊥ | F⊗F | F ⊕F | 1 | 0 | !F positive LL formulas
| X | µX .F | νX .F lfp & gfp

µLL∞ Inference Rules (with ancestor relation)

(Ax)
` F ,F⊥

` Γ,F ` F⊥,∆
(Cut)

` Γ,∆
` Γ,G ,F ,∆

(ex)
` Γ,F ,G ,∆

` F ,Γ
(?d)

`?F ,Γ
` F ,?Γ

(!p)
`!F ,?Γ

` ?F ,?F ,Γ
(?c)

` ?F ,Γ
` Γ

(?w)
` ?F ,Γ

(>)
` >,Γ

` F ,Γ ` G ,Γ
(&)

` F & G ,Γ
` Ai ,Γ

(⊕i)` A1⊕A2,Γ
(no rule for 0)

` Γ
(⊥)

` ⊥,Γ
` F ,G ,Γ

(`)
` F `G ,Γ

` F ,Γ ` G ,∆
(⊗)

` F⊗G ,Γ,∆
(1)

` 1
` G [νX .G/X],Γ

(ν)
` νX .G ,Γ

` F [µX .F/X],Γ
(µ)

` µX .F ,Γ

How to distinguish valid nwf proofs from invalid ones?

7/ 20

µLL∞ Inferences
µLL formulas

F ::= a | F & F | F `F | > |⊥ | ?F negative LL formulas
| a⊥ | F⊗F | F ⊕F | 1 | 0 | !F positive LL formulas
| X | µX .F | νX .F lfp & gfp

µLL∞ Inference Rules (with ancestor relation)

(Ax)
` F ,F⊥

` Γ,F ` F⊥,∆
(Cut)

` Γ,∆
` Γ,G ,F ,∆

(ex)
` Γ,F ,G ,∆

` F ,Γ
(?d)

`?F ,Γ
` F ,?Γ

(!p)
`!F ,?Γ

` ?F ,?F ,Γ
(?c)

` ?F ,Γ
` Γ

(?w)
` ?F ,Γ

(>)
` >,Γ

` F ,Γ ` G ,Γ
(&)

` F & G ,Γ
` Ai ,Γ

(⊕i)` A1⊕A2,Γ
(no rule for 0)

` Γ
(⊥)

` ⊥,Γ
` F ,G ,Γ

(`)
` F `G ,Γ

` F ,Γ ` G ,∆
(⊗)

` F⊗G ,Γ,∆
(1)

` 1
` G [νX .G/X],Γ

(ν)
` νX .G ,Γ

` F [µX .F/X],Γ
(µ)

` µX .F ,Γ

How to distinguish valid nwf proofs from invalid ones?

8/ 20

Infinite traces, validity
F = νX .((a`a⊥)⊗(!X⊗µY .X)).
G = µY .F

(Ax)
` a,a⊥

(`)
` a`a⊥

` F
(!p)

` !F
` F

(µ)
` G

(⊗)
` !F⊗G

(⊗)
` (a`a⊥)⊗(!F⊗G)

(ν)
` F

A trace (or thread) on an
infinite branch (Γi)i∈ω is an
infinite sequence of formula
occurrences (Fi)i≥k such that
∀i ≥ k, Fi ∈ Γi and Fi+1 is
an immediate ancestor of Fi .

A trace (or thread) is valid if the minimal recurring principal formula of
the trace is a ν-formula (≈ if it unfolds infinitely many ν).
A proof is valid if every infinite branch contains a valid trace.

Validity criteria ensure (productive) cut-elimination:
µALLω : Santocanale in 2002, with Fortier in 2013;
µMALL∞: Baelde, Doumane and S. in 2016;
Bouncing µMALL∞: Baelde, Doumane, Kuperberg and S. in 2022.

How to extend those results to µLL∞?

8/ 20

Infinite traces, validity
F = νX .((a`a⊥)⊗(!X⊗µY .X)).
G = µY .F

(Ax)
` a,a⊥

(`)
` a`a⊥

` F
(!p)

` !F
` F

(µ)
` G

(⊗)
` !F⊗G

(⊗)
` (a`a⊥)⊗(!F⊗G)

(ν)
` F

A trace (or thread) on an
infinite branch (Γi)i∈ω is an
infinite sequence of formula
occurrences (Fi)i≥k such that
∀i ≥ k, Fi ∈ Γi and Fi+1 is
an immediate ancestor of Fi .

