
M2 LMFI – SOFIX:
Second-order quantification and fixed-points

in logic
First lecture: Gödel’s System T
(preliminary version of the 7/01/2022)

Alexis Saurin

4th january 2022

Contents
1 On the weak expressiveness of the simply typed λ-calculus 1

2 Gödel’s system T. 2
2.1 Types and terms of system T . 2
2.2 Strong normalization theorem . 4
2.3 Expressive power of system T . 7

1 On the weak expressiveness of the simply typed λ-calculus
Simply typed lambda-calculus (STLC) has good properties but a poor expressiveness:
— due to strong normalization, only total recursive functions can be represented, of course.

That is a feature of the calculus, but due to the properties of the type system and the strong
normalization proof, some total recursive functions cannot be represented. Actually lots of
them cannot be represented...

— when typing the encoding of pairs, there were constraints on types: for types A,B,C, paire
has type A→ (B → ((A→ (B → C))→ C)). That is, given t : A and u : B, (paire)tu had
type (A → (B → C)) → C Therefore, unless A = B, one cannot find projections with the
expected types: it is not possible, in the typed version of the pair encoding, to access the
components of the pair...

— for arithmetical functions, there were also strong restrictions: given a base type o, and
writing [0] = o and [n + 1] = [n] → [n], one see that every n ≥ 2 allows to type Church
numerals. In Church’s style λ-calculus, one can type addition, product with the expected
types [n]→ [n]→ [n] for any n ≥ 2, but exponentiation cannot be typed with such a type...
one has to type of different levels for a and b in ab: there are restrictions of the typed use
of iteration.

More precisely, Schwichtenberg and Statman proved that the expressible functions of type
Natk → Nat (with Nat = [2]) are exactly the extended polynomials:

Definition 1.1
Extended polynomials are the functions generated by 0, 1, and the identity function the
operations of addition, multiplication and conditional.

Theorem 1.2 (Schwichtenberg and Statman)
The arithmetical functions definable in simply-typed λ-calculus over type Nat are exactly the

1

extended polynomials.

If one relaxes the type for natural numbers to be some type for Church numeral, ie allowing
to define function as λ-terms of type [n + 2] → . . . ([n + 2] → [n + 2]) for n ≥ 0, then one can
define more functions in simply-typed λ-calculus. In particular, the predecessor function and the
exponentiation are now definable.

But there is still a big gap. For instance, one can represent neither the equality predicate, nor
the less-than predicate (ie. their characteristic functions) nor the subtraction function...

Several solutions are available to improve this expressiveness issue:
— We shall now consider an option investigated by Gödel, extending the simply-typed λ-

calculus with types for pairs of objects, atomic types for booleans and naturals and con-
structions for conditional branching and a recursor.

— Another option that will be investigated in the following lecture will consist in allowing the
λ-terms to be polymorphic, that is to be applied to arguments of variable types: this will
be the core of System F and of the connection with second-order logic.

2 Gödel’s system T.
An important defect of the simply-typed λ-calculus considered during the course is its poor

expressiveness as discussed above.
Several systems have been considered to increase the class of (total) functions that can be

represented in the typed setting. Gödel’s System T is such a system, extending the simply-
typed λ-calculus with product types (U × V), a type for booleans (Bool), with a type for natural
numbers (Nat) and with the following term constructions:

(i) pairs and projections: 〈t, u〉, π1(t), π2(t);
(ii) boolean constants and a boolean test: true, false, if t thenu else v;
(iii) constants for representing natural numbers and a recursor for each typeA: S(t), 0,Rec(t, u, v).

In the following, one will define System T, and then study its strong normalization property.

2.1 Types and terms of system T

The types of system T are just the types of simply-typed λ-calculus, with two specific atomic
types: Bool and Nat.

Definition 2.1 (simple types for system T)
We consider a countable set TAt of atomic types containing Nat and Bool. T-types are defined
inductively as

T,U, V ::= A | U × V | U → V A ∈ TAt.

Terms of system T are defined by extending the simply-typed λ-calculus à la Church with:

Definition 2.2 (Terms of System T)

For each T-type T , one considers a countable set of variables of type T , VT , those sets being
pairwise disjoint.

