
M2 LMFI – SOFIX:
Second-order quantification and fixed-points

in logic
First lecture: Gödel’s System T

(preliminary version of the 27/12/2022)

Alexis Saurin

january 2023

Contents
1 Preliminary and motivating remarks 2

1.1 On the weak expressiveness of the simply typed λ-calculus 2
1.2 Arithmetic and the induction axiom . 2

2 Gödel’s system T 4
2.1 Types and terms of system T . 4
2.2 T-reduction . 5

3 Strong normalization theorem 6
3.1 Preliminary comments . 6
3.2 Reducible, neutral and (strongly) normalisable terms 6
3.3 Adaptation lemma . 7
3.4 Adequation lemma . 7
3.5 Conclusion of the proof of strong normalization . 9

4 Expressive power of system T 10

1

1 Preliminary and motivating remarks

1.1 On the weak expressiveness of the simply typed λ-calculus
Simply typed lambda-calculus (STLC) has good properties but a poor expressiveness:
— due to strong normalization, only total recursive functions can be represented, of course.

That is a feature of the calculus, but due to the properties of the type system and the strong
normalization proof, some total recursive functions cannot be represented. Actually lots of
them cannot be represented...

— when typing the encoding of pairs, there were constraints on types: for types A,B,C, paire
has type A→ (B → ((A→ (B → C))→ C)). That is, given t : A and u : B, (paire)tu had
type (A → (B → C)) → C Therefore, unless A = B, one cannot find projections with the
expected types: it is not possible, in the typed version of the pair encoding, to access the
components of the pair...

— for arithmetical functions, there were also strong restrictions: given a base type o, and
writing [0] = o and [n + 1] = [n] → [n], one saw that every n ≥ 2 allows to type Church
numerals. In Church’s style λ-calculus, one can type addition, product with the expected
types [n]→ [n]→ [n] for any n ≥ 2, but exponentiation cannot be typed with such a type...
one has to use types of different levels for a and b in ab: there are restrictions of the typed
use of iteration.

More precisely, Schwichtenberg and Statman proved that the expressible functions of type
Natk → Nat (with Nat = [2]) are exactly the extended polynomials:

Definition 1.1
Extended polynomials are the functions generated by 0, 1,the identity function as well as
the operations of addition, multiplication and conditional.

Theorem 1.2 (Schwichtenberg and Statman)
The arithmetical functions definable in simply-typed λ-calculus over type Nat are exactly the
extended polynomials.

If one relaxes the type for natural numbers to be some type for Church numeral, ie. allowing
to define function as λ-terms of type [n + 2] → . . . ([n + 2] → [n + 2]) for n ≥ 0, then one can
define more functions in simply-typed λ-calculus. In particular, the predecessor function and the
exponentiation are now definable.

But there is still a big gap. For instance, one can represent neither the equality predicate, nor
the less-than predicate (ie. their characteristic functions) nor the subtraction function...

Several solutions are available to improve this expressiveness issue:
— We shall now consider an option investigated by Gödel, extending the simply-typed λ-

calculus with types for pairs of objects, atomic types for booleans and naturals and con-
structions for conditional branching and a recursor.

— Another option that will be investigated in the following lectures will consist in allowing the
λ-terms to be polymorphic, that is to be applied to arguments of variable types: this will be
the core of System F and of the connection with second-order logic.

1.2 Arithmetic and the induction axiom
The well-known Peano’s Induction axiom schema is usually presented like:

φ(0)⇒ ∀a.(φ(a)⇒ φ(s(a))⇒ ∀a.φ(a)

In his works (1889 and 1891), Peano formulated the induction axiom in slightly different ways,
which can be reformulated as:

1889: φ(0)⇒ ∀a.[Nat(a)⇒ (φ(a)⇒ φ(s(a))]⇒ ∀a.[Nat(a)⇒ φ(a)];

1891: φ(0)⇒ ∀a.(φ(a)⇒ φ(s(a)))⇒ ∀a.[Nat(a)⇒ φ(a)].

