
1/ 29

M2 LMFI – SOFIX
Quantification du second-ordre et points fixes en

logique
Expressiveness of System F

Alexis Saurin

February 2024

2/ 29

Representation theorem for F

The aim of the rest of the lecture is to prove the following theorem:

Theorem (1)
A function f : Nk → N is representable in F is, and only if, it is provably
total in PA2.

3/ 29

Every F-representable function is provably total in PA2

Proposition (2)
If f : Nk → N is representable in F, then is provably total in PA2.

Remark
SN of F cannot be formalized in PA2. Indeed, one would need to do an
induction over reducibility relations which are parametrized by a
valuation of type variables to reducibility candidates. Valuations v
can be represented as sets of natural numbers, but not by natural
numbers (as {n ∈ N/r(n) ∈ v(l(n))}).
SN expresses as: for any t : T and for any valuation v, if t ∈ Redv(T),
then t is SN. This is above 2nd order.
Proof: To type (t)n1 . . . nk , one needs only a finite set of types of F,
say {T1, . . . ,Tk} which is closed by subformula.
Define n predicates Redi (n,E) expressing the fact that the term of Gödel
number n is reducible of type Ti in the valuation represented by E .
One does not need to perform an induction but simply to define those k
formulas in the appropriate order: no need anymore to quantify over
valuations. The strong normalization of any particular F term can be
formalized in PA2.

4/ 29

The difficulty of the converse

In the following, one shall now focus on the converse property: functions
which are provably total in PA2 are F-representable.
The difficulty comes from the fact that PA2 contains a lot of features
that are not present in system F:

• richness of the language of formulas, while F is built from universal
quantification and implication only

• classical reasoning, while F is intuitionistic,

• first-order statements, while F is propositional,

• arithmetical axioms while F is purely logical (axiom-free)

In order to prove the converse, one will step by step define more and
more restricted versions of arithmetic (resp. as well as extensions of
system F) which preserve the class of provably recursive functions (resp.
of representable functions)

5/ 29

A specialization of Peano’s fourth axiom

The first step consists in modifying Peano’s fourth axiom to allow for a
better compatibility with F.

Definition
The theory PA′2 is obtained from PA2 by replacing axiom (P4) by

(P ′4) ∀x .∀y .(sx = 0⇒ y = 0).

Lemma
If a function is provably total in PA2 then it is also provably total in PA′2.
Proof: Let φ denote the formula ∀x .∃y .tf (x , y) = 0 and suppose that φ
has a proof in PA2. It is not hard to see that from (P ′4) one can
(classically) derive the disjunction P4 ∨ ∀y(y = 0).
From either of the components we can derive φ. Indeed, with (P4) we
regain the power of the full PA2, and in the other case everything is zero
anyway.
Therefore φ has a proof in PA′2.

6/ 29

Heyting and Peano second-order arithmetics: dealing with
classical reasoning

When k(·) denotes Kolmogorov double negation translation (which
introduces double negations ¬¬· in front of every connective and atomic
formula) one has the following:

Proposition (6)
For all φ, PA2 ` φ is equivalent to HA2 ` k(φ) and PA′2 ` φ is equivalent
to HA′2 ` k(φ).

Definition (Friedman’s translation)
Let ρ be a fixed formula. We denote φρ the formula obtained from φ by
replacing every atomic subformula A (including ⊥) by the disjunction
A ∨ ρ. (It is assumed that free variables of ρ are not bound in φ.) That
is:

• (X (t1, . . . , tn)ρ = X (t1, . . . , tn) ∨ ρ;
• (⊥)ρ = ⊥ ∨ ρ;
• (AαB)ρ = AραBρ, for α ∈ {∨,∧,⇒};
• (Qx .A)ρ = Qx .Aρ, for Q ∈ {∀1,∃1};
• (QX .A)ρ = QX .Aρ, for Q ∈ {∀2,∃2}.

