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Aim
A linear perspective on cut-elimination for
non-wellfounded sequent calculi with least and greatest fixed-points

Long-term goal: contribute to improve the support for inductive and
coinductive constructs in ATP, FPL and ITP.

Medium-term: Design and study logical frameworks combining good
properties wrt. (i) proof construction and (ii) proof normalization

(that is, open-goal-elimination and cut-elimination)
& admitting support for inductive and coinductive reasoning;

Study circular & non-wellfounded proof systems for the p-calculus:

@ pioneering works by Santocanale; Sprenger and Dam; Studer; Brotherston
& Simpson; Dax, Hoffman & Lange;

@ recently, numerous developments of circular/cyclic proof systems (Afshari
& Leigh, Baelde & Doumane & S., Berardi & Tatsuta, Cohen & Rowe,
Das & Doumane & Pous, ... + a new generation of young researchers)

This paper establishes a cut-elimination theorem for
non-wellfounded proofs for uLL*=, uLK*= and puLJ™ by relying on (a
tiny bit of) what we have learnt from linear logic in the past 35
years.
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Relating additive & multiplicative inferences

In LK, additive and multiplicative inferences for A and V are
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Exponentials: Relating additive & multiplicative inferences
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@ In LL, no free structural rules: need to tag formulas with exponentials
where structural rules are needed, leading to: ! A®!B -+ (A& B).
(with one-sided sequents: ?ALZ7BL (A& B) and - A®!B,?(At & B1))
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Exponentials: Relating additive & multiplicative inferences

@ In LK, additive and multiplicative inferences for A and V are
interderivable thanks to availability of structural rules:

— (A — (A — (A — (A
aa o B G A M. Bee M
ABrA "  ABFB ANBEA AN BF B (Am')
ABFANB (%) AN B, AN BFAAMB ‘
P /\m
armerang

Q)
ANBEAANTB
A, B are weakened on the left, AA? B is contracted on the left.

@ In LL, no free structural rules: need to tag formulas with exponentials
where structural rules are needed, leading to: ! A®!B -+ (A& B).

(with one-sided sequents: ?ALZ7BL (A& B) and - A®!B,?(At & B1))
(Ax)

(Ax) (Ax) (Ax)
FALA FBL.B FALA FBL.B
(2d) (2d) —— (@) —— (@)
F?2ALA F?B..B FAte Bt A FAtoBLB
— (?w) (?w) - ——— ()
_F?AL?BY A F?AL?BL B _ F2AteBY).A F?2(AteBY),B
Tor& = (&) Mepp=_ -~ T ——— ('p)
F?7AL?7BL A&B 'p) F?2(AlteBL)1A F?2(AtoBt), 1B )
— (Ip ®
F?AL 2B (A& B) ) F2(At e BY), (A e BY),1AR!IB
F?ALR?BL (AL B)

(7)
F?2(AteBY),lAR!B



Non-Wellfounded Sequent Calculus

Consider your favourite logic .¢ & add fixed points as in the p-calculus

Pre-proofs are the trees coinductively generated by:

I FluX.F/X]- A I FvX.F/X]F A
1 (
@ _Z inference rules MuX.FiA MvX.FEA
@ inference for u,v: I+ FluX.F/X],A I+ FIvX.F/X],A
Ve
rEuX.F,A () r-vX.F,A (v)

Fischer-Ladner Subformulas: induced by fixed-point unrolling:

F[oX.F/X] € FL(6X.F) with & € {1, v}.

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely
many sub-(pre)proofs.

Pre-proofs are unsound!! (1) - (v)
FvX.X,F

Need for a global validity condition Fux.Xx (1) ™)
FuXx.x FVvX.X,F ()
ut

HF
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wLL™ Non-Wellfounded Sequent Calculus

Consider your favourite logic LL & add fixed points as in the u-calculus

uLL” Pre-proofs are the trees coinductively generated by:

@ LL inference rules

@ inference for u,v: FFluX.F/X],A FFIvX.F/X],A

r \

FuX.F,A a FVX.F.A

Fischer-Ladner Subformulas: induced by fixed-point unrolling:
F[oX.F/X] € FL(6X.F) with ¢ € {u,v}.