A trace (or thread) is valid if the minimal recurring principal formula of
the trace is a ν-formula (≈ if it unfolds infinitely many ν).
A proof is valid if every infinite branch contains a valid trace.

Validity criteria ensure (productive) cut-elimination:
µALLω : Santocanale in 2002, with Fortier in 2013;
µMALL∞: Baelde, Doumane and S. in 2016;
Bouncing µMALL∞: Baelde, Doumane, Kuperberg and S. in 2022.

How to extend those results to µLL∞?

8/ 20

Infinite traces, validity
F = νX .((a`a⊥)⊗(!X⊗µY .X)).
G = µY .F

(Ax)
` a,a⊥

(`)
` a`a⊥

` F
(!p)

` !F
` F

(µ)
` G

(⊗)
` !F⊗G

(⊗)
` (a`a⊥)⊗(!F⊗G)

(ν)
` F

A trace (or thread) on an
infinite branch (Γi)i∈ω is an
infinite sequence of formula
occurrences (Fi)i≥k such that
∀i ≥ k, Fi ∈ Γi and Fi+1 is
an immediate ancestor of Fi .

A trace (or thread) is valid if the minimal recurring principal formula of
the trace is a ν-formula (≈ if it unfolds infinitely many ν).
A proof is valid if every infinite branch contains a valid trace.

Validity criteria ensure (productive) cut-elimination:
µALLω : Santocanale in 2002, with Fortier in 2013;
µMALL∞: Baelde, Doumane and S. in 2016;
Bouncing µMALL∞: Baelde, Doumane, Kuperberg and S. in 2022.

How to extend those results to µLL∞?

9/ 20

1 Introduction and Background
Aim
Classical and Linear Logic
µLL∞: Circular and Non-wellfounded Proofs for Linear Logic with
Least and Greatest Fixed-points

2 µLL∞ Cut-elimination
Reviewing µMALL∞ cut-elimination
Encoding µLL∞ in µMALL∞

Simulation of µLL∞ cut-elimination steps
Cut-elimination for µLL∞

3 Applications, Remarks and Conclusion
Cut-elimination for µLK∞, µLJ∞

Remarks on the encoding of the exponentials
Conclusion

10/ 20

µMALL∞ Cut Elimination Theorem
Theorem (Baelde, Doumane & S, 2016)
Fair µMALL∞

m

cut-reduction sequences converge to cut-free µMALL∞

proofs.

Strategy: “push” the cuts away from the root.

Cut-Cut Case

merge in a multicut:

` Γ,F ` F⊥,∆,G
(Cut)

` Γ,∆,G ` G⊥,Σ
(Cut)

` Γ,∆,Σ
←→ ` Γ,F

` F⊥,∆,G ` G⊥,Σ
(Cut)

` F⊥,∆,Σ
(Cut)

` Γ,∆,Σ

Cut-commutation steps are productive:
`∆,F `∆,G

(&)
`∆,F & G . . .

(mcut)
` Σ,F & G

⇒
`∆,F . . .

(mcut)
` Σ,F

`∆,G . . .
(mcut)

` Σ,G
(&)

` Σ,F & G

Key cases are not productive:

. . .

`∆,F [µX .F]
(µ)

`∆,µX .F

` Γ,F⊥[νX .F⊥]
(ν)

` Γ,νX .F⊥
(mcut)

` Σ

⇒ . . . `∆,F [µX .F] ` Γ,F⊥[νX .F⊥]
(mcut)

` Σ

10/ 20

µMALL∞ Cut Elimination Theorem
Theorem (Baelde, Doumane & S, 2016)
Fair µMALL∞ mcut-reduction sequences converge to cut-free µMALL∞

proofs.

Strategy: “push” the cuts away from the root.

Cut-Cut Case merge in a multicut:
` Γ,F ` F⊥,∆,G

(Cut)
` Γ,∆,G ` G⊥,Σ

(Cut)
` Γ,∆,Σ

⇒ ` Γ,F ` F⊥,∆,G ` G⊥,Σ
(mcut)

` Γ,∆,Σ

Cut-commutation steps are productive:
`∆,F `∆,G

(&)
`∆,F & G . . .

(mcut)
` Σ,F & G

⇒
`∆,F . . .

(mcut)
` Σ,F

`∆,G . . .
(mcut)

` Σ,G
(&)

` Σ,F & G

Key cases are not productive:

. . .

