
M2 LMFI – SOFIX:
Second-order quantification and fixed-points

in logic
First lecture: Gödel’s System T

(preliminary version of the 27/12/2022)

Alexis Saurin

january 2023

Contents
1 Preliminary and motivating remarks 2

1.1 On the weak expressiveness of the simply typed λ-calculus 2
1.2 Arithmetic and the induction axiom . 2

2 Gödel’s system T 3
2.1 Types and terms of system T . 3
2.2 T-reduction . 4

3 Strong normalization theorem 5
3.1 Preliminary comments . 5
3.2 Reducible, neutral and (strongly) normalisable terms 5
3.3 Adaptation lemma . 6
3.4 Adequation lemma . 7
3.5 Conclusion of the proof of strong normalization . 10

4 Expressive power of system T 10
4.1 Simple arithmetical functions represented by T-terms. 10
4.2 Ackermann-Péter function in T. 11
4.3 A total recursive function not representable in T. 12
4.4 Characterization of the expressiveness of T. 13

1

1 Preliminary and motivating remarks

1.1 On the weak expressiveness of the simply typed λ-calculus
Simply typed lambda-calculus (STLC) has good properties but a poor expressiveness:
— due to strong normalization, only total recursive functions can be represented, of course.

That is a feature of the calculus, but due to the properties of the type system and the strong
normalization proof, some total recursive functions cannot be represented. Actually lots of
them cannot be represented...

— when typing the encoding of pairs, there were constraints on types: for types A,B,C, paire
has type A→ (B → ((A→ (B → C))→ C)). That is, given t : A and u : B, (paire)tu had
type (A → (B → C)) → C Therefore, unless A = B, one cannot find projections with the
expected types: it is not possible, in the typed version of the pair encoding, to access the
components of the pair...

— for arithmetical functions, there were also strong restrictions: given a base type o, and
writing [0] = o and [n + 1] = [n] → [n], one saw that every n ≥ 2 allows to type Church
numerals. In Church’s style λ-calculus, one can type addition, product with the expected
types [n]→ [n]→ [n] for any n ≥ 2, but exponentiation cannot be typed with such a type...
one has to use types of different levels for a and b in ab: there are restrictions of the typed
use of iteration.

More precisely, Schwichtenberg and Statman proved that the expressible functions of type
Natk → Nat (with Nat = [2]) are exactly the extended polynomials:

Definition 1.1
Extended polynomials are the functions generated by 0, 1,the identity function as well as
the operations of addition, multiplication and conditional.

Theorem 1.2 (Schwichtenberg and Statman)
The arithmetical functions definable in simply-typed λ-calculus over type Nat are exactly the
extended polynomials.

If one relaxes the type for natural numbers to be some type for Church numeral, ie. allowing
to define function as λ-terms of type [n + 2] → . . . ([n + 2] → [n + 2]) for n ≥ 0, then one can
define more functions in simply-typed λ-calculus. In particular, the predecessor function and the
exponentiation are now definable.

But there is still a big gap. For instance, one can represent neither the equality predicate, nor
the less-than predicate (ie. their characteristic functions) nor the subtraction function...

Several solutions are available to improve this expressiveness issue:
— We shall now consider an option investigated by Gödel, extending the simply-typed λ-

calculus with types for pairs of objects, atomic types for booleans and naturals and con-
structions for conditional branching and a recursor.

— Another option that will be investigated in the following lectures will consist in allowing the
λ-terms to be polymorphic, that is to be applied to arguments of variable types: this will be
the core of System F and of the connection with second-order logic.

1.2 Arithmetic and the induction axiom
The well-known Peano’s Induction axiom schema is usually presented like:

φ(0)⇒ ∀a.(φ(a)⇒ φ(s(a))⇒ ∀a.φ(a)

In his works (1889 and 1891), Peano formulated the induction axiom in slightly different ways,
which can be reformulated as:

1889: φ(0)⇒ ∀a.[Nat(a)⇒ (φ(a)⇒ φ(s(a))]⇒ ∀a.[Nat(a)⇒ φ(a)];

1891: φ(0)⇒ ∀a.(φ(a)⇒ φ(s(a)))⇒ ∀a.[Nat(a)⇒ φ(a)].

2

In fact, Peano formulated his arithmetic in a form of second-logic (at least allowing quantifica-
tion over sets, or classes of elements), his axioms of Induction were closer to:

1889’: ∀k ∈ K(1 ∈ k ⇒ ∀a.(a ∈ N⇒ a ∈ k ⇒ s′a) ∈ k)⇒ N ⊆ k)
1891’: ∀s ∈ K(1 ∈ s⇒ s(s) ⊆ s⇒ N ⊆ s).
Exercice 1.1

By an analysis of the first-order reformulation of Peano’s axiom, justify the reductions to come
for the recursor of system T.