2

In fact, Peano formulated his arithmetic in a form of second-logic (at least allowing quantifica-
tion over sets, or classes of elements), his axioms of Induction were closer to:

1889’: ∀k ∈ K(1 ∈ k ⇒ ∀a.(a ∈ N⇒ a ∈ k ⇒ s′a) ∈ k)⇒ N ⊆ k)
1891’: ∀s ∈ K(1 ∈ s⇒ s(s) ⊆ s⇒ N ⊆ s).
Exercice 1.1

By an analysis of the first-order reformulation of Peano’s axiom, justify the reductions to come
for the recursor of system T.

2 Gödel’s system T

An important defect of the simply-typed λ-calculus considered during the course is its poor
expressiveness as discussed above.

Several systems have been considered to increase the class of (total) functions that can be
represented in the typed setting. Gödel’s System T is such a system, extending the simply-
typed λ-calculus with product types (U × V), a type for booleans (Bool), with a type for natural
numbers (Nat) and with the following term constructions:

(i) pairs and projections: 〈t, u〉, π1(t), π2(t);
(ii) boolean constants and a boolean test: true, false, if t thenu else v;
(iii) constants for representing natural numbers and a recursor for each typeA: S(t), 0,Rec(t, u, v).

In the following, one will define System T, and then study its strong normalization property.

2.1 Types and terms of system T

The types of system T are just the types of simply-typed λ-calculus, with two specific atomic
types: Bool and Nat.

Definition 2.1 (Simple types for system T)
We consider a countable set TAt of atomic types containing Nat and Bool. T-types are defined
inductively as

T,U, V ::= A | U × V | U → V A ∈ TAt.

Terms of system T are defined by extending the simply-typed λ-calculus à la Church with:

Definition 2.2 (Terms of System T)

For each T-type T , one considers a countable set of variables of type T , VT , those sets being
pairwise disjoint.

Similarly to the case of the simply-typed λ-calculus, we define by mutual induction, (i) the
set of terms of System T (called T-terms), (ii) the typing relation (written u : U) and the set
of free variables of a T-term:

(Var) ∀x ∈ VU , xU is T-term of type U (of free variables {x}): xU : U

(Abs) For every T-term v such that v : V and every variable x ∈ VU , λxU .v is a T-term of
type U → V (of free variables fv(v) \ {x}): λxU .v : U → V

(App) For every T-terms t and u such that t : U → T and u : U , (t)u is a T-term of type T
(of free variables fv(t) ∪ fv(u)): (t)u : T

(Prod) For every T-terms u and v such that u : U and v : V , 〈u, v〉 is a T-term of type
U × V (of free variables fv(t) ∪ fv(u)): 〈u, v〉 : U × V

(Proj) For every T-term t such that t : T1 × T2, π1(t) and π2(t) are T-terms of respective
types T1 and T2 (of free variables fv(t)): π1(t) : T1 and π2(t) : T2

3

(BoolCst) true and false are closed T-terms of type Bool: V : Bool, F : Bool

(If) For every T-term t, u, v such that t : Bool, u : U and v : U , if t thenu else v is a T-term
of type U (of free variables fv(t) ∪ fv(u) ∪ fv(v)): if t thenu else v : U

(0) 0 is a closed T-term of type Nat: 0 : Nat
(S) For every T-term t such that t : Nat, S(t) is a T-term of type Nat (of free variables

fv(t)): S(t) : Nat

(Rec) For every T-term t, u, v such that t : Nat, u : Nat → (U → U) and v : U , Rec(t, u, v)
is a T-term of type U (of free variables fv(t) ∪ fv(u) ∪ fv(v)): Rec(t, u, v) : U

This can be summed up in the following inference system:

xU : U
(V ar) (x ∈ VU) t : T

λxU .t : U → T
(Abs) (x ∈ VU) t : U → T u : U

(t)u : T
(App)

u : U v : V
〈u, v〉 : U × V

(Prod)
t : U1 × U2

π1(t) : U1
(Proj1)

t : U1 × U2

π2(t) : U2
(Proj2)

true : Bool
(true)

false : Bool
(false)

0 : Nat
(0)

t : Nat
S(t) : Nat

(S)

t : Bool u : U v : U
if t thenu else v : U

(If)
t : Nat u : Nat→ (U → U) v : U

Rec(t, u, v) : U
(Rec)

2.2 T-reduction
The notion of compatible relation is extended to the syntax of T-terms in a straightforward

way.

