LMFI

Second-order quantification and fixed-points in logic First lecture: Gödel's System T

Alexis Saurin

4th january 2022

1 On the weak expressiveness of STLC

Definition 1.1

Extended polynomials are the functions generated by 0, 1, and the identity function the operations of addition, multiplication and conditional.

Theorem 1.2 (Schwichtenberg and Statman)

The arithmetical functions definable in simply-typed λ -calculus over type Nat are exactly the extended polynomials.

Several solutions are available to improve this expressiveness issue. We shall now consider an option investigated by Gödel, extending the simply-typed λ -calculus with types for pairs of objects, atomic types for booleans and naturals and constructions for conditional branching and a recursor.

Another option that will be investigated in the following lecture will consist in allowing the λ -terms to be polymorphic, that is to be applied to arguments of variable types : this will be the core of System F and of the connection with second-order logic.

2 Gödel's system T. 2.1 Types and terms of system T

Several systems have been considered to increase the class of (total) functions that can be represented in the typed setting. $G\ddot{o}del's$ System T is such a system, extending the simply-typed λ -calculus with product types $(U \times V)$, a type for booleans (Bool), with a type for natural numbers (Nat) and with the following term constructions:

- (i) pairs and projections : $\langle t, u \rangle, \pi_1(t), \pi_2(t)$;
- (ii) boolean constants and a boolean test: true, false, if t then u else v;
- (iii) constants for representing natural numbers and a recursor for each type A : S(t), 0, Rec(t, u, v).

Definition 2.1 (simple types for system T)

We consider a countable set \mathcal{T}_{At} of atomic types containing Nat and Bool. T-types are defined inductively as

$$T, U, V ::= A \mid U \times V \mid U \to V \qquad A \in \mathcal{T}_{\mathsf{At}}.$$

$$\frac{1}{x^U:U} (Var) \quad (x \in \mathcal{V}^U) \qquad \frac{t:T}{\lambda x^U.t:U \to T} \quad (Abs) \quad (x \in \mathcal{V}^U) \qquad \frac{t:U \to T \quad u:U}{(t)u:T} \quad (App)$$

$$\frac{u:U \quad v:V}{\langle u,v\rangle:U \times V} (Prod) \qquad \frac{t:U_1 \times U_2}{\pi_1(t):U_1} \quad (Proj_1) \qquad \frac{t:U_1 \times U_2}{\pi_2(t):U_2} \quad (Proj_2) \qquad \frac{1}{\sqrt{2}} \quad (Proj_2) \qquad \frac{1}{\sqrt{2$$

Definition 2.3 (T-reduction relation)

We define the T-reduction, written \longrightarrow_T , as the least compatible relation on T-terms, containing typed β -reduction as well as:

$$\begin{array}{cccc} \pi_i(\langle t_1,t_2\rangle) & \longrightarrow_{\mathsf{T}} & t_i \\ \text{if true then } t \text{ else } u & \longrightarrow_{\mathsf{T}} & t \\ \text{if false then } t \text{ else } u & \longrightarrow_{\mathsf{T}} & u \\ \text{Rec}(0,v,w) & \longrightarrow_{\mathsf{T}} & w \not\subseteq \bigcup \\ \text{Rec}(\mathsf{S}(t),v,w) & \longrightarrow_{\mathsf{T}} & (v)t \text{Rec}(t,v,w) \end{array}$$

A T-normal form is a T-term that does not $\longrightarrow_{\mathsf{T}}$ -reduce to any T-term.

Proposition 2.4

Assume that t is a closed T-normal. Prove that :

- If $t : \mathsf{Nat}$, then there exists $n \in \mathbb{N}$ such that $t = \mathsf{S}^n(\mathsf{0})$;
- If t: Bool, then t = true or t = false;
- If $\vdash t : A \times B$, then $t = \langle u, v \rangle$;
- If $t: U \to V$, then $t = \lambda x. u$.

1 H Z: Nat-closed

2.2 Strong normalization theorem

Definition 2.5 (Neutral T-term)

A T-term is neutral if it is not of the form $\lambda x^U:t,\,\langle t,u\rangle,$ true, false, 0 or S(t).

