
M2 LMFI – SOFIX
Quantification du second-ordre et points fixes en

logique
Realizability in System F and applications to strong normalization

(Preliminary version, to be completed)

Alexis Saurin

3rd february 2023

Contents
1 Introduction and motivation 1

2 Realizability interpretation 2

3 Adequation lemma (Adequacy lemma) 5

1 Introduction and motivation
In the following, one shall prove strong normalization of system F using a proof technique known as
realizability . This approach was initiated by Kleene and developed further by many, notably by Krivine
(especially beyond the intuitionistic setting by developing a framework of realizability for classical logic,
known as classical realizability).

One will consider Curry-style system F: we will work with pure λ-terms and show that every term that
is typable is strongly normalizing. We will deduce strong normalization of Church-style system F thanks to
the equivalence established in the previous chapter.

Realizability is in fact a much wider, flexible and powerful tool that allows to analyze the computational
behaviour of terms from information on their types in a fine-graind way, beyond (strong) normalizability
properties as one shall see on some examples.

Before coming to the realizability construction, let us begin with a remark on normalization proofs by
reducibility.

To analyze normalization properties in this setting, one had to express stability properties by argument
application (or universal instanciation in F, more generally by the effect of the destructors of the language
as in T), for instance defining:

REDWN
ρ(U → V) = {t : (U → V)ρ | ∀u ∈ REDWN

ρ(U), (t)u ∈ REDWN
ρ(V)}.

that one can see as a special case of a more general construction:

X → Y = {t/∀u ∈ X , (t)u ∈ Y}

1

which gives:

REDWN
ρ(U → V) = {t : (U → V)ρ | ∀u ∈ REDWN

ρ(U), (t)u ∈ REDWN
ρ(V)}

= REDWN
ρ(U)→ REDWN

ρ(V).

In particular, in the simply typed case for instance, every type T is of the form: T = U1 → · · · → (Un →
X) where X is a type variable. By noting that for type variables, one set ρ(X) = Norm(X), one thus has,
in this case:

REDWN
ρ(T) = {t : T ρ | ∀i ≤ n, ∀ui ∈ REDWN

ρ(Ui), (t)u1 . . . un ∈ Norm(X)}

One shall generalize these reducibility techniques by evidencing the central notion of applicative context:
(�)u1 . . . un that on shall manipulate through the notion of stacks which give to applicative contexts a
first-class existence.

Definition 1.1 ((Applicative) contexts)
Contexts and applicative contexts are defined inductively as follows:

C ::= � | λx.C | (t)C | (C)t
A ::= � | (A)t

2 Realizability interpretation
Let us consider Curry-Style System F: λ-terms are untyped terms and one considers a ternary typability
relation, `F ⊆ Env × Λ× TypeF, written Γ `F t : T .

Definition 2.1 (Stacks)
Let us note Π the set of stacks, defined inductively by:

π, π′ ::= ∅ | t · π.

Π is therefore the set of finite sequences of λ-terms,

Definition 2.2 (Processes)
A process is a pair of a λ-term and a stack.
The process (t, π) may also be written t ? π.

We write P = Λ×Π for the set of processes.

Example 2.3

One can for instance consider process (λx.(x)x, λy.(y)y · ∅).

Definition 2.4 (Pole)
Given a set of terms Λ0 containing the variables, a Λ0-pole is a subset ⊥⊥ of P satisfying following two
properties of closure by anti-reduction with respect to Λ0:

1. If (t {u/x} , π) ∈ ⊥⊥ and u ∈ Λ0, then (λx. t, u · π) ∈ ⊥⊥.

2. If (t, u · π) ∈ ⊥⊥ then ((t)u, π) ∈ ⊥⊥.

One shall simply speak of a pole in the following, when this is not ambiguous.

2

Remark 2.5

For those who know the Krivine Abstract Machine (KAM), they will note that the previous properties
correspond to closure by anti-reduction of the KAM for arguments in Λ0.

Example 2.6
The reader is invited to check that the following sets of processes are poles:

• ∅,Λ×Π are poles for any choice of Λ0 (satisfying the minimal conditions on Λ0).

• {(t, π) ∈ P | (t)π ∈ ΛSN} is a ΛSN -pole. (see section on the applications of realizability to strong
normalization.)

• Let Λ0 containing the variables, {(t, π) | (t)π−→? λx.x} is a Λ0-pole.

Given a pole (ie a Λ0-pole for a certain Λ0), one can relate sets of terms and sets of staks by a so-called
orthogonality relation:

Definition 2.7 (Orthogonality)

Let ⊥⊥ be a pole. Let T be a set of terms and F a set of stacks. One defines T⊥ and F⊥ in the following
way:

T⊥ = {π ∈ Π | ∀t ∈ T, (t, π) ∈ ⊥⊥} F⊥ = {t ∈ Λ | ∀π ∈ F, (t, π) ∈ ⊥⊥}.

This orthogonality relation satisfies, straightforwardly, the following properties which are left to the
reader as an exercise:
Proposition 2.8

• T ⊆ U ⇒ U⊥ ⊆ T⊥;

• T ⊆ T⊥⊥;

• T⊥ = T⊥⊥⊥.