7/ 29

Lemma (8)
We have the following properties (ρ is the formula used in Friedman’s
translation):

1. For every φ, the formula ` ρ⇒ φρ is provable in NJ2;

2. For every φ and t, if x 6∈ FV (ρ) then (φ[t/x])ρ = φρ[t/x];

3. Let X be a n-ary second-order variable, ~a by n distinct first-order
variables such that X , ~a 6∈ FV (ρ) and ψ be a formula. Then, for
every φ, (φ[ψ/X (~a)])ρ ⇔ φρ[φρ/X (~a)] is provable in NJ2;

4. If Γ ` φ then Γρ ` φρ, where Γρ = {γρ | γ ∈ Γ}.

Proof: The proof of parts (i) and (ii) is by a routine induction with
respect to φ.
Both (i) and (ii) are used in the proof of (iii), which is also an easy
induction on φ.
Part (iv) goes by induction with respect to Γ ` φ, using parts (ii) and (iii)
in cases when the proof involves instantiation.

8/ 29

Lemma
The following holds:

(i) If φ is an axiom of HA′2 then HA′2 ` φρ.

(ii) If HA′2 ` φ then HA′2 ` φρ.

Proof: For part (i) observe that most of the axioms are universal
formulas of the form φ = ∀~x(α1 ⇒ · · · ⇒ αn ⇒ β), where αi and β are
equations. Then φρ is ∀~x((α1 ∨ ρ)⇒ · · · ⇒ (αn ∨ ρ)⇒ (β ∨ ρ)) and this
formula is easily provable from φ.
The only axiom not of the form above is (Ind), but its translation, Indρ

is essentially a special case of (Ind) when quantification is specialized to
range only on formulas of the form X ∨ ρ.

Part (ii) is an immediate consequence of part (i) and Lemma 8.(iv).

9/ 29

Finally we can prove that PA2 and HA′2 have the same provably total
functions:

Theorem (10, Spector)
If a function f is provably total in PA2 then it is also provably total in
HA′2.

Proof: Given f provably total in PA2, we know that it is provably total in
PA′2. Thus PA

′
2 proves ∃y .tf (~n, y) = 0.

Using double negation translation, (Lemma 6), we have
HA′2 ` ¬¬∃y .¬¬tf (~n, y) = 0.
To this formula we apply Friedman’s translation, where we take ρ to be
∃y .tf (~n, y) = 0, and (after simplifying ⊥ ∨ ρ to ρ) we obtain:
HA′2 ` ((∃y .[((tf (~n, b) = 0 ∨ ρ)⇒ ρ)⇒ ρ]⇒ ρ)⇒ ρ.
The formula (tf (~n, b) = 0 ∨ ρ)⇒ ρ is provable, and thus
HA′2 ` ((∃y .ρ)⇒ ρ)⇒ ρ.
But of course ∃y .ρ is equivalent to ρ, so we obtain HA′2 ` (ρ⇒ ρ)⇒ ρ
and finally we have HA′2 ` ρ.
Note that the converse is trivial since PA2 is stronger than PA′2.

10/ 29

A restricted syntax, HA−2
In the following we shall restrict Heyting arithmetic to a core, minimal
syntax, removing functions symbols, etc. Every primitive recursive
function can be defined in arithmetic, so one can get rid of the primitive
function recursive symbols as long as one has zero and successor symbols:

Lemma
For every primitive recursive f of k arguments there exists a formula φf
with k + 1 free individual variables, and with no symbols of primitive
recursive function, such that HA′2 ` f (~n) = m⇔ φf (~n,m).
Note also that all logical connectives were definables in terms of ⇒ and
∀1,∀2, as well as equality which can be taken as Leibniz equality.
In the following, one shall restrict to this core syntax, referred to as HA−2 .

Definition
Let φ be a formula in the language of HA′2. By φ− we denote the
formula (over the syntax of HA−2) obtained from φ by replacing all
occurrences of ∧,∨,∃1,∃2,= by their second-order definitions. The
notation Γ− (in particular HA−2) is used accordingly for sets of formulas.

Lemma
If Γ ` φ then ΓL ` φL.

11/ 29

HA−2 can be restricted to (with =L being the Leibniz equality):

• P3 = ∀x , y .(Sx =L Sy ⇒ x =L y);

• P ′4 = ∀x , y(Sx =L 0⇒ y =L 0);

• P−5 = ∀x .Nat(x).

Then, we can even get rid of P5 by relativizing all first-order universal
quantifications: we abbreviate ∀x .(Nat(x)⇒ F) as ∀xNat.F .