The sets $\mathsf{Neut}^{\mathsf{SN}}(U)$, $\mathsf{SNorm}(U)$ are adapted to T-terms without any change (but the dependency of $\mathsf{Neut}^{\mathsf{SN}}(U)$ with $\mathsf{RED}^{\mathsf{SN}}(U)...)$:

Definition 2.6 (Neut^{SN}(T))

 $\mathsf{Neut}^{\mathsf{SN}}(T) = \{t \in \mathbf{X}^{\mathsf{S}}; \ t \ est \ neut (\ de \ type \ T \ et \ \forall t', t \longrightarrow_{\mathsf{T}} t', t' \in \mathsf{RED}^{\mathsf{SN}}(T) \}$

Definition 2.7 (SNorm(T))

 $\mathsf{SNorm}(\mathbf{W}) = \{t \in \mathbf{W}^*; \ t \ fortement \ normalisable \ de \ type \mathbf{W} \}.$

Definition 2.8

- -- RED^{SN}(X) = SNorm(X)
- $--\operatorname{RED^{SN}}(U \to V) = \{t: U \to V; \forall u \in \operatorname{RED^{SN}}(U), (t) \, u \in \operatorname{RED^{SN}}(V)\}.$
- $= \mathsf{RED^{SN}}(U_1 \times U_2) = \{t : U_1 \times U_2 \mid \forall i \in \{1, 2\}, \pi_i(t) \in \mathsf{RED^{SN}}(U_i)\}.$

Lemma 2.9 (Adapation)

For every type T, one has $\mathsf{Neut}^{\mathsf{SN}}(T) \subseteq \mathsf{RED}^{\mathsf{SN}}(T) \subseteq \mathsf{SNorm}(T)$.

Lemma 2.14 (Adequation)

Let t: U with free variables among $x_1^{T_1}, \ldots, x_n^{T_n}$. For any $(u_i \in \mathsf{RED^{SN}}(T_i))_{1 \le i \le n}$, one has $t\{u_i/x_i\} \in \mathsf{RED^{SN}}(U)$.

Jen- L'ormalijation proof.

L. U proof & is SN

We need to proof & SNom (V

It is sufficient to proof that

A is reductive (by

adaptation lemma).

totailais = to New SN(Ti). V

CRed SN (Ti)

By adequation,

E Kad (V

Lemma 2.10

For any type T, $RED^{SN}(T)$ is closed by β -reduction:

$$t \in \mathsf{RED^{SN}}(T), \qquad t \longrightarrow_{\mathbf{T}} t' \qquad \Rightarrow \qquad t' \in \mathsf{RED^{SN}}(T).$$

Démonstration: The lemma is proved by induction on the structure of type T.

- If $T = U \rightarrow V$, as in STLC — If $T = U_1 \times U_2$, then let t : T such that $t \longrightarrow t'$. Since t is reducible, its projection are: $\pi_i(t) \in \mathsf{RED^{SN}}(U_i), i \in \{1, 2\}.$ By applying induction hypothesis on U_1 and U_2 , we know that $\mathsf{RED^{SN}}(U_i)$ are closed by reduction and since $\pi_i(t) \longrightarrow \pi_i(t')$ with $i \in \{1, 2\}$, we have that $\pi_i(t') \in \mathsf{RED^{SN}}(U_i)$ for $i \in \{1, 2\}$. Therefore $t' \in \mathsf{RED^{SN}}(T)$.

Démonstration of lemma 2.9: The proof is by induction on the structure of type T:

- If T = X, as for STLC
- If $T = U \rightarrow V$, as for STLC
- If $T = U_1 \times U_2$, then:
 - $\mathsf{Neut}^{\mathsf{SN}}(T) \subseteq \mathsf{RED}^{\mathsf{SN}}(T)$:

Let $t \in Neut^{SN}(T)$. Since t is neutral, $\pi_i(t)$ cannot be a redex itself: its redexes are necessarily in t, so that its one-step reducts are all of the form $\pi_i(t')$ with $t \longrightarrow t'$. Since $t \in \mathsf{Neut}^{\mathsf{SN}}(T)$, $t' \in \mathsf{RED}^{\mathsf{SN}}(T)$ and $\pi_i(t') \in \mathsf{RED}^{\mathsf{SN}}(U)_i, i \in \{1, 2\}$.

