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Infinite descent and Circular proofs
An old mathematical story, in Euclid’s Elements (Book VII)
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Infinite descent and Circular proofs
An old mathematical story, in Euclid’s Elements (Book VII)

Root of Fermat’s
infinite descent
proof method.
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Infinite descent and Circular proofs
An old mathematical story: Fermat identifies a powerful heuristics

Pierre de Fermat studied in depth infinite descent and used it extensively.
See letter of August 1659 to Carcavaci where Fermat listed 10 theorems
he “proved” using infinite descent:

1 Aucun nombre de la forme, moindre de l’unité qu’un multiple de 3,
ne peut être composé d’un carré et du triple d’un autre carré.

2 Aucun triangle rectangle en nombres n’a une aire carrée.
3 Tout nombre premier qui surpasse de l’unité un multiple de 4 est

somme de deux carrés.
(...)

9 Toutes les puissances carrées de 2, augmentées de 1, sont des
nombres premiers.

10 Il n’y a que 1 et 7 qui sont moindres de 1 qu’un double carré et
aient un carré de même nature.

... even for proving wrong statements! Property 9 asserts that every
Fermat number is prime, which was later disproved by Euler who
factorized F5 = 225 +1 as 641×6,700,417.
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Infinite descent and Circular proofs
For any integer m,

√
m is either an integer, or irrational.

Proof
Let m ∈ N and for the sake of contradiction, assume √m ∈Q\N.

1 Choose a0,b0,q ∈ N st. √m = a0/b0 and q <
√
m < q+1.

2 One has b0
√
m = a0 ∈ N and a0

√
m = mb0 ∈ N.

3 Therefore by setting a1 , b0m−a0q = a0(√m−q) and
b1 , a0−b0q = b0(√m−q), we have:

a1,b1 are integers,
0< a1 < a0, 0< b1 < b0 and√
m = a1/b1.

4 In a similar way, one can build (ai )i∈N and (bi )i∈N infinite
sequences of integers, “each of which is less than the other”.
This is impossible.

5 Therefore √m is either integer or irrational.
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Infinite descent and Circular proofs
Towards sequent calculus: Irrationality of

√
2

0< x0,x20 = 2x21 `
0< x1 < x0∧
∃x2.x0 = 2x2

0< x1,x21 = 2x22 `
0< x2 < x1∧
∃x3.x1 = 2x3

0< x2,x22 = 2x23 `
0< x3 < x2∧
∃x4.x2 = 2x4

. . .
0< x3,x24 = 2x24 `

x3 < x2,0< x3,4x24 = 2x23 `

0< x2,x22 = 2x23 `

x2 < x1,0< x2,4x23 = 2x22 `

0< x1,x21 = 2x22 `

x1 < x0,0< x1,4x22 = 2x21 `
0< x0,x20 = 2x21 ,0< x1 < x0∧∃x2.x0 = 2x2 `

0< x0,x20 = 2x21 `
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Infinite descent and Circular proofs
Inductive and coinductive cases

Inductive case:

` nat 0

. . .
even y ` nat y

even y ` nat (s y)
even y ` nat (s (s y))
even x ` nat x

The infinite branch unfolds the inductive predicate even infinitely
often on the left: valid!

Coinductive case: step p α q ` step p α q
. . .

` sim q q
step p α q ` step p α q∧ sim q q

` ∀α∀q. step p α q ⊃ ∃q′. step p α q′∧ sim q q′
` sim p p

The infinite branch unfolds the coinductive predicate sim infinitely
often on the right: valid!
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Mixing inductive and coinductive definitions
A matter of priority

p ,ind q q ,coind p

...
` p
` q
` p

...
p `
q `
p `
`

Choose which matters most between p and q:

p < q q < p
p µX .νY .X µX .q
q νY .p νY .µX .Y
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Circular LL ?

!

In which case is it safe to allow infinite branches in a LL proof?

1 Applying infinitely
many MALL rules?

No deductive progress

2 Applying infinitely
many cut rules?

No deductive progress

3 Applying infinitely
many structural rules?

No deductive progress

Or...

4 A non-uniform
promotion

5 µLL∞
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2 Applying infinitely
many cut rules?

No deductive progress

3 Applying infinitely
many structural rules?

No deductive progress

Or...

4 A non-uniform
promotion

5 µLL∞

Impossible! They strictly reduce the
size of the sequent.
The length of a (cut-free) branch is
bounded by the size of the conclusion
sequent.
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3 Applying infinitely
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No deductive progress

Or...

4 A non-uniform
promotion

5 µLL∞

What the Tortoise said to Achilles
(1895, L. Carroll), revisited by J-YG:

Achilles’ goal: proving A( B,A ` B
The Tortoise rejects ((L) but accepts
all the Ti , i ≥ 2:

T0 , A
Tk+1 , (⊗k

i=0Ti ) ( B

` T2

` T3

` T4

` T5

. . .

T0, . . . ,T5 ` B
(Cut)

T0, . . . ,T4 ` B
(Cut)

T0, . . . ,T3 ` B
(Cut)

T0,T1,T2 ` B
(Cut)

T0,T1 ` B
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Infinite structural trees:

...
` ?F ,?F ,?F

(?c)
` ?F ,?F

(?c)
` ?F

` ?F
(?w)

` ?F ,?F
(?c)

`?F
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A promotion must react to any
(finite) structural tree.

