
M2 LMFI – SOFIX
Quantification du second-ordre et points fixes en

logique
Realizability in System F and applications to strong normalization

(Preliminary version, to be completed)

Alexis Saurin

3rd february 2023

Contents
1 Introduction and motivation 1

2 Realizability interpretation 2

3 Adequation lemma (Adequacy lemma) 5

4 Application of realizability to strong normalization of system F 7

5 Some more applications of realizability 8

1 Introduction and motivation
In the following, one shall prove strong normalization of system F using a proof technique known as
realizability . This approach was initiated by Kleene and developed further by many, notably by Krivine
(especially beyond the intuitionistic setting by developing a framework of realizability for classical logic,
known as classical realizability).

One will consider Curry-style system F: we will work with pure λ-terms and show that every term that
is typable is strongly normalizing. We will deduce strong normalization of Church-style system F thanks to
the equivalence established in the previous chapter.

Realizability is in fact a much wider, flexible and powerful tool that allows to analyze the computational
behaviour of terms from information on their types in a fine-graind way, beyond (strong) normalizability
properties as one shall see on some examples.

Before coming to the realizability construction, let us begin with a remark on normalization proofs by
reducibility.

To analyze normalization properties in this setting, one had to express stability properties by argument
application (or universal instanciation in F, more generally by the effect of the destructors of the language
as in T), for instance defining:

REDWN
ρ(U → V) = {t : (U → V)ρ | ∀u ∈ REDWN

ρ(U), (t)u ∈ REDWN
ρ(V)}.

1

that one can see as a special case of a more general construction:

X → Y = {t/∀u ∈ X , (t)u ∈ Y}

which gives:

REDWN
ρ(U → V) = {t : (U → V)ρ | ∀u ∈ REDWN

ρ(U), (t)u ∈ REDWN
ρ(V)}

= REDWN
ρ(U) → REDWN

ρ(V).

In particular, in the simply typed case for instance, every type T is of the form: T = U1 → · · · → (Un →
X) where X is a type variable. By noting that for type variables, one set ρ(X) = Norm(X), one thus has,
in this case:

REDWN
ρ(T) = {t : T ρ | ∀i ≤ n, ∀ui ∈ REDWN

ρ(Ui), (t)u1 . . . un ∈ Norm(X)}

One shall generalize these reducibility techniques by evidencing the central notion of applicative context:
(□)u1 . . . un that on shall manipulate through the notion of stacks which give to applicative contexts a
first-class existence.

Definition 1.1 ((Applicative) contexts)
Contexts and applicative contexts are defined inductively as follows:

C ::= □ | λx.C | (t)C | (C)t
A ::= □ | (A)t

2 Realizability interpretation
Let us consider Curry-Style System F: λ-terms are untyped terms and one considers a ternary typability
relation, ⊢F ⊆ Env × Λ× TypeF, written Γ ⊢F t : T .

Definition 2.1 (Stacks)
Let us note Π the set of stacks, defined inductively by:

π, π′ ::= ∅ | t · π.

Π is therefore the set of finite sequences of λ-terms,

Definition 2.2 (Processes)
A process is a pair of a λ-term and a stack.
The process (t, π) may also be written t ⋆ π.

We write P = Λ×Π for the set of processes.

Example 2.3

One can for instance consider process (λx.(x)x, λy.(y)y · ∅).

Definition 2.4 (Pole)
Given a set of terms Λ0 containing the variables, a Λ0-pole is a subset ⊥⊥ of P satisfying following two
properties of closure by anti-reduction with respect to Λ0:

1. If (t {u/x} , π) ∈ ⊥⊥ and u ∈ Λ0, then (λx. t, u · π) ∈ ⊥⊥.

2. If (t, u · π) ∈ ⊥⊥ then ((t)u, π) ∈ ⊥⊥.

2

One shall simply speak of a pole in the following, when this is not ambiguous.

Remark 2.5

For those who know the Krivine Abstract Machine (KAM), they will note that the previous properties
correspond to closure by anti-reduction of the KAM for arguments in Λ0.