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely

many sub-(pre)proofs. uLL®
Pre-proofs are unsound!! : () : )
Need for a global validity condition FuXx.X W) FvX.XF )
Fux.X FVX.X,F
(Cut)
FF

Involutive negation, ( )*: operator on formula, not a connective.
One-sided sequents as lists: F Az,...,Ap. (TF A is a short for FT+ A)

u and v are dual binders. Ex (VX X®@X)t =uX.X%X.
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uULK® Inferences

Inference Rules

(A FT,F FFLA

L —— oy
FF, F,T
——— (%)
FoFT
FET FGT FA;LT
e (7 ' Vi)

(n)
, FFAG,T F ALV AT

- G[vX.G/X],T - FluX.F/X],T
Fvx.er o FUX.F,T

FI,G,F,A

(ex)
I F,G,A

Fr
FF,T

(?w)
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uLL* Inferences

F == a |F&F |F®F |T |L |?F negative LL formulas
|at |F®F |F®F |1 |0 |!F positive LL formulas
X |uX.F |VvX.F Ifp & gfp
uLL* Inference Rules
(Ax) FT,F FFLA FT,G,F,A
FRFE T A O FT.FGA
FET FG,T FALT
[ (T) ’ El & 13 . I f 0
=T,r FF&GT (&) C AL AT (1) (no rule for 0)
=i w =F,G,T 5 =F,T FG,A W
FLr FaGr O FFeera ®  F1
- G[vX.G/X],T - FluX.F/X],T
Fvx.er o FUX.F,T
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uLL* Inferences

|F&F |F®F
|FOF |FoF
|uX.F  |vX.F

| T |L | ?F
[1 |0 |!F

negative LL formulas
positive LL formulas

Ifp & gfp

uLL* Inference Rules

FT,

=

kT
FL,F

FILF FFLA
(Ax) 5 ; (Cut)
FT.A
FET F?FIET
FiE,r P rr
FET  FGT FALT
(T) - d (&)
FF&G.T F AL G AT
FF.GT FET FGA
(@) —_—— — (®)
FERG.T FFRG,M,A
- GvX.G/X],T - FluX.F/X],T
Fvxer )

FuX.F,r

FT,G,F,A
T A ()
FT,F.GA
Fr
F?F,T

(?w)
(no rule for 0)

1 (1)
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uLL* Inferences

F == a |F&F |F®F |T |L |?F negative LL formulas
|at |F®F |F®F |1 |0 |!F positive LL formulas
X |uX.F |VvX.F

Ifp & gfp

ULL™ Inference Rules (with ancestor relation)

(Ax) FILF FFEA FI,6,F,A
FF, W (Cut) m (ex)
£ 7d) }_F7?r ('p) M (?¢) =l (?w)
F2FE HIF, 2T FIF,T F7FY
FT,0 o = i’;—&g?r (&) F/"\_l/:B”Arg,l' () (no rule for 0)
Sy PRED 0 FAR BEA g
L § FFRG,T FFeG, A F1

FGvX.G/X] o FR[UX.F/X] o
FvoxG. @ F OXF, T
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uLL™ Inferences

F == a |F&F |F®F |T |L |?F negative LL formulas
|at |F®F |F®F |1 |0 |!F positive LL formulas
X |uX.F |VvX.F

Ifp & gfp

ULL™ Inference Rules (with ancestor relation)

(Ax) FILF FFEA FI,6,F,A
FF, W (Cut) m (ex)
£ 7d) }_F7?r ('p) M (?¢) =l (?w)
F2FE HIF, 2T F T F7FY
FT,0 o = i’;—&g?r (&) F/"\_l/:B”Arg,l' () (no rule for 0)
S, PREL 0 FRR EGA g
FLV FFRG,T FFeGH, A F1

FG[vX.G/X]fM FR[UX . F /X
FvoxG. @ F OXF, T

How to distinguish valid nwf proofs from invalid ones?
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Infinite traces, validity
F=vX.((a%®a)a(IXouY.X)).
Y.F

A trace (or thread) on an
infinite branch (I';);ce is an
infinite sequence of formula
occurrences (F;);j> such that
Vi>k, FieTl; and Ff+1 is
an immediate ancestor of F;.

