A linear perspective on cut-elimination for non-wellfounded sequent calculi with least and greatest fixed-points 1/\20

Alexis Saurin IRIF – CNRS, Université Paris Cité & INRIA

32<sup>nd</sup> TABLEAUX Conference 21 september 2023, Prague



### Introduction and Background

- Aim
- Classical and Linear Logic
- μLL<sup>∞</sup>: Circular and Non-wellfounded Proofs for Linear Logic with Least and Greatest Fixed-points

### 2 $\mu$ LL<sup> $\infty$ </sup> Cut-elimination

- Reviewing  $\mu$ MALL<sup> $\infty$ </sup> cut-elimination
- Encoding  $\mu LL^{\infty}$  in  $\mu MALL^{\infty}$
- Simulation of  $\mu LL^{\infty}$  cut-elimination steps
- Cut-elimination for  $\mu LL^{\infty}$

### 3 Applications, Remarks and Conclusion

- Cut-elimination for  $\mu LK^{\infty}$ ,  $\mu LJ^{\infty}$
- Remarks on the encoding of the exponentials
- Conclusion



### Introduction and Background

- Aim
- Classical and Linear Logic
- μLL<sup>∞</sup>: Circular and Non-wellfounded Proofs for Linear Logic with Least and Greatest Fixed-points

### 2 $\mu$ LL $^{\infty}$ Cut-elimination

- Reviewing  $\mu$ MALL<sup> $\infty$ </sup> cut-elimination
- Encoding  $\mu LL^{\infty}$  in  $\mu MALL^{\infty}$
- Simulation of  $\mu LL^{\infty}$  cut-elimination steps
- Cut-elimination for  $\mu LL^{\infty}$

### 3 Applications, Remarks and Conclusion

- Cut-elimination for μLK<sup>∞</sup>, μLJ<sup>∞</sup>
- Remarks on the encoding of the exponentials
- Conclusion

A <u>linear</u> perspective on <u>cut-elimination</u> for

non-wellfounded sequent calculi with least and greatest fixed-points

- Long-term goal: contribute to improve the support for inductive and coinductive constructs in ATP, FPL and ITP.
- *Medium-term:* Design and study logical frameworks combining good properties wrt. (i) proof construction and (ii) proof normalization (that is, open-goal-elimination and cut-elimination)

& admitting support for inductive and coinductive reasoning;

- Study circular & non-wellfounded proof systems for the  $\mu$ -calculus:
  - pioneering works by Santocanale; Sprenger and Dam; Studer; Brotherston & Simpson; Dax, Hoffman & Lange;
  - recently, numerous developments of circular/cyclic proof systems (Afshari & Leigh, Baelde & Doumane & S., Berardi & Tatsuta, Cohen & Rowe, Das & Doumane & Pous, ... + a new generation of young researchers)
- This paper establishes a cut-elimination theorem for non-wellfounded proofs for μLL<sup>∞</sup>, μLK<sup>∞</sup> and μLJ<sup>∞</sup> by relying on (a tiny bit of) what we have learnt from linear logic in the past 35 years.

### Relating additive & multiplicative inferences

• In LK, additive and multiplicative inferences for  $\land$  and  $\lor$  are interderivable *thanks to availability of structural rules*:

$$\frac{\overline{A \vdash A}}{A, B \vdash A} \stackrel{(Ax)}{(W_{l})} \frac{\overline{B \vdash B}}{A, B \vdash B} \stackrel{(Ax)}{(W_{l})} (\wedge^{a}_{r}) \qquad \frac{\overline{A \vdash A}}{A \wedge^{a} B \vdash A} \stackrel{(Ax)}{(\wedge^{a}_{l}^{2})} \frac{\overline{B \vdash B}}{A \wedge^{a} B \vdash B} \stackrel{(Ax)}{(\wedge^{a}_{l}^{1})} (\wedge^{a}_{r})$$

### Relating additive & multiplicative inferences

• In LK, additive and multiplicative inferences for  $\land$  and  $\lor$  are interderivable *thanks to availability of structural rules*:

$$\frac{\overline{A \vdash A}}{A, B \vdash A} \stackrel{(Ax)}{(W_{l})} \frac{\overline{B \vdash B}}{A, B \vdash B} \stackrel{(Ax)}{(W_{l})} (\Lambda^{a}_{r}) \qquad \frac{\overline{A \vdash A}}{A \wedge^{a} B \vdash A \wedge^{a} B} \stackrel{(Ax)}{(\Lambda^{a}_{r})} \frac{\overline{A \vdash A}}{(\Lambda^{a}^{2})} \frac{\overline{A \vdash A}}{A \wedge^{a} B \vdash A \wedge^{m} B} \stackrel{(Ax)}{(\Lambda^{a}_{l})} (\Lambda^{a}_{r})$$

A, B are weakened on the left,  $A \wedge^a B$  is contracted on the left.

### Exponentials: Relating additive & multiplicative inferences

• In LK, additive and multiplicative inferences for  $\land$  and  $\lor$  are interderivable *thanks to availability of structural rules*:

$$\frac{\overline{A \vdash A}}{A, B \vdash A} \stackrel{(Ax)}{(W_{l})} \frac{\overline{B \vdash B}}{A, B \vdash B} \stackrel{(Ax)}{(W_{l})} (\Lambda^{a}_{r}) \qquad \frac{\overline{A \vdash A}}{A \wedge^{a} B \vdash A \wedge^{a} B} \stackrel{(Ax)}{(\Lambda^{a}_{r})} \frac{\overline{A \vdash A}}{(\Lambda^{a})} \stackrel{(Ax)}{(\Lambda^{a})} \frac{\overline{A \vdash A}}{A \wedge^{a} B \vdash A \wedge^{m} B} \stackrel{(Ax)}{(\Lambda^{a})} (\Lambda^{a}_{r})$$