`∆,F [µX .F]
(µ)

`∆,µX .F

` Γ,F⊥[νX .F⊥]
(ν)

` Γ,νX .F⊥
(mcut)

` Σ

⇒ . . . `∆,F [µX .F] ` Γ,F⊥[νX .F⊥]
(mcut)

` Σ

10/ 20

µMALL∞ Cut Elimination Theorem
Theorem (Baelde, Doumane & S, 2016)
Fair µMALL∞ mcut-reduction sequences converge to cut-free µMALL∞

proofs.

Strategy: “push” the cuts away from the root.

Cut-Cut Case merge in a multicut:
` Γ,F ` F⊥,∆,G

(Cut)
` Γ,∆,G ` G⊥,Σ

(Cut)
` Γ,∆,Σ

⇒ ` Γ,F ` F⊥,∆,G ` G⊥,Σ
(mcut)

` Γ,∆,Σ

Cut-commutation steps are productive:
`∆,F `∆,G

(&)
`∆,F & G . . .

(mcut)
` Σ,F & G

⇒
`∆,F . . .

(mcut)
` Σ,F

`∆,G . . .
(mcut)

` Σ,G
(&)

` Σ,F & G

Key cases are not productive:

. . .

`∆,F [µX .F]
(µ)

`∆,µX .F

` Γ,F⊥[νX .F⊥]
(ν)

` Γ,νX .F⊥
(mcut)

` Σ

⇒ . . . `∆,F [µX .F] ` Γ,F⊥[νX .F⊥]
(mcut)

` Σ

10/ 20

µMALL∞ Cut Elimination Theorem
Theorem (Baelde, Doumane & S, 2016)
Fair µMALL∞ mcut-reduction sequences converge to cut-free µMALL∞

proofs.

Strategy: “push” the cuts away from the root.

Cut-Cut Case merge in a multicut:
` Γ,F ` F⊥,∆,G

(Cut)
` Γ,∆,G ` G⊥,Σ

(Cut)
` Γ,∆,Σ

⇒ ` Γ,F ` F⊥,∆,G ` G⊥,Σ
(mcut)

` Γ,∆,Σ

Cut-commutation steps are productive:
`∆,F `∆,G

(&)
`∆,F & G . . .

(mcut)
` Σ,F & G

⇒
`∆,F . . .

(mcut)
` Σ,F

`∆,G . . .
(mcut)

` Σ,G
(&)

` Σ,F & G

Key cases are not productive:

. . .

`∆,F [µX .F]
(µ)

`∆,µX .F

` Γ,F⊥[νX .F⊥]
(ν)

` Γ,νX .F⊥
(mcut)

` Σ

⇒ . . . `∆,F [µX .F] ` Γ,F⊥[νX .F⊥]
(mcut)

` Σ

11/ 20

Cut-elimination for µLL∞

Theorem
Fair µLL∞ mcut-reduction sequences converge to cut-free µLL∞ proofs.

Why is it difficult?
µMALL∞ cut-elimination proof uses a locative sequent calculus, that is
difficult to extend to a non-linear calculus.

Idea. The proof goes by:
1 considering the following encoding of LL exponential modalities:

?µ F = µX .F ⊕ (⊥⊕ (X `X)) !ν F = νX .F & (1& (X ⊗X))
and translating µLL∞ sequents & proofs in µMALL∞: π• ` Γ•,

2 simulating µLL∞ cut-reduction sequences in µMALL∞ and
3 applying µMALL∞ cut-elimination theorem.

11/ 20

Cut-elimination for µLL∞

Theorem
Fair µLL∞ mcut-reduction sequences converge to cut-free µLL∞ proofs.

Why is it difficult?
µMALL∞ cut-elimination proof uses a locative sequent calculus, that is
difficult to extend to a non-linear calculus.

Idea. The proof goes by:
1 considering the following encoding of LL exponential modalities:

?µ F = µX .F ⊕ (⊥⊕ (X `X)) !ν F = νX .F & (1& (X ⊗X))
and translating µLL∞ sequents & proofs in µMALL∞: π• ` Γ•,

2 simulating µLL∞ cut-reduction sequences in µMALL∞ and
3 applying µMALL∞ cut-elimination theorem.

11/ 20

Cut-elimination for µLL∞

Theorem
Fair µLL∞ mcut-reduction sequences converge to cut-free µLL∞ proofs.

