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1 On the weak expressiveness of STLC
Definition 1.1

Extended polynomials are the functions generated by 0, 1, and the identity function the
operations of addition, multiplication and conditional,

Theorem 1.2 (Schwichtenberg and Statman)

The arithmetical functions definable in simply-typed A-calculus over type Nat are exactly the
extended polynomials.
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Several solutions are available to improve this expressiveness issue. We shall now consider an
option investizgated by Godel, extending the simply-typed A-calculus with types for pairs of objects,
atomic types for boolcans and naturals and constructions for conditional branching and a recursor.

Another option that will be investigated in the following lecture will consist in allowing the
A-terms to be polymorphic, that is to be applied to arguments of variable types : this will be the
corc of System F and of the connection with sccond-order logic.
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2 Godel’s system T. 2.1 Types and terms of system T

Scveral systems have been considered to increase the class of (total) functions that can be
represented in the typed setting. Gadel’s System T is such a system, extending the simply- {4
tvped A-calculus with product types (U x V'), a type for booleans (Bool), with a type for natural %
numbers (Nat) and with the following term constructions :

(i) pairs and projections : {f. u}, m(¢), ma(f): Q < \/ ;

(ii) boolean constants and a boolean test : true, false. if £ then w else v ;
(111) constants for representing natural numbers and a recursor for each type 4 : 5(1). 0, Rec(t, u. v). (Z-)@&
Definition 2.1 (simple types for system T) l —’r
We consider a countable set Ta: of atomic fypes containing Nat and Bool. T-fypes are defined N p(“"/ ’
inductively as
T UV =A|UxV| U=V  AcTa fﬂ
_ 7 t: » r t:U—=T uw:U ,
T (Var) (zeVY) T — (Abs) (z e V") L J L (App)
v U Azt .t U =T (B)u: T
m& /A_l ) _ D Ta
u-U vV t: U x Uy 1 t: Uy x Uy , U
(Prod) (Projy) (Projsa)

{’L{.,'U} : LT X 'L;' ?T]_(t) . Lrl Trz(t) : L'Tz

— t : Nat =

true : Bool (true) (false) 0 : Nat (0) S(t) : Nat (5)

: “Bool w:U wv:U t:Nat w:Nat—= (U —=U) v:U
" If
k\!{b SN if tthenwuelsev : U () Rec(t,u,v) : U

false : Bool

—

f

(Rec)




Definition 2.3 (T-?‘Eductinﬂ, ﬁ?mtfinn)

ning typed 3-reduction as well as :

mi({t1,t2)) —T
if truethentelseu ——7
if falsethenfelseu —7

Rec(0, v, w) —T

Rec(S(f). v, w)  —7

Proposition 2.4

Assume that t is a closed T-normal. Prove that :
If1: Nat, then there exists n € N such that t = 5"(0);
— Ift : Bool, then t = true or t — false ;
— If-t: Ax B, then t = {u,v) ;
— Ift: U0 — V, then t = Az, .

(v)tRec(t. v, w)

A T-normal form is a T-term that docs not ——r-reduce to anyv T-term.
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We define the T-reduction, written — 1, as the least compatible relation on T-terms, contai-
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i) (x € VUJ (T

(1 & vy )

— Ab:
bt U =T (Abs)

(App)
- L‘Tl s L'rg
malt) - U
£ : Nat -
S

0 : Nat S(t) : Nat (5)
w:Nat (7 »U) o: U

Rec(t,u,n) : [J

w:U vV oy prog SRURSS (Proj)
M I:?L} : L']

FProj-
(v U W (Projs)

(true) (false) (0)

true : Bool false : Bool

r7 £ Nat
(If)

t:Bool w:07 w©:
if tthenwuelsen - [

(Rec]




2.2 Strong normalization theorem
Definition 2.5 (Neutral T-term)

A T-term is neutral if it is not of the form Az : ¢, {t,u), true, false, 0 or 5(¢).
The sets Neut®™ ('), SNorm(T7) are adapted to T-terms without any change (but the depen- N@M‘a’q”h M

dency of Neut>™ (1) with RED>N(17)...) :

SN
Definition 2.6 (Neut>™(T")) Cg] ! UD-
Neut>™(1') = {t € A®: ¢ est neutfRye type 1" et Vt', 1 —>T1‘ .t € RED>N (1)}
]l‘.l.o
Definition 2.7 (SNarm(T)) dﬁ
SNorm(#f) = {t € .ﬁ?h“ t fortement normalisable de typegE}. M I8
T Y, ~

Definition 2.8

q‘ "r
RED>N(X) = SNorm(X) k i / Zj
REDN(I — V) = {t: U — V;¥u € RED>N(U7), (t)u € RED>M (V) 1, L

REDN(U7y x Uy) = {t: Uy x Uy | Wi € {1,2}, mi(t) € REDN(U7;)}.