- A, B are weakened on the left,  $A \wedge^a B$  is contracted on the left.
  - In LL, no free structural rules: need to tag formulas with exponentials where structural rules are needed, leading to: !A⊗!B → !(A&B). (with one-sided sequents: ⊢?A<sup>⊥</sup> ??B<sup>⊥</sup>,!(A&B) and ⊢!A⊗!B,?(A<sup>⊥</sup>⊕B<sup>⊥</sup>))

### Exponentials: Relating additive & multiplicative inferences

• In LK, additive and multiplicative inferences for  $\land$  and  $\lor$  are interderivable *thanks to availability of structural rules*:

$$\frac{\overline{A \vdash A}}{A, B \vdash A} \stackrel{(Ax)}{(W_{1})} \frac{\overline{B \vdash B}}{A, B \vdash B} \stackrel{(Ax)}{(W_{1})} (\wedge^{a}_{r}) \qquad \frac{\overline{A \vdash A}}{A \wedge^{a} B \vdash A \wedge^{a} B} \stackrel{(Ax)}{(\wedge^{a}_{r})} \frac{\overline{A \vdash A}}{(\wedge^{a}_{r})} \frac{A \wedge^{a} B \vdash A}{A \wedge^{a} B \vdash A \wedge^{m} B} \stackrel{(Ax)}{(\wedge^{a}_{r})} (\wedge^{a}_{r})$$

A, B are weakened on the left,  $A \wedge^a B$  is contracted on the left.

In LL, no free structural rules: need to tag formulas with exponentials where structural rules are needed, leading to: ! A⊗! B → !(A&B). (with one-sided sequents: ⊢?A<sup>⊥</sup> ??B<sup>⊥</sup>,!(A&B) and ⊢!A⊗!B,?(A<sup>⊥</sup>⊕B<sup>⊥</sup>))

$$\pi_{\otimes \vdash \&} = \frac{\overbrace{\stackrel{\vdash A^{\perp}, A}{\vdash ?A^{\perp}, A}}^{(Ax)} (Ax)}{\underset{\stackrel{\vdash B^{\perp}, B}{\vdash ?B^{\perp}, B}}{(Ax)} (Ax)}{\underset{\stackrel{\vdash B^{\perp}, B}{\vdash ?B^{\perp}, B}}{(Ax)} (Ax)} \pi_{\& \vdash \otimes} = \frac{\overbrace{\stackrel{\vdash A^{\perp}, A}{\vdash A^{\perp}, B^{\perp}, A}}^{(Ax)} (Ax)}{\underset{\stackrel{\vdash A^{\perp}, B^{\perp}, B}{\vdash ?A^{\perp}, ?B^{\perp}, A}}{(Ax)} (Ax)} (Ax)} \frac{\underset{\stackrel{\vdash B^{\perp}, B}{\vdash A^{\perp}, B^{\perp}, B}}{(Ax)} (Ax)} (Ax)$$
$$= \frac{\overbrace{\stackrel{\vdash A^{\perp}, A}{\vdash A^{\perp}, B^{\perp}, A}}^{(A^{\perp} \oplus B^{\perp}, A} (B^{\perp})} (A^{\perp} \oplus B^{\perp}, B^{\perp}, B})}{\underset{\stackrel{\vdash ?(A^{\perp} \oplus B^{\perp}), A}{\vdash ?A^{\perp}, ?B^{\perp}, (A \& B)}} (Ax)}{(Ax)}} (Ax)$$
$$= \frac{\overbrace{\stackrel{\vdash A^{\perp}, A}{\vdash A^{\perp} \oplus B^{\perp}, A}}^{(Ax)} (B^{\perp})} (Ax)} (Ax)$$
$$= \frac{\overbrace{\stackrel{\vdash A^{\perp}, B^{\perp}, B}{\vdash (A^{\perp} \oplus B^{\perp}), A}} (Ax)} (Ax)}{\underset{\stackrel{\vdash A^{\perp} \oplus B^{\perp}, B}{\vdash (A^{\perp} \oplus B^{\perp}), A}} (Ax)}{\underset{\stackrel{\vdash (A^{\perp} \oplus B^{\perp}), A}{\vdash (A^{\perp} \oplus B^{\perp}), A}} (Ax)}} (Ax)$$
$$= \frac{\overbrace{\stackrel{\vdash A^{\perp}, B}{\vdash (A^{\perp} \oplus B^{\perp}), A}} (Ax)} (Ax)$$
$$= \frac{\overbrace{\stackrel{\vdash A^{\perp}, B}{\vdash (A^{\perp} \oplus B^{\perp}), A}} (Ax)} (Ax)}{\underset{\stackrel{\vdash A^{\perp} \oplus B^{\perp}, B}{\vdash (A^{\perp} \oplus B^{\perp}), A}} (Ax)} (Ax)$$
$$= \frac{\overbrace{\stackrel{\vdash A^{\perp}, B}{\vdash (A^{\perp} \oplus B^{\perp}), A}} (Ax)} (Ax)$$
$$= \frac{\overbrace{\stackrel{\vdash A^{\perp}, B}{\vdash (A^{\perp} \oplus B^{\perp}), A}} (Ax)} (Ax)} (Ax)$$
$$= \frac{\overbrace{\stackrel{\vdash A^{\perp}, B}{\vdash (A^{\perp} \oplus B^{\perp}), A}} (Ax)} (Ax)} (Ax)$$
$$= \frac{\overbrace{\stackrel{\vdash A^{\perp}, B}{\vdash (A^{\perp} \oplus B^{\perp}), A}} (Ax)} (Ax)} (Ax)$$
$$= \frac{\overbrace{\stackrel{\vdash A^{\perp}, B}{\vdash (A^{\perp} \oplus B^{\perp}), A}} (Ax)} (Ax)} (Ax)} (Ax)$$
$$= \frac{\overbrace{\stackrel{\vdash A^{\perp}, B}{\vdash (A^{\perp} \oplus B^{\perp}), A}} (Ax)} (Ax)} (Ax)$$