Why is it difficult?
µMALL∞ cut-elimination proof uses a locative sequent calculus, that is
difficult to extend to a non-linear calculus.

Idea. The proof goes by:
1 considering the following encoding of LL exponential modalities:

?µ F = µX .F ⊕ (⊥⊕ (X `X)) !ν F = νX .F & (1& (X ⊗X))
and translating µLL∞ sequents & proofs in µMALL∞: π• ` Γ•,

2 simulating µLL∞ cut-reduction sequences in µMALL∞ and
3 applying µMALL∞ cut-elimination theorem.

12/ 20

1) Encoding µLL∞ in µMALL∞: π• ` Γ•.
?µF = µX .F ⊕ (⊥⊕ (X `X)) !νF = νX .F & (1& (X ⊗X))

µMALL∞ derivability of the exponential rules (?d•,?c•, ?w•, !p•):
Dereliction : Contraction : Weakening :

` F ,∆
(⊕1)

` F ⊕ (⊥⊕ (?µ F `?µ F)),∆
(µ)

` ?µ F ,∆

` ?µ F ,?µ F ,∆
(`)

` ?µ F `?µ F ,∆
(⊕2)

` ⊥⊕ (?µ F `?µ F),∆
(⊕2)

` F ⊕ (⊥⊕ (?µ F `?µ F)),∆
(µ)

` ?µ F ,∆

`∆
(⊥)

` ⊥,∆
(⊕1)

` ⊥⊕ (?µ F `?µ F),∆
(⊕2)

` F ⊕ (⊥⊕ (?µ F `?µ F)),∆
(µ)

` ?µ F ,∆

Promotion:
` F ,?µ ∆

(1)
` 1

(?w•)
` 1,?µ ∆

` !ν F ,?µ ∆ ` !ν F ,?µ ∆
(⊗)

` !ν F ⊗ !ν F ,?µ ∆,?µ ∆
(?c•)

` !ν F ⊗ !ν F ,?µ ∆
(ν) , (&) , (&)

` !ν F ,?µ ∆

Preservation of validity
π is a valid µLL∞ pre-proof of ` Γ iff
π• is a valid µMALL∞ pre-proof of ` Γ•.

13/ 20

2) Simulation of µLL∞ cut-elimination steps

µLL∞ cut-elimination steps can be simulated by the previous
encoding. For instance, commutation of (Cut) with (?d) can be
simulated as:

` F ,G ,Γ
(?d•)

` ?µ F ,G ,Γ ` G⊥,∆
(Cut)

` ?µ F ,Γ,∆
−→2

` F ,G ,Γ ` G⊥,∆
(Cut)

` F ,Γ,∆
(?d•)

` ?µ F ,Γ,∆

by applying the commutations (µ)/(Cut) followed by (⊕)/(Cut).

Challenge: to show that the simulation of derivation also holds
(i) for the reductions involving (!p) as well as
(ii) for reductions occurring above a promotion rule (aka. in a
box) since the encoding of (!p) uses an infinite, circular derivation.

14/ 20

2) Simulation of µLL∞ cut-elimination steps
Cut-commutation rules

` F ,G ,Γ
(?d•)

` ?µ F ,G ,Γ ` G⊥,∆
(Cut)

` ?µ F ,Γ,∆
−→2

` F ,G ,Γ ` G⊥,∆
(Cut)

` F ,Γ,∆
(?d•)

` ?µ F ,Γ,∆

` ?µ F ,?µ F ,G ,Γ
(?c•)

` ?µ F ,G ,Γ ` G⊥,∆
(Cut)

` ?µ F ,Γ,∆
−→3

` ?µ F ,?µ F ,G ,Γ ` G⊥,∆
(Cut)

` ?µ F ,?µ F ,Γ,∆
(?c•)

` ?µ F ,Γ,∆

` G ,Γ
(?w•)

` ?µ F ,G ,Γ ` G⊥,∆
(Cut)

` ?µ F ,Γ,∆
−→3

` G ,Γ ` G⊥,∆
(Cut)

` Γ,∆
(?w•)

` ?µ F ,Γ,∆

` F ,?µ G ,?µ Γ
(!p•)

` !ν F ,?µ G ,?µ Γ
` G ,?µ ∆

(!p•)
` !ν G⊥,?µ ∆

(Cut)
` !ν F ,?µ Γ,?µ ∆

−→ω
` F ,?µ G ,?µ Γ

` G ,?µ ∆
(!p•)