Example 2.6
The reader is invited to check that the following sets of processes are poles:

• ∅,Λ×Π are poles for any choice of Λ0 (satisfying the minimal conditions on Λ0).

• {(t, π) ∈ P | (t)π ∈ ΛSN} is a ΛSN -pole. (see section on the applications of realizability to strong
normalization.)

• Let Λ0 containing the variables, {(t, π) | (t)π−→⋆ λx.x} is a Λ0-pole.

Given a pole (ie a Λ0-pole for a certain Λ0), one can relate sets of terms and sets of staks by a so-called
orthogonality relation:

Definition 2.7 (Orthogonality)

Let ⊥⊥ be a pole. Let T be a set of terms and F a set of stacks. One defines T⊥ and F⊥ in the following
way:

T⊥ = {π ∈ Π | ∀t ∈ T, (t, π) ∈ ⊥⊥} F⊥ = {t ∈ Λ | ∀π ∈ F, (t, π) ∈ ⊥⊥}.

This orthogonality relation satisfies, straightforwardly, the following properties which are left to the
reader as an exercise:
Proposition 2.8

• T ⊆ U ⇒ U⊥ ⊆ T⊥;

• T ⊆ T⊥⊥;

• T⊥ = T⊥⊥⊥.

Reducibility was built by defining sets of λ-terms by induction on type. Here, one shall define sets of
stacks by induction on type and build sets of terms by orthogonality:

Definition 2.9 (Π0 , FΛ0)
Given a Λ0-pole ⊥⊥, Π0 denotes the set of stacks built from elements of Λ0.

One shall write FΛ0 for the set of non-empty subsets of Π0.

Definition 2.10 (Valuation)
Given a Λ0-pole ⊥⊥, a valuation v is a function from type variables to subsets of Π0.

Given a valuation v, X a type variable and F ⊆ Π0, v[X := F] is defined as the valuation equal to F
on X and equal to v on any other type variable.

Definition 2.11 (Interpretation of a type, falsity value)

Given a Λ0-pole ⊥⊥ and a valuation v, one defines inductively the interpretation ||_||v of F-types
(taking values in the subsets of Π) as follows:

• ||X||v = v(X);

3

• ||A ⇒ B||v = {t · π | t ∈ ||A||⊥v , π ∈ ||B||v};

• ||∀X.A||v = ∪∅⊊F⊆Π0
||A||v[X:=F].

||T ||v will be called the falsity value of T .

Definition 2.12 (Realizability relation, truth value)

Given a Λ0-pole ⊥⊥ and a valuation v, a term t realizes a type T , written t ⊢⊢v T , if t ∈ ||T ||⊥v . Such a t
is called a realizer of T .

The set of realizers of T is written |T |v; it is equal to the orthogonal of ||T ||v and will be called the
truth value of T .

The following remark provides an intuition for the terminology of truth/falsity values.

Remark 2.13 (Truth and falsity values)

Realizability has two parameters: the pole and the valuation (there is actually a third parameter, the set
Λ0), even though only the pole is shown in the notation.

Whatever choice we make of Λ0, ∅ and P = Λ×Π are poles. In the case where ⊥⊥ = ∅, one has

F⊥ =

{
Λ si F = ∅
∅ si F ̸= ∅ .

One therefore recovers the usual bolean interpretation:

• |A → B|ρ = ∅ if |A|ρ = Λ and |B|ρ = ∅ et

• |A → B|ρ = Λ otherwise.

In the same way:

• |∀X.A|ρ = ∅ if there exists F ∈ FΛ0
such that |A|ρ[X:=F] = ∅ and

• |∀X.A|ρ = Λ otherwise.

This is from this interpretation that come the names truth value and falsity values as one easily
understands.

One establishes a first property of the above constuctions, a classical substitutivity property which looks
alike a property established for reducibility.