## Non-Wellfounded Sequent Calculus

Consider your favourite logic  $\mathscr{L}$  & add fixed points as in the  $\mu$ -calculus

Pre-proofs are the trees coinductively generated by:

• 
$$\mathscr{L}$$
 inference rules  
•  $\mathscr{L}$  inference rules  
•  $\mathcal{L}$  inference for  $\mu, \nu$ :  
•  $\frac{\Gamma + F[\mu X.F/X] + \Delta}{\Gamma, \mu X.F + \Delta}$   $(\mu_{l})$   $\frac{\Gamma, F[\nu X.F/X] + \Delta}{\Gamma, \nu X.F + \Delta}$   $(\nu_{l})$   
•  $\frac{\Gamma + F[\mu X.F/X], \Delta}{\Gamma + \mu X.F, \Delta}$   $(\mu_{r})$   $\frac{\Gamma + F[\nu X.F/X], \Delta}{\Gamma + \nu X.F, \Delta}$   $(\nu_{r})$ 

**Fischer-Ladner Subformulas:** induced by fixed-point unrolling:  $F[\sigma X.F/X] \in FL(\sigma X.F)$  with  $\sigma \in \{\mu, \nu\}$ .

**Circular (pre-)proofs:** the regular fragment of infinite (pre-)proofs, ie finitely many sub-(pre)proofs.

**Pre-proofs are unsound!!** Need for a global validity condition

# $\mu LL^{\infty}$ Non-Wellfounded Sequent Calculus

Consider your favourite logic LL & add fixed points as in the  $\mu\text{-calculus}$ 

 $\mu LL^{\infty}$  **Pre-proofs** are the trees **coinductively** generated by:

LL inference rules

• inference for 
$$\mu, \nu$$
:  

$$\frac{\vdash F[\mu X.F/X], \Delta}{\vdash \mu X.F, \Delta} \quad (\mu_r) \quad \frac{\vdash F[\nu X.F/X], \Delta}{\vdash \nu X.F, \Delta} \quad (\nu_r)$$

**Fischer-Ladner Subformulas:** induced by fixed-point unrolling:  $F[\sigma X.F/X] \in FL(\sigma X.F)$  with  $\sigma \in \{\mu, \nu\}$ .

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely many sub-(pre)proofs.  $\mu LL^{\omega}$ 

Pre-proofs are unsound!! Need for a global validity condition

$$\frac{\vdots}{\vdash \mu X.X} \begin{array}{c} (\mu) \\ \mu \chi.X \\ \mu \chi.X \end{array} \begin{array}{c} (\mu) \\ \mu \chi.X, \end{array} \begin{array}{c} \vdots \\ \mu \chi.X, F \\ \mu \chi.X, F \\ \mu \chi.X, F \end{array} \begin{array}{c} (\nu) \\ (\nu) \\ (\nu) \\ (Cut) \end{array}$$

Involutive negation, ()<sup> $\perp$ </sup>: operator on formula, not a connective.One-sided sequents as lists:  $\vdash A_1, \dots, A_n$ .( $\Gamma \vdash \Delta$  is a short for  $\vdash \Gamma^{\perp}, \Delta$ ) $\mu$  and v are dual binders.Ex:  $(vX.X \otimes X)^{\perp} = \mu X.X^{\Im} X$ .

### Inference Rules

$$\frac{}{\vdash F, F^{\perp}} \stackrel{(Ax)}{=} \frac{\vdash \Gamma, F \vdash F^{\perp}, \Delta}{\vdash \Gamma, \Delta} \quad (Cut) \qquad \qquad \frac{\vdash \Gamma, G, F, \Delta}{\vdash \Gamma, F, G, \Delta} \quad (ex)$$

$$\frac{\vdash F, F, \Gamma}{\vdash F, \Gamma} \stackrel{(?c)}{=} \frac{\vdash \Gamma}{\vdash F, \Gamma} \stackrel{(?w)}{=} \frac{\vdash F, \Gamma}{\vdash F, \Gamma} \stackrel{(?w)}{=} \frac{\vdash F, \Gamma}{\vdash F, \Gamma} \stackrel{(?w)}{=} \frac{\vdash G[vX.G/X], \Gamma}{\vdash vX.G, \Gamma} \quad (v) \qquad \frac{\vdash F[\mu X.F/X], \Gamma}{\vdash \mu X.F, \Gamma} \quad (\mu)$$

| $\mu$ LL formulas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| $\mu$ LL <sup><math>\infty</math></sup> Inference Rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| $\frac{1}{\vdash F, F^{\perp}}  \text{(Ax)}  \frac{\vdash \Gamma, F  \vdash F^{\perp}, \Delta}{\vdash \Gamma, \Delta}  \text{(Cut)} \qquad \qquad \frac{\vdash \Gamma, G, F, \Delta}{\vdash \Gamma, F, G, \Delta}  \text{(ex)}$                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| $ \frac{\vdash \Gamma}{\vdash \bot, \Gamma} (\top) \qquad \frac{\vdash F, \Gamma \vdash G, \Gamma}{\vdash F \& G, \Gamma} (\&) \qquad \frac{\vdash A_i, \Gamma}{\vdash A_1 \oplus A_2, \Gamma} (\oplus_i)  \text{(no rule for 0)} \\ \frac{\vdash \Gamma}{\vdash \bot, \Gamma} (\bot) \qquad \frac{\vdash F, G, \Gamma}{\vdash F \Im G, \Gamma} (\Im) \qquad \frac{\vdash F, \Gamma \vdash G, \Delta}{\vdash F \otimes G, \Gamma, \Delta} (\otimes) \qquad \overline{\vdash 1} (1) \\ \frac{\vdash G[vX.G/X], \Gamma}{\vdash vX.G, \Gamma} (v) \qquad \frac{\vdash F[\mu X.F/X], \Gamma}{\vdash \mu X.F, \Gamma} (\mu) $ |  |  |  |  |  |