Similarly to the case of the simply-typed λ-calculus, we define by mutual induction, (i) the
set of terms of System T (called T-terms), (ii) the typing relation (written u : U) and the set
of free variables of a T-term:

(Var) ∀x ∈ VU , xU is T-term of type U (of free variables {x}): xU : U

(Abs) For every T-term v such that v : V and every variable x ∈ VU , λxU .v is a T-term of
type U → V (of free variables fv(v) \ {x}): λxU .v : U → V

(App) For every T-terms t and u such that t : U → T and u : U , (t)u is a T-term of type T
(of free variables fv(t) ∪ fv(u)): (t)u : T

2

(Prod) For every T-terms u and v such that u : U and v : V , 〈u, v〉 is a T-term of type
U × V (of free variables fv(t) ∪ fv(u)): 〈u, v〉 : U × V ;

(Proj) For every T-term t such that t : T1 × T2, π1(t) and π2(t) are T-terms of respective
types T1 and T2 (of free variables fv(t)): π1(t) : T1 and π2(t) : T2;

(BoolCst) true and false are closed T-terms of type Bool: V : Bool, F : Bool
(If) For every T-term t, u, v such that t : Bool, u : U and v : U , if t thenu else v is a T-term

of type U (of free variables fv(t) ∪ fv(u) ∪ fv(v)): if t thenu else v : U

(0) 0 is a closed T-term of type Nat: 0 : Nat
(S) For every T-term t such that t : Nat, S(t) is a T-term of type Nat (of free variables

fv(t)): S(t) : Nat
(Rec) For every T-term t, u, v such that t : Nat, u : Nat → (U → U) and v : U , Rec(t, u, v)

is a T-term of type U (of free variables fv(t) ∪ fv(u) ∪ fv(v)): Rec(t, u, v) : U

This can be summed up in the following inference system:

xU : U
(V ar) (x ∈ VU) t : T

λxU .t : U → T
(Abs) (x ∈ VU) t : U → T u : U

(t)u : T
(App)

u : U v : V
〈u, v〉 : U × V

(Prod)
t : U1 × U2

π1(t) : U1
(Proj1)

t : U1 × U2

π2(t) : U2
(Proj2)

true : Bool
(true)

false : Bool
(false)

0 : Nat
(0)

t : Nat
S(t) : Nat

(S)

t : Bool u : U v : U
if t thenu else v : U

(If)
t : Nat u : Nat→ (U → U) v : U

Rec(t, u, v) : U
(Rec)

Definition 2.3 (T-reduction relation)
We define the T-reduction, written −→T, as the least compatible relation on T-terms, con-
taining typed β-reduction as well as:

πi(〈t1, t2〉) −→T ti
if true then t elseu −→T t
if false then t elseu −→T u

Rec(0, v, w) −→T w
Rec(S(t), v, w) −→T (v)tRec(t, v, w)

A T-normal form is a T-term that does not −→T-reduce to any T-term.

Proposition 2.4
Assume that t is a closed T-normal. Prove that:

— If t : Nat, then there exists n ∈ N such that t = Sn(0);
— If t : Bool, then t = true or t = false;
— If ` t : A×B, then t = 〈u, v〉;
— If t : U → V , then t = λx. u.

Démonstration : By induction on the structure of terms in normal forms.
2

Notation 2.5 (`(t))

If t is a strongly normalizable T-term, one writes `(t) for the maximal length of a T-reduction
from t. (This is well defined, as in the λ-calculus, as the reduction graph of a T-term is finitely
branching and by König’s lemma.)

3

2.2 Strong normalization theorem
The following paragraph generalizes the strong normalization for the simply typed λ-calculus

to System T, by adapting the proof by reducibility.

One shall first adapt the definition of neutral terms:
Definition 2.6 (Neutral T-term)

A T-term is neutral if it is not of the form λxU : t, 〈t, u〉, true, false, 0 or S(t).

The sets NeutSN(U), SNorm(U) are adapted to T-terms without any change (but the depen-
dency of NeutSN(U) with REDSN(U)...):

Definition 2.7 (NeutSN(U))

NeutSN(U) = {t ∈ T; u is neutral of type U and ∀u′, u −→β u
′, u′ ∈ REDSN(U)}

Definition 2.8 (SNorm(U))

SNorm(U) = {u ∈ T; u strongly normalizing of type U}.

REDSN(U) is also defined as for STLC but for the use of the previous definition of neutral terms
and a treatment of product types:
Definition 2.9

— REDSN(X) = SNorm(X)
— REDSN(U → V) = {t : U → V ;∀u ∈ REDSN(U), (t)u ∈ REDSN(V)}.
— REDSN(U1 × U2) = {t : U1 × U2 | ∀i ∈ {1, 2}, πi(t) ∈ REDSN(Ui)}.