Lemma 2.9 {Adapﬁtinn) C P\Qd\%‘\l (Tjh .

‘ For cvery type T, onc has Neut™™(T) € RED>N(T) C SNorm(T). —_ 'Y

Lemma 2.14 ( Adequalion) %‘d— QA Gm ) (U)

At
Let t : U/ with free variables among ITL, ...xln. For any (u; € REDSN{ 1i)) 1 <i<n, one has ’ {Uﬁ-l 4./ &FP-
- 4‘-—-’-)% o

t{u;/z;} € REDMN(U).




Lemma 2.10

Démonstration :

For any type T, RED*N(1") is closcd by 3-reduction :

t £ RED>N (1), t—pt’ = ' ¢ RED>M(T).

The lemma is proved by induction on the structure of type 7.

If T is atomic, as in STLC b@%é\l:f} Pe

— [T =0 =V, asin STLC i
— T =1/ «x Us. then let T such that + —— . Since + is ricdneible, 1ts projection are

m(t) REDSN{L ).t € 1,2} By applying induction hypothesis on U7 and Us, we know
that RED*™(t/,) arc closed by reduction and sinec m[ij — mi(t') with i € {1.2}, we have
that m,(t) € RED™ (1) for i € {1,2}. Therefore #' € RED*" (7).

Démonstration of lemma [2.9]: The proof is by induction on the structure of type T : - ( é E>

If 7= X, as for STLC u ¢
Ir7T U — V, as for STLC

— T =07 =7, Lhen

Neut®"(T) € RED®™(T) :

Let t € Neut™(T). Since i is neutral, (L) cannol be a redex itsell : its redexes are
necessarily in ¢, so that its one-step reducts are all of the form w;(#") with + — ',
Since £ € Neut®™ (7). ¢ € RED™(T) and #;(t") ¢ RED™™ (1/);.4 < {1,2}.

Therefore we have that m(#),7 € {1,2} are neutral and all their one-step reducts are
reducible : o (t) € Neut™ {U);,i € {1,2}.

By induction hypothesis on /) and s, 7:(t) HEDSMFL-]I' 1= 41,2},

By definition of reducibility at product tvpe, one EGI‘LGIUEIC“- that t © REDSN(T} as
C .

expoectoed. -
REDM (T  SNorm(T)
Assume tl:mt t € RED':'N (7). The H:} = RED™" {L ]'h by Ltehrutlurl d.]ilf_l by 11'1dULt1urL




Lemma 2.12 i /X U \J U
(7u © REDSMN(U)), ofw/x) « REDN{V)) = vu « REDSN (1), (Awo)u « REDN (V). W _ Y. h‘c’\) ! d%ﬂ;;}
The [ollowing is a corresponding result. for pairs 4 j:-
'.J"_‘h
Lemma 2.13 Q(_,'q-r —_ -

Vu g REDM (17}, v & RED>™(V), {u, v} &€ RED™™ (17 % V). i

IDémonstration: By adaptation lemma, one can reason using the strong normalisation of w. v and

therefore reason by induction on the sum of the length of the longest reductions from w and -.,I ‘ 7<

v Lo show that w, ({u,v)) s reducible.
[First notice that this term is neutral. Therefore, to show that is it redueible, it 18 sufficient
lo show that every onc-step reduct is reducible [rom which one deduce that & {({u, v}) < sy
Neut™ (1)) and, by adaptation, that it is reducible. '\,, J—-
i (w03 ) reduces (1) cither Lo u {resp. ¢) which is reducible, (11) or Lo m:({u’, v} wilh
w o u' . w8 redneible sinee reducibility is closed by reduction and its longest reduction is }c
shorter than that of w so by induction hypothesis, m [{w', v}) is reducible, (i} or to o ({u, v'}}
with # — " which is reducible by exactly the same reasoning as in (ii).

Therelore both projections ol {u. v} are reducible showing thal {u, v} £ RED=" H_’? b .L_)
O

Proposition 2.11
The following holds :
1. 0 € REDM(Nat).
2. true, false € RED>N(Bool).
3. ¥t € REDN(Nat),S(t) € RED®N(Nat).
4. ¥t € RED®N (Bool), ¥u, v € RED3N (L), if ¢ then u else v € RED®N (Bool).
5. %t € RED®N(Nat), Vu € RED3N(Nat — (I — 7)), Ve € RED3N(U7), Rec(t, u, v) € RED3N(TV).

T




Lemma 2.14 ( Adequation) ) </U' Z-HJA.‘E )'NJ ZLLV ‘g >
- R

- . . . T -
Let E ; D with fn::e variables among ;:;1',,,””5 For any (u; € REDSN{T-,;])-J wien, one has

-y T
: 3

Démonstration du lemme [2.14]: One reason by induction on the structure of £ T
— It = ::r*;r":'_. as for STLC.
— Ift = Xz" ', as for STLC.
It t = (w)v, as for STLC.
— If ¢t = {u, v}, then by induction hypothesis, both w{w;/z;} and v {u;/z} are reducible
and by the previous lemma ¢ {u, /x; } is reducible.