|       | ulas                                       |                            |                       |                                                                         |
|-------|--------------------------------------------|----------------------------|-----------------------|-------------------------------------------------------------------------|
| F ::= | a  F&F<br> a <sup>⊥</sup>  F⊗F<br> X  μX.F | F ⅔ F<br>  F ⊕ F<br>  vX.F | ⊤  ⊥  ?F<br> 1  0  !F | negative <i>LL</i> formulas<br>positive <i>LL</i> formulas<br>lfp & gfp |

### $\mu LL^{\infty}$ Inference Rules

ull formulas

$$\begin{array}{c|c} \hline F,F^{\perp} & (Ax) & \frac{\vdash \Gamma,F & \vdash F^{\perp},\Delta}{\vdash \Gamma,\Delta} & (Cut) & \frac{\vdash \Gamma,G,F,\Delta}{\vdash \Gamma,F,G,\Delta} & (ex) \\ \hline \hline F,F,\Gamma & (?d) & \frac{\vdash F,?\Gamma}{\vdash IF,?\Gamma} & (!p) & \frac{\vdash ?F,?F,\Gamma}{\vdash ?F,\Gamma} & (?c) & \frac{\vdash \Gamma}{\vdash ?F,\Gamma} & (?w) \\ \hline \hline \hline \hline F,\Gamma,\Gamma & (T) & \frac{\vdash F,\Gamma & \vdash G,\Gamma}{\vdash F\&G,\Gamma} & (\&) & \frac{\vdash A_i,\Gamma}{\vdash A_1\oplus A_2,\Gamma} & (\oplus_i) & (no rule for 0) \\ \hline \hline \hline \vdash \bot,\Gamma & (\bot) & \frac{\vdash F,G,\Gamma}{\vdash F\&G,\Gamma} & (?) & \frac{\vdash F,\Gamma & \vdash G,\Delta}{\vdash F\otimes G,\Gamma,\Delta} & (\otimes) & \overline{\vdash 1} & (1) \\ \hline \hline \hline VX.G,\Gamma & (v) & \frac{\vdash F[\mu X.F/X],\Gamma}{\vdash \mu X.F,\Gamma} & (\mu) \end{array}$$



### $\mu LL^{\infty}$ Inference Rules (with ancestor relation)





### $\mu LL^{\infty}$ Inference Rules (with ancestor relation)



### How to distinguish valid nwf proofs from invalid ones?

### Infinite traces, validity $F = vX.((a \Re a^{\perp}) \otimes (!X \otimes \mu Y.X)).$ $G = \mu Y.F$



A trace (or thread) on an infinite branch  $(\Gamma_i)_{i \in \omega}$  is an infinite sequence of formula occurrences  $(F_i)_{i \geq k}$  such that  $\forall i \geq k, \ F_i \in \Gamma_i$  and  $F_{i+1}$  is an immediate ancestor of  $F_i$ . 8/20

### Infinite traces, validity $F = vX.((a \Re a^{\perp}) \otimes (!X \otimes \mu Y.X)).$ $G = \mu Y.F$



A trace (or thread) on an infinite branch  $(\Gamma_i)_{i\in\omega}$  is an infinite sequence of formula occurrences  $(F_i)_{i\geq k}$  such that  $\forall i \geq k, \ F_i \in \Gamma_i$  and  $F_{i+1}$  is an immediate ancestor of  $F_i$ .

A trace (or thread) is valid if the minimal *recurring* principal formula of the trace is a *v*-formula ( $\approx$  if it unfolds infinitely many *v*).

A proof is valid if every infinite branch contains a valid trace.

### Infinite traces, validity $F = vX.((a \Im a^{\perp}) \otimes (!X \otimes \mu Y.X)).$ $G = \mu Y.F$



A trace (or thread) on an infinite branch  $(\Gamma_i)_{i\in\omega}$  is an infinite sequence of formula occurrences  $(F_i)_{i\geq k}$  such that  $\forall i \geq k, \ F_i \in \Gamma_i$  and  $F_{i+1}$  is an immediate ancestor of  $F_i$ .

A trace (or thread) is valid if the minimal *recurring* principal formula of the trace is a *v*-formula ( $\approx$  if it unfolds infinitely many *v*).

A proof is valid if every infinite branch contains a valid trace.

### Validity criteria ensure (productive) cut-elimination:

 $\mu$ ALL<sup> $\omega$ </sup>: Santocanale in 2002, with Fortier in 2013;  $\mu$ MALL<sup> $\infty$ </sup>: Baelde, Doumane and S. in 2016; Bouncing  $\mu$ MALL<sup> $\infty$ </sup>: Baelde, Doumane, Kuperberg and S. in 2022.

### Introduction and Background

- Aim
- Classical and Linear Logic
- μLL<sup>∞</sup>: Circular and Non-wellfounded Proofs for Linear Logic with Least and Greatest Fixed-points

### 2 $\mu$ LL<sup> $\infty$ </sup> Cut-elimination

- Reviewing  $\mu$ MALL<sup> $\infty$ </sup> cut-elimination
- Encoding  $\mu LL^{\infty}$  in  $\mu MALL^{\infty}$
- Simulation of  $\mu LL^{\infty}$  cut-elimination steps
- Cut-elimination for  $\mu LL^{\infty}$

### Applications, Remarks and Conclusion

- Cut-elimination for μLK<sup>∞</sup>, μLJ<sup>∞</sup>
- Remarks on the encoding of the exponentials
- Conclusion

### Theorem (Baelde, Doumane & S, 2016)

Fair  $\mu$ MALL<sup> $\infty$ </sup> cut-reduction sequences converge to cut-free  $\mu$ MALL<sup> $\infty$ </sup> proofs.