2 Gödel’s system T

An important defect of the simply-typed λ-calculus considered during the course is its poor
expressiveness as discussed above.

Several systems have been considered to increase the class of (total) functions that can be
represented in the typed setting. Gödel’s System T is such a system, extending the simply-
typed λ-calculus with product types (U × V), a type for booleans (Bool), with a type for natural
numbers (Nat) and with the following term constructions:

(i) pairs and projections: 〈t, u〉, π1(t), π2(t);
(ii) boolean constants and a boolean test: true, false, if t thenu else v;
(iii) constants for representing natural numbers and a recursor for each typeA: S(t), 0,Rec(t, u, v).

In the following, one will define System T, and then study its strong normalization property.

2.1 Types and terms of system T

The types of system T are just the types of simply-typed λ-calculus, with two specific atomic
types: Bool and Nat.

Definition 2.1 (Simple types for system T)
We consider a countable set TAt of atomic types containing Nat and Bool. T-types are defined
inductively as

T,U, V ::= A | U × V | U → V A ∈ TAt.

Terms of system T are defined by extending the simply-typed λ-calculus à la Church with:

Definition 2.2 (Terms of System T)

For each T-type T , one considers a countable set of variables of type T , VT , those sets being
pairwise disjoint.

Similarly to the case of the simply-typed λ-calculus, we define by mutual induction, (i) the
set of terms of System T (called T-terms), (ii) the typing relation (written u : U) and the set
of free variables of a T-term:

(Var) ∀x ∈ VU , xU is T-term of type U (of free variables {x}): xU : U

(Abs) For every T-term v such that v : V and every variable x ∈ VU , λxU .v is a T-term of
type U → V (of free variables fv(v) \ {x}): λxU .v : U → V

(App) For every T-terms t and u such that t : U → T and u : U , (t)u is a T-term of type T
(of free variables fv(t) ∪ fv(u)): (t)u : T

(Prod) For every T-terms u and v such that u : U and v : V , 〈u, v〉 is a T-term of type
U × V (of free variables fv(t) ∪ fv(u)): 〈u, v〉 : U × V

(Proj) For every T-term t such that t : T1 × T2, π1(t) and π2(t) are T-terms of respective
types T1 and T2 (of free variables fv(t)): π1(t) : T1 and π2(t) : T2

3

(BoolCst) true and false are closed T-terms of type Bool: V : Bool, F : Bool

(If) For every T-term t, u, v such that t : Bool, u : U and v : U , if t thenu else v is a T-term
of type U (of free variables fv(t) ∪ fv(u) ∪ fv(v)): if t thenu else v : U

(0) 0 is a closed T-term of type Nat: 0 : Nat
(S) For every T-term t such that t : Nat, S(t) is a T-term of type Nat (of free variables

fv(t)): S(t) : Nat

(Rec) For every T-term t, u, v such that t : Nat, u : Nat → (U → U) and v : U , Rec(t, u, v)
is a T-term of type U (of free variables fv(t) ∪ fv(u) ∪ fv(v)): Rec(t, u, v) : U

This can be summed up in the following inference system:

xU : U
(V ar) (x ∈ VU) t : T

λxU .t : U → T
(Abs) (x ∈ VU) t : U → T u : U

(t)u : T
(App)

u : U v : V
〈u, v〉 : U × V

(Prod)
t : U1 × U2

π1(t) : U1
(Proj1)

t : U1 × U2

π2(t) : U2
(Proj2)

true : Bool
(true)

false : Bool
(false)

0 : Nat
(0)

t : Nat
S(t) : Nat

(S)

t : Bool u : U v : U
if t thenu else v : U

(If)
t : Nat u : Nat→ (U → U) v : U

Rec(t, u, v) : U
(Rec)

2.2 T-reduction
The notion of compatible relation is extended to the syntax of T-terms in a straightforward

way.

Definition 2.3 (T-reduction relation)
We define the T-reduction, written −→T, as the least compatible relation on T-terms, con-
taining typed β-reduction as well as:

(λxU .t)u −→T t{u/x}
πi(〈t1, t2〉) −→T ti

if true then t elseu −→T t
if false then t elseu −→T u

Rec(0, v, w) −→T w
Rec(S(t), v, w) −→T (v)tRec(t, v, w)

A T-normal form is a T-term that does not −→T-reduce to any T-term.

Proposition 2.4 (Type preservation)

If t : T and t −→T u, then u : T (and fv(u) ⊆ fv(t)).