` F ,?∆ `!F ,?∆ `!F ,?∆
(!pnu)

`!F ,?∆
π

` Γ,?F⊥,?F⊥
(?c)

` Γ,?F⊥

π1

` F ,?∆
π2

`!F ,?∆
π3

`!F ,?∆
(!pnu)

`!F ,?∆
(Cut)

` Γ,?∆

−→cut

π

` Γ,?F⊥,?F⊥
π2

`!F ,?∆
(Cut)

` Γ,?∆,?F⊥
π3
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(Cut)
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No deductive progress

3 Applying infinitely
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No deductive progress
Or...

4 A non-uniform
promotion

5 µLL∞

A promotion must react to any
(finite) structural tree.

` F ,?∆ `!F ,?∆ `!F ,?∆
(!pnu)

`!F ,?∆
Usual promotion is derivable as:

` F ,?∆ `!F ,?∆ `!F ,?∆
(!pnu)

`!F ,?∆

Condition to admit a nwf branch:
a !-formula occurrence must be prin-
cipal infinitely often along the branch.
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Circular LL

?!

In which case is it safe to allow infinite branches in a LL proof?

1 Applying infinitely
many MALL rules?
No deductive progress

2 Applying infinitely
many cut rules?
No deductive progress

3 Applying infinitely
many structural rules?
No deductive progress
Or...

4 A non-uniform
promotion

5 µLL∞

µLL∞:
In the following, we will extend

the language of LL formulas to admit
sort of “infinite” formulas, defined by
fixed-point constructions:

µX .F ,νX .F .

In some cases (use of an inductive
hypothesis, production of a coinduc-
tive conclusion), one can allow non-
wellfounded branches.
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Circular & non-wellfounded proofs in the litterature
As verification device: Complete deduction sytem giving
algorithms for checking validity (Tableaux, sequent calculi),

Success → Validity
µ-calculus formula → Proof search ↗

↘
Failure → Invalidity

Completeness arguments: Intermediate objects between syntax
and semantics for modal µ-calculus (Kozen, Kaivola, Walukiewicz)

µ-calulus formula → Circular proof → Finite axiomatization

But rarely as proof–program objects in themselves:
pioneering works by Santocanale; Studer; Brotherston &
Simpson; Dax, Hoffman & Lange.
develop such a proof-theoretical study, from a Curry-Howard
perspective: study the dynamics of cut-elimination.

Recently, development of numerous circular/cyclic proof systems
(Afshari & Leigh, Das, Doumane & Pous, Cohen & Rowe, Tatsuta
et al. etc.)
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Proof theory of fixed-point logics
Various deductive frameworks for (co)inductive reasoning
(Martin-Löf’s inductive definitions, µ-calculi, ...), suitable to
represent and reason about (co)inductive data structures.
Structural proof-theory, Curry-Howard-oriented: not only to express
statements and their provability relation, but stressing the proof
objects themselves, in particular in the substructural setting.
LL with fixed points, considered with proofs as finite trees (µLL) or
proofs as infinite, non-wellfounded trees (µLL∞) with a special
fragment of interest, circular proofs.

Can we extend the proof–program
correspondence to circular proofs?
E.g., in Coq proof assistant,
syntactic productivity conditions
are required: assert progress after
every step. Many productive
programs are rejected by Coq
type-checker.

All programs
Productive programs
Programs accepted

by Coq

14 / 64



Proof theory of fixed-point logics
Various deductive frameworks for (co)inductive reasoning
(Martin-Löf’s inductive definitions, µ-calculi, ...), suitable to
represent and reason about (co)inductive data structures.
Structural proof-theory, Curry-Howard-oriented: not only to express
statements and their provability relation, but stressing the proof
objects themselves, in particular in the substructural setting.
LL with fixed points, considered with proofs as finite trees (µLL) or
proofs as infinite, non-wellfounded trees (µLL∞) with a special
fragment of interest, circular proofs.

Can we extend the proof–program
correspondence to circular proofs?
E.g., in Coq proof assistant,
syntactic productivity conditions
are required: assert progress after
every step. Many productive
programs are rejected by Coq
type-checker.

All programs
Productive programs
Programs accepted

by Coq

14 / 64



Some valid and invalid definitions

CoInductive stream := Cons : (nat ∗ stream) → stream.
CoInductive bstream := BCons : (bool ∗ bstream) → bstream.

Definition hdinc (s: stream) : stream := match s with
| Cons (a, s’) ⇒ Cons (S a, s’) end.

CoFixpoint enum (n:nat) : stream := Cons (n, (enum (S n))).
CoFixpoint drop (s : stream) : stream := match s with
| Cons (a, Cons (b, s’)) ⇒ Cons (b, (drop s’)) end.

CoFixpoint incdrop (s : stream) : stream := match s with
| Cons (a, Cons (b, s’)) ⇒ hdinc (Cons (b, incdrop s’)) end.

Definition hdneg (s: bstream) : bstream := match s with
| BCons (a, s’) ⇒ BCons (negb a, s’) end.