` !ν G⊥,?µ ∆
(Cut)

` F ,?µ Γ,?µ ∆
(!p•)

` !ν F ,?µ Γ,?µ ∆

14/ 20

2) Simulation of µLL∞ cut-elimination steps
Key-cut rules

π

` F ,Γ
(?d•)

` ?µ F ,Γ

π ′

` F⊥,?µ ∆
(!p•)

` !ν F⊥,?µ ∆
(Cut)

` Γ,?µ ∆

−→2
π

` F ,Γ
π ′

` F⊥,?µ ∆
(Cut)

` Γ,?µ ∆

π

` ?µ F ,?µ F ,Γ
(?c•)

` ?µ F ,Γ

π ′

` F⊥,?µ ∆
(!p•)

` !ν F⊥,?µ ∆
(Cut)

` Γ,?µ ∆

−→4×(#∆=1)

π

` ?µ F ,?µ F ,Γ
π ′

` !ν F⊥,?µ ∆
π ′

` !ν F⊥,?µ ∆
(mcut)

` Γ,?µ ∆,?µ ∆
(?c•) ?

` Γ,?µ ∆
π

` Γ
(?w•)

` ?µ F ,Γ

π ′

` F⊥,?µ ∆
(!p•)

` !ν F⊥,?µ ∆
(Cut)

` Γ,?µ ∆

−→3int,3×#∆ext
π

` Γ
(?w•) ?

` Γ,?µ ∆

15/ 20

3) Cut-elimination for µLL∞

1 Let σ = (πi)i∈ω be a fair µLL∞ cut-reduction seq. from π.

2 σ converges to a cut-free µLL∞ pre-proof π ′. By contradiction:
Otherwise, some suffix τ of σ contains only key-cut steps and τ• would
be a fair µMALL∞ mcut-reduction, contradicting µMALL∞ cut-elim thm.

3 As σ is productive, it strongly converges to π ′.
σ• is a transfinite sequence from π• strongly converging to π ′•.

4 We prove a compression lemma adapted from the theory of transfinite
reduction sequences in infinitary rewriting:
∃ρ an ω-indexed µMALL∞ cut-reduction seq. converging to π ′•.

5 which is a valid cut-free µMALL∞ proof.
6 By preservation of validity, validity of π ′• ensures that

π ′ is a valid cut-free µLL∞-proof.

Corollary
Cut-elimination also holds for two-sided µLL∞ and µILL∞.

15/ 20

3) Cut-elimination for µLL∞

1 Let σ = (πi)i∈ω be a fair µLL∞ cut-reduction seq. from π.
2 σ converges to a cut-free µLL∞ pre-proof π ′. By contradiction:

Otherwise, some suffix τ of σ contains only key-cut steps and τ• would
be a fair µMALL∞ mcut-reduction, contradicting µMALL∞ cut-elim thm.

3 As σ is productive, it strongly converges to π ′.
σ• is a transfinite sequence from π• strongly converging to π ′•.

4 We prove a compression lemma adapted from the theory of transfinite
reduction sequences in infinitary rewriting:
∃ρ an ω-indexed µMALL∞ cut-reduction seq. converging to π ′•.

5 Fairness of σ transfers (almost) to ρ: ρ can be turned into a fair
µMALL∞ cut-reduction sequence ρ ′.
Therefore, by µMALL∞ cut-elimination theorem:
ρ ′ has a limit, π ′•, which is a valid cut-free µMALL∞ proof.

6 By preservation of validity, validity of π ′• ensures that
π ′ is a valid cut-free µLL∞-proof.

Corollary
Cut-elimination also holds for two-sided µLL∞ and µILL∞.

15/ 20

3) Cut-elimination for µLL∞

1 Let σ = (πi)i∈ω be a fair µLL∞ cut-reduction seq. from π.
2 σ converges to a cut-free µLL∞ pre-proof π ′. By contradiction:

Otherwise, some suffix τ of σ contains only key-cut steps and τ• would
be a fair µMALL∞ mcut-reduction, contradicting µMALL∞ cut-elim thm.

3 As σ is productive, it strongly converges to π ′.
σ• is a transfinite sequence from π• strongly converging to π ′•.

4 We prove a compression lemma adapted from the theory of transfinite
reduction sequences in infinitary rewriting:
∃ρ an ω-indexed µMALL∞ cut-reduction seq. converging to π ′•.