IfL = () (resp ma(w)), then by induction hypothesis w {u; fo; } 18 reducible which implies
that 7y (w {w;/x;}) is reducible by delinition.

— If t is some T-constant, it is reducible (since 0 £ REDSM[Natj., true. false € RED™" (Bool]).
If t = S(u), then by induction hypothesis, u {u, /2 } 18 reducible and so is S{u {u,; /2. }).
I ¢ = if uthenvelsew, then by induction hypothesis, w{w; /o b, v {ug /o, w{w /e } are
reducible and so is if w{u, S} thenv {w; /o, b elsew {u; /2 )
If t+ — Rec{w,v,w), then by induction hypothesis, 1'_-'_'-{'“-.!.."-'.; cvdug S}, w{ug /o) oare

reducible and so is Recm wifai b o fusfa b, w {usfoi}) — ot C (,k)\ TQ—@
L

Theorem 2.15 900
Svstem T is strongly normalizing. -\;:5 ‘t ’T

Démonstration: Let t: T of free variables {I:""h <i=n. BC adaptation lemma 12.!?! for anv 1 < { << n,
x1* « RED®™(T}) since variables of type 7" are neutral and normal and therelore in Neut™ (T7).
Adequation lemma cnsurcs that t{ ry ey, 1 <i< ﬂ} = t is reducible of tvpe T T‘um

(e RED™"{T).
By using adaptation lemma once more, one has + € RED*™{7") € SNorm(T) which allows

. . o
to conclude that 1 is strongly normalizing,

O



2.3 Expressive power of system T

The extended expressiveness of T that was mentioned in the start is expressed by the following
theoremn :

Theorem 2.16

The fiunctions that can bhe represented in system T are the recursive functions which can he
proved to be total functions in first-order Peano arithmetics (PA).

N ?QQM S Q@%ﬁ‘&
ok < .
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2.3 Expressive power of system T

Aoy, Nat .\ Nat y _Nat |
simple arithmetical functions represented by T-terms. Pred = Ax™".Rec(z, Ay™™.Az"".y, 0).
The successor function can he written as : A+ Nat < Nat Nat
SUCC S A\ Nat S( )_Ea Subt = Ax -)1.?} .REE(E}, Az .PFEC', .T)
ST =A™ Rec(, Ayt AN SIJ)

Addition can be deﬁned as :

Add = AxM* Nt Rec(z, A;f”at Suce, y). @%ﬁx 5 Qt)

(k,~,0)
Multiplication can be defined in the same way. _—\ t(\{) A_/ R’QC- t} / O

Mult 2 AzN2t ANt Rec(x, @(Add )y, 0). Y -
Exponentiation can be defined in the same way,

Exp £ A \y™* Rec(y, }1 N2t (Mult)a, S(0)).

S%\UQ_
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Ackermann-Peter function in T.
n =+ 1 itfm =10 @’C K \
Alm,n) £ ¢ Alm—1,1) itm>0and n=10 < . N Q)C r-—:i?L Nul‘f - U "’b —~V
Alm—1,A(m.n—1)) ifwm>0and n >0 )
In order to represent 4 in T, we would need a T-term A such that L\J v U> ’

(A)On —%  S(n) —
(A)S(m)0 —2; (A }mS(D) U "~ NG‘L
(A)S(rn)S(n)  —7  (A)m(A)S(m)n

wo only have a recursor, not minimization scheme construct. How to find a solution? \J h(‘ Lr - \\jﬂk .

Let us consider A, by currying, not as a function of two arguments but as a family of unary
functions (A, )men from N to N. We then notice that the definition becomes :

Ag(n) Zn+1

: f'l-ﬂl{].} ifn = 0
m+J_ } — fl-;.r;.{flarn.—l—'l {-”. — 1}} re 2= ()

The effect of 4m+1 on n is to iterate A, n+ 1 times over 1: A, 1(n) = A, (Apmi(n—1)) =
m(-"’l ( 1rn+l(ﬂ_ )) = Am (*4?TL{"4??1-(ATT1+1(?1_3)))) — = -Am(_-":lm (-‘4?11,(14??1-(- ' {Am(l) .« )))D'

Ari(n) = :’lm, E) where E'.a’;e*r(f ) {(E and .r:ltﬁr (f, .r.!,—|—l @ﬂﬁ?‘(f—\)j




Now, we see clearly how to complete the delmition of A ;

Consider Iter 2 A fNat=Nat y;Nat Roc(i, AyMNat, f, (£)S(0)) to represent the iteration function des-
cribed above.

We can define the T-term representing Ackermann-Peter function as

A £ AxN2t Rec(z, Az Iter, Succ).