Lemma 2.14 (Substitutivity of the realizability interpretation)
For any types T,U and any type variable X, one has for every pole and every valuation v that:

||T {U/X} ||v = ||T ||v[X:=||U ||v].

Proof : The lemma is proved by induction on the structure of the type, writing v′ = v[X := ||U ||ρ].

• Case T = X is trivial.

• Case T = Y ̸= X is trivial.

• Case T = V → W : one has T {U/X} = V {U/X} → W {U/X}, so that a stack π belongs to
||T {U/X} ||v if, and only if, it is of the form t · π′ where t ∈ |V {U/X} |v = ||V {U/X} ||⊥v and
π′ ∈ ||W {U/X} ||v, or, thanks to the induction hypothesis if, and only if, t ∈ ||V ||⊥v′ and π′ ∈ ||W ||v′ ,
that is iff t · π ∈ ||T ||v′ .

• Case T = ∀Y.V (with Y ̸= X and Y ̸∈ FV (U)): one has T {U/X} = ∀Y.(V {U/X}) and thus
π ∈ ||T {U/X} ||v if, and only if, π ∈ ||V {U/X} ||v[Y :=F] for some F in FΛ0 and, applying the

4

induction hypothesis as above, if and only if π ∈ ||V ||v′[Y :=F] for some F in FΛ0 , that is if and only
if π ∈ ||T ||v′ .

This concludes the proof.
□

Lemma 2.15

If v is such that for any T , ||T ||v ⊆ Π0 and if F ⊆ Π0, then v′ = v[X := F] is also such that for any T ,
||T ||v′ ⊆ Π0.

Proof : Indeed, ||T ||v′ ⊆ ||∀X.T ||v ⊆ Π0.
□

3 Adequation lemma (Adequacy lemma)
One shall prove an adequation result of the realizability semantics to the typing.

For this, one defines two specific sorts of valuations:

Definition 3.1 (weakly/well adapted valuations)
A valuation v is weakly adapted to a Λ0-pole ⊥⊥ if, for any type T ,

|T |v ⊆ Λ0 & ||T ||v ⊆ Π0.

A valuation v is adapted (or well-adapted) to a Λ0-pole ⊥⊥ if, for any type T ,

V ⊆ |T |v ⊆ Λ0 & ||T ||v ⊆ Π0.

Lemma 3.2

Let v be a (weakly) adapted valuation, X a type variable and ∅ ≠ F ⊆ Π0. Then v′ = v[X := F] is
(weakly) adapted as well.

Proof : Since v is adapted (resp weakly adapted), then for any type A, V ⊆ |A|v ⊆ Λ0 (resp. V ⊆ |A|v ⊆ Λ0).
First notice that ||A||v′ ⊆ ||∀X.A||v ⊆ Π0 for any type A. Moreover, |A|v′ ⊆ Λ0 simply comes from the fact

that ||A → ∀X.X||v′ = |A|v′ ·Π0 ⊆ Π0 so that |A|v′ ⊆ Λ0.
It results that v′ is weakly adapted.
If moreover, v is well-adapted, |A|v′ ⊇ |∀X.A|v ⊇ V and v′ is well-adapted as well.

A well-adapted valuation is therefore a weakly adapted valuation such that variables realize every type.

Remark 3.3
If one considers a realizability construction with Λ0 = Λ, then every valuation is trivially weakly adapted.

Definition 3.4 (Admissible set of terms)
A set Λ0 ⊆ Λ is admissible if there exists a Λ0-pole ⊥⊥ and a valuation v which is well-adapted for ⊥⊥.

One can now state the adequation lemma for realizability:

Lemma 3.5 (Adequation lemma)

Let v be a (weakly) adapted valuation for a pole ⊥⊥ and let t be a term such that x1 : U1, . . . , xn : Un ⊢F t :
T is derivable in Curry-Style F. Let (ui)1≤i≤n be realizers of the (Ui)1≤i≤n (ie. ui ⊢⊢v Ui for 1 ≤ i ≤ n),
then t {ui/xi, 1 ≤ i ≤ n} ⊢⊢v T .