Lemma 2.10 (Adaptation)

For every type T , one has NeutSN(T) ⊆ REDSN(T) ⊆ SNorm(T).

Adaptation lemma relies on
Lemma 2.11

For any type U , REDSN(U) is closed by T-reduction:

u ∈ REDSN(U), u −→T u
′ ⇒ u′ ∈ REDSN(U).

Démonstration : The lemma is proved by induction on the structure of type T .
— If T is atomic, as in STLC
— If T = U → V , as in STLC
— If T = U1 × U2, then let t : T such that t −→ t′. Since t is reducible, its projection are:

πi(t) ∈ REDSN(Ui), i ∈ {1, 2}. By applying induction hypothesis on U1 and U2, we know
that REDSN(Ui) are closed by reduction and since πi(t) −→ πi(t

′) with i ∈ {1, 2}, we have
that πi(t

′) ∈ REDSN(Ui) for i ∈ {1, 2}. Therefore t′ ∈ REDSN(T).
2

Démonstration of lemma 2.10 : The proof is by induction on the structure of type T :
— If T = X, as for STLC
— If T = U → V , as for STLC
— If T = U1 × U2, then:

— NeutSN(T) ⊆ REDSN(T):
Let t ∈ NeutSN(T). Since t is neutral, πi(t) cannot be a redex itself: its redexes are
necessarily in t, so that its one-step reducts are all of the form πi(t

′) with t −→ t′.
Since t ∈ NeutSN(T), t′ ∈ REDSN(T) and πi(t

′) ∈ REDSN(U)i, i ∈ {1, 2}.
Therefore we have that πi(t), i ∈ {1, 2} are neutral and all their one-step reducts are
reducible: πi(t) ∈ NeutSN(U)i, i ∈ {1, 2}.
By induction hypothesis on U1 and U2, πi(t) ∈ REDSN(U)i, i ∈ {1, 2}.
By definition of reducibility at product type, one concludes that t ∈ REDSN(T) as
expected.

4

— REDSN(T) ⊆ SNorm(T):
Assume that t ∈ REDSN(T). The π1(t) ∈ REDSN(U)1 by definition and, by induction
hypothesis on U , π1(t) ∈ SNorm(U)1. The longest reduction from t is certainly at
least as long as that from π1(t) so there is only finite reduction sequence from t and
t ∈ SNorm(T).

2

Proposition 2.12
The following holds:

1. 0 ∈ REDSN(Nat).
2. true, false ∈ REDSN(Bool).
3. ∀t ∈ REDSN(Nat),S(t) ∈ REDSN(Nat).
4. ∀t ∈ REDSN(Bool), ∀u, v ∈ REDSN(U), if t thenu else v ∈ REDSN(U).
5. ∀t ∈ REDSN(Nat), ∀u ∈ REDSN(Nat → (U → U)),∀v ∈ REDSN(U), Rec(t, u, v) ∈

REDSN(U).

Démonstration : 1. 0 ∈ REDSN(Nat) since REDSN(Nat) = SNorm(Nat) and 0 is a T-normal form.
2. true, false ∈ REDSN(Bool) since REDSN(Bool) = SNorm(Bool) and true, false are T-normal

forms.
3. let t ∈ REDSN(Nat), then t is strongly normalizable since Nat is an atomic type. Since

any reduction from S(t) is of the form S(t) −→ S(t1) −→ S(t2) −→ . . .S(tn) −→ . . . ,
with t −→ t1 −→ t2 −→ · · · −→ tn −→ . . . , S(t) is also strongly normalizable and
therefore S(t) ∈ REDSN(Nat).

4. let t : Bool, u, v : U be such that t ∈ REDSN(Bool), u, v ∈ REDSN(U). By adaptation
lemma, it is sufficient to prove that w = if t thenu else v ∈ NeutSN(U) to deduce w ∈
REDSN(U). By adaptation lemma, we know that t, u, v are all strongly normalizing so
that we can reason by induction on `(t) + `(u) + `(v) to prove that ∀t ∈ REDSN(Bool),
∀u, v ∈ REDSN(U), if t thenu else v ∈ REDSN(U).
w = if t thenu else v is neutral, let us consider its one-step reducts: if w −→T w

′ then
— either w′ is u (resp. v) if t = true (resp. t = false) which is reducible of type U
— or w′ = if t then′ elseuv with t −→T t

′ and since `(t′)+`(u)+`(v) < `(t)+`(u)+`(v),
w′ ∈ REDSN(U) by induction hypothesis;

— or w′ = if t thenu else′ v with u −→T u
′ and since `(t)+`(u′)+`(v) < `(t)+`(u)+`(v),

w′ ∈ REDSN(U) by induction hypothesis;
— or w′ = if t thenu else v′ with v −→T v

′ and since `(t)+`(u)+`(v′) < `(t)+`(u)+`(v),
w′ ∈ REDSN(U) by induction hypothesis.