Definition
If φ is in the simplified syntax, φNat is obtained by relativizing all
quantifiers of φ . If Γ is a set of formulas in the simplified syntax then
ΓNat is obtained by:

• relativizing all formulas in Γ to Nat;

• adding assumptions Nat(x), for all x ∈ FV (Γ);

• adding the axioms P3 and P ′4.

Nat(~x) abbreviates the conjunction of Nat(x) for x ∈ ~x .
Note that (∃x .φ)Nat = ∀X .((∀x(Nat(x)⇒ φNat)⇒ X)⇒ X), which is
the formula as ∃x .(Nat(x) ∧ φNat), so that relativization commutes with
removing definable connectives.

12/ 29

Lemma (15)
If φ is a formula in the simplified syntax:

1. HA−2 ` φNat ⇔ φ;

2. (φ[t/x])Nat ⇔ φNat[t/x];

3. (φ[F/X (x1, . . . , xn)])Nat ⇔ φNat[FNat/X (x1, . . . , xn)];

4. If Γ ` Nat(x)⇒ φ and x 6∈ FV (Γ, φ), then Γ ` φ.

Proof: Parts (1-3) are shown by induction with respect to φ.
To show part (4), generalize over x and instantiate it to 0.

13/ 29

Lemma
Let φ be a formula in the simplified syntax with FV (φ) = ~x . Then
HA−2 , Γ ` φ if and only if ΓNat,Nat(~x) ` φNat.
Proof: The proof from left to right is by induction with respect to the
derivation of φ:
Among the axioms of HA−2 only induction is non-obvious.
We need to find a derivation for the following judgement:

ΓNat,Nat(x) ` ∀X .(∀y .(Nat(y)⇒ (X (y)⇒ X (S(y)))⇒ (X (0)⇒ ∀y .X (y)).

This can be done by instantiating the ∀2X in Nat(x) by Nat(y) ∧ X (y).
The other cases in the proof are routine, but Lemma 15 is needed.

For the other direction we simply use the first case of Lemma 15:
Since HA−2 , Γ proves all formulas in ΓNat,Nat(~x), we have HA−2 , Γ ` φNat

and thus HA−2 , Γ ` φ.
As a conclusion:

Lemma
If φ is closed and HA′2 ` φ then P−3 ,P

′
4 ` φ−

Nat.

14/ 29

We shall now consider a slight extension of the system F that we having
been working with until now:

In addition to Church-style System F, we extend the grammar of types
with first-order quantifications and terms:

Γ `F M : ∀a.A
Γ `F (M)t : A[t/a]

Γ `F M : A

Γ `F λa.M : ∀a.A

(If a 6∈ FV (A) in the second rule.) and we consider two constants: p3, p4:

• `F p3 : ∀a, b.(S(a) =L S(b)⇒ a =L b);

• `F p4 : ∀a, b.(S(a) =L 0⇒ b =L 0).

Since we are now modelling not only propositional second-order logic but
full second-oder logic, universal abstraction will get more expression and
we shall also slightly extend the notation for types since they must now
also describe n-ary relations. For this, given a formula φ and n-variables
~a, we will form type λ~a.φ which will allow us to express the full
second-order elimination rule as

(M)λ~a.φ.

15/ 29

Lemma (18)

1. If a closed formula φ is a theorem of HA′2 then φNat is an inhabited
type of system F.

2. If a type φNat is inhabited in F then φ is (classically) true in the
standard model of arithmetic.

Proof: Part (1) is an immediate consequence of the previous lemma.
For part (2), one checks that the axioms are true in the standard model
N and that N |= φ⇔ φNat.

16/ 29

Let us turn to consider the reduction associated with this extended
System F:

The reduction relation of F is extended with:

(λa.M)t −→ M[t/a]

and universal reduction shall now take into account that type variables
may have a non-zero arity:

(ΛX .M)λ~a.φ −→ M[φ/X (a)]

17/ 29

Regarding p3, if t is a first-order term and M is a term of type
S(t) =L S(t), (p3)ttM is a term of type t =L t which is
∀X .X (t)⇒ X (t). We therefore add a specific rule for p3:

(p3)ttM −→ ΛX .λxX (t).x .

On the other hand, we do not introduce additional reduction for p4.