5

Proof : One proves the lemma by induction on a typing derivation d of xi : Ui ⊢F t : T . (Note that there
may exist several such typing derivations since we work with Curry-Style System F...) One shall write
Γ = x1 : U1, . . . , xn : Un and t′ = t {ui/xi, 1 ≤ i ≤ n}.

• If d is an axiom, the property trivialy holds since t′ = ui for some i which realizes Ui = T by
hypothesis.

• If d ends with → I, one has t = λx.v, T = U → V , and x1 : U1, . . . xn : Un, x : U ⊢F v : V Let
v′ = v {ui/xi, 1 ≤ i ≤ n}. We want to prove that t′ realizes T for valuation v: one considers a stack
π ∈ ||T ||v ⊆ Π0.
There are only two possibilities: either no such stack exists and then t′ réalizes T trivially, or π has
form u · π′, with u ⊢⊢v U , u ∈ Λ0 and π′ ∈ ||V ||v, π′ ∈ Λ0.
In the second case, we know by induction hypothesis that v′ {u/x} ⊢⊢v V from which (v′ {u/x} , π′) ∈
⊥⊥ and by closure by KAM-anti-reduction of ⊥⊥ (more precisely by property 1.) and since u ∈
|U |v ⊆Λ0 by (weak) adaptation of v, one also has that (t {u/x} , u ·π′) ∈ ⊥⊥ which shows that t′ ⊢⊢v T
since the stack was chosen arbitrarily.

• If d ends with → E, then we have t = (u)v with x1 : U1, . . . xn : Un ⊢F u : V → T and
x1 : U1, . . . xn : Un ⊢F v : V for some type V .
One can apply the induction hypothesis to both derivation du and dv concluding x1 : U1, . . . xn :
Un ⊢F u : V → T and x1 : U1, . . . xn : Un ⊢F v : V which ensures that u′ = u {ui/xi, 1 ≤ i ≤ n} and
v′ = v {ui/xi, 1 ≤ i ≤ n} realize respectively V → T and V for valuation v.
To show that t′ realizes T , it is enough to consider an arbitrary stack π in ||T ||v and to remark that
v′ · π ∈ ||V → T ||v ⊆ Π0 and thus that (u′, v′ · π) ∈ ⊥⊥. As before one applies the closure properties
of the pole: since v′ ∈ Λ0, the second closure property of the pole applies and one gets (t′, π) ∈ ⊥⊥,
which means, since π is any stack in ||T ||v, that t′ ⊢⊢v T .

• If d ends with ∀I, then one has T = ∀X.U and x1 : U1, . . . xn : Un ⊢F t : U where X does not
occur free in the Ui.
To show that t′ ⊢⊢v ∀X.U , let us consider π ∈ ||∀X.U ||v. We know by definition of the realizability
interpretation that there exists F ⊆ Π0 non empty such that π ∈ ||U ||v[X:=F].
But since X is not free in the Ui the interpretation of Ui is the same in v and in v′ = v[X := F],
in particular, the lemma hypothesis tells us that ui ⊢⊢v′ Ui if 1 ≤ i ≤ n. One can therefore apply
the induction hypothesis to the subderivation of conclusion x1 : U1, . . . xn : Un ⊢F t : U with respect
to v′ (which is weakly-adapted by Lemma 3.2): t′ ⊢⊢v′ U so that (t′, π) ∈ ⊥⊥ which proves that
t′ ⊢⊢v ∀X.U .

• If d ends with ∀E, then we have a subderivation d′ of d, which concludes with x1 : U1, . . . xn :
Un ⊢F t : ∀X.U , with T = U {V/X} for some V .
Let us consider π ∈ ||U {V/X} ||v: we need to prove that (t, π) ∈ ⊥⊥. The substitutivity lemma
ensures that π ∈ ||U ||v[X:=||V ||v].
By applying induction hypothesis to d′, we have t′ ⊢⊢v ∀X.U so for any non empty F ⊆ Π0, we have
that t′ ⊢⊢v[X:=F] U , and in particular when F = ||V ||v ⊆ Π0.
We then deduce that (t′, π) ∈ ⊥⊥.