Proposition 2.5
Assume that t is a closed T-normal. We have the following properties:

— If t : Nat, then there exists n ∈ N such that t = Sn(0);
— If t : Bool, then t = true or t = false;
— If ` t : A×B, then t = 〈u, v〉;
— If t : U → V , then t = λx. u.

Proof : By induction on the structure of terms in normal forms.
2

Notation 2.6 (`(t))

If t is a strongly normalizable T-term, one writes `(t) for the maximal length of a T-reduction

4

from t. (This is well defined, as in the λ-calculus, as the reduction graph of a T-term is finitely
branching and by König’s lemma.)

3 Strong normalization theorem
The following section generalizes the strong normalization for the simply typed λ-calculus to

System T, by adapting the proof by reducibility for the simply typed λ-calculus.

3.1 Preliminary comments

Let us first recall that:
— a T-term t is weakly normalizing if there is a finite T-reduction sequence from t ending

in a normal form.
— a T-term t is strongly normalizing if there is no infinite T-reduction sequence from t,

that is whatever choice of redex is made at each step, we are bound to reach a normal form
ultimately. It is also the least set N of T-terms which contains normal forms and such that
t ∈ N if for any t′ such that t −→T t

′, t′ ∈ N .
— A calculus (here system T) will be called weakly (resp. strongly) normalizing if all its terms

are weakly (resp. strongly) normalizing.
— Contrarily to WN, SN is not stable by β-expansion in general (otherwise SN and WN would

be equivalent simply because a normal form is always SN and all normalizable term is the
expansion of a normal form).

— On the other hand, SN is stable by T-reduction (which is not the case for WN in general...)
— One of the crux for proving normalization is to transfer normalization properties through

elimination rules/destructors, that is proving that if t ∈ SN(A → B) and u ∈ SN(A),
then (t)u ∈ SN(B) (and similarly for product types and atomic types). It is typically such
a difficulty that makes an attempt for proving strong normalization by induction in the
structure of terms (or of type derivation, which is the same here) to fail.

— On the other hand, there are certainly subsets of SN(A) for which this proprerty holds
(starting with variables of type A for instance).

— As such it may seem interesting to identify a subset of SN terms that would be closed by
elimination rulesn and that would have some desirable properties ensuring that every typed
term is in this set. We shall call such terms reducible and carry the proof by induction on
the structure of terms for this sets. In paritcular, some properties will be important:
— for the proof by induction to go through, we certainly need the sets of reducible terms

to be closed by the constructors: the pair of two reducible terms should be reducible,
the abstraction of a reducible term should be reducible, etc.

— the sets should be closed by reduction as well as by introduction rules,
— plus some additional properties...

3.2 Reducible, neutral and (strongly) normalisable terms

One shall first adapt the definition of neutral terms, which are those terms whose topmost
construction is not an introduction rule (in natural deduction terms):

The sets Neut(U), SN(U) are adapted to T-terms without any change (but the dependency
of Neut(U) with RED(U)...):

Definition 3.1 (SN(U))

SN(U) = {u ∈ T; u strongly normalizing of type U}.

RED(U) is also defined as for STLC but for a treatment of product types:

Definition 3.2

5

— RED(X) = SN(X)
— RED(U → V) = {t : U → V ;∀u ∈ RED(U), (t)u ∈ RED(V)}.
— RED(U1 × U2) = {t : U1 × U2 | ∀i ∈ {1, 2}, πi(t) ∈ RED(Ui)}.

Definition 3.3 (Neutral T-term)

A T-term is neutral if it is not of the form λxU : t, 〈t, u〉, true, false, 0 or S(t).

The essential property of a neutral term is that if t is neutral, it cannot readily interact with
its context and as a consequence, for any context E[], the one-step reducts of E[t] are either of
the form E[t′] or E′[t] where E′ and t′ are one-step reducts of E and t respectively. Neutral terms
cannot interact/react with their context during the first step of computation.

Definition 3.4 (Neut(U))

Neut(U) = {u ∈ T; u is neutral of type U and ∀u′, u −→β u
′, u′ ∈ RED(U)}

3.3 Adaptation lemma
In this subsection, we prove the following relation between neutral, reductible and strongly

normalisable terms:
Lemma 3.5 (Adaptation)

For every type T , one has Neut(T) ⊆ RED(T) ⊆ SN(T).

Adaptation lemma relies on

Lemma 3.6

For any type U , RED(U) is closed by T-reduction:

u ∈ RED(U), u −→T u
′ ⇒ u′ ∈ RED(U).