Reducibility was built by defining sets of λ-terms by induction on type. Here, one shall define sets of
stacks by induction on type and build sets of terms by orthogonality:

Definition 2.9 (Π0)
Given a Λ0-pole ⊥⊥, Π0 denotes the set of stacks built from elements of Λ0.

Definition 2.10 (Valuation)
Given a Λ0-pole ⊥⊥, a valuation v is a function from type variables to subsets of Π0.

Given a valuation v, X a type variable and F ⊆ Π0, v[X := F] is defined as the valuation equal to F
on X and equal to v on any other type variable.

Definition 2.11 (Interpretation of a type, falsity value)

Given a Λ0-pole ⊥⊥ and a valuation v, one defines inductively the interpretation ||_||v of F-types
(taking values in the subsets of Π) as follows:

• ||X||v = v(X);

• ||A⇒ B||v = {t · π | t ∈ ||A||⊥v , π ∈ ||B||v};

• ||∀X.A||v = ∪F⊆Π0
||A||v[X:=F].

3

||T ||v will be called the falsity value of T .

Definition 2.12 (Realizability relation, truth value)

Given a Λ0-pole ⊥⊥ and a valuation v, a term t realizes a type T , written t `̀ v T , if t ∈ ||T ||⊥v . Such a t
is called a realizer of T .

The set of realizers of T is written |T |v; it is equal to the orthogonal of ||T ||v and will be called the
truth value of T .

The following remark provides an intuition for the terminology of truth/falsity values.

Remark 2.13 (Truth and falsity values)

Realizability has two parameters: the pole and the valuation (there is actually a third parameter, the set
Λ0), even though only the pole is shown in the notation.

Whatever choice we make of Λ0, ∅ and P = Λ×Π are poles. In the case where ⊥⊥ = ∅, one has

F⊥ =

{
Λ si F = ∅
∅ si F 6= ∅ .

One therefore recovers the usual bolean interpretation:

• |A→ B|ρ = ∅ if |A|ρ = Λ and |B|ρ = ∅ et

• |A→ B|ρ = Λ otherwise.

In the same way:

• |∀X.A|ρ = ∅ if there exists F ∈ FΛ0 such that |A|ρ[X:=F] = ∅ and

• |∀X.A|ρ = Λ otherwise.

This is from this interpretation that come the names truth value and falsity values as one easily
understands.

One establishes a first property of the above constuctions, a classical substitutivity property which looks
alike a property established for reducibility.

Lemma 2.14 (Substitutivity of the realizability interpretation)
For any types T,U and any type variable X, one has for every pole and every valuation v that:

||T {U/X} ||v = ||T ||v[X:=||U ||v].

Proof : The lemma is proved by induction on the structure of the type, writing v′ = v[X := ||U ||ρ].

• Case T = X is trivial.

• Case T = Y 6= X is trivial.

• Case T = V → W : one has T {U/X} = V {U/X} → W {U/X}, so that a stack π belongs to
||T {U/X} ||v if, and only if, it is of the form t · π′ where t ∈ |V {U/X} |v = ||V {U/X} ||⊥v and
π′ ∈ ||W {U/X} ||v, or, thanks to the induction hypothesis if, and only if, t ∈ ||V ||⊥v′ and π′ ∈ ||W ||v′ ,
that is iff t · π ∈ ||T ||v′ .

• Case T = ∀Y.V (with Y 6= X and Y 6∈ FV (U)): one has T {U/X} = ∀Y.(V {U/X}) and thus
π ∈ ||T {U/X} ||v if, and only if, π ∈ ||V {U/X} ||v[Y :=F] for some F in FΛ0 and, applying the
induction hypothesis as above, if and only if π ∈ ||V ||v′[Y :=F] for some F in FΛ0 , that is if and only
if π ∈ ||T ||v′ .

This concludes the proof.
�

4

Lemma 2.15

If v is such that for any T , ||T ||v ⊆ Π0 and if F ⊆ Π0, then v′ = v[X := F] is also such that for any T ,
||T ||v′ ⊆ Π0.

Proof : Indeed, ||T ||v′ ⊆ ||∀X.T ||v ⊆ Π0.
�

3 Adequation lemma (Adequacy lemma)
One shall prove an adequation result of the realizability semantics to the typing.

For this, one defines two specific sorts of valuations:

Definition 3.1 (weakly/well adapted valuations)
A valuation v is weakly adapted to a Λ0-pole ⊥⊥ if, for any type T ,

|T |v ⊆ Λ0 & ||T ||v ⊆ Π0.

A valuation v is adapted (or well-adapted) to a Λ0-pole ⊥⊥ if, for any type T ,

V ⊆ |T |v ⊆ Λ0 & ||T ||v ⊆ Π0.

A well-adapted valuation is therefore a weakly adapted valuation such that variables realize every type.

Remark 3.2
If one considers a realizability construction with Λ0 = Λ, then every valuation is trivially weakly adapted.

Definition 3.3 (Admissible set of terms)
A set Λ0 ⊆ Λ is admissible if there exists a Λ0-pole ⊥⊥ and a valuation v which is well-adapted for ⊥⊥.