5. let t : Nat, u : Nat → (U → U) and v : U be such that t ∈ REDSN(Nat), u ∈
REDSN(Nat → (U → U)) and v ∈ REDSN(U). As above, it is sufficient to prove that
w = Rec(t, u, v) ∈ NeutSN(U). w being neutral we simply have to prove that any of its
one-step reducts is in REDSN(U) which is done by induction, in a slightly more complex
way as for the boolean test.
Indeed, consider the case when t is of the form S(t′), then w can reduce to (u)t′Rec(t′, u, v).
To prove that the term is reducible, the inductive measure considered for the boolean
destructor is not suitable: indeed, in that case one has to rely on the reducibility of u
(by hypothesis) and t′ (reducible because strongly normalizable and of atomic type) and
we need to establish reducibility of Rec(t′, u, v) but `(t′)+`(u)+`(v) = `(t)+`(u)+`(v):
the measure did not decrease... One way out, it to add to the measure the information
on the complexity of t (or of its normal form):
— either by taking `(t)+`(u)+`(v)+n(t) where n(t) is the size of the normal form of

t (indeed, the size of t may vary over the reduction and is not necessarily decreasing
through the reduction...)

— or by considering (`(t)+ `(u)+ `(v), s(t)) ordered lexicographically, where s(t) is the
size of t (here it is sufficient to consider the size of t, and not of its normal form,
since one uses this component of the measure only when the term can be structurally
compared, one being a subterm of the other, see below).

Let us consider the first option which is simpler and sufficient (we comment on appli-
cability of the other measuer as well):

5

let us prove by induction on `(t) + `(u) + `(v) + n(t), that for all ∀t ∈ REDSN(Nat),
∀u ∈ REDSN(Nat→ (U → U)), ∀v ∈ REDSN(U), Rec(t, u, v) ∈ REDSN(U).
Let thus consider t : Nat, u : Nat → (U → U) and v : U be such that t ∈ REDSN(Nat),
u ∈ REDSN(Nat→ (U → U)) and v ∈ REDSN(U).
w = Rec(t, u, v) is neutral, let us consider its one-step reducts: if w −→T w

′ then
— either w′ is v if t = 0 which is reducible of type U ;
— or w′ is (u)t′Rec(t′, u, v) if t = S(t′). In that case n(t) = n(t′) + 1 and `(t′) =

`(t) so that `(t′) + `(u) + `(v) + n(t′) < `(t) + `(u) + `(v) + n(t), and therefore
induction hypothesis ensures that Rec(t′, u, v) is reducible of type U which together
with the fact that t ∈ REDSN(Nat), u ∈ REDSN(Nat→ (U → U)), ensures that w′ ∈
REDSN(U). [Note that the other measure, (`(t) + `(u) + `(v), s(t)) would also have
decreased since its first component would be unchanged while its second component
has strictly decreased as s(t) = s(t′) + 1.]

— or w′ = Rect′uv with t −→T t
′ and since `(t′) + `(u) + `(v) < `(t) + `(u) + `(v) and

since n(t) = n(t′), w′ ∈ REDSN(U) by induction hypothesis; [Note that the other
measure, (`(t)+ `(u)+ `(v), s(t)) would also have decreased since its first component
would have decreased.]

— or w′ = Rectu′v with u −→T u
′ and since `(t) + `(u′) + `(v) + n(t) < `(t) + `(u) +

`(v) + n(t), w′ ∈ REDSN(U) by induction hypothesis; [Note that the other measure,
(`(t) + `(u) + `(v), s(t)) would also have decreased since its first component would
have decreased.]

— or w′ = Rectuv′ with v −→T v
′ and since `(t) + `(u) + `(v′) + n(t) < `(t) + `(u) +

`(v) + n(t), w′ ∈ REDSN(U) by induction hypothesis. [Note that the other measure,
(`(t) + `(u) + `(v), s(t)) would also have decreased since its first component would
have decreased.]