CoFixpoint filter1everyk (m : nat) (s : bstream) :
bstream := match (m,s) with
| (0, BCons (a, s’)) ⇒ BCons (a, filter1everyk k s’)
| (S m’, BCons (a, s’)) ⇒ hdneg (filter1everyk m’ s’) end.
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Aim of this talk
Our goal: investigate productivity conditions which are
proof-theoretically grounded, by considering circular and
non-wellfounded linear proofs in µ-calculi.
Ideally, accept such proof objects:

Report on some progress in designing more flexible validity
conditions for circular and non-wellfounded proofs in linear
logic with fixed-points as well as some proof invariants.
Based on joint works with Baelde, Bauer, Chardonnet,
Das, De, Doumane, Ehrhard, Jaber, Jafarrahmani,
Kuperberg, Nollet, Pellissier and Tasson.
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µLL formulas and sequent calculus
(Baelde & Miller 2007, Baelde 2012)

µLL formulas
LL formula grammar extended with fixed-point constructs:

F ::= . . . | X | µX .F | νX .F

µ and ν are binders, consider closed formulas only.
µ and ν are dual. Ex: (νX .X ⊗X )⊥ = µX .X `X .
One-sided sequents: ` A1, . . . ,An. (Γ `∆ is a short for ` Γ⊥,∆)

Data types encodings:
Nat , µX .1⊕X Nat⊥ = νX .⊥&X

List(A) , µX .1⊕ (A⊗X ) List(A)⊥ = νX .⊥& (A⊥`X )
Stream(A) , νX .1& (A⊗X ) Stream(A)⊥ = µX .⊥⊕ (A⊥`X )

µLL Sequent Calculus
LL inference rules together with
Inference rules for µ and ν ⇒ See following slides
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Knaster-Tarski fixed-point theorem

Let C be a complete lattice and F a monotonic operator on C .

Theorem
F has a least F.P. µF .
µF : least prefixed-point:
– F (µF )v µF and
– ∀S,F (S)v S ⇒ µF v S.

Proof by induction:
To prove that µF ⊆ P, it is sufficient
to find some S ⊆ P and to prove that
∀x ∈ F (S), x ∈ S.

H ` F [µX .F/X ]
H ` µX .F (µr)

F [S/X ] ` S
µX .F ` S (µl)

Theorem
F has a greatest F.P. νF .
νF greatest postfixed-point:
– νF v F (νF ) and
– ∀S,S v F (S) ⇒ S v νF .

Proof by coinduction:
To prove that P ⊆ νF , it is sufficient
to find some S ⊇ P and to prove that
∀x ∈ S, x ∈ F (S).

F [νX .F/X ] ` H
νX .F ` H (νl)

S ` F [S/X ]
S ` νX .F (νr)
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Inferences for fixed-points

One-sided version
The inferences of the previous slides do not have
cut-elimination:

(>)
` 0,0,>

(>)
` 0,>
` 0,νX .X

(Cut)
` 0,0,νX .X

Consider branching ν-rule:

` Γ,S ` S⊥,F [S/X ]

,?∆

(ν)
` Γ,νX .F

,?∆

Cut-elimination holds in µMALL (Baelde, 2012).
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The key step (µ)− (ν) in µLL cut-elimination
Lemma: Functoriality
For any µLL pre-formula F with one free fixed-point variable,

`?∆,A,B
(FF)

`?∆,F⊥[A/X ],F [B/X ]
is cut-free derivable in µLL.

(By induction on the maximal depth of free occurrences of X in F .)

Key (µ)/(ν) cut-reduction case (slightly simplified):

Π
` Γ,N[µX .N/X ]

(µ)
` Γ,µX .N

Θ
`?∆,S,N⊥[S⊥/X ]

(ν)
`?∆,S,νX .(N⊥)

(Cut)
` Γ,?∆,S

−→

Π
` Γ,N[µX .N/X ]

Θ
`?∆,S,N⊥[S⊥/X ]

(ν)
`?∆,S,νX .(N⊥)

(FN)
`?∆,N[S/X ],N⊥[(νX .(N⊥))/X ]

(Cut)
` Γ,?∆,N[S/X ]

Θ
`?∆,S,N⊥[S⊥/X ]

(Cut)
` Γ,?∆,?∆,S

(?c) ?

` Γ,?∆,S
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µLL∞

Non-Wellfounded Sequent Calculus
Consider your favourite logic L & add fixed-points as in the µ-calculus

µLL∞

Pre-proofs are the trees coinductively generated by:

L inference rules
inference for µ,ν:

Γ,F [µX .F/X ] `∆
(µl )Γ,µX .F `∆

Γ,F [νX .F/X ] `∆
(νl )Γ,νX .F `∆

Γ ` F [µX .F/X ],∆
(µr )Γ ` µX .F ,∆

Γ ` F [νX .F/X ],∆
(νr )Γ ` νX .F ,∆

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely
many sub-(pre)proofs.

µLLω

Pre-proofs are unsound!!
Need for a correctness criterion!

... (µ)
` µX .X

(µ)
` µX .X

... (ν)
` νX .X ,F

(ν)
` νX .X ,F

(cut)
` F

One-sided sequents as lists: ` A1, . . . ,An. (Γ `∆ is a short for ` Γ⊥,∆)
µ and ν are dual binders. Ex: (νX .X ⊗X)⊥ = µX .X `X .
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µLL∞ Inferences
µLL∞ Inference Rules

(with ancestor relation)

(ax)
` F ,F⊥

` Γ,F ` F⊥,∆
(cut)

` Γ,∆
` Γ,G ,F ,∆

(ex)
` Γ,F ,G ,∆

` F ,Γ
(?)