Proof : Lemma 3.6 is proved by induction on the structure of type T .
— If T is atomic, the base case is trivial: since T is an atomic type, RED(T) = SN(T) and

begin strongly normalizing is closed by β-reduction.
— If T = U → V , then let t ∈ RED(T) such that t −→ t′: one wishes to prove that t′ ∈

RED(T). Let u ∈ RED(U). One has (t)u ∈ RED(V) by definition and the induction
hypothesis on V which ensures that RED(V) is closed by β-reduction so that (t′)u ∈ RED(V)
and this is true for any u ∈ RED(U): one concludes that t′ ∈ RED(T).

— If T = U1 × U2, then let t ∈ RED(T) such that t −→ t′ : T . Since t is reducible, its
projections are also reducible:

πi(t) ∈ RED(Ui), i ∈ {1, 2}.

By applying induction hypothesis on U1 and U2, we know that RED(Ui) are closed by
reduction and since πi(t) −→ πi(t

′) with i ∈ {1, 2}, we have that πi(t′) ∈ RED(Ui) for
i ∈ {1, 2}. Therefore t′ ∈ RED(T).

2

Proof of lemma 3.5 : The proof is by induction on the structure of type T .
— If T = X, RED(X) = SN(X) by definition. Moreover, if t ∈ Neut(X), then for any t′ such

that t −→β t′, one has t′ ∈ RED(X) = SN(X) therefore t is strongly normalisable and
t ∈ RED(X).

— If T = U → V , one has:
— Neut(T) ⊆ RED(T): let t ∈ Neut(T), that is it is neutral and all its reducts are reducible

of type U → V : ∀t′, t −→β t
′, one has t′ ∈ RED(T).

Let us prove by induction on the length of the longest reduction from u, `(u), that for
all u ∈ RED(U) ⊆ SN(U), (t)u ∈ RED(V).

6

— if `(u) = 0, then u is normal and the reducts of (t)u are all of the form (t′)u where
t reduces to t′, so that t′ ∈ RED(U → V) and (t′)u ∈ RED(V). As a consequence,
all reducts of (t)u, which is neutral, are in RED(V): (t)u ∈ Neut(V) ⊆ RED(V) (by
induction hypothesis).

— Let us assume that the property is true of the terms v such that `(v) ≤ n and
consider u such that `(u) = n + 1. Let v a reduct of (t)u, either it is obtained
by reducing t to t′: v = (t′)u, or by reducing u to u′, v = (t)u′, but there is no
other optionsince t is neutral. In the first case, as we know that t′ ∈ RED(U → V),
one has v ∈ RED(V). In the second case, since `(u′) ≤ n, and since u′ ∈ RED(U)
by closure of RED(U) by reduction (lemma 3.6), the induction hypothesis ensures
that v ∈ RED(V). Since all reducts of (t)u are in RED(V) and (t)u is neutral, one
concludes that (t)u ∈ Neut(V) ⊆ RED(V).

— RED(T) ⊆ SN(T): let t ∈ RED(T), let us prove that it is strongly normalizing. One has
xU ∈ Neut(U) ⊆ RED(U) (by induction hypothesis) so that (t)x ∈ RED(V) ⊆ SN(V)
and the previous lemma allows to conclude that t ∈ SN(T).

— If T = U1 × U2, then:
— Neut(T) ⊆ RED(T):

Let t ∈ Neut(T). Since t is neutral, πi(t) cannot be a redex itself: its redexes are
necessarily in t, so that its one-step reducts are all of the form πi(t

′) with t −→ t′.
Since t ∈ Neut(T), t′ ∈ RED(T) and πi(t′) ∈ RED(Ui), i ∈ {1, 2}.
Therefore we have that πi(t), i ∈ {1, 2} are neutral and all their one-step reducts are
reducible: πi(t) ∈ Neut(Ui), i ∈ {1, 2}. πi(t) ∈ RED(Ui), i ∈ {1, 2}.
By definition of reducibility at product types, one concludes that t ∈ RED(T) as ex-
pected.

— RED(T) ⊆ SN(T):
Assume that t ∈ RED(T). The π1(t) ∈ RED(U1) by definition and, by induction
hypothesis on U , π1(t) ∈ SN(U1). The longest reduction from t is certainly at most as
long as that from π1(t) so there is only finite reduction sequence from t and t ∈ SN(T).

2

3.4 Adequation lemma
In the following section, we prove the key property for strong normalization, namely that typed

terms are adequate with respect to reducibility:

Lemma 3.7 (Adequation)

Let t : U with free variables among xT1
1 , . . . , xTn

n . For any (ui ∈ RED(Ti))1≤i≤n, one has
t {ui/xi} ∈ RED(U).

Remark 3.8
An immediate consequence of the lemma is that closed T-terms are reducible and therefore, by
adaptation lemma, they are strongly normalizable. One understands that the proof of strong
normalization is a short step from adaptation and adequation lemmas...