From this case analysis, we deduce that any one-step reduct of w is reducible which
suffice to deduce that w ∈ NeutSN(U) ⊆ REDSN(U).

2

For STLC, the following lemma was used in the proof of adequation:
Lemma 2.13

(∀u ∈ REDSN(U), v{u/x} ∈ REDSN(V))⇒ ∀u ∈ REDSN(U), (λx.v)u ∈ REDSN(V).

The following is a corresponding result for pairs:
Lemma 2.14

∀u ∈ REDSN(U), v ∈ REDSN(V), 〈u, v〉 ∈ REDSN(U × V).

Démonstration : By adaptation lemma, one can reason using the strong normalisation of u, v and
therefore reason by induction on the sum of the length of the longest reductions from u and
v to show that πi(〈u, v〉) is reducible.

First notice that this term is neutral. Therefore, to show that is it reducible, it is sufficient
to show that every one-step reduct is reducible from which one deduce that πi(〈u, v〉) ∈
NeutSN(U) and, by adaptation, that it is reducible.

πi(〈u, v〉) reduces (i) either to u (resp. v) which is reducible, (ii) or to πi(〈u′, v〉) with
u −→ u′. u′ is reducible since reducibility is closed by reduction and its longest reduction is
shorter than that of u so by induction hypothesis, πi(〈u′, v〉) is reducible, (iii) or to πi(〈u, v′〉)
with v −→ v′ which is reducible by exactly the same reasoning as in (ii).

Therefore both projections of 〈u, v〉 are reducible showing that 〈u, v〉 ∈ REDSN(U)× V .
2

Lemma 2.15 (Adequation)

Let t : U with free variables among xT1
1 , . . . , xTn

n . For any (ui ∈ REDSN(Ti))1≤i≤n, one has
t {ui/xi} ∈ REDSN(U).

Démonstration du lemme 2.15 : One reason by induction on the structure of t : T .
— If t = xTi

i , as for STLC.
— If t = λxU .t′, as for STLC.
— If t = (u)v, as for STLC.

6

— If t = 〈u, v〉, then by induction hypothesis, both u {ui/xi} and v {ui/xi} are reducible
and by the previous lemma t {ui/xi} is reducible.

— If t = π1(u) (resp π2(u)), then by induction hypothesis u {ui/xi} is reducible which
implies that π1(u {ui/xi}) is reducible by definition.

— If t is some T-constant, it is reducible (since 0 ∈ REDSN(Nat), true, false ∈ REDSN(Bool)).
— If t = S(u), then by induction hypothesis, u {ui/xi} is reducible and so is S(u {ui/xi}).
— If t = if u then v elsew, then by induction hypothesis, u {ui/xi}, v {ui/xi}, w {ui/xi} are

reducible and so is if u {ui/xi} then v {ui/xi} elsew {ui/xi}.
— If t = Rec(u, v, w), then by induction hypothesis, u {ui/xi}, v {ui/xi}, w {ui/xi} are

reducible and so is Rec(u {ui/xi}, v {ui/xi}, w {ui/xi}).
2

Theorem 2.16
System T is strongly normalizing.

Démonstration : Let t : T of free variables (xTi
i)1≤i≤n. Be adaptation lemma (2.10) for any 1 ≤ i ≤ n,

xTi
i ∈ REDSN(Ti) since variables of type T are neutral and normal and therefore in NeutSN(T).

Adequation lemma (2.15) ensures that t
{
xTi
i /xi, 1 ≤ i ≤ n

}
= t is reducible of type T

(∈ REDSN(T)).
By using adaptation lemma once more, one has t ∈ REDSN(T) ⊆ SNorm(T) which allows

to conclude that t is strongly normalizing.
2

2.3 Expressive power of system T

It is easy to write complex programs in T, that cannot be written in simply-typed λ-calculus.
Back to the introduction of this chapter, of course one can manipulate pairs as we are given
primitive operations in T, as well as boolean functions as we have the boolean test.
Exercice 2.1

Write T-terms for the standard boolean functions.