`?F ,Γ
` Γ

(w)
`?F ,Γ

`?F ,?F ,Γ
(c)

`?F ,Γ
` F ,?Γ

(!)
`!F ,?Γ

` Γ
(⊥)

` ⊥,Γ
` F ,G ,Γ

(`)
` F `G ,Γ

` F ,Γ ` G ,∆
(⊗)

` F⊗G ,Γ,∆
(1)

` 1

(>)
` >,Γ

` F ,Γ ` G ,Γ
(&)

` F &G ,Γ
` Ai ,Γ

(⊕i )` A1⊕A2,Γ
(no rule for 0)

` G [νX .G/X ],Γ
(ν)

` νX .G ,Γ
` F [µX .F/X ],Γ

(µ)
` µX .F ,Γ

How to distinguish valid nwf proofs from invalid ones?

25 / 64



µLL∞ Inferences
µLL∞ Inference Rules (with ancestor relation)

(ax)
` F ,F⊥

` Γ,F ` F⊥,∆
(cut)

` Γ,∆
` Γ,G ,F ,∆

(ex)
` Γ,F ,G ,∆

` F ,Γ
(?)

`?F ,Γ
` Γ

(w)
`?F ,Γ

`?F ,?F ,Γ
(c)

`?F ,Γ
` F ,?Γ

(!)
`!F ,?Γ

` Γ
(⊥)

` ⊥,Γ
` F ,G ,Γ

(`)
` F `G ,Γ

` F ,Γ ` G ,∆
(⊗)

` F⊗G ,Γ,∆
(1)

` 1

(>)
` >,Γ

` F ,Γ ` G ,Γ
(&)

` F &G ,Γ
` Ai ,Γ

(⊕i )` A1⊕A2,Γ
(no rule for 0)

` G [νX .G/X ],Γ
(ν)

` νX .G ,Γ
` F [µX .F/X ],Γ

(µ)
` µX .F ,Γ

How to distinguish valid nwf proofs from invalid ones?
25 / 64



1 Introduction
Infinite descent
Circular LL
On the non-wellfounded proof-theory of fixed-point logics

2 µLL: Least and greatest fixed-points in LL
µMALL & µLL languages and finitary proof systems
µLL cut-reduction

3 µLL∞: circular and non-wellfounded proofs for µLL
Non-wellfounded proof system µLL∞

Validity condition
Decidability of the validity condition
Expressiveness of circular proofs
µLL∞ focusing

4 Cut-elimination for circular and non-wellfounded proofs
µMALL∞ Cut elimination
µLL∞ Cut elimination

5 Conclusion

26 / 64



Validity condition: Reachable formulas
Example: F = νX .((a`a⊥)⊗(!X⊗µY .X ))

FL(F ) is the least set of formulas such that:

F ∈ FL(F );
G1 ?G2 ∈ FL(F )⇒ G1,G2 ∈ FL(F ) for ? ∈ {⊕,&,`,⊗};
σX .G ∈ FL(F )⇒ G [σX .G/X ] ∈ FL(F ) for σ ∈ {µ,ν};
mG ∈ FL(F )⇒ G ∈ FL(F ) for m ∈ {!,?}.

FL(F ) is a finite set for any formula F .
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Infinite threads, validity
F = νX .((a`a⊥)⊗(X⊗µY .X )).
G = µY .F

(ax)
` a,a⊥

(`)
` a`a⊥

` F
` F

(µ)
` G

(⊗)
` F⊗G

(⊗)
` (a`a⊥)⊗(F⊗G)

(ν)
` F

A thread along an infinite
branch (Γi )i∈ω is an infinite
sequence of formula occur-
rences (Fi )i≥k such that for
any i ≥ k, Fi ∈ Γi and Fi+1 is
an immediate ancestor of Fi .

A thread is valid if it unfolds infinitely many ν . More precisely, if the
minimal recurring principal formula of the thread is a ν-formula.

A proof is valid if every infinite branch contains a valid thread.

Theorem (Baelde,
Doumane & S, 2016)
µMALL∞ is sound, and
admits cut-elimination.

Theorem (Doumane 2017 +
Nollet, Tasson & S, 2019 )
Validity of µLLω (circular) pre-proofs
is decidable and PSPACE-complete.
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Parity automata Skip details

Definition
A parity automaton is a finite state word automaton,
whose states are ordered and given a parity bit ν/µ,
which accepts runs (qi )i∈ω such that min(inf((qi )i )) has parity ν .

Remarks
States are usually given a color in N, equivalently.
Only co-accessible states need to be ordered.

Properties
PA can be determinized,
PA are closed by complementation and intersection,
The emptiness problem is decidable,
(Thus) inclusion of parity automata is decidable.
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Theorem: The validity of circular pre-proofs is decidable.
Proof.
Consider a pre-proof Π i.e. a graph with nodes si = (F j

i )j∈[1;ni ].

The proof goes as follows:
One builds a parity automaton recognizing the language LB
of infinite branches of Π;
One builds a parity automaton recognizing the language LT
the valid branches of Π.
Validity amounts to the inclusion of LB in LT , that is
showing that LB \LT = ∅ which is decidable.

Branch automaton: Let AB be the branch automaton with
states si , transitions si →k sj when sj is the k-th premise of si , and
which accepts all runs.

(...)

31 / 64



Theorem: The validity of circular pre-proofs is decidable.
Proof.
Consider a pre-proof Π i.e. a graph with nodes si = (F j

i )j∈[1;ni ].
(...)
Thread automaton: Let AT be the thread automaton with
states F j+

i , F j−
i or si , with transitions:

si →k sp and si →k F q−
p when sp is the k-th premise of si

F j+
i →k F qε

p (ε ∈ {+,−}) when si →k sp and F j
i is active in

the rule of conclusion si and has ancestor F q
p

F j−
i →k F qε

p (ε ∈ {+,−}) when si →k sp and F j
i is passive in

the rule of conclusion si and has ancestor F q
p

acceptance based on subformula ordering with the active/passive
distinction: only active ν-formulas have coinductive parity.