F g w
FIFRG ©)
F(a®al)@('FRG) o

FF
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Infinite traces, validity

F=vX.((a®ah)a(1XouY.X)).
Y.F

a 2w
T i
FIFRG ©)
F(a®al)@('FRG) o

FF

A trace (or thread) on an
infinite branch (I';);ce is an
infinite sequence of formula
occurrences (F;);j> such that
Vi>k, FieTl; and Ff+1 is
an immediate ancestor of F;.

A trace (or thread) is valid if the minimal recurring principal formula of
the trace is a v-formula (= if it unfolds infinitely many v).

A proof is valid if every infinite branch contains a valid trace.




Infinite traces, validity

F=vX.((a®ah)a(1XouY.X)).
Y.F

F g w
FIFRG ©)
F(a®al)@('FRG) o

FF

A trace (or thread) on an
infinite branch (I';);ce is an
infinite sequence of formula
occurrences (F;);j> such that
Vi>k, FieTl; and Ff+1 is
an immediate ancestor of F;.

A trace (or thread) is valid if the minimal recurring principal formula of
the trace is a v-formula (= if it unfolds infinitely many v).

A proof is valid if every infinite branch contains a valid trace.

Validity criteria ensure (productive) cut-elimination:

UWALL®: Santocanale in 2002, with Fortier in 2013;
UMALL®™: Baelde, Doumane and S. in 2016;
Bouncing uMALL*: Baelde, Doumane, Kuperberg and S. in 2022.
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© uLL~ Cut-elimination
@ Reviewing tMALL® cut-elimination
@ Encoding uLL” in uMALL®
@ Simulation of uLL* cut-elimination steps
@ Cut-elimination for uLL*



UMALL™ Cut Elimination Theorem
Theorem (Baelde, Doumane & S, 2016)

Fair uMALL*™  cut-reduction sequences converge to cut-free uMALL®
proofs.

Strategy: “push” the cuts away from the root.

@ Cut-Cut Case

FIF FFHAG FFLAG  FGHE

—— (Cut) (Cut)
FILA,G FGH X T F FFLAT

(Cut) (Cut)

FILA Y FIAT
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UMALL™ Cut Elimination Theorem
Theorem (Baelde, Doumane & S, 2016)

Fair uUMALL®™ mcut-reduction sequences converge to cut-free UMALL*
proofs.

Strategy: “push” the cuts away from the root.

@ Cut-Cut Case merge in a multicut:

FIF FFHAG N N
T () . FILF FFLAG FGLE

FILAG FGH X = (mcut)

(Cut) FILAY
FILAY
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UMALL™ Cut Elimination Theorem
Theorem (Baelde, Doumane & S, 2016)

Fair uUMALL®™ mcut-reduction sequences converge to cut-free UMALL*
proofs.

Strategy: “push” the cuts away from the root.

@ Cut-Cut Case merge in a multicut:

FT,F FFHAG N N

T () . FILF FFLAG FGLE
FILAG FGH X = (mcut)
(Cut) FILA Y
FILA Y
@ Cut-commutation steps are productive:
FAF FAG FAF L FAG L
—_— (&) ——————— (mcut) —————— (mcut)
FAF&G = FY,F FX,G
(mcut) (&)
FY,F&G FY,F&G
@ Key cases are not productive:
FT P X FL

FA FlpXF] W FLAvXFT ™) oo FAFUX.F]  FT FLvX.FY

FAuX.F FILvX.FL = - (meut)

(mcut)

FX



Cut-elimination for pLL*

Theorem J

Fair uLL>™ mcut-reduction sequences converge to cut-free uLL> proofs.
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Why is it difficult?
UMALL™ cut-elimination proof uses a locative sequent calculus, that is
difficult to extend to a non-linear calculus.




Cut-elimination for puLL*™

Theorem

Fair uLL>™ mcut-reduction sequences converge to cut-free uLL> proofs.

Why is it difficult?

UMALL™ cut-elimination proof uses a locative sequent calculus, that is
difficult to extend to a non-linear calculus.

Idea. The proof goes by:

@ considering the following encoding of LL exponential modalities:
IF=puX.Fo(Le(XAX)) IF=vX.F&(1&(X®X))
and translating uLL> sequents & proofs in uMALL*™: n® - T*,

@ simulating pLL*™ cut-reduction sequences in uMALL* and

© applying uMALL™ cut-elimination theorem.