This concludes the proof of the lemma.
□

Adequation lemma allows to deduce easily that a typed term realizes its type and that typable terms are
in the intersection of all admissible sets:
Theorem 3.6

If Λ0 is admissible and Γ ⊢F t : T , then t ∈ Λ0.

Proof : Indeed, if Λ0 is admissible, then there exists a pole ⊥⊥ and a valuation v adapted to Λ0. The adequation
lemma can be applied to variables which are realizers of any type and t = t {xi/xi} ∈ |T |v ⊆ Λ0.

□

To prove strong normalization of F, it is therefore sufficient to prove that the set of strongly normalizing
terms is admissible, that we will do in the following.

6

4 Application of realizability to strong normalization of system F

As seen before, in order to prove strong normalization of System F using realizability, it is sufficient to prove
that ΛSN is an admissible set since Theorem 3.6 will allow to conclude that every typable term is strongly
normalizable.

One shall now build a ΛSN -pole ⊥⊥ together with a well-adapted valuation v, that is such that for every
type T ,

V ⊆ |T |v ⊆ ΛSN .

This fact relies on two preliminary lemmas:

Lemma 4.1

For any λ-terms t, u with u strongly normalizing and π a stack, then if t {u/x}π is SN, (λx. t)uπ is SN.

Proof : Let t, u, π as specified in the lemma’s statement.
Let us consider t′ = (λx. t)uπ and t′′ = (t {u/x})π.
Since t′′ is SN, it comes immediately that t ∈ ΛSN and π ∈ ΠSN . Assume, aiming at a contradiction

that there exists an infinite reduction sequence from t′. Thanks to the above remark, this reduction
cannot be infinitely in t, u or in π.

Therefore one has t′ −→⋆
β (λx. t0)u0π0 −→β (t0 {u0/x})π0 −→⋆

β . . . , but we know that t′′ −→⋆
β

(t0 {u0/x})π0 −→⋆
β . . . which contradicts strong normalization of t′′.

□

Definition 4.2 (⊥⊥SN)

Let ⊥⊥SN be {(t, π) ∈ P | (t)π ∈ ΛSN}.

Proposition 4.3
⊥⊥SN is a ΛSN -pole.

Proof : One shall verify both KAM-anti-reduction closure properties:

• the first is a direct consequence of the previous lemma.

• the second is trivial considering the definition of the pole since processes ((t)u, π) and (t, u · π)
correspond to the same λ-term (t)uπ.

□

Lemma 4.4
For any F ∈ FΛSN

, we have, for ⊥⊥SN orthogonality:

V ⊆ F⊥ ⊆ ΛSN .

Proof : Let F ∈ FΛSN .
If x ∈ V and π ∈ F ⊆ FΛSN , then (x)π ∈ ΛSN so that x ∈ F⊥ and V ⊆ F⊥.
If t ∈ F⊥, as F is not empty, let π ∈ F . We have (t)π ∈ ΛSN and therefore it comes that t ∈ ΛSN .

One deduces that F⊥ ⊆ ΛSN .
□

Proposition 4.5
ΛSN is admissible.

Proof : Consider pole ⊥⊥SN , one defines the valuation vSN such that vSN (X) = ΠSN for any type variable X.
It is sufficient to show that for all type T , ||T ||vSN ∈ FSN.
More precisely, one uses a stronger induction hypothesis and proves that for any type T , ||T ||vSN ∈ FSN

as soon as vSN takes its values in FSN by induction on type T :

7

• Case T = X. Then ||X||vSN = vSN(X) ∈ FSN by hypothesis on vSN.

