M2 LMFI – Cours Fondamental de Logique Théorie de la Démonstration

Introduction to natural deduction and cut elimination

Alexis Saurin

TD du 10 novembre 2021

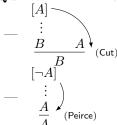
Table des matières

_		Natural deduction 1			
		Natural deduction inference rules			
	1.2	Classical reasoning	2		
		Formal and informal proofs			
	1.4	Counting proofs	2		
	1.5	Peano arithmetics	3		
2	Cut-elimination and subformula property				
A	Hilbert proof systems and natural deduction for predicate logic				

1 Natural deduction

1.1 Natural deduction inference rules

- ightharpoonup Question 1.1. Let T be a theory, F and G two formulas. Prove that if $T \vdash F \lor G$ and $T \vdash \neg F$, then $T \vdash G$.
- \triangleright **Question 1.2.** Give a natural deduction derivation for each axiom of Hilbert system for predicate logic
- $ightharpoonup \mathbf{Question 1.3.}$ Prove that, if one forgets to check the restrictions on the application of (Vintro) and (\exists elim) inferences, one can deduce $\exists x.(x=0) \Rightarrow \forall x.(x=0)$ and $\exists x.A \land \exists x.B \Rightarrow \exists x.(A \land B)$. (Try to use only one faulty inference for each statement.)
- \triangleright **Question 1.4.** Prove that the following rules are derivable in natural deduction :



1.2 Classical reasoning

- ▶ Question 1.5. Prove the following statement in natural deduction :
 - $-A \vee \neg A$;
 - $-((A \Rightarrow B) \Rightarrow A) \Rightarrow A;$
 - $-\neg \neg A \Rightarrow A.$
- ▶ Question 1.6. Prove that one can deduce $\neg\neg(\neg\neg A \Rightarrow A)$ in natural deduction *without using* the classical absurdity rule (that is, in intuitionistic natural deduction, NJ).

Similarly, prove that one can derive $\neg\neg\neg A \Rightarrow \neg A$ in NJ.

ightharpoonup Question 1.7. Let us consider the following formula Drinker $=\exists x.(\neg D(x) \lor \forall y.D(y))$ where D is a unary predicate symbol. Give a natural deduction proof (with no free hypothesis) for Drinker in NK.

1.3 Formal and informal proofs

- ▶ Question 1.8. For each of the following statements, (i) give a usual mathematical proof, (ii) formalize the statement in predicate logic and (iii) give a natural deduction of the statement :
 - 1. Every involution is a bijection.
 - 2. Two injections with distinct support commute.
 - 3. If $f \circ g$ is injective and g is onto, the f is injective.
 - 4. If $f \circ g$ is onto and g is injective, then f is surjective.
 - 5. the composition of two bijections is a bijection.
- ▶ Question 1.9. Prove that equality is an equivalence relation in NJ.
- $ightharpoonup \mathbf{Question}$ 1.10. Consider a first-order language containing a constant symbol $\sqrt{2}$, a binary function binaire symbol exp and a unary predicate symbol \mathbb{Q} . Prove, in natural deduction, formula $\exists x \exists y (\mathbb{Q}(\exp(x,y)) \land (\neg \mathbb{Q}(x) \land \neg \mathbb{Q}(y))$ under the hypotheses $\neg \mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\exp(\exp(\sqrt{2},\sqrt{2}),\sqrt{2}))$. (equivalently, one shall say that one derive *judgement*

$$\neg \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\exp(\exp(\sqrt{2}, \sqrt{2}), \sqrt{2})) \vdash \exists x \exists y (\mathbb{Q}(\exp(x, y)) \land (\neg \mathbb{Q}(x) \land \neg \mathbb{Q}(y)).)$$

▷ Question 1.11. (Russell's paradox) Consider the language of set theory.

Prove the following statement in natural deduction:

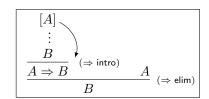
 $\neg \exists x. \forall y (y \in x \Leftrightarrow y \notin y).$

1.4 Counting proofs

 \triangleright Question 1.12. Consider the purely implicative fragment of proposition logic (ie. \Rightarrow is the only connective one can use to build formulas a reason about them). One says that a deduction is *normal* when it does not contain any inference (\Rightarrow intro) the conclusion of which is the main premise of a (\Rightarrow elim) inference, , that is of the following form.

Let p be a propositional variable. Describe the set of normal proofs of the following formulas (start by writing all parentheses on those formulas):

- 1. $p \Rightarrow p$.
- $2. \ p \Rightarrow p \Rightarrow p.$
- 3. $p \Rightarrow (p \Rightarrow p) \Rightarrow p$.
- 4. $(p \Rightarrow p) \Rightarrow p \Rightarrow p$.
- 5. $(p \Rightarrow p) \Rightarrow p$.



1.5 Peano arithmetics

One considers the language of Peano arithmetics (constant and function symbols 0, S, + and ×) and write PA_0 for the theory containing the following formulas:

$$\begin{vmatrix} A_1 & \forall x.S(x) \neq 0 \\ A_2 & \forall x.(x = 0 \lor \exists y.x = S(y)) \\ A_3 & \forall x.\forall y.(S(x) = S(y) \Rightarrow x = y) \\ A_4 & \forall x.(x + 0 = x) \\ A_5 & \forall x.\forall y.(x + S(y) = S(x + y)) \\ A_6 & \forall x.(x \lor 0 = 0) \\ A_7 & \forall y.\forall y.(x \lor S(y) = (x \lor y) + x) \end{vmatrix}$$

Consider the induction axiom schema $\mathsf{Rec} = (\mathsf{Rec}_F)_{F \in \mathsf{Form}}$ made of the formulas Rec_F which are the universal closures of

$$(F[x := 0] \land (\forall n. F[x := n] \Rightarrow F[x := Sn])) \Rightarrow \forall x. F.$$

Write PA for the theory obtained by extending PA₀ with the induction scheme.