1) Encoding puLL* in uMALL*: 7® - T*.

F=uXFo(La(XBX) IF=vX.F&(1&(X®X))

UMALL* derivability of the exponential rules (?d®,?c®, ?w®, Ip*):

Dereliction : Contraction : Weakening :
F1F,2F,A FA
— (%) (L)
FF.A F2F®2F,A LA (o)
D T oo A 2%
FFo(La(FNTR).A Y FlegFaR)a Y FLe@F3IR.A T
a B2
F2F.A W TFa@earaze)a P | FFe(Le@FRIR).A "
F7FA @ BTN g

FIF, A FIF7A
. g FeiFiaa )
romotion: (w*) —_— (%)
Promotio ’
FF2A 174 FIF®IF,IA
W, @, @
FIF2A

Preservation of validity

7 is a valid puLL* pre-proof of - I" iff
7°® is a valid uMALL®™ pre-proof of FT°.




2) Simulation of uLL* cut-elimination steps

ULL™ cut-elimination steps can be simulated by the previous
encoding. For instance, commutation of (Cut) with (7d) can be
simulated as:

=F,G,T FF,GIT FGHA
—— (%) . 9 (Cut)
F?F,G,T FGL A — -F,ILA
(Cut) — (7d°)
F2F.T,A F2F.T,A

by applying the commutations (u)/(Cut) followed by (&)/(Cut).

Challenge: to show that the simulation of derivation also holds

(i) for the reductions involving (!p) as well as
(i) for reductions occurring above a promotion rule (aka. in a
box) since the encoding of (!p) uses an infinite, circular derivation.




2) Simulation of uLL* cut-elimination steps

Cut-commutation rules

FF.G,T FF,GT FGLA
— (") N ) (Cut)
-2F,G,T FGha — FF,TA
(Cut) — T (")
F2F,T,A F2F.T.A
-7F,7F,G,T F2F,2F, 6T FGhA
— (%) 3 (Cut)
F2F,G,T FGhA — - 2F,2F,T,A
(Cut) T (3c)
F2F,T,A F2F,T,A
FG,T FGT FGhA
o (w) N g (Cut)
F2F,G,T FGh A — FT,A
(Cut) — (?w°")
F2F, A F2F,T,A
-G,20 L
FF,2G, T Y o aoa
T T T TN et Mt
v v I ut
LA (Cut) - F,2r 20
FLIF,IM,7A e ()

FLFIM,2A



2) Simulation of uLL* cut-elimination steps

Key-cut rules

/

T T x o
FF,T FFL2A -
) () —2EFT FFL2A
F2F,T FIFL A T (cw)
(Cut) FT,20A
FT,74
T ’ T b b
FIF.2F.T FF2A F2FIFT FIFLIA FIF A
P ey ——— (pr) —xE#A=D) ’ (meut)
F7F,T FIFL 70 FTL,20,74
(Cut) — (")
FT,20 FT70
p .
s FFL2A .
Hr (w) L (pr) —3int3x#hext T .
F2F,T FLIFL2A (w)

(c) N
FTL2A
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3) Cut-elimination for uLL*
@ Let 0 =(7)ice be a fair uLL™ cut-reduction seq. from 7.

@ o converges to a cut-free uLL™ pre-proof n’. By contradiction:
Otherwise, some suffix T of 6 contains only key-cut steps and 7° would
be a fair uMALL” mcut-reduction, contradicting tMALL* cut-elim thm.

© As o is productive, it strongly converges to 7’
o° is a transfinite sequence from 7©* strongly converging to 7'®.

We prove a compression lemma adapted from the theory of transfinite
reduction sequences in infinitary rewriting:
Jp an w-indexed uMALL™ cut-reduction seq. converging to 7'*.

@ Fairness of ¢ transfers (almost) to p: p can be turned into a fair
UMALL™ cut-reduction sequence p’.
Therefore, by tMALL®™ cut-elimination theorem:
p' has a limit, 7’®, which is a valid cut-free UMALL®™ proof.