18/ 29

The main properties of λHA2 are the following:

Theorem
1. λHA2 is weakly confluent;

2. λHA2 is strongly normalizing;

3. λHA2 is Church-Rosser.

Weak confluence derives naturally from the absence of critical pairs.

Strong normalization follows from an embedding into F

19/ 29

Definition
The contracting map b maps terms of system λHA2 to terms of system
F, where ID = ∀X .(X → X). For types:
b(R(t1, . . . , tn)) = VR , where VR is the propositional variable associated
to R by an injection from second-order relational symbols to system F
propositional second-order variables.
b(∀X .T) = ∀X .b(T); b(T ⇒ U) = b(T)→ b(U);
For terms:

• b(x) = x ;

• b(p3) = b(p4) = λx ID.x ;

• b(λxT .M) = λxb(T).b(M);

• b(λa.M) = b(M);

• b(ΛX .M) = ΛVX .b(M);

• b((M)N) = (b(M))b(N);

• b((M)t) = b(M);

• b((M)λ~a.φ) = (b(M))b(φ).

20/ 29

Lemma
The operation b commutes with substitution, i.e, the following equations
always hold;

• b(φ[t/a]) = b(φ)

• b(φ[λ~a.φ/X]) = b(φ)[b(φ)/VX];

• b(M[t/a]) = b(M);

• b(M[N/x]) = b(M)[b(N)/x];

• b(M[λ~a.φ/R]) = b(M)[b(φ)/VR].

21/ 29

Lemma
If Γ `λHA2 M : φ, then b(Γ) `F b(M) : b(φ).

Lemma (23)
If M −→λHA2 N then b(M) −→?

F b(N) In addition, b(M) −→+
F b(N) in

all cases except when the reduction step M −→λHA2 N is an application
of first-order beta-reduction.
Proof: It is simply a matter of a check of each reduction rule.

Proof:[of strong normalization] Strong normalization of λHA2 simply
follows from that of F as there cannot be an infinite sequence of
first-order reductions.

Proof:[of Church-Rosser] It is a simple application of Newman’s lemma
from weak confluence and strong normalization of λHA2.

22/ 29

Definition (Target variable)
The target variable of a formula φ (in the simplified syntax) is the
rightmost relation variable occurring in φ:

• R is the target of R(t1, . . . , tn)

• the target of ∀1a.φ, ∀2R.φ, ψ ⇒ φ is the target of φ.

We say that an environment Γ is easy if the target of every T ∈ Γ is free
in Γ.
Observe that if Γ is easy, (x : T) ∈ Γ and Γ `λHA2 (x)M : U, then T and
U have the same target variable.

23/ 29

Lemma (25)

1. If M is normal then it is either an abstraction or an application (c)~e
(c either constant or a variable, and ~e is a (possibly empty)
sequence of terms and types).

2. If (c)~e is normal beginning with a constant with no free first-order
variables, its type in an easy environment can only be of the form;

• ∀a.∀b.(S(a) = S(b)→ a = b);
• ∀vx .(S(n) = S(a)→ n = a).
• S(n) = S(m)→ n = m;
• ∀a, b.(S(a) = 0→ b = 0);
• ∀b.(S(n) = 0→ b = 0);
• S(n) = 0→ m = 0.

3. A normal form without free individual variables, which has type
n = m in an easy environment must be of shape ΛX .λxX (n).x . In
particular, if n = m is inhabited then n = m.

4. Let Γ, x : ∀a.(F → (G → X)) ` M : Nat(n), where Γ is easy, X is a
nullary relation variable, and M is a normal form without free
first-order variables, and let O = λxω.ΛX .λyX→X .λzX .(x)Xyz .
Then (O)(b(M)) =β n.

24/ 29

Proof: Part (1) is shown by induction with respect to M. If M is neither
a constant nor an abstraction, then it must be an application (M1)e. and
we can apply the induction hypothesis to M1. But now M1 cannot be an
abstraction, because (M1)e would be a redex.
Parts (2) and (3) are shown by parallel induction with respect to the size
of terms. For part (ii) observe that in every application of the form
(p3)nmP, the term P has type S(n) = S(m). By the induction
hypothesis, part (iii), we have n = m, and thus our term is a redex, which
is a contradiction. Similarly, an application (p4)nmP would contain a
closed term P of type S(n) = 0 and this is again impossible by the
induction hypothesis (iii).
For part (3) observe that, by part (2), a normal form of type n = m
cannot be an application beginning with a constant. It cannot be an
application beginning with a variable, because the target of n = m is not
free. It canoot be a variable so it is an abstraction.