Simple arithmetical functions represented by T-terms. It is simple to defined basic arith-
metical functions on type Nat: instead of manipulating Church numerals, one works with the
built-in naturalnumbers of T, which does not make a big difference as they are unary integers
as well as we have a recursor to replace the ability of a Church numeral to iterate its arguments
directly:

The successor function can be written as:
— Succ , λxNat.S(x) or
— Succ′ , λxNat.Rec(x, λyNat.λzNat.z,S(0))
Addition can be defined as:

Add , λxNat.λyNat.Rec(x, λzNat.Succ, y).

Multiplication can be defined in the same way,

Mult , λxNat.λyNat.Rec(x, λzNat.(Add)y, 0).

Exponentiation can be defined in the same way,

Exp , λxNat.λyNat.Rec(y, λzNat.(Mult)x,S(0)).

Predecessor can be defined easily, taking opportunity of the fact that the natural on which we
recurse is passed as the first argument of the functional that we iterate:

Pred , λxNat.Rec(x, λyNat.λzNat.y, 0).

Contrarily to the simply typed case, the predecessor is computed in constant time in T, not
linear time.

Subtraction can be then be defined easily by iterating predecessor:

Subt , λxNat.λyNat.Rec(y, λzNat.Pred, x).

7

Ackermann-Péter function in T. Notice here that the type of the recursors we have been
using sofar is very simple: U is always taken to be Nat is the previous examples... We can benefit
from the ability to use more complex types, higher-order types in fact, to defined simply much more
complex, and fast-growing functions, for instance we shall see now how to represent Ackermann-
Péter function in system T.

Let us consider Ackermann-Péter function for a while:

A(m,n) ,

 n+ 1 if m = 0
A(m− 1, 1) if m > 0 and n = 0
A(m− 1, A(m,n− 1)) if m > 0 and n > 0

In order to represent A in T, we would need a T-term A such that

(A)0n −→?
T S(n)

(A)S(m)0 −→?
T (A)mS(0)

(A)S(m)S(n) −→?
T (A)m(A)S(m)n

However, it is well-known that Ackermann-Peter function is not primitive recursive and in
system T, we only have a recursor, not minimization scheme construct. How to find a solution?

Let us consider A, by currying, not as a function of two arguments but as a family of unary
functions (Am)m∈N from N to N. We then notice that the definition becomes:

A0(n) , n+ 1

Am+1(n) ,

{
Am(1) if n = 0
Am(Am+1(n− 1)) n > 0

And we notice that each Ai is now defined with only a primitive recursive scheme, assuming the
A0, . . . , Ai−1 have been defined already. This means that we need to be able to define, not an
object in N by recursion, but an element of NN, which is exactely what the recursor of system T
allows for when instantiating U with type Nat→ Nat...

The effect of Am+1 on n is to iterate Am n+ 1 times over 1: Am+1(n) = Am(Am+1(n− 1)) =
Am(Am(Am+1(n−2))) = Am(Am(Am(Am+1(n−3)))) = · · · = Am(Am(Am(Am(. . . (Am(1) . . .)))))!
That is simply (if f (0)(x) = x and f (n+1)(x) = f(f (n)(x))):

Am+1(n) = A(n+1)
m (1).

which can also be define as: Am+1(n) = iter(Am, n) where iter(f, 0) = f(1) and iter(f, n+1) =
f(iter(f, n)).

Now, we see clearly how to complete the definition of A:
— Consider Iter , λfNat→Nat.λxNat.Rec(x, λyNat.f, (f)S(0)) to represent the iteration function

described above.
— We can define the T-term representing Ackermann-Peter function as

A , λxNat.Rec(x, λzNat.Iter,Succ).

Exercice 2.2
Prove that A indeed represents Ackermann-Peter function, that is:

(A)0n =T S(n)
(A)S(m)0 =T (A)mS(0)
(A)S(m)S(n) =T (A)m(A)S(m)n

with =T denoting the least congruence containing −→T.

A total recursive function not representable in T. In this paragraph, we describe the
construction of a total recursive function that cannot be represented in T. This construction is
general and will be reproduced later in the semester for system F: it amounts on a diagonalization
argument, showing that the evaluation function of T which is (total) recursive cannot be represented
in T.
Todo: develop this...

8

Characterization of the expressiveness of T. More generally, the extended expressiveness
of T that was mentioned in the start is expressed by the following theorem:

Theorem 2.17
The functions that can be represented in system T are the recursive functions which can be
proved to be total functions in first-order Peano arithmetics (PA).

9

	On the weak expressiveness of the simply typed -calculus
	Gödel's system T.
	Types and terms of system T
	Strong normalization theorem
	Expressive power of system T