5 Fairness of σ transfers (almost) to ρ: ρ can be turned into a fair
µMALL∞ cut-reduction sequence ρ ′.
Therefore, by µMALL∞ cut-elimination theorem:
ρ ′ has a limit, π ′•, which is a valid cut-free µMALL∞ proof.

6 By preservation of validity, validity of π ′• ensures that
π ′ is a valid cut-free µLL∞-proof.

Corollary
Cut-elimination also holds for two-sided µLL∞ and µILL∞.

15/ 20

3) Cut-elimination for µLL∞

1 Let σ = (πi)i∈ω be a fair µLL∞ cut-reduction seq. from π.
2 σ converges to a cut-free µLL∞ pre-proof π ′. By contradiction:

Otherwise, some suffix τ of σ contains only key-cut steps and τ• would
be a fair µMALL∞ mcut-reduction, contradicting µMALL∞ cut-elim thm.

3 As σ is productive, it strongly converges to π ′.
σ• is a transfinite sequence from π• strongly converging to π ′•.

4 We prove a compression lemma adapted from the theory of transfinite
reduction sequences in infinitary rewriting:
∃ρ an ω-indexed µMALL∞ cut-reduction seq. converging to π ′•.

5 Fairness of σ transfers (almost) to ρ: ρ can be turned into a fair
µMALL∞ cut-reduction sequence ρ ′.
Therefore, by µMALL∞ cut-elimination theorem:
ρ ′ has a limit, π ′•, which is a valid cut-free µMALL∞ proof.

6 By preservation of validity, validity of π ′• ensures that
π ′ is a valid cut-free µLL∞-proof.

Corollary
Cut-elimination also holds for two-sided µLL∞ and µILL∞.

15/ 20

3) Cut-elimination for µLL∞

1 Let σ = (πi)i∈ω be a fair µLL∞ cut-reduction seq. from π.
2 σ converges to a cut-free µLL∞ pre-proof π ′. By contradiction:

Otherwise, some suffix τ of σ contains only key-cut steps and τ• would
be a fair µMALL∞ mcut-reduction, contradicting µMALL∞ cut-elim thm.

3 As σ is productive, it strongly converges to π ′.
σ• is a transfinite sequence from π• strongly converging to π ′•.

4 We prove a compression lemma adapted from the theory of transfinite
reduction sequences in infinitary rewriting:
∃ρ an ω-indexed µMALL∞ cut-reduction seq. converging to π ′•.

5 Fairness of σ transfers (almost) to ρ: ρ can be turned into a fair
µMALL∞ cut-reduction sequence ρ ′.
Therefore, by µMALL∞ cut-elimination theorem:
ρ ′ has a limit, π ′•, which is a valid cut-free µMALL∞ proof.

6 By preservation of validity, validity of π ′• ensures that
π ′ is a valid cut-free µLL∞-proof.

Corollary
Cut-elimination also holds for two-sided µLL∞ and µILL∞.

15/ 20

3) Cut-elimination for µLL∞

1 Let σ = (πi)i∈ω be a fair µLL∞ cut-reduction seq. from π.
2 σ converges to a cut-free µLL∞ pre-proof π ′. By contradiction:

Otherwise, some suffix τ of σ contains only key-cut steps and τ• would
be a fair µMALL∞ mcut-reduction, contradicting µMALL∞ cut-elim thm.

3 As σ is productive, it strongly converges to π ′.
σ• is a transfinite sequence from π• strongly converging to π ′•.

4 We prove a compression lemma adapted from the theory of transfinite
reduction sequences in infinitary rewriting:
∃ρ an ω-indexed µMALL∞ cut-reduction seq. converging to π ′•.

5 Fairness of σ transfers (almost) to ρ: ρ can be turned into a fair
µMALL∞ cut-reduction sequence ρ ′.
Therefore, by µMALL∞ cut-elimination theorem:
ρ ′ has a limit, π ′•, which is a valid cut-free µMALL∞ proof.

6 By preservation of validity, validity of π ′• ensures that
π ′ is a valid cut-free µLL∞-proof.

Corollary
Cut-elimination also holds for two-sided µLL∞ and µILL∞.

15/ 20

3) Cut-elimination for µLL∞

1 Let σ = (πi)i∈ω be a fair µLL∞ cut-reduction seq. from π.
2 σ converges to a cut-free µLL∞ pre-proof π ′. By contradiction:

Otherwise, some suffix τ of σ contains only key-cut steps and τ• would
be a fair µMALL∞ mcut-reduction, contradicting µMALL∞ cut-elim thm.