• Case T = U → V . Then, by induction hypothesis, ||U ||vSN , ||V ||vSN ∈ FSN. By the previous lemma,
|U |vSN = ||U ||⊥vSN contains all variables so that ||T ||vSN = |U |vSN · ||V ||vSN is non-empty and is a subset
of ΠSN since |U |vSN ⊆ ΛSN (by the lemma) and ||V ||vSN ∈ ΠSN by induction hypothesis: one has
||T ||vSN ∈ FSN.

• Case T = ∀X.U . Then ||∀X.U ||vSN = ∪F∈FSN ||U ||vSN[X:=F] ⊆ FSN since every ||U ||vSN[X:=F] ⊆ FSN by
induction hypothesis.

□

The strong normalization theorem for System F is then a simple corollary of the previous result thanks
to adequation lemma for realizability:

Corollary 4.6
Every typable term in F is strongly normalizing.

Proof : We know by the corollary of adequation lemma that typable terms are in the intersection of all admissible
sets, so that they are in ΛSN which is admissible by the previous lemma.

□

Remark 4.7
One can also directly get the result from adequation lemma by instantiating realizability with ΛSN and
the valuation considered in the previous proposition and by instantiating the adequation lemma on the
trivial substitution {xi/xi, 1 ≤ i ≤ n} since variables realize all types.

Remark 4.8
The reducibility technique of the previous chapter can of course be extended to establish strong normal-
ization.

5 Some more applications of realizability
Realizability is actually a flexible technique for analyzing the dynamics of λ-terms and of programs which is
not restricted to normalization properties.

We give some illustrations below.

Definition 5.1 (Some data types in System F)
Let us consider:

• ⊥ = ∀X.X;

• 1 = ID = ∀X.(X → X);

• Bool = ∀X.(X → (X → X));

• Nat = ∀X.(X → (X → X) → X);

• T × U = ∀X.(U → V → X) → X);

• T + U = ∀X.(T → X) → (U → X) → X);

• DNE = ∀X.((X → ⊥) → ⊥) → X;

• List(T) = ∀X.X → (T → (X → X)) → X;

• List = ∀Y.∀X.X → (Y → (X → X)) → X;

• Tree(T) = ∀X.X → ((T → X) → X) → X;

8

• Tree = ∀Y.∀X.X → ((Y → X) → X) → X.

The following propositions characterize the computational behavious of terms inhabiting the above
types:
Proposition 5.2

There is no closed term t such that ⊢F t : ⊥.

Proof : Let us apply realizability: there is to show a set of terms Λ0, a Λ0-pole and a weakly admissible set for
this pole, allowing to use adequation lemma and its consequences.

Λ is of course an admissible set and we know that ∅ and Λ are Λ-poles (this is a general fact) and
that every valuation is weakly admissible for these poles since Λ0 = Λ as noted above.

Let us consider ⊥⊥ = ∅ We have then ||∀X.X||v = ∪F∈FΛF = Π.
Let us reason by contradiction and assume that there exists a term t such that ⊢ t : ∀X.X. By the

theory of realizability, we know that t realize universally ∀X.X (t ⊢⊢v ∀X.X for any valuation) this implies
that for all π ∈ Π, we have (t, π)⊥⊥... which is impossible since ⊥⊥ is empty: as a conclusion, such a term
t cannot exist.

□
Proposition 5.3

If ⊢F t : ID, then t −→⋆
β λx. x.

Proof : One shall again consider Λ as admissible set and consider ⊥⊥x = {(t, π) | (t)π−→⋆ x}. This is of course a
pole since the closure properties are trivially met.

Let us consider F ∅ = {∅} (ie. the singleton made of the empty stack) and v = [X := F ∅]. We have
therefore x ⊢⊢v X (indeed, (x, ∅) ∈ ⊥⊥x) and if ⊢ t : ∀X.(X → X) (so that in particular if it is a closed
term), we have t ⊢⊢v X → X so (t, x · ∅) ∈ ⊥⊥x which ensures that (t)x−→⋆ x by definition du pôle of the
pole.

We have (t)x−→⋆(λx.v)x −→β v−→⋆ x so that t−→⋆ λx.v−→⋆ λx.x, QED.
□

Proposition 5.4
If ⊢F t : Bool, then t −→⋆

β λx. λy. x or t −→⋆
β λx. λy. y.