Validity of Π equivalent to L (AB)\L (AT ) = ∅, thus decidable.
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Examples of circular proofs
N = µX .1⊕X

double : N→ N
double(0) = 0
double(succ(m)) = succ(succ(double(m)))

π0 =
(1)

` 1
(⊕1)` 1⊕N
(µ)

` N
πk+1 =

πk
(⊕2)` 1⊕N
(µ)

` N
πsucc =

(ax)
N ` N

(⊕2)N ` 1⊕N
(µ)

N ` N

πdouble =

(1)
` 1

(⊕1)` 1⊕N
(µ)

` N
(⊥)

1 ` N

N ` N
(⊕2)N ` 1⊕N
(µ)

N ` N
(⊕2)N ` 1⊕N
(µ)

N ` N
(&)

1⊕N ` N
(ν)

N ` N

πk πsucc
(cut)

` N
−→? πk+1

πk πdouble
(cut)

` N
−→? π2k
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Examples of circular proofs
N = µX .1⊕X

WNat(π) =

π

` Γ
(⊥)

1 ` Γ N ` Γ
(&)

1⊕N ` Γ
(ν)

N` Γ

πk πdup
(cut)

` N⊗N
−→?

πk πk
(⊗)

` N⊗N
πk WNat(π)

(cut)
` Γ

−→? π

` Γ
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Examples of circular proofs
S = νX .(1& (N⊗X))

enum : Nat→ Stream
enum(n) = n :: enum(succ(n))

πenum =
(1)

` 1
(w)

!N ` 1

(ax)
N ` N

(?)
!N ` N

πsucc

N ` N
(?)

!N ` N
(!)

!N `!N !N ` S
(cut)

!N ` S
(⊗)

!N, !N ` N⊗S
(c)

!N ` N⊗S
(&)

!N ` 1& (N⊗S)
(ν)

!N ` S

πk
(?)

` ?N πenum
(cut)

` S
−→ω

(1)
` 1

πk

(1)
` 1

πk+1

(1)
` 1

πk+2

. . .

` S
(⊗)

` N⊗S
(ν) , (&)

` S
(⊗)

` N⊗S
(ν) , (&)

` S
(⊗)

` N⊗S
(&)

` 1& (N⊗S)
(ν)

` S
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Fixed-point encoding the exponentials
Consider the following encoding of LL exponentials:

?•F , µX .F ⊕ (⊥⊕ (X `X ))
!•F , νX .F & (1& (X ⊗X ))

The exponential inferences can be derived, circularly:
Dereliction (?d•) : Contraction (?c•) : Weakening (?w•) :

` F ,∆
(⊕1)

` F ⊕ (⊥⊕ (?•F`?•F )),∆
(µ)

`?•F ,∆

`?•F ,?•F ,∆
(`)

`?•F`?•F ,∆
(⊕2)

` ⊥⊕ (?•F`?•F ),∆
(⊕2)

` F ⊕ (⊥⊕ (?•F`?•F )),∆
(µ)

`?•F ,∆

`∆
(⊥)

` ⊥,∆
(⊕1)

` ⊥⊕ (?•F`?•F ),∆
(⊕2)

` F ⊕ (⊥⊕ (?•F`?•F )),∆
(µ)

`?•F ,∆

Promotion (!p•):

` F ,?•∆

(1)
` 1

(?w•)
` 1,?•∆

`!•F ,?•∆ `!•F ,?•∆
(⊗)

`!•F⊗!•F ,?•∆,?•∆
(?c•)

`!•F⊗!•F ,?•∆
(ν) , (&) , (&)

`!•F ,?•∆
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Fixed-point encoding the exponentials
Consider the following encoding of LL exponentials:

?•F , µX .F ⊕ (⊥⊕ (X `X ))
!•F , νX .F & (1& (X ⊗X ))

Preservation of validity
π is a valid µLL∞ pre-proof of ` Γ iff
π• is a valid µMALL∞ pre-proof of ` Γ•.

Preservation of provability
If ` Γ is provable in µLL∞ (resp. µLLω),
then ` Γ• is provable in µMALL∞ (resp. µMALLω).

Shortcomings of this encoding
No soundness result for the encoding: converse result for the
preservation of provability. Loss of Seely isomorphisms, etc.
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Circular & finitary proofs

From finitary to circular proofs

Theorem
Finitary proofs can be transformed to (valid) circular proofs.

The key translation step is the following:

π1

` Γ,S
π2

` S⊥,F [S]
(ν)

` Γ,νX .F
7−→ [π1]
` Γ,S

[π2]
` S⊥,F [S]

` S⊥,νX .F
(FF )

` F [S]⊥,F [νX .F ]
(cut)

` S⊥,F [νX .F ]
(ν)

` S⊥,νX .F
(cut)

` Γ,νX .F

From circular to finitary proofs
Open problem for µLLω in general. Solved positively for strongly
valid circular proofs.
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Intuitive Idea of Focusing Skip details

Idea of focusing: Reduce the proof search space by
Reversibility of negatives: no choice to make, provability of
conclusion entails provability of premisses.
Focusing the positives: involves choice, but proofs can
proceed in a stubborn way by committing hereditarily to a
positive focus and its subformulas.

Γ contains a negative formula Γ contains no negative formula
choose the leftmost negative choose some positive formula and
formula and apply the unique decompose it hereditarily until atoms

negative rule available. or negative subformulas are reached.