@ By preservation of validity, validity of 7/® ensures that
7’ is a valid cut-free uLL™-proof. (I

Corollary
Cut-elimination also holds for two-sided uLL* and plILL™.
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Cut-elimination for uLK*, uLJ*

The usual linear embeddings of LJ and LK into ILL (intuitionnistic LL)
and LL can be adapted to uLJ” and uLK* and uLK* by adding
exponentials in the translation of fixed-points in the natural way.

Theorem

If T is an uLK* (resp. uLJ*) proof of =T (resp. I+ F), there exists a
ULL™ (resp. pILL™) proof of the translated sequents.

Moreover, by erasing the exponentials (connectives and inferences) one
obtains the skeleton of a uLL*/ puILL*™ proof which is a uLK*/ uLJ*
proof, preserving validity. The skeleton of a uLL™/ puILL™ cut-reduction
sequence is a uLK*/ pLJ™ cut-reduction sequence.

As a result, one has:

Theorem (Productive cut-elimination for uLK* and pLJ*)

For any ULK* (resp. uLJ™) proof, there are productive cut-reduction
seq. producing cut-free ULK® (resp. uLJ>) proofs of the same sequent.




About Seely isomorphisms AR B - 1(A& B)

—— (Ax) —— (Ax) —— (Ax) (Ax)
AL A -BL B FALA Bt B
(?d) (?d) — (@) ——— (%2)
F?7ALA F?BL.B FAtoBL A FAteBLB
— (W) — (W) —— (%) —————— (%)
_F?AL 7B A F?AL 7B B _F?AteBh)A F?2(AteBh),B
Tore = (&) Taro= ('p) ('p)
F?AL 2B ALB () F?(AteBh),1A F2(AteBh),1B @)
— L (p ®
F?AL 7B (A& B) F?2(At@BY),2(At @ BY), 1A B

F?AL3?BL (A& B) F?(At@BY),1A!B



About Seely isomorphisms A®! B - (A& B)

— (Ax) (Ax) — (AX) (Ax)
AL A 2 -BL B 2 FALA Bt B )
F7ALA () F7BL,B () FALoBLA (@) FALo BB (©2)

— () — (W) — (7d) ——— ()

I&F&:F?Ai.?Bi,A F?7AL?BL B 2 ”&HX:F?(A%EB*)A,A | F?2(AteBh),B

' F7AL 7B A& B (o) )  F2AteBY)lA * F2At®eBL).IB ('p))

———— (p ®
F?AL 7B (A& B) 5 F?2(At@BY),2(At @ BY), 1A B
F?AL 7B (AL B) F?(At@BY),1A!B
(Ax) (Ax)
AL A . BB .
— (7d°) (?2d*)
F2AL A o F7B..B (2w*)
_ (7w ———— w
. o F AL 7B A kAL, 7B, B
(Tore)® (T () (1p)
F2AL % 2BL 1A®IB @ EPANIBIA HPAT7BY1B (®)
“ WBTL AR ®
b 2AL 72BL 2AL 2B 1AR)B
o (7c*)?

7AL 7B, 1ARIB
F2AL 3 ?2BL 1ARQIB
The left occurrences of A, B require two unfoldings of the fixed-point, while the

right occurrences of A, B require only one unfolding of the fixed-point.
The fixed-point unfolding structure tracks the history of the structural rules.

This witnesses the existence of a non-uniform exponential in the encoding of !.



Conclusion

To sum up:

@ Fixed-point logics with circular or non-wellfounded proofs equipped with a
parity condition to discriminate valid from invalid proofs;

@ Syntactic cut-elimination for various non well-founded calculi:
UMALL®, pLL*, ulJ®, uLK>;
@ Using an fixed-point encoding of LL exponentials to deduce
cut-elimination for uLL* from that of uMALL®;
@ Application to uLK* & plLJ> using standard tools from LL proof-theory.
Ongoing and future work:

@ UMALL®™ cut-elimination proof is used as a black-box: potential to apply
the same method for other validity conditions;

@ currently working at relaxing bouncing validity; (jww Bauer)

@ the encoded exponential have very odd properties (loss of Seely iso,
non-uniformity): explore the potentiality of this non-uniformity.

Announcements:
@ We are looking for post-docs, to be funded by ANR RECIPROG...

@ FICS workshop (Fixed-points in CS) to be held as a satellite of CSL 2024
next february in Naples: call for contributions published soon !



Questions?
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