3 As σ is productive, it strongly converges to π ′.
σ• is a transfinite sequence from π• strongly converging to π ′•.

4 We prove a compression lemma adapted from the theory of transfinite
reduction sequences in infinitary rewriting:
∃ρ an ω-indexed µMALL∞ cut-reduction seq. converging to π ′•.

5 Fairness of σ transfers (almost) to ρ: ρ can be turned into a fair
µMALL∞ cut-reduction sequence ρ ′.
Therefore, by µMALL∞ cut-elimination theorem:
ρ ′ has a limit, π ′•, which is a valid cut-free µMALL∞ proof.

6 By preservation of validity, validity of π ′• ensures that
π ′ is a valid cut-free µLL∞-proof.

Corollary
Cut-elimination also holds for two-sided µLL∞ and µILL∞.

16/ 20

1 Introduction and Background
Aim
Classical and Linear Logic
µLL∞: Circular and Non-wellfounded Proofs for Linear Logic with
Least and Greatest Fixed-points

2 µLL∞ Cut-elimination
Reviewing µMALL∞ cut-elimination
Encoding µLL∞ in µMALL∞

Simulation of µLL∞ cut-elimination steps
Cut-elimination for µLL∞

3 Applications, Remarks and Conclusion
Cut-elimination for µLK∞, µLJ∞

Remarks on the encoding of the exponentials
Conclusion

17/ 20

Cut-elimination for µLK∞, µLJ∞

The usual linear embeddings of LJ and LK into ILL (intuitionnistic LL)
and LL can be adapted to µLJ∞ and µLK∞ and µLK∞ by adding
exponentials in the translation of fixed-points in the natural way.

Theorem
If π is an µLK∞ (resp. µLJ∞) proof of ` Γ (resp. Γ ` F), there exists a
µLL∞ (resp. µILL∞) proof of the translated sequents.

Moreover, by erasing the exponentials (connectives and inferences) one
obtains the skeleton of a µLL∞/ µILL∞ proof which is a µLK∞/ µLJ∞

proof, preserving validity. The skeleton of a µLL∞/ µILL∞ cut-reduction
sequence is a µLK∞/ µLJ∞ cut-reduction sequence.
As a result, one has:

Theorem (Productive cut-elimination for µLK∞ and µLJ∞)
For any µLK∞ (resp. µLJ∞) proof, there are productive cut-reduction
seq. producing cut-free µLK∞ (resp. µLJ∞) proofs of the same sequent.

18/ 20

About Seely isomorphisms !A⊗!B a` !(A & B)

π⊗`& =

(Ax)
` A⊥,A

(?d)
` ?A⊥,A

(?w)
` ?A⊥,?B⊥,A

(Ax)
` B⊥,B

(?d)
` ?B⊥,B

(?w)
` ?A⊥,?B⊥,B

(&)
` ?A⊥,?B⊥,A & B

(!p)
` ?A⊥,?B⊥, !(A & B)

(`)
` ?A⊥`?B⊥, !(A & B)

π& ⊗̀=

(Ax)
` A⊥,A

(⊕1)
` A⊥⊕B⊥,A

(?d)
` ?(A⊥⊕B⊥),A

(!p)
` ?(A⊥⊕B⊥), !A

(Ax)
` B⊥,B

(⊕2)
` A⊥⊕B⊥,B

(?d)
` ?(A⊥⊕B⊥),B

(!p)
` ?(A⊥⊕B⊥), !B

(⊗)
` ?(A⊥⊕B⊥),?(A⊥⊕B⊥), !A⊗!B

(?c)
` ?(A⊥⊕B⊥), !A⊗!B

(π⊗`&)• (π& ⊗̀)•
(Cut)

` ?µ A⊥`?µ B⊥, !ν A⊗!ν B

→ω
cut

(Ax)
` A⊥,A

(?d•)
` ?µ A⊥,A

(?w•)
` ?µ A⊥,?µ B⊥,A

(!p•)
` ?µ A⊥,?µ B⊥, !ν A

(Ax)
` B⊥,B

(?d•)
` ?µ B⊥,B

(?w•)
` ?µ A⊥,?µ B⊥,B

(!p•)
` ?µ A⊥,?µ B⊥, !ν B

(⊗)
` ?µ A⊥,?µ B⊥,?µ A⊥,?µ B⊥, !ν A⊗!ν B

(?c•)2
` ?µ A⊥,?µ B⊥, !ν A⊗!ν B

(`)
` ?µ A⊥`?µ B⊥, !ν A⊗!ν B

The left occurrences of A,B require two unfoldings of the fixed-point, while the
right occurrences of A,B require only one unfolding of the fixed-point.
The fixed-point unfolding structure tracks the history of the structural rules.
This witnesses the existence of a non-uniform exponential in the encoding of !.