Therefore we have that $\pi_i(t), i \in \{1, 2\}$ are neutral and all their one-step reducts are reducible : $\pi_i(t) \in \mathsf{Neut}^{\mathsf{SN}}(U)_i, i \in \{1, 2\}.$

By induction hypothesis on U_1 and U_2 , $\pi_i(t) \in \mathsf{RED^{SN}}(U_i)$, $i \in \{1, 2\}$.

By definition of reducibility at product type, one concludes that $t \in \mathsf{RED}^{\mathsf{SN}}(T)$ as expected.

-- RED^{SN} $(T) \subseteq SNorm(T)$:

Assume that $t \in \mathsf{RED^{SN}}(T)$. The $\pi_1(t) \in \mathsf{RED^{SN}}(U)$ by definition and, by induction hypothesis on U, $\pi_1(t) \in \mathsf{SNorm}(U)$. The longest reduction from t is certainly at least as long as that from $\pi_1(t)$ so there is only finite reduction sequence from t and $t \in \mathsf{SNorm}(T)$

Lemma 2.12

 $(\forall u \in \mathsf{RED^{SN}}(U), v\{u/x\} \in \mathsf{RED^{SN}}(V)) \Rightarrow \forall u \in \mathsf{RED^{SN}}(U), (\lambda x.v)u \in \mathsf{RED^{SN}}(V).$

The following is a corresponding result for pairs :

Lemma 2.13

$$\forall u \in \mathsf{RED^{SN}}(U), v \in \mathsf{RED^{SN}}(V), \langle u, v \rangle \in \mathsf{RED^{SN}}(U \times V).$$

<u>Démonstration</u>: By adaptation lemma, one can reason using the strong normalisation of u, v and therefore reason by induction on the sum of the length of the longest reductions from u and v to show that $\pi_i(\langle u, v \rangle)$ is reducible.

First notice that this term is neutral. Therefore, to show that is it reducible, it is sufficient to show that every one-step reduct is reducible from which one deduce that $\pi_i(\langle u, v \rangle) \in \mathsf{Neut}^{\mathsf{SN}}(U)$ and, by adaptation, that it is reducible.

 $\pi_i(\langle u, v \rangle)$ reduces (i) either to u (resp. v) which is reducible, (ii) or to $\pi_i(\langle u', v \rangle)$ with $u \longrightarrow u'$. u' is reducible since reducibility is closed by reduction and its longest reduction is shorter than that of u so by induction hypothesis, $\pi_i(\langle u', v \rangle)$ is reducible, (iii) or to $\pi_i(\langle u, v' \rangle)$ with $v \longrightarrow v'$ which is reducible by exactly the same reasoning as in (ii).

Therefore both projections of $\langle u,v \rangle$ are reducible showing that $\langle u,v \rangle \in \mathsf{RED^{SN}}(U \times V)$

Proposition 2.11

The following holds:

- 1. $0 \in RED^{SN}(Nat)$.
- 2. true, false $\in RED^{SN}(Bool)$.
- 3. $\forall t \in \mathsf{RED^{SN}}(\mathsf{Nat}), \mathsf{S}(t) \in \mathsf{RED^{SN}}(\mathsf{Nat}).$
- 4. $\forall t \in \mathsf{RED^{SN}}(\mathsf{Bool}), \forall u, v \in \mathsf{RED^{SN}}(U), \text{ if } t \text{ then } u \text{ else } v \in \mathsf{RED^{SN}}(\mathsf{Bool}).$
- $5. \ \forall t \in \mathsf{RED^{SN}}(\mathsf{Nat}), \forall u \in \mathsf{RED^{SN}}(\mathsf{Nat} \to (U \to U)), \forall v \in \mathsf{RED^{SN}}(U), \mathsf{Rec}(t, u, v) \in \mathsf{RED^{SN}}(U).$

+ I: U - DU for any U.