Various proof methods:
by cut-elimination, inference permutations, etc.
Here application of a proof method designed jointly with Miller.
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µMALL∞ focusing

By adapting the proof of focusing using Focalization graphs by
Miller and S., 2007:

1 Reversibility of the negatives;
2 Focusing for positive sequents:

1 Weak commutation properties among the positives;
2 Positive Trunks;
3 Focalization graph;
4 Existence of a potential focus in a positive sequent.

3 Productivity of the focusing process;
4 Validity of the produced proof.

Polarity of fixed points:
ν must be negative and µ must be positive.
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µMALL∞ focusing
Reversibility of negatives & focusing of positives

1 Reversibility of negative sequents:
Similar to MALL except that it cannot be treated with local
rule permutations as shown by the following example:

` F ,P`Q

π

` F ,P,Q
(`)

` F ,P`Q
(&)

` F &F ,P`Q
(⊕1)` (F &F )⊕0,P`Q
(ν)

` F ,P`Q
(reminiscent to what happens with > in LL focusing)

2 Focusing of positive sequents:
Positive trunks are finite trees (due to the polarization of fixed
points formulas);
The rest of the proof goes as for MALL.
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µMALL∞ focusing
Productivity and validity of the focusing process

Productivity of the focusing process is essentially direct from
MALL case:

Reversibility is productive by construction;
The positive focusing takes place in a finite subtree (finite
positive trunks): just as in MALL.

Preservation of validity relies on an analysis of the kind of
permutations involved in focusing. Since a positive never
permutes below a positive, valid thread cannot be infinitely
postponed.

The extension to µLL is achieved exactly as for LL.
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µMALL∞ Cut Elimination Theorem

Theorem (Baelde, Doumane & S, 2016)
Fair µMALL∞

m

cut-reduction sequences converge to cut-free µMALL∞

proofs.

Previous result by Santocanale and Fortier
for the purely additive fragment of µMALL∞.

Proof uses a locative treatment of occurrences.

Strategy: “push” the cuts away from the root.

Cut-Cut:

` Γ,F ` F⊥,∆,G
(cut)

` Γ,∆,G ` G⊥,Σ
(cut)

` Γ,∆,Σ
←→ ` Γ,F

` F⊥,∆,G ` G⊥,Σ
(cut)

` F⊥,∆,Σ
(cut)

` Γ,∆,Σ
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Cut elimination procedure
External phase: Cut-commutation cases

`∆,F ,G
(`)

`∆,F `G . . .
(mcut)

` Σ,F `G
⇒

`∆,F ,G . . .
(mcut)

` Σ,F ,G
(`)

` Σ,F `G

`∆,F `∆,G
(&)

`∆,F &G . . .
(mcut)

` Σ,F &G
⇒
`∆,F . . .

(mcut)
` Σ,F

`∆,G . . .
(mcut)

` Σ,G
(&)

` Σ,F &G

`∆,F [µX .F/X ]
(µ)

`∆,µX .F . . .
(mcut)

` Σ,µX .F
⇒

`∆,F [µX .F/X ] . . .
(mcut)

` Σ,F [µX .F/X ]
(µ)

` Σ,µX .F

+ additional cases

Cut-commutation steps are productive

46 / 64



Cut elimination procedure
Internal Phase: Key cases

. . .

`∆,F2 `∆,F1
(&)

`∆,F2 &F1

` Γ,F⊥i
(⊕i )

` Γ,F⊥1 ⊕F⊥2
(mcut)

` Σ
⇒ . . . `∆,Fi ` Γ,F⊥i

(mcut)
` Σ

. . .

`∆,F [µX .F/X ]
(µ)

`∆,µX .F
` Γ,F⊥[νX .F⊥/X ]

(ν)
` Γ,νX .F⊥

(mcut)
` Σ

⇒ . . . `∆,F [µX .F/X ] ` Γ,F⊥[νX .F⊥/X ]
(mcut)

` Σ

+ additional cases

Key cases are not productive
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Cut elimination algorithm
Internal phase: Perform key case reductions as long as you
cannot do anything else.
External phase: Build a part of the output tree by applying
cut-commutation steps as soon possible, being fair.
Repeat.

Remark: We consider a fair strategy ie. every reduction which is
available at some point will be performed eventually.

Theorem
Internal phases always halt. Cut-elimination produces a pre-proof.

Theorem
The pre-proof obtained by the cut elimination algorithm is valid.

µLLω is not stable by cut-elimination
Eliminating cuts from a µLLω proof (circular) may result in a µLL∞, non
circular, proof.
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Validity sensitive to cut-introduction in cycles

Circular derivations corresponding to:

drop

incdrop
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Cut-elimination for µLL∞

Theorem
Fair µLL∞ mcut-reduction sequences converge to cut-free µLL∞ proofs.

Idea. The proof goes by:
considering the following encoding of LL exponential modalities:

?•F = µX .F ⊕ (⊥⊕ (X `X ))
!•F = νX .F & (1& (X ⊗X ))

translating µLL∞ sequents and proofs in µMALL∞,
simulating µLL∞ cut-reduction sequences in µMALL∞ and
applying µMALL∞ cut-elimination theorem.