One can now state the adequation lemma for realizability:

Lemma 3.4 (Adequation lemma)

Let v be a valuation for a pole ⊥⊥ such that for any type U , ||U ||v ⊆ Π0, and let t be a term such that
x1 : U1, . . . , xn : Un `F t : T is derivable in Curry-Style F. Let (ui)1≤i≤n be realizers of the (Ui)1≤i≤n (ie.
ui `̀ v Ui for 1 ≤ i ≤ n), then t {ui/xi, 1 ≤ i ≤ n} `̀ v T .

Proof : One proves the lemma by induction on a typing derivation d of xi : Ui `F t : T . (Note that there
may exist several such typing derivations since we work with Curry-Style System F...) One shall write
Γ = x1 : U1, . . . , xn : Un and t′ = t {ui/xi, 1 ≤ i ≤ n}.

• If d is an axiom, the property trivialy holds since t′ = ui for some i which realizes Ui = T by
hypothesis.

• If d ends with → I, one has t = λx.v, T = U → V , and x1 : U1, . . . xn : Un, x : U `F v : V Let
v′ = v {ui/xi, 1 ≤ i ≤ n}. We want to prove that t′ realizes T for valuation v: one considers a stack
π ∈ ||T ||v ⊆ Π0.
There are only two possibilities: either no such stack exists and then t′ réalizes T trivially, or π has
form u · π′, with u `̀ v U , u ∈ Λ0 and π′ ∈ ||V ||v, π′ ∈ Λ0.
In the second case, we know by induction hypothesis that v′ {u/x} `̀ v V from which (v′ {u/x} , π′) ∈
⊥⊥ and by closure by KAM-anti-reduction of ⊥⊥ (more precisely by property 1.) and since u ∈ Λ0 ,
one also has that (t {u/x} , u·π′) ∈ ⊥⊥ which shows that t′ `̀ v T since the stack was chosen arbitrarily.

• If d ends with → E, then we have t = (u)v with x1 : U1, . . . xn : Un `F u : V → T and
x1 : U1, . . . xn : Un `F v : V for some type V .

5

One can apply the induction hypothesis to both derivation du and dv concluding x1 : U1, . . . xn :
Un `F u : V → T and x1 : U1, . . . xn : Un `F v : V which ensures that u′ = u {ui/xi, 1 ≤ i ≤ n} and
v′ = v {ui/xi, 1 ≤ i ≤ n} realize respectively V → T and V for valuation v.
To show that t′ realizes T , it is enough to consider an arbitrary stack π in ||T ||v and to remark that
v′ · π ∈ ||V → T ||v ⊆ Π0 and thus that (u′, v′ · π) ∈ ⊥⊥. As before one applies the closure properties
of the pole: since v′ ∈ Λ0, the second closure property of the pole applies and one gets (t′, π) ∈ ⊥⊥,
which means, since π is any stack in ||T ||v, that t′ `̀ v T .

• If d ends with ∀I, then one has T = ∀X.U and x1 : U1, . . . xn : Un `F t : U where X does not
occur free in the Ui.
To show that t′ `̀ v ∀X.U , let us consider π ∈ ||∀X.U ||v. We know by definition of the realizability
interpretation that there exists F ⊆ Π0 such that π ∈ ||U ||v[X:=F].
But since X is not free in the Ui the interpretation of Ui is the same in v and in v′ = v[X := F], in
particular, the lemma hypothesis tells us that ui `̀ v′ Ui if 1 ≤ i ≤ n. One can therefore apply the
induction hypothesis to the subderivation of conclusion x1 : U1, . . . xn : Un `F t : U with respect to
v′: t′ `̀ v′ U so that (t′, π) ∈ ⊥⊥ which proves that t′ `̀ v ∀X.U .

• If d ends with ∀E, then we have a subderivation d′ of d, which concludes with x1 : U1, . . . xn :
Un `F t : ∀X.U , with T = U {V/X} for some V .
Let us consider π ∈ ||U {V/X} ||v: we need to prove that (t, π) ∈ ⊥⊥. The substitutivity lemma
ensures that π ∈ ||U ||v[X:=||V ||v].
By applying induction hypothesis to d′, we have t′ `̀ v ∀X.U so for any F ⊆ Π0, we have that
t′ `̀ v[X:=F] U , and in particular when F = ||V ||v ⊆ Π0.
We then deduce that (t′, π) ∈ ⊥⊥.

This concludes the proof of the lemma.
�

Adequation lemma allows to deduce easily that a typed term realizes its type and that typable terms are
in the intersection of all admissible sets:
Theorem 3.5

If Λ0 is admissible and Γ `F t : T , then t ∈ Λ0.

Proof : Indeed, if Λ0 is admissible, then there exists a pole ⊥⊥ and a valuation v adapted to Λ0. The adequation
lemma can be applied to variables which are realizers of any type and t = t {xi/xi} ∈ |T |v ⊆ Λ0.

�

To prove strong normalization of F, it is therefore sufficient to prove that the set of strongly normalizing
terms is admissible, that we will do in the following.

To be continued...

6