Proposition 3.9
The following holds:

1. 0 ∈ RED(Nat).
2. true, false ∈ RED(Bool).
3. ∀t ∈ RED(Nat),S(t) ∈ RED(Nat).
4. ∀t ∈ RED(Bool), ∀u, v ∈ RED(U), if t thenu else v ∈ RED(U).
5. ∀t ∈ RED(Nat), ∀u ∈ RED(Nat→ (U → U)),∀v ∈ RED(U), Rec(t, u, v) ∈ RED(U).

Proof : 1. 0 ∈ RED(Nat) since RED(Nat) = SN(Nat) and 0 is a T-normal form.
2. true, false ∈ RED(Bool) since RED(Bool) = SN(Bool) and true, false are T-normal forms.
3. let t ∈ RED(Nat), then t is strongly normalizable since Nat is an atomic type. Since any

reduction from S(t) is of the form S(t) −→ S(t1) −→ S(t2) −→ . . .S(tn) −→ . . . , with

7

t −→ t1 −→ t2 −→ · · · −→ tn −→ . . . , S(t) is also strongly normalizable and therefore
S(t) ∈ RED(Nat).

4. let t : Bool, u, v : U be such that t ∈ RED(Bool), u, v ∈ RED(U). By adaptation lemma,
it is sufficient to prove that w = if t thenu else v ∈ Neut(U) to deduce w ∈ RED(U).
By adaptation lemma, we know that t, u, v are all strongly normalizing so that we can
reason by induction on `(t) + `(u) + `(v) to prove that ∀t ∈ RED(Bool), ∀u, v ∈ RED(U),
if t thenu else v ∈ RED(U).
w = if t thenu else v is neutral, let us consider its one-step reducts: if w −→T w

′ then
— either w′ is u (resp. v) if t = true (resp. t = false) which is reducible of type U
— or w′ = if t then′ elseuv with t −→T t

′ and since `(t′)+ `(u)+ `(v) < `(t)+ `(u)+ `(v),
w′ ∈ RED(U) by induction hypothesis;

— or w′ = if t thenu else′ v with u −→T u
′ and since `(t)+`(u′)+`(v) < `(t)+`(u)+`(v),

w′ ∈ RED(U) by induction hypothesis;
— or w′ = if t thenu else v′ with v −→T v

′ and since `(t)+`(u)+`(v′) < `(t)+`(u)+`(v),
w′ ∈ RED(U) by induction hypothesis.

5. let t : Nat, u : Nat → (U → U) and v : U be such that t ∈ RED(Nat), u ∈ RED(Nat →
(U → U)) and v ∈ RED(U). As above, it is sufficient to prove that w = Rec(t, u, v) ∈
Neut(U). w being neutral we simply have to prove that any of its one-step reducts is in
RED(U) which is done by induction, in a slightly more complex way as for the boolean
test.
Indeed, consider the case when t is of the form S(t′), then w can reduce to (u)t′Rec(t′, u, v).
To prove that the term is reducible, the inductive measure considered for the boolean
destructor is not suitable: indeed, in that case one has to rely on the reducibility of u (by
hypothesis) and t′ (reducible because strongly normalizable and of atomic type) and we
need to establish reducibility of Rec(t′, u, v) but `(t′) + `(u) + `(v) = `(t) + `(u) + `(v):
the measure did not decrease... One way out, it to add to the measure the information
on the complexity of t (or of its normal form):
— either by taking `(t)+`(u)+`(v)+n(t) where n(t) is the size of the normal form of

t (indeed, the size of t may vary over the reduction and is not necessarily decreasing
through the reduction...)

— or by considering (`(t) + `(u) + `(v), s(t)) ordered lexicographically, where s(t) is the
size of t (here it is sufficient to consider the size of t, and not of its normal form,
since one uses this component of the measure only when the term can be structurally
compared, one being a subterm of the other, see below).

Let us consider the first option which is simpler and sufficient (we comment on applica-
bility of the other measure as well):
let us prove by induction on `(t) + `(u) + `(v) + n(t), that for all ∀t ∈ RED(Nat), ∀u ∈
RED(Nat→ (U → U)), ∀v ∈ RED(U), Rec(t, u, v) ∈ RED(U).
Let thus consider t : Nat, u : Nat → (U → U) and v : U be such that t ∈ RED(Nat),
u ∈ RED(Nat→ (U → U)) and v ∈ RED(U).
w = Rec(t, u, v) is neutral, let us consider its one-step reducts: if w −→T w

′ then
— either w′ is v if t = 0 which is reducible of type U ;
— or w′ is (u)t′Rec(t′, u, v) if t = S(t′). In that case n(t) = n(t′) + 1 and `(t′) = `(t)

so that `(t′) + `(u) + `(v) + n(t′) < `(t) + `(u) + `(v) + n(t), and therefore induction
hypothesis ensures that Rec(t′, u, v) is reducible of type U which together with the
fact that t ∈ RED(Nat), u ∈ RED(Nat→ (U → U)), ensures that w′ ∈ RED(U). [Note
that the other measure, (`(t) + `(u) + `(v), s(t)) would also have decreased since its
first component would be unchanged while its second component has strictly decreased
as s(t) = s(t′) + 1.]