Proof : The set ⊥⊥x,y = ⊥⊥x ∪ ⊥⊥y is a Λ-pole. Let us consider valuation v = [X := {∅}] as before.
We clearly have x ⊢⊢v X and y ⊢⊢v X and by adequation lemma, if ⊢F t : Bool, then t ⊢⊢v X →

X → X so that (t)x ⊢⊢v X → X and (t)xy ⊢⊢v X, that is (t)xy−→⋆ x or (t)xy−→⋆ y. Since t is
closed, we have: (t)xy−→⋆(λx.v)xy −→ (v)y−→⋆(λy.w)y −→ w−→⋆ z ∈ {x, y}. from which comes that
t−→⋆ λx.v−→⋆ λx.λy.w−→⋆ λx.λy.z with z ∈ {x, y}, QED.

□
Proposition 5.5

If ⊢F t : Nat, then there exists a natural n such that t −→⋆
β λz. λs. (s)nz.

Proof : Exercise.
□

Definition 5.6

If X ,Y are sets of λ-terms, we set X → Y ≜ {t | ∀u ∈ X , (t)u ∈ Y}.

Lemma 5.7
Let ⊥⊥ be a Λ-pole, U, V be types of F, v be a valuation. If the pole is closed not only by anti-reduction
but also by reduction, then we have |U → V | = |U | → |V |.

Proof : Exercise
□

9

Remark 5.8
The previous result is still true if the pole is not a Λ-pole but the valuation is adapted.

Proposition 5.9
There is no closed term t such that ⊢F t : DNE.

Proof : Exercise.
□

Proof : Let us reason by contradiction, assuming t is a closed term such that ⊢F t : DNE.
Consider Λ as admissible set and consider ⊥⊥x = {(t, π) | (t)π−→⋆ x}. Remember also that every

valuation is weakly adapted wrt Λ, which is sufficient to apply adequacy lemma.
We know that t realizes universally ∀X.(((X → ⊥) → ⊥) → X), that is t ⊢⊢v ∀X.(((X → ⊥) →

⊥) → X) for any valuation v. Consider in particular F = {∅} and G = {x · ∅} and v1 = [X := F]
and v2 = [X := G]. We have: (i) F,G are non empty; (ii) F,G are disjoint; (iii) F,G have non empty
orthogonal sets. We have t ∈ |((X → ⊥) → ⊥) → X|vi for i ∈ {1, 2}.

In particular, for any u ∈ |(X → ⊥) → ⊥|vi , (t)u ∈ |X|vi = vi(X)⊥.
For any v ∈ |X → ⊥|vi and w ∈ |X|vi , (v)w ∈ |⊥|vi = ∅. Since |X|vi ̸= ∅ (as x ∈ |X|v1 and λx.x ∈

|X|v2) we have that |X → ⊥|vi = ∅. It follows that ||(X → ⊥) → ⊥||vi = ∅ and |(X → ⊥) → ⊥|vi = Λ.
Therefore, for any u ∈ Λ, (t)u ∈ F⊥ and (t)u ∈ G⊥ which means:

• (t)u −→⋆ x (using (t)u ∈ F⊥);

• (t)ux −→⋆ x (using (t)u ∈ G⊥).

But that would imply (x)x =β x which is not, a contradiction.
□

Proposition 5.10

Let T be a type, let ⊢F t : List(T). Assuming that v:: and v[] are two variables of system F, there
exists n ≥ 0 and closed terms a1, . . . , an such that ⊢F ai : T for 1 ≤ i ≤ n such that t −→⋆

β

λv[]. λv::. ((v::) a1((v::) a2 . . . ((v::) anv[]))).

Proof : Exercise.
□

10

	 Introduction and motivation
	 Realizability interpretation
	 Adequation lemma (Adequacy lemma)
	 Application of realizability to strong normalization of system F
	 Some more applications of realizability