Definition 2.3 (T-reduction relation)
We define the T-reduction, written −→T, as the least compatible relation on T-terms, con-
taining typed β-reduction as well as:

(λxU .t)u −→T t{u/x}
πi(〈t1, t2〉) −→T ti

if true then t elseu −→T t
if false then t elseu −→T u

Rec(0, v, w) −→T w
Rec(S(t), v, w) −→T (v)tRec(t, v, w)

A T-normal form is a T-term that does not −→T-reduce to any T-term.

Proposition 2.4 (Type preservation)

If t : T and t −→T u, then u : T (and fv(u) ⊆ fv(t)).

Proposition 2.5
Assume that t is a closed T-normal. We have the following properties:

— If t : Nat, then there exists n ∈ N such that t = Sn(0);
— If t : Bool, then t = true or t = false;
— If ` t : A×B, then t = 〈u, v〉;
— If t : U → V , then t = λx. u.

Proof : By induction on the structure of terms in normal forms.
2

Notation 2.6 (`(t))

If t is a strongly normalizable T-term, one writes `(t) for the maximal length of a T-reduction

4

from t. (This is well defined, as in the λ-calculus, as the reduction graph of a T-term is finitely
branching and by König’s lemma.)

3 Strong normalization theorem
The following section generalizes the strong normalization for the simply typed λ-calculus to

System T, by adapting the proof by reducibility for the simply typed λ-calculus.

3.1 Preliminary comments

Let us first recall that:
— a T-term t is weakly normalizing if there is a finite T-reduction sequence from t ending

in a normal form.
— a T-term t is strongly normalizing if there is no infinite T-reduction sequence from t,

that is whatever choice of redex is made at each step, we are bound to reach a normal form
ultimately. It is also the least set N of T-terms which contains normal forms and such that
t ∈ N if for any t′ such that t −→T t

′, t′ ∈ N .
— A calculus (here system T) will be called weakly (resp. strongly) normalizing if all its terms

are weakly (resp. strongly) normalizing.
— Contrarily to WN, SN is not stable by β-expansion in general (otherwise SN and WN would

be equivalent simply because a normal form is always SN and all normalizable term is the
expansion of a normal form).

— On the other hand, SN is stable by T-reduction (which is not the case for WN in general...)
— One of the crux for proving normalization is to transfer normalization properties through

elimination rules/destructors, that is proving that if t ∈ SN(A → B) and u ∈ SN(A), then
(t)u ∈ SN(B) (and similarly for product types and atomic types). On the other hand, there
are certainly subsets of SN(A) for which this proprerty holds (starting with variables of type
A for instance).

3.2 Reducible, neutral and (strongly) normalisable terms

One shall first adapt the definition of neutral terms, which are those terms whose topmost
construction is not an introduction rule (in natural deduction terms):

The sets Neut(U), SN(U) are adapted to T-terms without any change (but the dependency
of Neut(U) with RED(U)...):

Definition 3.1 (SN(U))

SN(U) = {u ∈ T; u strongly normalizing of type U}.

RED(U) is also defined as for STLC but for a treatment of product types:

Definition 3.2

— RED(X) = SN(X)
— RED(U → V) = {t : U → V ;∀u ∈ RED(U), (t)u ∈ RED(V)}.
— RED(U1 × U2) = {t : U1 × U2 | ∀i ∈ {1, 2}, πi(t) ∈ RED(Ui)}.

Definition 3.3 (Neutral T-term)

A T-term is neutral if it is not of the form λxU : t, 〈t, u〉, true, false, 0 or S(t).