Strategy: "push" the cuts away from the root.

# • Cut-Cut Case $\frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta, G \quad (Cut)}{\vdash \Gamma, \Delta, G \quad \vdash G^{\perp}, \Sigma} \xrightarrow{(Cut)} \longleftrightarrow \underbrace{\vdash \Gamma, F \quad \frac{\vdash F^{\perp}, \Delta, G \quad \vdash G^{\perp}, \Sigma}{\vdash F^{\perp}, \Delta, \Sigma}}_{\vdash \Gamma, \Delta, \Sigma} (Cut)$

### Theorem (Baelde, Doumane & S, 2016)

Fair  $\mu$ MALL<sup> $\infty$ </sup> mcut-reduction sequences converge to cut-free  $\mu$ MALL<sup> $\infty$ </sup> proofs.

Strategy: "push" the cuts away from the root.

• Cut-Cut Case merge in a multicut:

$$\frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta, G}{\vdash \Gamma, \Delta, G} \quad (Cut) \quad \vdash G^{\perp}, \Sigma \quad (Cut) \quad \Rightarrow \frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta, G \quad \vdash G^{\perp}, \Sigma}{\vdash \Gamma, \Delta, \Sigma} \quad (mcut)$$

### Theorem (Baelde, Doumane & S, 2016)

Fair  $\mu$ MALL<sup> $\infty$ </sup> mcut-reduction sequences converge to cut-free  $\mu$ MALL<sup> $\infty$ </sup> proofs.

Strategy: "push" the cuts away from the root.

• Cut-Cut Case merge in a multicut:

$$\frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta, G}{\vdash \Gamma, \Delta, G} \xrightarrow{(\mathsf{Cut})} \quad \vdash G^{\perp}, \Sigma}_{\vdash \Gamma, \Delta, \Sigma} \quad (\mathsf{Cut}) \quad \Rightarrow \frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta, G \quad \vdash G^{\perp}, \Sigma}{\vdash \Gamma, \Delta, \Sigma} \quad (\mathsf{mcut})$$

• Cut-commutation steps are productive:

$$\frac{\vdash \Delta, F \vdash \Delta, G}{\vdash \Delta, F \& G} (\&) \qquad \dots \qquad (mcut) \qquad \Rightarrow \quad \frac{\vdash \Delta, F \ldots}{\vdash \Sigma, F} (mcut) \qquad \frac{\vdash \Delta, G \ldots}{\vdash \Sigma, G} (\&) (mcut)$$

### Theorem (Baelde, Doumane & S, 2016)

Fair  $\mu$ MALL<sup> $\infty$ </sup> mcut-reduction sequences converge to cut-free  $\mu$ MALL<sup> $\infty$ </sup> proofs.

Strategy: "push" the cuts away from the root.

• Cut-Cut Case merge in a multicut:

$$\frac{\vdash \Delta, F \vdash \Delta, G}{\vdash \Delta, F \& G} (\&) \qquad \longrightarrow \qquad \frac{\vdash \Delta, F \qquad \dots}{\vdash \Sigma, F \& G} (mcut) \qquad \Rightarrow \qquad \frac{\vdash \Delta, F \qquad \dots}{\vdash \Sigma, F \& G} (mcut) \qquad \frac{\vdash \Delta, G \qquad \dots}{\vdash \Sigma, G} (mcut)$$

### • Key cases are not productive:

$$\frac{\vdash \Delta, F[\mu X.F]}{\vdash \Delta, \mu X.F} \quad (\mu) \qquad \frac{\vdash \Gamma, F^{\perp}[\nu X.F^{\perp}]}{\vdash \Gamma, \nu X.F^{\perp}} \quad (\nu) \\ (\mathsf{mcut}) \qquad \Rightarrow \quad \frac{\ldots \quad \vdash \Delta, F[\mu X.F] \quad \vdash \Gamma, F^{\perp}[\nu X.F^{\perp}]}{\vdash \Sigma} \quad (\mathsf{mcut})$$

Theorem

Fair  $\mu LL^{\infty}$  mcut-reduction sequences converge to cut-free  $\mu LL^{\infty}$  proofs.

#### 11/20

# Cut-elimination for $\mu LL^{\infty}$

### Theorem

Fair  $\mu LL^{\infty}$  mcut-reduction sequences converge to cut-free  $\mu LL^{\infty}$  proofs.

### Why is it difficult?

 $\mu MALL^\infty$  cut-elimination proof uses a locative sequent calculus, that is difficult to extend to a non-linear calculus.

#### 11/20

# Cut-elimination for $\mu LL^{\infty}$

### Theorem

Fair  $\mu LL^{\infty}$  mcut-reduction sequences converge to cut-free  $\mu LL^{\infty}$  proofs.

### Why is it difficult?

 $\mu MALL^\infty$  cut-elimination proof uses a locative sequent calculus, that is difficult to extend to a non-linear calculus.

### Idea. The proof goes by:

- considering the following encoding of LL exponential modalities:  $?F = \mu X.F \oplus (\perp \oplus (X \ \Re X))$   $!F = v X.F \& (1 \& (X \otimes X))$ and translating  $\mu LL^{\infty}$  sequents & proofs in  $\mu MALL^{\infty}$ :  $\pi^{\bullet} \vdash \Gamma^{\bullet}$ ,
- 2 simulating  $\mu LL^{\infty}$  cut-reduction sequences in  $\mu MALL^{\infty}$  and
- **③** applying  $\mu$ MALL<sup> $\infty$ </sup> cut-elimination theorem.