Extends to the circular version of LL with (!pnu) (even with fixed-points):

Theorem (Cut-elimination for circular LL)
Circular LL (with (!pnu) for promotion) eliminates cuts (even with
fixed-points).
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Encoding µLL∞ in µMALL∞

?•F = µX .F ⊕ (⊥⊕ (X `X)) !•F = νX .F & (1& (X ⊗X))
µMALL∞ derivability of the exponential rules (?d•,?c•, ?w•, !p•):
Dereliction : Contraction : Weakening :

` F ,∆
(⊕1)` F ⊕ (⊥⊕ (?•F`?•F )),∆
(µ)

`?•F ,∆

`?•F ,?•F ,∆
(`)

`?•F`?•F ,∆
(⊕2)` ⊥⊕ (?•F`?•F ),∆

(⊕2)` F ⊕ (⊥⊕ (?•F`?•F )),∆
(µ)

`?•F ,∆

`∆
(⊥)

` ⊥,∆
(⊕1)` ⊥⊕ (?•F`?•F ),∆

(⊕2)` F ⊕ (⊥⊕ (?•F`?•F )),∆
(µ)

`?•F ,∆

Promotion:
` F ,?•∆

(1)
` 1

(?w•)
` 1,?•∆

`!•F ,?•∆ `!•F ,?•∆
(⊗)

`!•F⊗!•F ,?•∆,?•∆
(?c•)

`!•F⊗!•F ,?•∆
(ν) , (&) , (&)

`!•F ,?•∆

Preservation of validity
π is a valid µLL∞ pre-proof of ` Γ iff
π• is a valid µMALL∞ pre-proof of ` Γ•.
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Simulation of µLL∞ cut-elimination steps
µLL∞ cut-elimination steps can be simulated by the previous
encoding.
For instance, the following reduction can be simulated by applying
the external reduction rule (µ)/(cut) followed by the external
reduction rule (⊕)/(cut).

` F ,G ,Γ
(?d•)

`?•F ,G ,Γ ` G⊥,∆
(cut)

`?•F ,Γ,∆
−→2

` F ,G ,Γ ` G⊥,∆
(cut)

` F ,Γ,∆
(?d•)

`?•F ,Γ,∆

Challenge: to show that the simulation of derivation also holds
(i) for the reductions involving [!p] as well as
(ii) for reductions occurring above a promotion rule (aka. in a
box) since the encoding of [!p] uses an infinite, circular derivation.
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Simulation of µLL∞ cut-elimination steps
Cut-commutation rules

` F ,G ,Γ
(?d•)

`?•F ,G ,Γ ` G⊥,∆
(cut)

`?•F ,Γ,∆
−→2

` F ,G ,Γ ` G⊥,∆
(cut)

` F ,Γ,∆
(?d•)

`?•F ,Γ,∆

`?•F ,?•F ,G ,Γ
(?c•)

`?•F ,G ,Γ ` G⊥,∆
(cut)

`?•F ,Γ,∆
−→3

`?•F ,?•F ,G ,Γ ` G⊥,∆
(cut)

`?•F ,?•F ,Γ,∆
(?c•)

`?•F ,Γ,∆

` G ,Γ
(?w•)

`?•F ,G ,Γ ` G⊥,∆
(cut)

`?•F ,Γ,∆
−→3

` G ,Γ ` G⊥,∆
(cut)

` Γ,∆
(?w•)

`?•F ,Γ,∆

` F ,?•G ,?•Γ
(!p•)

`!•F ,?•G ,?•Γ
` G ,?•∆

(!p•)
`!•G⊥,?•∆

(cut)
`!•F ,?•Γ,?•∆

−→ω
` F ,?•G ,?•Γ

` G ,?•∆
(!p•)

`!•G⊥,?•∆
(cut)

` F ,?•Γ,?•∆
(!p•)

`!•F ,?•Γ,?•∆
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Simulation of µLL∞ cut-elimination steps
Key-cut rules

π

` F ,Γ
(?d•)

`?•F ,Γ

π ′

` F⊥,?•∆
(!p•)

`!•F⊥,?•∆
(cut)

` Γ,?•∆

−→2
π

` F ,Γ
π ′

` F⊥,?•∆
(cut)

` Γ,?•∆

π

`?•F ,?•F ,Γ
(?c•)

`?•F ,Γ

π ′

` F⊥,?•∆
(!p•)

`!•F⊥,?•∆
(cut)

` Γ,?•∆

−→4int,4×#∆ext

π

`?•F ,?•F ,Γ
π ′

`!•F⊥,?•∆
π ′

`!•F⊥,?•∆
(mcut)

` Γ,?•∆,?•∆
(?c•) ?

` Γ,?•∆
π

` Γ
(?w•)

`?•F ,Γ

π ′

` F⊥,?•∆
(!p•)

`!•F⊥,?•∆
(cut)

` Γ,?•∆

−→3int,3×#∆ext
π

` Γ
(?w•) ?

` Γ,?•∆
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Cut-elimination for µLL∞

1 Consider a fair cut-reduction sequence σ = (πi )i∈ω in µLL∞

from π.
2 σ converges to a cut-free µLL∞ pre-proof. By contradiction:

Otherwise, a suffix τ of σ would contain only key-cut steps.
The encoding of τ in µMALL∞, τ• would either be
unproductive or would produce an infinite tree of encodings of
?w,?c containing no ν inference. This would contradict
µMALL∞ cut-elimination theorem.

3 As σ is productive and since reduction only occurs above cuts,
it strongly converges to some µLL∞ cut-free pre-proof π ′.

4 σ• is a transfinite sequence from π• strongly converging to
π ′•: because π ′• – the encoding of π ′ – is cut-free and
because only ! commutations and reductions above a
promotion create infinite reductions: boxes are simulated by
strongly converging sequences.