— or w′ = Rec(t′, u, v) with t −→T t
′ and since `(t′) + `(u) + `(v) < `(t) + `(u) + `(v)

and since n(t) = n(t′), w′ ∈ RED(U) by induction hypothesis; [Note that the other
measure, (`(t) + `(u) + `(v), s(t)) would also have decreased since its first component
would have decreased.]

— or w′ = Rec(t, u′, v) with u −→T u
′ and since `(t) + `(u′) + `(v) +n(t) < `(t) + `(u) +

`(v) + n(t), w′ ∈ RED(U) by induction hypothesis; [Note that the other measure,
(`(t)+ `(u)+ `(v), s(t)) would also have decreased since its first component would have
decreased.]

— or w′ = Rec(t, u, v′) with v −→T v
′ and since `(t) + `(u) + `(v′) + n(t) < `(t) + `(u) +

`(v) + n(t), w′ ∈ RED(U) by induction hypothesis. [Note that the other measure,

8

(`(t)+ `(u)+ `(v), s(t)) would also have decreased since its first component would have
decreased.]

From this case analysis, we deduce that any one-step reduct of w is reducible which suffices
to deduce that w ∈ Neut(U) ⊆ RED(U).

2

The following lemma will be important:

Lemma 3.10

(∀u ∈ RED(U), v{u/x} ∈ RED(V))⇒ ∀u ∈ RED(U), (λx.v)u ∈ RED(V).

together with its immediate corollary (by definition of RED(U → V)):

Corollary 3.11

(∀u ∈ RED(U), v{u/x} ∈ RED(V))⇒ λx.v ∈ RED(U → V).

Proof of the lemma : Let v : V possibly with xU as free variable, and assume that for all u ∈ RED(U),
v{u/x} ∈ RED(V).

Let us first remark that, since variables are reducible for their type, v = v{xU/x} ∈
RED(V). In particular, u and v are strongly normalizing by adaptation.

We show the result by induction on `(u) + `(v): considering t = (λx.v)u which is neutral,
it is enough to prove that it is in Neut(V) to have the result by adaptation lemma. One shall
therefore consider its reducts and show that they are all reducible of type V : consider therefore
t′ a one-step reduct of t. There are three possible cases:
— t′ = v{u/x} which is in RED(V) by the lemma hypothesis;
— t′ = (λx.v′)u with v′ a one-step reduct of v. Then v′ ∈ RED(V) and for any u ∈ RED(U),

v′{u/x} ∈ RED(V) since v{u/x} −→β v
′{u/x} and since RED(V) is closed by reduction.

Since `(u) + `(v′) < `(u) + `(v), one can apply the induction hypothesis and conclude que
that t′ = (λx.v′)u ∈ RED(V).

— t′ = (λx.v)u′ with u′ a one-step reduct of u which is therefore in RED(U), we known by
hypothesis that v{u′/x} ∈ RED(V). Since `(u′) + `(v) < `(u) + `(v), one can apply the
induction hypothesis and conclude that t′ ∈ RED(V).

2

The following is a corresponding result for pairs:

Lemma 3.12

∀u ∈ RED(U), v ∈ RED(V), 〈u, v〉 ∈ RED(U × V).

Proof : By adaptation lemma, one can reason using the strong normalisation of u, v and therefore
reason by induction on the sum of the length of the longest reductions from u and v to show
that πi(〈u, v〉) is reducible.

First notice that this term is neutral. Therefore, to show that is it reducible, it is sufficient
to show that every one-step reduct is reducible from which one deduce that πi(〈u, v〉) ∈ Neut(U)
and, by adaptation, that it is reducible.

πi(〈u, v〉) reduces (i) either to u (resp. v) which is reducible, (ii) or to πi(〈u′, v〉) with
u −→ u′. u′ is reducible since reducibility is closed by reduction and its longest reduction is
shorter than that of u so by induction hypothesis, πi(〈u′, v〉) is reducible, (iii) or to πi(〈u, v′〉)
with v −→ v′ which is reducible by exactly the same reasoning as in (ii).