The essential property of a neutral term is that if t is neutral, it cannot readily interact with
its context and as a consequence, for any context E[], the one-step reducts of E[t] are either of
the form E[t′] or E′[t] where E′ and t′ are one-step reducts of E and t respectively. Neutral terms
cannot interact/react with their context during the first step of computation.

5

Definition 3.4 (Neut(U))

Neut(U) = {u ∈ T; u is neutral of type U and ∀u′, u −→β u
′, u′ ∈ RED(U)}

3.3 Adaptation lemma
In this subsection, we prove the following relation between neutral, reductible and strongly

normalisable terms:
Lemma 3.5 (Adaptation)

For every type T , one has Neut(T) ⊆ RED(T) ⊆ SN(T).

Adaptation lemma relies on

Lemma 3.6

For any type U , RED(U) is closed by T-reduction:

u ∈ RED(U), u −→T u
′ ⇒ u′ ∈ RED(U).

Proof : Lemma 3.6 is proved by induction on the structure of type T .

2

Proof of lemma 3.5 : The proof is by induction on the structure of type T .

2

3.4 Adequation lemma
In the following section, we prove the key property for strong normalization, namely that typed

terms are adequate with respect to reducibility:

Lemma 3.7 (Adequation)

Let t : U with free variables among xT1
1 , . . . , xTn

n . For any (ui ∈ RED(Ti))1≤i≤n, one has

6

t {ui/xi} ∈ RED(U).

Remark 3.8
An immediate consequence of the lemma is that closed T-terms are reducible and therefore, by
adaptation lemma, they are strongly normalizable. One understands that the proof of strong
normalization is a short step from adaptation and adequation lemmas...

Proposition 3.9
The following holds:

1. 0 ∈ RED(Nat).
2. true, false ∈ RED(Bool).
3. ∀t ∈ RED(Nat),S(t) ∈ RED(Nat).
4. ∀t ∈ RED(Bool), ∀u, v ∈ RED(U), if t thenu else v ∈ RED(U).
5. ∀t ∈ RED(Nat), ∀u ∈ RED(Nat→ (U → U)),∀v ∈ RED(U), Rec(t, u, v) ∈ RED(U).

Proof :

2

The following lemma will be important:
Lemma 3.10

(∀u ∈ RED(U), v{u/x} ∈ RED(V))⇒ ∀u ∈ RED(U), (λx.v)u ∈ RED(V).

together with its immediate corollary (by definition of RED(U → V)):
Corollary 3.11

(∀u ∈ RED(U), v{u/x} ∈ RED(V))⇒ λx.v ∈ RED(U → V).

Proof of the lemma :

2

7

The following is a corresponding result for pairs:

Lemma 3.12

∀u ∈ RED(U), v ∈ RED(V), 〈u, v〉 ∈ RED(U × V).

Proof :

2

Proof of lemma 3.7 : One can reason by induction on the structure of t : T .

2

3.5 Conclusion of the proof of strong normalization
Theorem 3.13

System T is strongly normalizing.

Proof : Let t : T of free variables (xTi
i)1≤i≤n. By adaptation lemma (3.5) for any 1 ≤ i ≤ n, xTi

i ∈
RED(Ti) since variables of type T are neutral and normal and therefore in Neut(T).

Adequation lemma (3.7) ensures that t
{
xTi
i /xi, 1 ≤ i ≤ n

}
= t is reducible of type T

(∈ RED(T)).
By using adaptation lemma once more, one has t ∈ RED(T) ⊆ SN(T) which allows to

conclude that t is strongly normalizing.
2

4 Expressive power of system T

To come in the next lecture...

8

	Preliminary and motivating remarks
	On the weak expressiveness of the simply typed -calculus
	Arithmetic and the induction axiom

	Gödel's system T
	Types and terms of system T
	T-reduction

	Strong normalization theorem
	Preliminary comments
	Reducible, neutral and (strongly) normalisable terms
	Adaptation lemma
	Adequation lemma
	Conclusion of the proof of strong normalization

	Expressive power of system T