5 The compression lemma applies: there exists ρ an ω-indexed
µMALL∞ cut-reduction sequence converging to π ′•.

6 Fairness of σ transfers (almost) to ρ: ρ can be turned into a
fair µMALL∞ cut-red sequence.

7 Therefore, by µMALL∞ cut-elimination thm, ρ has a limit,
π ′•, which is a valid cut-free µMALL∞ proof.

8 Using preservation of validity, π ′ is a valid cut-free
µLL∞-proof.
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About Seely isomorphisms
!A⊗!B a` !(A & B)

πS =

(ax)
A ` A (?)
!A ` A (w)

!A, !B ` A

(ax)
B ` B (?)
!B ` B (w)

!A, !B ` B
(&)

!A, !B ` A & B
(!)

!A, !B ` !(A & B)
(`)

!A⊗!B ` !(A & B)

π ′S =

(ax)
A ` A (⊕1)

A & B ` A (?)
!(A & B) ` A

(!)
!(A & B) ` !A

(ax)
B ` B (⊕2)

A & B ` B (?)
!(A & B) ` B

(!)
!(A & B) ` !B

(⊗)
!(A & B), !(A & B) ` !A⊗!B

(c)
!(A & B) ` !A⊗!B

πS π ′S (cut)
!A⊗!B ` !A⊗!B

→?
cut

(ax)
A ` A (?)
!A ` A (w)

!A, !B ` A
(!)

!A, !B ` !A

(ax)
B ` B (?)
!B ` B (w)

!A, !B ` B
(!)

!A, !B ` !B
(⊗)

!A, !B, !A, !B ` !A⊗!B
(c)2

!A, !B ` !A⊗!B
(`)

!A⊗!B ` !A⊗!B
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About Seely isomorphisms
What about the fixed-point encoding?

(πS )• (π ′S )•
(cut)

!•A⊗!•B ` !•A⊗!•B

→ω
cut

(ax)
A ` A (?d•)

!•A ` A (?w•)
!•A, !•B ` A

(!p•)
!•A, !B ` !A

(ax)
B ` B (?d•)

!•B ` B (?w•)
!•A, !•B ` B

(!p•)
!•A, !•B ` !•B

(⊗)
!•A, !•B, !•A, !•B ` !•A⊗!•B

(?c•)2
!•A, !•B ` !•A⊗!•B

(`)
!•A⊗!•B ` !•A⊗!•B

The left occurrences of A,B require two unfoldings of the fixed-point, while the
right occurrences of A,B require only one unfolding of the fixed-point.
The fixed-point unfolding structure tracks the history of the structural rules.
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Cut-elimination for µLK∞, µLJ∞

The usual call-by-value embedding of LJ in ILL (intuitionnistic LL) can be
lifted to µLJ∞: indeed, the translation of proofs does not introduce cuts.
For µLK∞, it is slightly trickier as the well-known T/Q-translations
introduce cuts breaking validity. An alternative translation which does
not introduce cuts can be used.

Moreover, one gets the skeleton of a µLL∞ (resp. µILL∞) proof which is
a µLK∞ (resp. µLJ∞) proof, simply by erasing the exponentials
(connectives and inferences), preserving validity.
The skeleton of a µLL∞ (resp. µILL∞) cut-reduction sequence is a µLK∞

(resp. µLJ∞) cut-reduction sequence. As a result, one has:

Theorem
If π is an µLK∞ (resp. µLJ∞) proof of ` Γ (resp. Γ ` F), there exists a
µLL∞ (resp. µILL∞) proof of the translated sequents.

Theorem
There are productive cut-reduction strategies producing cut-free µLK∞

(resp. µLJ∞) proofs.
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Circular or Helical reasoning?

1
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Proof theory of least and greatest fixed points

µMALL/µLL

µMALL∞/µLL∞ + circ. frag.

Proof objects Finite trees

Non well-founded trees

Inferences Induction rules

Fixed points unfoldings
(+ validity conditions)

MALL rules +
` Γ,F [µX .F/X ]
` Γ,µX .F (µ)

` Γ,F [µX .F/X ]
` Γ,µX .F (µ)

` Γ,S ` S⊥,F [S/X ]
` Γ,νX .F (ν)

` Γ,F [νX .F/X ]
` Γ,νX .F (ν)

Logical local

global

correctness

straight/bouncing threads

Cut-elimination sort of: (ν) hides a cut

X

Subformula prop. NO (if there are ν)

X

Focusing X, but µ/ν have

X

arbitrary polarities

µ pos. and ν neg.

Categorical sem. X

NO

Denotational sem. X

X
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Conclusion
To sum up:

Fixed-point logics with circular or non-wellfounded proofs
equipped with a parity condition to discriminate valid/invalid
proofs;
Syntactic cut elimination for various nwf sequent calculi:
µMALL∞, µLL∞, µLJ∞, µLK∞;
Bouncing validity condition with a better management of cuts.

(jww Baelde, Doumane & Kuperberg)
Not covered here:

Provability / Phase semantics
Infinets

Ongoing and future work:
Relax further the bouncing validity condition; (jww Bauer)
More canonical proof-objects (circular natural deduction and
circular λ -calculus, proof-nets); (jww De, Pellissier)
Provability and denotational semantics of circular proofs;

(jww De, Ehrhard and Jafarrahmani)
Understand how to interface with other approaches to
productivity (guarded recursion, sized types, etc.)? 62 / 64
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