1) Encoding  $\mu LL^{\infty}$  in  $\mu MALL^{\infty}$ :  $\pi^{\bullet} \vdash \Gamma^{\bullet}$ .  $F = \mu X.F \oplus (\bot \oplus (X \Im X))$   $F = vX.F \& (1 \& (X \otimes X))$ 

 $\mu$ MALL<sup> $\infty$ </sup> derivability of the exponential rules (?d<sup>•</sup>,?c<sup>•</sup>, ?w<sup>•</sup>, !p<sup>•</sup>): Dereliction : | Contraction : | Weakening :



### Preservation of validity

 $\pi$  is a valid  $\mu LL^{\infty}$  pre-proof of  $\vdash \Gamma$  iff  $\pi^{\bullet}$  is a valid  $\mu MALL^{\infty}$  pre-proof of  $\vdash \Gamma^{\bullet}$ .

# 2) Simulation of $\mu LL^{\infty}$ cut-elimination steps

 $\mu LL^{\infty}$  cut-elimination steps can be simulated by the previous encoding. For instance, commutation of (Cut) with (?d) can be simulated as:

$$\frac{\vdash F, G, \Gamma}{\vdash \overset{?}{_{\mathcal{F}}}F, G, \Gamma} \stackrel{(?d^{\bullet})}{\vdash \overset{?}{_{\mathcal{F}}}F, \Gamma, \Delta} \vdash G^{\perp}, \Delta} \xrightarrow{(Cut)} \longrightarrow^{2} \frac{\vdash F, G, \Gamma \vdash G^{\perp}, \Delta}{\vdash \overset{F}{_{\mathcal{F}}}F, \Gamma, \Delta} \stackrel{(Cut)}{(?d^{\bullet})}$$

by applying the commutations ( $\mu$ )/(Cut) followed by ( $\oplus$ )/(Cut).

Challenge: to show that the simulation of derivation also holds (i) for the reductions involving (!p) as well as (ii) for reductions occurring **above** a promotion rule (aka. in a box) since the encoding of (!p) uses an infinite, circular derivation.

13/20

### 2) Simulation of $\mu LL^{\infty}$ cut-elimination steps Cut-commutation rules



### 2) Simulation of $\mu LL^{\infty}$ cut-elimination steps Key-cut rules

$$\frac{\frac{\pi}{\vdash F, \Gamma}}{\stackrel{!}{\vdash 2F, \Gamma}(2\mathsf{e}^{\bullet})} \xrightarrow{\frac{\pi'}{\vdash F^{\perp}, 2\Delta}}_{\stackrel{!}{\vdash 1F^{\perp}, 2\Delta}(\mathsf{Cut})} (\mathsf{l}\mathfrak{p}^{\bullet}) \xrightarrow{2} \frac{\pi}{\vdash F, \Gamma} \xrightarrow{\pi'}{\stackrel{!}{\vdash F^{\perp}, 2\Delta}}_{\stackrel{!}{\vdash F^{\perp}, 2\Delta}(\mathsf{Cut})} (\mathsf{Cut})$$

$$\frac{\pi}{\stackrel{!}{\vdash 2F, 2F, \Gamma}}_{\stackrel{!}{\vdash 2F, \Gamma}(\mathsf{r}\mathfrak{p}^{\bullet})} \xrightarrow{\frac{\pi'}{\vdash F^{\perp}, 2\Delta}}_{\stackrel{!}{\vdash 1F^{\perp}, 2\Delta}(\mathsf{Cut})} (\mathsf{r}\mathfrak{p}^{\bullet}) \xrightarrow{4\times(\#\Delta=1)} \frac{\pi}{\stackrel{!}{\vdash 2F, 2F, \Gamma}}_{\stackrel{!}{\vdash 1F^{\perp}, 2\Delta}(\mathsf{r}\mathfrak{p}^{\perp}) \xrightarrow{\pi'}{\stackrel{!}{\vdash 1F^{\perp}, 2\Delta}}_{\stackrel{!}{\vdash 1F^{\perp}, 2\Delta}(\mathsf{r}\mathfrak{p}^{\bullet})} (\mathsf{r}\mathfrak{p}^{\bullet}) \xrightarrow{4\times(\#\Delta=1)} \frac{\pi}{\stackrel{!}{\vdash 2F, 2F, \Gamma}}_{\stackrel{!}{\vdash 1F^{\perp}, 2\Delta}(\mathsf{r}\mathfrak{p}^{\bullet}) \xrightarrow{\pi'}{\stackrel{!}{\vdash 1F^{\perp}, 2\Delta}}_{\stackrel{!}{\vdash 1F^{\perp}, 2\Delta}(\mathsf{r}\mathfrak{p}^{\bullet})} (\mathsf{r}\mathfrak{p}^{\bullet})$$

14/20

• Let  $\sigma = (\pi_i)_{i \in \omega}$  be a fair  $\mu LL^{\infty}$  cut-reduction seq. from  $\pi$ .

### 15/ 20

- Let  $\sigma = (\pi_i)_{i \in \omega}$  be a fair  $\mu LL^{\infty}$  cut-reduction seq. from  $\pi$ .
- O converges to a cut-free μLL<sup>∞</sup> pre-proof π'. By contradiction: Otherwise, some suffix τ of σ contains only key-cut steps and τ• would be a fair μMALL<sup>∞</sup> mcut-reduction, contradicting μMALL<sup>∞</sup> cut-elim thm.