Therefore both projections of 〈u, v〉 are reducible showing that 〈u, v〉 ∈ RED(U × V).
2

Proof of lemma 3.7 : One can reason by induction on the structure of t : T .
— If t = xTi

i , the result is trivial since ui is in RED(Ti) by the lemma hypothesis.
— If t = λxU .t′, with T = U → V and choosing xU such that is not free in any of the ui

and distinct from all the xTi
i . Let u ∈ RED(U). By induction hypothesis, t′{ui/xi, 1 ≤ i ≤

n}{u/x} = t′{ui/xi, 1 ≤ i ≤ n, u/x} ∈ RED(V) therefore, by the previous lemma, one has
t{ui/xi, 1 ≤ i ≤ n} = λx.t′{ui/xi, 1 ≤ i ≤ n} ∈ RED(U → V)

— If t = (u)v, with u : V → T and v : V . By induction hypothesis, u′ = u{ui/xi, 1 ≤ i ≤
n} ∈ RED(V → T) et v′ = v{ui/xi, 1 ≤ i ≤ n} ∈ RED(V) therefore t{ui/xi, 1 ≤ i ≤ n} =
(u′)v′ ∈ RED(T).

9

— If t = 〈u, v〉, then by induction hypothesis, both u {ui/xi} and v {ui/xi} are reducible and
by the previous lemma t {ui/xi} is reducible.

— If t = π1(u) (resp π2(u)), then by induction hypothesis u {ui/xi} is reducible which implies
that π1(u {ui/xi}) is reducible by definition.

— If t is some T-constant, it is reducible (since 0 ∈ RED(Nat), true, false ∈ RED(Bool)).
— If t = S(u), then by induction hypothesis, u {ui/xi} is reducible and so is S(u {ui/xi}).
— If t = if u then v elsew, then by induction hypothesis, u {ui/xi}, v {ui/xi}, w {ui/xi} are

reducible and so is if u {ui/xi} then v {ui/xi} elsew {ui/xi}.
— If t = Rec(u, v, w), then by induction hypothesis, u {ui/xi}, v {ui/xi}, w {ui/xi} are re-

ducible and so is Rec(u {ui/xi}, v {ui/xi}, w {ui/xi}).
2

3.5 Conclusion of the proof of strong normalization
Theorem 3.13

System T is strongly normalizing.

Proof : Let t : T of free variables (xTi
i)1≤i≤n. By adaptation lemma (3.5) for any 1 ≤ i ≤ n, xTi

i ∈
RED(Ti) since variables of type T are neutral and normal and therefore in Neut(T).

Adequation lemma (3.7) ensures that t
{
xTi
i /xi, 1 ≤ i ≤ n

}
= t is reducible of type T

(∈ RED(T)).
By using adaptation lemma once more, one has t ∈ RED(T) ⊆ SN(T) which allows to

conclude that t is strongly normalizing.
2

4 Expressive power of system T

It is easy to write complex programs in T, that cannot be written in simply-typed λ-calculus.
Back to the introduction of this chapter, of course one can manipulate pairs as we are given
primitive operations in T, as well as boolean functions as we have the boolean test.

Exercice 4.1
Write T-terms for the standard boolean functions.

4.1 Simple arithmetical functions represented by T-terms.
It is simple to defined basic arithmetical functions on type Nat: instead of manipulating Church

numerals, one works with the built-in naturalnumbers of T, which does not make a big difference
as they are unary integers as well as we have a recursor to replace the ability of a Church numeral
to iterate its arguments directly:

Exercice 4.2
Write T-terms for the following functions:

— successor;
— addition;
— multiplication;
— exponentiation;
— predecessor;
— subtraction.

4.2 Ackermann-Péter function in T.
Notice here that the type of the recursors we have been using sofar is very simple: U is always

taken to be Nat is the previous examples... We can benefit from the ability to use more complex
types, higher-order types in fact, to defined simply much more complex, and fast-growing functions,
for instance we shall see now how to represent Ackermann-Péter function in system T.

10

Let us consider Ackermann-Péter function for a while:

A(m,n) ,

 n+ 1 if m = 0
A(m− 1, 1) if m > 0 and n = 0
A(m− 1, A(m,n− 1)) if m > 0 and n > 0

In order to represent A in T, we would need a T-term A such that

(A)0n −→?
T S(n)

(A)S(m)0 −→?
T (A)mS(0)

(A)S(m)S(n) −→?
T (A)m(A)S(m)n

However, it is well-known that Ackermann-Peter function is not primitive recursive and in
system T, we only have a recursor, not minimization scheme construct. How to find a solution?