25/ 29

Proof:
For part (4), observe that Γ, x : ∀a(T → S → X) ` M : Nat(n) implies,
by parts (i) and (ii), that M = ΛR.λy∀a.(R(a)→R(S(a))).N where N has
type R(0)→ R(n) in the environment Γ′ = Γ, x : ∀a.(R(a)→ R(S(a))).
We can also assume that R 6∈ FV (Γ). Then either n = 1 and N = (y)O,
or N = λzR(0)N ′ and we have Γ′, z : R(0) ` N ′ : R(n). In the latter case,
by induction with respect to the size of N ′, it follows that b(N) = (y)nz .
Indeed, by parts (i) and (ii), either N ′ = z (in which case n = 0), or
N ′ = (y)mN ′′ with N ′′ of type R(m) (and then n = m + 1). We
conclude that b(M) is either cn or ΛX .λyX→X .y (and n = 1). In each
case (O)b(M) = cn.

26/ 29

Theorem (27, Girard)
All functions provably total in PA2 are definable in F.
Proof: If f is provably total in PA2, then by Theorem 10 it is also
provably total in HA′2, Without loss of generality (Exercise 12.15) we may
assume that f is unary.
By Lemma 18 there exists a closed term M of λHA2 of the following type
(where tf (n, b) = 0 is an abbreviation):

∀a(Nat(a)→ ∀2R(∀b.(Nat(b)→ (tf (a, b) = 0)Nat → R)→ R)).

Let n ∈ N and let Nn be a closed term of type Nat(n), such that
b(Nn) = cn.
The application (M)nNn is a closed term of type

∀2R(∀b(Nat(b)→ (tf (n, b) = 0)Nat → R)→ R).

By Lemma 25.(1-2), this term reduces to

ΛX .λx∀b.(Nat(b)→(tf (n,b)=0)Nat→X).(x)mNN ′,

for some m, where

1. x : ∀b(Nat(b)→ (tf (n, b) = 0)Nat → X) ` N : Nat(m;

2. x : ∀b(Nat(b)→ (tf (n, b) = 0)Nat → X) ` N ′ : (tf (n,m) = 0)Nat.

27/ 29

Theorem (27, Girard)
All functions provably total in PA2 are definable in F.
Proof: (continued)
From (2) it follows that

` N ′[(P → P)/X][λb.λyNat(b).λz tf (n,b)=0)Nat
.λvP .v/x] : (tf (n,m) = 0)Nat,

where P is any nullary relation variable. That is, the type
(tf (n,m) = 0)Nat is inhabited in λHA2, and thus N |= tf (n,m) = 0, by
Lemma 25.(2). It follows that f (n) = l(m), where l is the left converse to
the pairing function.
Let S = b((tf (n, b) = 0)Nat). Then f is definable in system F by the term

F = λnω.(L)(O)(b(M)nωλmω.λyT .m),

where L is a term representing l. Indeed, by inspecting the reduction of
(M)nNn, and applying Lemma 23, we obtain that the term b(M)cn
reduces to ΛX .λxω→S→X .(x)b(N)b(N ′). It follows that
b(M)cnω(λmω.λyS .m) reduces to b(N). From (1) and Lemma 25(iv) we
have (O)b(N) = cm. Thus, the application (F)cn reduces to L(cm),
where m is such that f (n) = l(m).

28/ 29

Corollary
The class of functions definable in F coincides with the class of provably
recursive functions of second-order Peano Arithmetic.

29/ 29

We already know that product, booleans and natural numbers can be
represented as typed terms on System F.
To embed T in F, it is sufficient to represent the higher-order recursor of
T, which is done simply as follows:

Rec , λnNat.λf Nat→(U→U).λbU .(π1)(n)(U×Nat)〈b, 0〉λzU×Nat.〈((f)(π2)z)(π1)z , (S)(π2)z〉

	System F with arithmetical axioms, HA2
	Embedding of System T