- Let  $\sigma = (\pi_i)_{i \in \omega}$  be a fair  $\mu LL^{\infty}$  cut-reduction seq. from  $\pi$ .
- O converges to a cut-free μLL<sup>∞</sup> pre-proof π'. By contradiction: Otherwise, some suffix τ of σ contains only key-cut steps and τ<sup>•</sup> would be a fair μMALL<sup>∞</sup> mcut-reduction, contradicting μMALL<sup>∞</sup> cut-elim thm.
- As σ is productive, it strongly converges to π'.
   σ<sup>•</sup> is a transfinite sequence from π<sup>•</sup> strongly converging to π'<sup>•</sup>.

- Let  $\sigma = (\pi_i)_{i \in \omega}$  be a fair  $\mu LL^{\infty}$  cut-reduction seq. from  $\pi$ .
- O converges to a cut-free μLL<sup>∞</sup> pre-proof π'. By contradiction: Otherwise, some suffix τ of σ contains only key-cut steps and τ<sup>•</sup> would be a fair μMALL<sup>∞</sup> mcut-reduction, contradicting μMALL<sup>∞</sup> cut-elim thm.
- As σ is productive, it strongly converges to π<sup>'</sup>.
   σ<sup>•</sup> is a transfinite sequence from π<sup>•</sup> strongly converging to π<sup>'</sup>.
- We prove a compression lemma adapted from the theory of transfinite reduction sequences in infinitary rewriting:
   ∃ρ an ω-indexed μMALL<sup>∞</sup> cut-reduction seq. converging to π'<sup>•</sup>.

- Let  $\sigma = (\pi_i)_{i \in \omega}$  be a fair  $\mu LL^{\infty}$  cut-reduction seq. from  $\pi$ .
- O converges to a cut-free μLL<sup>∞</sup> pre-proof π'. By contradiction: Otherwise, some suffix τ of σ contains only key-cut steps and τ<sup>•</sup> would be a fair μMALL<sup>∞</sup> mcut-reduction, contradicting μMALL<sup>∞</sup> cut-elim thm.
- As σ is productive, it strongly converges to π<sup>'</sup>.
   σ<sup>•</sup> is a transfinite sequence from π<sup>•</sup> strongly converging to π<sup>'</sup>.
- We prove a compression lemma adapted from the theory of transfinite reduction sequences in infinitary rewriting:
   ∃ρ an ω-indexed μMALL<sup>∞</sup> cut-reduction seq. converging to π<sup>'</sup>.
- Series of  $\sigma$  transfers (almost) to  $\rho$ :  $\rho$  can be turned into a fair  $\mu$ MALL<sup> $\infty$ </sup> cut-reduction sequence  $\rho'$ . Therefore, by  $\mu$ MALL<sup> $\infty$ </sup> cut-elimination theorem:  $\rho'$  has a limit,  $\pi'$ , which is a valid cut-free  $\mu$ MALL<sup> $\infty$ </sup> proof.

- Let  $\sigma = (\pi_i)_{i \in \omega}$  be a fair  $\mu LL^{\infty}$  cut-reduction seq. from  $\pi$ .
- O converges to a cut-free μLL<sup>∞</sup> pre-proof π'. By contradiction: Otherwise, some suffix τ of σ contains only key-cut steps and τ<sup>•</sup> would be a fair μMALL<sup>∞</sup> mcut-reduction, contradicting μMALL<sup>∞</sup> cut-elim thm.
- As σ is productive, it strongly converges to π'.
   σ<sup>•</sup> is a transfinite sequence from π<sup>•</sup> strongly converging to π'<sup>•</sup>.
- We prove a compression lemma adapted from the theory of transfinite reduction sequences in infinitary rewriting:
   ∃ρ an ω-indexed μMALL<sup>∞</sup> cut-reduction seq. converging to π'<sup>•</sup>.

Series of  $\sigma$  transfers (almost) to  $\rho$ :  $\rho$  can be turned into a fair  $\mu$ MALL<sup> $\infty$ </sup> cut-reduction sequence  $\rho'$ . Therefore, by  $\mu$ MALL<sup> $\infty$ </sup> cut-elimination theorem:  $\rho'$  has a limit,  $\pi'^{\circ}$ , which is a valid cut-free  $\mu$ MALL<sup> $\infty$ </sup> proof.

By preservation of validity, validity of π<sup>/•</sup> ensures that π<sup>'</sup> is a valid cut-free μLL<sup>∞</sup>-proof.

- Let  $\sigma = (\pi_i)_{i \in \omega}$  be a fair  $\mu LL^{\infty}$  cut-reduction seq. from  $\pi$ .
- O converges to a cut-free μLL<sup>∞</sup> pre-proof π'. By contradiction: Otherwise, some suffix τ of σ contains only key-cut steps and τ<sup>•</sup> would be a fair μMALL<sup>∞</sup> mcut-reduction, contradicting μMALL<sup>∞</sup> cut-elim thm.
- As σ is productive, it strongly converges to π<sup>'</sup>.
   σ<sup>•</sup> is a transfinite sequence from π<sup>•</sup> strongly converging to π<sup>'</sup>.
- We prove a compression lemma adapted from the theory of transfinite reduction sequences in infinitary rewriting:
   ∃ρ an ω-indexed μMALL<sup>∞</sup> cut-reduction seq. converging to π'<sup>•</sup>.
- Series of  $\sigma$  transfers (almost) to  $\rho$ :  $\rho$  can be turned into a fair  $\mu$ MALL<sup> $\infty$ </sup> cut-reduction sequence  $\rho'$ . Therefore, by  $\mu$ MALL<sup> $\infty$ </sup> cut-elimination theorem:  $\rho'$  has a limit,  $\pi'^{\circ}$ , which is a valid cut-free  $\mu$ MALL<sup> $\infty$ </sup> proof.
- By preservation of validity, validity of π<sup>/•</sup> ensures that π<sup>'</sup> is a valid cut-free μLL<sup>∞</sup>-proof.