Lemma 2.14 (Adequation)

Let t: U with free variables among $x_1^{T_1}, \ldots, x_n^{T_n}$. For any $(u_i \in \mathsf{RED^{SN}}(T_i))_{1 \leq i \leq n}$, one has $t\{u_i/x_i\} \in \mathsf{RED^{SN}}(U).$

Démonstration du lemme 2.14: One reason by induction on the structure of t:T.

- If $t = x_i^{T_i}$, as for STLC.
- If $t = \lambda x^U . t'$, as for STLC.
- If t = (u)v, as for STLC.
- If $t = \langle u, v \rangle$, then by induction hypothesis, both $u\{u_i/x_i\}$ and $v\{u_i/x_i\}$ are reducible and by the previous lemma $t\{u_i/x_i\}$ is reducible.
- If $t = \pi_1(u)$ (resp $\pi_2(u)$), then by induction hypothesis $u\{u_i/x_i\}$ is reducible which implies that $\pi_1(u\{u_i/x_i\})$ is reducible by definition.
- If t is some T-constant, it is reducible (since $0 \in RED^{SN}(Nat)$, true, false $\in RED^{SN}(Bool)$).
- If t = S(u), then by induction hypothesis, $u\{u_i/x_i\}$ is reducible and so is $S(u\{u_i/x_i\})$.
- If t = if u then v else w, then by induction hypothesis, $u\{u_i/x_i\}$, $v\{u_i/x_i\}$, $w\{u_i/x_i\}$ are reducible and so is if $u\{u_i/x_i\}$ then $v\{u_i/x_i\}$ else $w\{u_i/x_i\}$.
- If t = Rec(u, v, w), then by induction hypothesis, $u\{u_i/x_i\}$, $v\{u_i/x_i\}$, $w\{u_i/x_i\}$ are reducible and so is $\text{Rec}(u\{u_i/x_i\}, v\{u_i/x_i\}, w\{u_i/x_i\})$.

Theorem 2.15

System T is strongly normalizing.

Démonstration: Let t:T of free variables $(x_i^{T_i})_{1\leq i\leq n}$. Be adaptation lemma (2.9) for any $1\leq i\leq n$, $x_i^{T_i} \in \mathsf{RED^{SN}}(T_i)$ since variables of type T are neutral and normal and therefore in $\mathsf{Neut^{SN}}(T)$.

> Adequation lemma (2.14) ensures that $t\{x_i^{T_i}/x_i, 1 \le i \le n\} = t$ is reducible of type T $(\in \mathsf{RED^{SN}}(T)).$

> By using adaptation lemma once more, one has $t \in \mathsf{RED^{SN}}(T) \subseteq \mathsf{SNorm}(T)$ which allows to conclude that t is strongly normalizing.

<l - {w, ~ } [~ .]

inité reduction réquences

2.3 Expressive power of system T

The extended expressiveness of T that was mentioned in the start is expressed by the following theorem :

Theorem 2.16

The functions that can be represented in system T are the recursive functions which can be proved to be total functions in first-order Peano arithmetics (PA).

2.3 Expressive power of system T

Simple arithmetical functions represented by T-terms.

The successor function can be written as:

$$\longrightarrow$$
 Succ $\triangleq \lambda x^{\text{Nat}}.S(x)$ or

$$Succ' \triangleq \lambda x^{\text{Nat}}.\text{Rec}(x, \lambda y^{\text{Nat}}.\lambda z^{\text{Nat}}.z, S(0))$$

Addition can be defined as:

$$\mathsf{Add} \triangleq \lambda x^{\mathsf{Nat}}.\lambda y^{\mathsf{Nat}}.\mathsf{Rec}(x,\lambda z^{\mathsf{Nat}}.\mathsf{Succ},y).$$