18/ 20

About Seely isomorphisms !A⊗!B a` !(A & B)

π⊗`& =

(Ax)
` A⊥,A

(?d)
` ?A⊥,A

(?w)
` ?A⊥,?B⊥,A

(Ax)
` B⊥,B

(?d)
` ?B⊥,B

(?w)
` ?A⊥,?B⊥,B

(&)
` ?A⊥,?B⊥,A & B

(!p)
` ?A⊥,?B⊥, !(A & B)

(`)
` ?A⊥`?B⊥, !(A & B)

π& ⊗̀=

(Ax)
` A⊥,A

(⊕1)
` A⊥⊕B⊥,A

(?d)
` ?(A⊥⊕B⊥),A

(!p)
` ?(A⊥⊕B⊥), !A

(Ax)
` B⊥,B

(⊕2)
` A⊥⊕B⊥,B

(?d)
` ?(A⊥⊕B⊥),B

(!p)
` ?(A⊥⊕B⊥), !B

(⊗)
` ?(A⊥⊕B⊥),?(A⊥⊕B⊥), !A⊗!B

(?c)
` ?(A⊥⊕B⊥), !A⊗!B

(π⊗`&)• (π& ⊗̀)•
(Cut)

` ?µ A⊥`?µ B⊥, !ν A⊗!ν B
→ω

cut

(Ax)
` A⊥,A

(?d•)
` ?µ A⊥,A

(?w•)
` ?µ A⊥,?µ B⊥,A

(!p•)
` ?µ A⊥,?µ B⊥, !ν A

(Ax)
` B⊥,B

(?d•)
` ?µ B⊥,B

(?w•)
` ?µ A⊥,?µ B⊥,B

(!p•)
` ?µ A⊥,?µ B⊥, !ν B

(⊗)
` ?µ A⊥,?µ B⊥,?µ A⊥,?µ B⊥, !ν A⊗!ν B

(?c•)2
` ?µ A⊥,?µ B⊥, !ν A⊗!ν B

(`)
` ?µ A⊥`?µ B⊥, !ν A⊗!ν B

The left occurrences of A,B require two unfoldings of the fixed-point, while the
right occurrences of A,B require only one unfolding of the fixed-point.
The fixed-point unfolding structure tracks the history of the structural rules.
This witnesses the existence of a non-uniform exponential in the encoding of !.

19/ 20

Conclusion
To sum up:

Fixed-point logics with circular or non-wellfounded proofs equipped with a
parity condition to discriminate valid from invalid proofs;
Syntactic cut-elimination for various non well-founded calculi:

µMALL∞, µLL∞, µLJ∞, µLK∞;
Using an fixed-point encoding of LL exponentials to deduce
cut-elimination for µLL∞ from that of µMALL∞;
Application to µLK∞ & µLJ∞ using standard tools from LL proof-theory.

Ongoing and future work:
µMALL∞ cut-elimination proof is used as a black-box: potential to apply
the same method for other validity conditions;
currently working at relaxing bouncing validity; (jww Bauer)
the encoded exponential have very odd properties (loss of Seely iso,
non-uniformity): explore the potentiality of this non-uniformity.

Announcements:
We are looking for post-docs, to be funded by ANR RECIPROG...
FICS workshop (Fixed-points in CS) to be held as a satellite of CSL 2024
next february in Naples: call for contributions published soon !

20/ 20

Questions?

	Introduction and Background
	Aim
	Classical and Linear Logic
	LL: Circular and Non-wellfounded Proofs for Linear Logic with Least and Greatest Fixed-points

	LL Cut-elimination
	Reviewing MALL cut-elimination
	Encoding LL in MALL
	Simulation of LL cut-elimination steps
	Cut-elimination for LL

	Applications, Remarks and Conclusion
	Cut-elimination for LK, LJ
	Remarks on the encoding of the exponentials
	Conclusion