 \triangleright **Question 1.13.** Prove that $PA \setminus \{A_2\} \vdash A_2$.

2 Cut-elimination and subformula property

Exercice 2.1 (Subformula property, detailed statement) $(\star\star)$

Prove that in a deduction π of fragment $\land \Rightarrow \neg \forall$ of NJ that contains no cut, all formulas appearing in the deduction tree are subformulas of the conclusion or of an undischarge hypotheses and moreover, if π ends with an elimination rule, then it contains a **main branch** that is a sequence of formulas F_0, \ldots, F_k such that (i) F_0 is an (undischarged) hypothesis (ii) F_n is the conclusion of π and (iii) for any $0 \le i < k$, F_i is the main premise of an elimination the conclusion of which is F_{i+1} .

Exercice 2.2 (Cut elimination for NJ)

From what has been explained during the lectures, extend the cut-elimination result to the whole of NJ.

Exercice 2.3 (Subformula property for NJ)

From what has been explained during the lectures, extend the subformula property to the whole of NJ.

A Hilbert proof systems and natural deduction for predicate logic

MP	$(\{A, A \Rightarrow B\}, B)$
H_1	$A \Rightarrow (B \Rightarrow A)$
H_2	$(A \Rightarrow B \Rightarrow C) \Rightarrow (A \Rightarrow B) \Rightarrow (A \Rightarrow C)$
H_3	$A \wedge B \Rightarrow A$
H_4	$A \wedge B \Rightarrow B$
H_5	$A \Rightarrow B \Rightarrow A \wedge B$
H_6	$A \Rightarrow A \lor B$
H_7	$B \Rightarrow A \lor B$
H_8	$(A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow (A \lor B) \Rightarrow C$
H_9	$\neg A \Rightarrow (A \Rightarrow \bot)$
H_{10}	$(A \Rightarrow \perp) \Rightarrow \neg A$
H_{11}	$\perp \Rightarrow A$
H_{12}	$A \lor \neg A$

Gen_1 Gen_2	$ \begin{array}{l} (\{C\Rightarrow A[x]\},C\Rightarrow \forall x.A[x]) \text{ pourvu que } x\not\in FV(C,\Gamma)\\ (\{A[x]\Rightarrow C\},\exists x.A[x]\Rightarrow C) \text{ pourvu que } x\not\in FV(C,\Gamma) \end{array} $
H_{13} H_{14}	$A[t/x] \Rightarrow \exists x. A[x] \\ \forall x. A[x] \Rightarrow A[t/x]$

FIGURE 1 – Système à la Hilbert pour le calcul des prédicats.

Hypothèse	A	
Connecteurs prop.		
Implication	$ \begin{array}{c} [A] \\ \vdots \\ B \\ A \Rightarrow B \end{array} (\Rightarrow \text{intro}) $	$\begin{array}{ccc} \vdots & & \vdots \\ A \Rightarrow B & A \\ \hline B & & \end{array} (\Rightarrow elim)$
Conjonction	$\begin{array}{ccc} \vdots & \vdots \\ \frac{A_1}{A_1 \wedge A_2} & \text{(\wedge intro)} \end{array}$	$\frac{\vdots}{A_1 \wedge A_2}_{A_i \pmod{i}}, i \in \{1,2\}$
Disjonction	$\frac{\vdots}{A_i}_{A_1 \ \lor \ A_2} \ _{(\lor intro_i)}, i \in \{1,2\}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Négation	$ \begin{array}{c} [A] \\ \vdots \\ \frac{\bot}{\neg A} \end{array} (\neg intro) $	$\begin{array}{ccc} \vdots & \vdots \\ \neg A & A \\ \hline \bot & (\neg elim) \end{array}$
Absurdité		$\begin{array}{ccc} \vdots & & & [\neg A] \\ \frac{\bot}{A} & & & \vdots \\ & & \frac{\bot}{A} & (\bot_{C}) \end{array}$
Quantificateurs		
Quantificateur universel	$ \vdots \\ \frac{A[x := y]}{\forall x.A} \ \ (\forall \text{intro}) \ \ (\star) $	$\frac{\vdots}{\forall x.A} \over A[x:=t] \ \ ^{(\forall elim)}$
Quantificateur existentiel	$\frac{\vdots}{A[x:=t]}_{\exists x.A} \ \ ^{(\exists \mathrm{intro})}$	$ \begin{array}{ccc} & [A[x:=y]] \\ \vdots & \vdots \\ \exists x.A & C \end{array} $ $ \begin{array}{c} (\exists \text{elim}) \ (\star\star) \end{array} $
Égalité		
	$\overline{t=t}^{~(=~{\sf intro})}$	$\begin{array}{ccc} \vdots & \vdots \\ t_1=t_2 & A[x:=t_j] \\ \hline A[x:=t_{3-j}] & (=\operatorname{elim_j}) & j \in \{1,2\} \end{array}$

 (\star) y n'est pas libre dans les hypothèses (non déchargées) de la dérivation de A, ni dans $\forall x.A$. $(\star\star)$ x n'est pas libre dans les hypothèses (non déchargées) de la dérivation de C (autre que les A déchargés), ni dans C, ni dans $\forall x.A$ elle-même.

FIGURE 2 – Déduction naturelle de Gentzen