Multiplication can be defined in the same way,

$$\mathsf{Mult} \triangleq \lambda x^{\mathsf{Nat}}.\lambda y^{\mathsf{Nat}}.\mathsf{Rec}(x,\lambda z^{\mathsf{Nat}}.(\mathsf{Add})y,\mathbf{0}).$$

Exponentiation can be defined in the same way,

$$\mathsf{Exp} \triangleq \lambda x^{\mathsf{Nat}}.\lambda y^{\mathsf{Nat}}.\mathsf{Rec}(y,\lambda z^{\mathsf{Nat}}.(\mathsf{Mult})x,\mathsf{S}(\mathbf{0})).$$

Succ= In Ifan. (p) (m) fr.

succ= In Ifan. (m) f (f) x

succ m ~ > > | Da. | plan fr.

$$\mathsf{Pred} \triangleq \lambda x^{\mathsf{Nat}}.\mathsf{Rec}(x,\lambda y^{\mathsf{Nat}}.\lambda z^{\mathsf{Nat}}.y,\mathbf{0}).$$

$$\mathsf{Subt} \triangleq \lambda x^{\mathsf{Nat}}.\lambda y^{\mathsf{Nat}}.\mathsf{Rec}(y,\lambda z^{\mathsf{Nat}}.\mathsf{Pred},x).$$

red S(t) ____ r(n) k Rec(t, ~,0)

Sk (t). = S(S(.-. (t)).

12n. 4) (1) (1) ... (9) n

Ackermann-Peter function in T.

$$A(m,n) \triangleq \begin{cases} n+1 & \text{if } m=0\\ A(m-1,1) & \text{if } m>0 \text{ and } n=0\\ A(m-1,A(m,n-1)) & \text{if } m>0 \text{ and } n>0 \end{cases}$$

In order to represent A in T, we would need a T-term A such that

$$\begin{array}{cccc} (\mathsf{A})0n & \longrightarrow_\mathsf{T}^\star & \mathsf{S}(n) \\ (\mathsf{A})\mathsf{S}(m)0 & \longrightarrow_\mathsf{T}^\star & (\mathsf{A})m\mathsf{S}(0) \\ (\mathsf{A})\mathsf{S}(m)\mathsf{S}(n) & \longrightarrow_\mathsf{T}^\star & (\mathsf{A})m(\mathsf{A})\mathsf{S}(m)n \end{array}$$

we only have a recursor, not minimization scheme construct. How to find a solution?

Rec: Not - o(Not - oV-N)-0

(U - o U).

U= Not.

U= Not.

Let us consider A, by currying, not as a function of two arguments but as a family of unary functions $(A_m)_{m\in\mathbb{N}}$ from \mathbb{N} to \mathbb{N} . We then notice that the definition becomes:

$$A_0(n) \triangleq n+1$$

$$A_{m+1}(n) \triangleq \begin{cases} A_m(1) & \text{if } n=0\\ A_m(A_{m+1}(n-1)) & n>0 \end{cases}$$

$$A_{m+1}(n) = (ter(A_m, n))$$
 where $iter(f, 0) = f(1)$ and $iter(f, n+1) = f(iter(f, n))$.

- Now, we see clearly how to complete the definition of A:
- Consider Iter $\triangleq \lambda f^{\mathsf{Nat} \to \mathsf{Nat}} . \lambda x^{\mathsf{Nat}} . \mathsf{Rec}(x, \lambda y^{\mathsf{Nat}}. f, (f) \mathsf{S}(0))$ to represent the iteration function described above.
- We can define the T-term representing Ackermann-Peter function as

$$A \triangleq \lambda x^{\mathsf{Nat}}.\mathsf{Rec}(x,\lambda z^{\mathsf{Nat}}.\mathsf{Iter},\mathsf{Succ}).$$

4 hoteves by Alemb.

LDT, So, System F. 5 lectures by Thomas. Alenes es back (3 lectures).
La completenes, (many-norted logies/ HO logie). Lo finid points pe-calculus Thomas again on MSO (finte/infinite madels). Ahon coolepp. MSO (n-calculus-