Let us consider A, by currying, not as a function of two arguments but as a family of unary
functions (Am)m∈N from N to N. We then notice that the definition becomes:

A0(n) , n+ 1

Am+1(n) ,

{
Am(1) if n = 0
Am(Am+1(n− 1)) n > 0

And we notice that each Ai is now defined with only a primitive recursive scheme, assuming the
A0, . . . , Ai−1 have been defined already. This means that we need to be able to define, not an
object in N by recursion, but an element of NN, which is exactely what the recursor of system T
allows for when instantiating U with type Nat→ Nat...

The effect of Am+1 on n is to iterate Am n+ 1 times over 1: Am+1(n) = Am(Am+1(n− 1)) =
Am(Am(Am+1(n−2))) = Am(Am(Am(Am+1(n−3)))) = · · · = Am(Am(Am(Am(. . . (Am(1) . . .)))))!
That is simply (if f (0)(x) = x and f (n+1)(x) = f(f (n)(x))):

Am+1(n) = A(n+1)
m (1).

which can also be define as: Am+1(n) = iter(Am, n) where iter(f, 0) = f(1) and iter(f, n+1) =
f(iter(f, n)).

Now, we see clearly how to complete the definition of A:

Exercice 4.3
Define a T-term Iter representing iter as described above, that is it takes as input two arguments
of type Nat→ Nat and Nat and iterates its first argument as many time as specified by its second
argument.

Exercice 4.4
Using Iter, define a T-term A representing Ackermann-Peter function, that is such that for any
m,n : Nat:

(A)0n =T S(n)
(A)S(m)0 =T (A)mS(0)
(A)S(m)S(n) =T (A)m(A)S(m)n

with =T denoting the least congruence containing −→T.

4.3 A total recursive function not representable in T.
In this paragraph, we describe the construction of a total recursive function that cannot be

represented in T. This construction is general and will be reproduced later in the semester for
system F: it amounts on a diagonalization argument, showing that the evaluation function of T
which is (total) recursive cannot be represented in T.

Indeed, consider g(_) a Gödel numbering of T-terms and the following functions:

— eval(n) =

{
g(u) if n = g(t) and t−→? u 6−→
0 otherwise

11

— apply(m,n) =

{
g(v) if m = g(t), n = g(u) and v = (t)u is a T-term.
0 otherwise

— #(n) = g(n) (where n is the Nat term corresponding to n).

— b(n) =

{
m if n = g(m)
0 otherwise

Otherwise said, :
— eval(_) returns the Gödel number of the normal form of the T-term coded by its input if

the input codes a T-term and returns 0 otherwise.
— apply(_) returns the Gödel number of the application of the terms coded by its arguments

and returns 0 if the arguments are not of the appropriate types.
— #(_) returns the Gödel number of its input, viewed as a T-nat: it codes a natural of system

T.
— b(_) does the opposite of #(_), decoding its input: if the input is the code of a T natual

number, it returns the corresponding nat, otherwise it returns 0. In puarticular, b(#(n)) = n
for any n ∈ N.

The following proposition is clear and left to the reader:

Proposition 4.1
g, eval, apply,# and b are total recursive functions.

Consider now diag defined as:

diag(n) = b(eval(apply(n,#(n)))) + 1

Assume d is a T-term representing diag and let n = g(d). Then we have:
— apply(n,#(n)) = g((d)n);
— eval(apply(n,#(n))) = g(u) such that (d)n−→? u 6−→;
— (d)n−→? diag(n) by definition;
— eval(apply(n,#(n))) = g(diag(n)) so
— diag(n) = b(g(diag(n))) and finally
— diag(n) = diag(n) + 1...

As a consequence, diag is total recursive which cannot be represented in T.

Remark 4.2
Note that the above construction does not use any thing about T, but uniqueness of its normal
forms and will therefore be reused for system F.

4.4 Characterization of the expressiveness of T.
More generally, the extended expressiveness of T that was mentioned in the start is expressed

by the following theorem:

Theorem 4.3
The functions that can be represented in system T are the recursive functions which can be
proved to be total functions in first-order Peano arithmetics (PA).

12

	Preliminary and motivating remarks
	On the weak expressiveness of the simply typed -calculus
	Arithmetic and the induction axiom

	Gödel's system T
	Types and terms of system T
	T-reduction

	Strong normalization theorem
	Preliminary comments
	Reducible, neutral and (strongly) normalisable terms
	Adaptation lemma
	Adequation lemma
	Conclusion of the proof of strong normalization

	Expressive power of system T
	Simple arithmetical functions represented by T-terms.
	Ackermann-Péter function in T.
	A total recursive function not representable in T.
	Characterization of the expressiveness of T.