### Corollary

Cut-elimination also holds for two-sided  $\mu LL^{\infty}$  and  $\mu ILL^{\infty}$ .

### Introduction and Background

- Aim
- Classical and Linear Logic
- $\mu$ LL<sup> $\infty$ </sup>: Circular and Non-wellfounded Proofs for Linear Logic with Least and Greatest Fixed-points

### 2 $\mu$ LL $^{\infty}$ Cut-elimination

- Reviewing  $\mu$ MALL<sup> $\infty$ </sup> cut-elimination
- Encoding  $\mu LL^{\infty}$  in  $\mu MALL^{\infty}$
- Simulation of  $\mu LL^{\infty}$  cut-elimination steps
- Cut-elimination for  $\mu LL^{\infty}$

### 3 Applications, Remarks and Conclusion

- Cut-elimination for μLK<sup>∞</sup>, μLJ<sup>∞</sup>
- Remarks on the encoding of the exponentials
- Conclusion

# Cut-elimination for $\mu LK^{\infty}$ , $\mu LJ^{\infty}$

The usual linear embeddings of LJ and LK into ILL (intuitionnistic LL) and LL can be adapted to  $\mu$ LJ<sup> $\infty$ </sup> and  $\mu$ LK<sup> $\infty$ </sup> and  $\mu$ LK<sup> $\infty$ </sup> by adding exponentials in the translation of fixed-points in the natural way.

### Theorem

If  $\pi$  is an  $\mu LK^{\infty}$  (resp.  $\mu LJ^{\infty}$ ) proof of  $\vdash \Gamma$  (resp.  $\Gamma \vdash F$ ), there exists a  $\mu LL^{\infty}$  (resp.  $\mu ILL^{\infty}$ ) proof of the translated sequents.

Moreover, by erasing the exponentials (connectives and inferences) one obtains the skeleton of a  $\mu LL^{\infty}/\mu ILL^{\infty}$  proof which is a  $\mu LK^{\infty}/\mu LJ^{\infty}$  proof, preserving validity. The skeleton of a  $\mu LL^{\infty}/\mu ILL^{\infty}$  cut-reduction sequence is a  $\mu LK^{\infty}/\mu LJ^{\infty}$  cut-reduction sequence. As a result, one has:

Theorem (Productive cut-elimination for  $\mu LK^{\infty}$  and  $\mu LJ^{\infty}$ ) For any  $\mu LK^{\infty}$  (resp.  $\mu LJ^{\infty}$ ) proof, there are productive cut-reduction seq. producing cut-free  $\mu LK^{\infty}$  (resp.  $\mu LJ^{\infty}$ ) proofs of the same sequent.

# About Seely isomorphisms $!A \otimes !B \rightarrow !(A \& B)$

$$\pi_{\mathcal{Q}, \vdash \otimes} = \frac{\frac{\overbrace{\vdash A^{\perp}, A}}{\vdash A^{\perp} \oplus B^{\perp}, A}} \stackrel{(Ax)}{(\oplus_1)} \qquad \frac{\frac{\overbrace{\vdash B^{\perp}, B}}{\vdash A^{\perp} \oplus B^{\perp}, B}}{(\oplus_2)} \stackrel{(Ax)}{(\oplus_2)} \\ \frac{\overbrace{\vdash (A^{\perp} \oplus B^{\perp}), A}}{\vdash ?(A^{\perp} \oplus B^{\perp}), !A} \stackrel{(P)}{(P)} \qquad \frac{\frac{\overbrace{\vdash A^{\perp} \oplus B^{\perp}, B}}{\vdash ?(A^{\perp} \oplus B^{\perp}), !B}} \stackrel{(P)}{(\otimes)} \\ \frac{\overbrace{\vdash ?(A^{\perp} \oplus B^{\perp}), ?(A^{\perp} \oplus B^{\perp}), !A \otimes !B}}{\vdash ?(A^{\perp} \oplus B^{\perp}), !A \otimes !B} \quad (?c)$$



The left occurrences of A, B require two unfoldings of the fixed-point, while the right occurrences of A, B require only one unfolding of the fixed-point. The fixed-point unfolding structure tracks the history of the structural rules. This witnesses the existence of a non-uniform exponential in the encoding of !.

18/20

# Conclusion

### To sum up:

- Fixed-point logics with circular or non-wellfounded proofs equipped with a parity condition to discriminate valid from invalid proofs;
- Syntactic cut-elimination for various non well-founded calculi:

 $\mu$ MALL<sup> $\infty$ </sup>,  $\mu$ LL<sup> $\infty$ </sup>,  $\mu$ LJ<sup> $\infty$ </sup>,  $\mu$ LK<sup> $\infty$ </sup>;

- Using an fixed-point encoding of LL exponentials to deduce cut-elimination for μLL<sup>∞</sup> from that of μMALL<sup>∞</sup>;
- Application to  $\mu LK^{\infty}$  &  $\mu LJ^{\infty}$  using standard tools from LL proof-theory.

### Ongoing and future work:

- $\mu$ MALL<sup> $\infty$ </sup> cut-elimination proof is used as a black-box: potential to apply the same method for other validity conditions;
- currently working at relaxing bouncing validity; (jww Bauer)
- the encoded exponential have very odd properties (loss of Seely iso, non-uniformity): explore the potentiality of this non-uniformity.

### Announcements:

- We are looking for post-docs, to be funded by ANR RECIPROG...
- FICS workshop (Fixed-points in CS) to be held as a satellite of CSL 2024 next february in Naples: call for contributions published soon !

# Questions?